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Abstract

A longitudinal multilevel item response model is proposed for measuring changes

in individual growth over time. To estimate the model parameters, a combined

Bayesian procedure is developed. The deviance information criterion (DIC) and

the widely applicable information criterion (WAIC) are used to assess the compet-

ing models. The simulation results show that the combined Bayesian estimation

method performs perfectly in terms of recovering model parameters under various

design conditions. Finally, a longitudinal dataset about the development of achieve-

ment in mathematics illustrates the significance and implementation of the proposed

procedure.
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1 Introduction

Longitudinal studies have attracted interest in many fields, such as the health, so-

cial and behavioral sciences (Harville, 1977; Laird & Ware, 1982; Muthén, 2002; Bollen

& Curran, 2006; Bacci, 2012). Specifically, in educational and psychological research,

changes over time are often investigated through longitudinal analysis of observations

collected at several time points. The purpose of such investigation is not only to study

the achievement of individuals over time, but also to explore differences in individual

growth trajectories among individuals of varying genders, family socioeconomic statuses,

etc. There is a rich literature on the longitudinal studies in educational and psychologi-

cal research, including Laird and Ware, 1982; Andersen, 1985; Embretson, 1991; Bollen

and Curran, 2006; Muthén, 2002; Kim and Camilli, 2014; Andrade and Tavares, 2005;

Azevedo et al., 2016; von Davier, Xu, and Carstensen, 2011.

Although the longitudinal studies in educational and psychological research have

been deeply studied, there are still some deficiencies in the existing literature. Next, we

compare the existing longitudinal models with our new model and analyze the advantages

of our new model from multiple aspects. (1) A hierarchical modeling approach for mea-

suring growth change provides a way to account efficiently for dependence resulting from

the fact that the same individuals are assessed repeatedly, as in the case for random-effect

and growth curve models (Laird & Ware, 1982; Bollen & Curran, 2006; Muthén, 2002).

The two approaches dealing with latent traits are based on linear models for continuous

responses that can be approximately normally distributed, where responses are typically

obtained as simple or weighted sums across items through a particular assessment instru-

ment. However, in many studies of educational psychology, responses are often discrete.

Linear models are no longer appropriate for relating changes in mean responses to covari-

ates. Instead, we construct a time-specific item response theory (IRT; Lord, 1980; van der

Linden & Hambleton, 1997) model to describe the relathionship between individual and

item at different time points through the binary responses. The time-specific IRT(TS-
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IRT) model overcomes a number of potential problems that linear mixed models bring

about by using a simple aggregate score for investigating change (such as paradoxical

reliability of change scores, spurious negative correlations of change with initial status)

(Kim & Camilli, 2014). Moreover, the TS-IRT model also solves inconsistent scale units

for change encountered in linear mixed models, so that the latent traits of different time

points are transformed into a single scale (Kim & Camilli, 2014). (2) Numerous stud-

ies on longitudinal IRT models have been conducted to measure individual growth. For

example, Andersen (1985) proposed an extended Rasch model for the repeated adminis-

tration of the same items over time points where item responses given on each occasion

are modeled with a unidimensional IRT model and where the latent traits of each occasion

are correlated. However, statistical inference results can present serious deviations due to

strict assumptions of constant item difficulty parameters, and thus we cannot distinguish

latent trait enhancement levels from later learning or the predisclosure of items (practi-

cal effects). Our TS-IRT model overcomes the deviations of statistical inference results

caused by this strict assumptions, and evaluates the latent trait development by adopting

the method that difficulty parameters are different at each time points and the different

anchor items are employed to link multiple time points. (3) Andrade and Tavares (2005)

extended Andersen’s Rasch model to a three-parameter logistic model, from which they

allowed latent traits for different occasions to follow a multivariate normal distribution

so that serial correlations among latent traits are captured by a covariance matrix. Al-

though the critical assumptions of strong factorial invariance over time can be satisfied

by constraining all item parameters for known fixed values, the test cost will increase

to precalibarate all of the test items at different time points. However, in our model,

all items except anchor items do not need to be calibrated in advance as known values,

and the unknown item parameters are estimated simultaneously by Bayesian sampling

algorithm. Therefore, it avoids the huge expense in test items precalibration. (4) The

model proposed by Azevedo et al. (2016) can be viewed as an extension of Andrade

and Tavares (2005) where several restricted covariance pattern structures are considered
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to capture time-specific between-student variability and time heterogeneous longitudinal

dependencies among latent traits. At the individual level, the time-specific latent traits

are assumed to be multivariate normally distributed, and the within-individual correla-

tion structure is modeled using a covariance pattern model. However, in our paper, each

individual’s time-specific latent traits is represented by an individual growth trajectory

that is dependent on a unique set of parameters at the individual level rather than to

assume to follow a multivariate normally distribution. In addition, the main purpose of

our paper is to explore differences in individual growth trajectories between individuals of

varying genders and family socioeconomic statuses rather than to analyze the correlation

between the latent traits of multiple dimensions. (5) To relax the assumption of setting

item difficulty parameters as constants, Embretson (1991) developed a multidimensional

Rasch model for learning and change (MRMLC) to provide parameters for individual d-

ifferences in change where the model assumed that on the first occasion (t = 1), only an

initial latent trait is involved in item responses while for later occasions, latent traits θt

(t > 1) quantified by t− 1 additional latent traits are involved in performance. Thus, the

increment of the latent trait between successive occasions can be quantified directly. Em-

bretson (1991) described the growth of the individual’s latent trait through the increment

of latent trait, which was obviously quite different from that by the growth curve as shown

in our study. (6) von Davier, Xu, and Carstensen (2011) developed a mixture longitudi-

nal multidimensional IRT model to explore whether multidimensional academic growth

is homogeneous across different types of schools. However, the abovementioned models

only consider latent traits as special values to compare them with other latent traits for

different time points. In this paper, we are more concerned with the nature of latent trait

growth trajectory (linear or quadratic growth) and with whether growth patterns are

identical for different individual background variables (e.g., genders and socioeconomic

statuses).

In this paper, we propose a longitudinal multilevel TS-IRT(LMTS-IRT) model that

measures changes in individual growth over time. We use a combined Bayesian algorithm
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that combines the Metropolis-within-Gibbs algorithm (Metropolis et al., 1953; Hastings,

1970; Tierney, 1994) with the Gibbs algorithm (Geman & Geman, 1984; Gelfand & Smith,

1990) to simultaneously estimate parameters, and a combined Bayesian procedure is devel-

oped. Specifically, the Metropolis-within-Gibbs algorithm is used to estimate parameters

without conjugate priors so that the full conditional distributions are not available (Hah-

n, 2014) while the Gibbs algorithm is used to estimate other parameters with conjugate

priors. Additionally, the DIC and WAIC were used to assess model fit in the simulation

study. Finally, a longitudinal dataset about the development of achievement in mathe-

matics illustrates the significance and implementation of the proposed procedure.

The remainder of this paper is organized as follows. In Section 2, the LMTS-IRT

model and its identifiability are described. This is followed by a description of our com-

bined Bayesian sampling procedure and a discussion of model selection criteria in Section

3. In Section 4, simulation studies are conducted to evaluate the performance of our

Bayesian sampling algorithm and of the model assessment method. In addition, an anal-

ysis of the longitudinal education quality assessment data is given in Section 5. Finally,

some concluding remarks are presented.

2 Model and Its Identification

A longitudinal multilevel item response model is proposed that consists of three level-

s. At level 1, a TS-IRT model is considered for the measurement of the time-specific latent

traits. At level 2, within-individual dependence is described by a polynomial growth tra-

jectory model. That is, latent trait parameters are predicted from an individual growth

curve, which is a polynomial of degree H (H = 1, linear growth model; H = 2, quadratic

growth model). At level 3, between-individual dependence is explained based on individ-

ual’s background covariates under the framework of the multilevel model.

5



2.1 TS-IRT model (Level 1)

Assume that there are K items and T measurement occasions for a longitudinal

assessment. For level 1, the correct response probability is expressed as

ptik = P (Ytik = 1 |θti, ξtk ) =
exp (atkθti − btk)

1 + exp (atkθti − btk)
. (1)

In Equation (1), Ytik denotes the response of the ith examinee at the tth measurement

occasion on the kth item, and the correct response probability is expressed ptik; θti is

the latent trait of examinee i (i = 1, ..., n) at measurement occasion t (t = 1, ..., T ); and

ξtk = (atk, btk)
′

denotes the vector of item parameters, whereby atk and btk (k = 1, ..., K)

are respectively the discrimination (slope) parameter and difficulty (intercept) parameter

for the kth item at the tth measurement occasion.

2.2 Longitudinal individual growth model (Level 2)

Many phenomena related to individual ability changes can be represented through a

two-level model. At level 2, each individual’s latent trait development is represented by

an individual growth trajectory, that is dependent on a unique set of parameters. These

individual growth parameters become outcome variables in the level-3 model, wherein

they can depend on individual background characteristics (Raudenbush & Bryk, 2002).

Measurements made at different time points are regarded as “nested” within individuals.

Therefore, the individual growth trajectory model can be described as follows:

θti = π0i + π1idti + π2id
2
ti + ...+ πHid

H
ti + eti. (2)

In Equation (2), the latent trait growth level over time is represented as a polynomial of

degree H. The variable dti is the test time parameter at occasion t for examinee i, and πs

denote coefficients of the polynomial function. Random error terms, etis, are assumed to
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follow a common normal distribution with mean 0 and variance σ2. Note that Bryk and

Raudenbush (1992) argued that it is defensible to assume a simple error variance structure

(the error terms are equal and uncorrelated between the time points), wherein there are

a limited number of time points. In such cases with short time series, this assumption is

very practical and analysis results are robust.

2.3 Multilevel model (Level 3)

Assume that the growth parameters vary across individuals, thus individual growth

trajectory parameters can be represented by person-level background covariates such as

an individual’s socioeconomic status (SES) and gender. We formulate the person-level

model to explain this variation as follows:

πhi = βh0 + βh1x1i + βh2x2i + ...+ βhSxSi + uhi. (3)

In Equation (3), xsi is the sth(s = 1, ..., S) person-level background covariate for examinee

i, and βhs is the effect of xsi on the hth growth parameter. uhi (h = 0, ..., H) is the level-3

random residual effect for examinee i, and the vector u = (u0i, u1i, u2i, ..., uHi) is assumed

to follow a multivariate normal distribution with mean vector 0 and covariance matrix

Ω(H+1)×(H+1).

2.4 Model identification

To ensure the identification of the single-level two-parameter IRT model, either the

scale of latent traits or the scale of item parameters have to be restricted (van der Linden

& Hambleton, 1997; Lord, 1980). One can set the mean and variance of the latent traits

to zero and one, respectively (Bock & Aitkin, 1981). Alternatively, one way to restrict

the scale of item parameters is to impose constraints of
∏
k

ak = 1 and
∑
k

bk = 0 on model
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item parameters; the equivalent form anchors one discrimination parameter to 1 and one

difficulty parameter to 0 (Fox & Glas, 2001). On the other hand, as there is overlap

between items anchored at different times (i.e., anchor items) in longitudinal analysis, in

this article we restrict the anchor item parameters at different time points as known and

pre-linked to identify the LMTS-IRT model(Wang et al., 2016).

3 Bayesian Estimation and Model Selection

3.1 Bayesian estimation

A combined Bayesian algorithm is used to estimate parameters of interest. Let Ψ =

(θ, ξ,π, σ2,β,Ω) represent the set of all item parameters at different time points. Let

denote the time-based loading matrix. The joint posterior distribution of the parameters

given the data can be written as follows:

p (Ψ |Y , D,X ) ∝
T∏
t=1

n∏
i=1

K∏
k=1

p (Ytik |θti, ξtk ) p
(
θti
∣∣πi, σ2, dti

)
p (πi |β,Ω,X i )

× p (β) p (ξtk) p
(
σ2
)
p (Ω) . (4)

Our combined algorithm requires sampling from the following posterior distributions in

turn:

• Step 1: Sample the ability parameter θti for the ith individual for the measurement

occasion t from the full conditional distribution [θti |at·, bt·, dti,πi, σ2,Y ti ]. Here,

at· = (at1, at2, · · · , atK), bt· = (bt1, bt2, · · · , btK) and Y ti = (Yti1, Yti2, · · · , YtiK).

• Step 2: Sample the difficulty parameter btk for the measurement occasion t from

the full conditional distribution [btk |atk,θt·,Y tk ]. Here, θt· = (θt1, θt2, · · · , θtn) and

Y tk = (Yt1k, Yt2k, · · · , Ytnk).
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• Step 3: Sample the discrimination parameter atk for the measurement occasion t

from the full conditional distribution [atk |btk,θt·,Y tk ].

• Step 4: Sample the level-2 random coefficients πi from [πi |θi, σ2,β,Ω ]. Here,

θi , θ·i = (θ1i, θ2i, · · · , θT i)
′
.

• Step 5: Sample the level-3 regression coefficients β from [β |π,Ω ].

• Step 6: Sample the level-2 residual variance σ2 from [σ2 |θ,π, v, ω ]. Here, the prior

for σ2 is an inverse-Gamma(v, ω) distribution.

• Step 7: Sample the level-3 covariance matrix Ω from [Ω |π,β, λ,Ξ]. Here, the prior

for is an inverse-Wishart(λ,Ξ) distribution.

For Steps 1 to 3, the Metropolis-Hastings Gibbs algorithm is used to draw samples

from the full conditional posterior distributions because the parameters of interest do not

have closed form of the corresponding posterior distribution. Note that since the discrim-

ination parameters should be positive, we use the log-normal distribution as the proposal

distribution to ensure that the candidate samples are greater than zero. The proposal dis-

tribution of discrimination parameters is assumed as a log-normal distribution with mean

equal to the current estimation and variance chosen to give an acceptance rate of 25 to 40

percent. For Steps 4 to 7, it is easy and efficient to use the Gibbs algorithm through the

use of conjugate priors. Further detailed information on the combined Bayesian algorithm

is provided in the Appendix and the corresponding MATLAB program is available upon

request.

3.2 Model selection

It is well known that two widely used model selection criteria are the Akaike informa-

tion criterion (AIC) (Akaike, 1973) and Bayesian information criterion (BIC) (Schwartz,

1978), which depend on the effective number of parameters in a model as a measure of
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model complexity. However, as a drawback of these measures, they are often difficult

to calculate for random-effect models, as the effective number of parameters is heavily

dependent on higher-level variance parameters. When the variance in random effects ap-

proaches zero, all random effects are equal and the model reduces to a simple linear model

with one mean parameter. However, when the variance goes to infinity, the number of

free parameters approaches the number of random effects. To overcome the above prob-

lems, Spiegelhalter et al. (2002) proposed the deviance information criterion (DIC) for

conducting model comparisons when the number of parameters is not clearly defined in

a random-effect model. The DIC is calculated as a sum of deviance measure and penalty

term for the effective number of parameters based on a measure of model complexity. In

the Bayesian IRT literature, DIC is one of the most popular model comparion methods

and widely used for multilevel models. The penalty term has the following form:

pD = E (−2 log p (Y |θ,a, b)) + 2 log p
(
Y
∣∣θ,a, b)

= D (Ψ)−D
(
Ψ
)
. (5)

The deviance function is given byD (Ψ) = −2 log

[
T∏
t=1

n∏
i=1

K∏
k=1

p (Ytik |θti, atk, btk )

]
. D (Ψ) =

(−2) 1
M

M∑
m=1

log

[
T∏
t=1

n∏
i=1

K∏
k=1

p
(
Ytik

∣∣∣θ(m)
ti , a

(m)
tk , b

(m)
tk

)]
is the posterior mean deviance andD

(
Ψ
)

is the estimated deviance for the posterior estimate of Ψ. Only the computation of the

first term of its penalty term utilizes the whole posterior distribution. Then the DIC is

given as

DIC =D (Ψ) + pD = D (Ψ)−D
(
Ψ
)
. (6)

Within the competing models, those with lower DIC values are preferred over those with

higher DIC values.

Additionally, a more fully Bayesian approach is also used to the model assessmen-

t. That is the widely applicable information criterion (WAIC; Watanabe, 2010, 2013;
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Gelman, Hwang, & Vehtari, 2014). The penalty term has the following form:

pWAIC =
T∑
t=1

n∑
i=1

K∑
k=1

varpost [log p (Ytik |θti, atk, btk )]

=
T∑
t=1

n∑
i=1

K∑
k=1

{
1

M − 1

M∑
m=1

[
log p

(
Ytik

∣∣∣θ(m)
ti , a

(m)
tk , b

(m)
tk

)

− 1

M

M∑
m=1

log p
(
Ytik

∣∣∣θ(m)
ti , a

(m)
tk , b

(m)
tk

)]2 (7)

Let

̂lppd=the estimate of the log pointwise predictive density

=
T∑
t=1

n∑
i=1

K∑
k=1

log

[
1

M

M∑
m=1

p
(
Ytik

∣∣∣θ(m)
ti , a

(m)
tk , b

(m)
tk

)]
. (8)

Therefore, the WAIC can be written as

WAIC = −2
(̂lppd− pWAIC

)
. (9)

The model with a smaller WAIC has a better fit to the data. As can be seen from equation

(7), the computation of the penalty term utilizes the whole posterior distribution other

than point estimates which is why WAIC is considered full Bayesian. The theoretical

superiority is acknowledged( Vehtari, Gelman, & Gabry, 2017; Luo & Al-Harbi, 2017 ),

how such a strength translate into our simulation remain unknow.

4 Simulation Study

4.1 Simulation study 1

Simulation design
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The simulation study was conducted to evaluate the recovery performance of the

combined Markov chain Monte Carlo (MCMC) sampling algorithm. Three time points

were considered (i.e., t = 1, 2, 3). When estimating model parameters, 20% items per oc-

casion were treated as anchor items, which were assumed to be known and pre-linked. The

following manipulated conditions were considered: (a) test length per occasion, K = 20

or 30 (i.e., there were 4 or 6 anchor items at each measurement occasion); and (b) the

number of individuals, N = 500, 1, 000 or 2, 000. Fully crossing different levels of these

two factors yielded 6 conditions (2 test lengths × 3 sample sizes). Response data were

simulated using the level-1 TS-IRT model given by Equation (1). For illustrative pur-

pose, we used the quadratic growth model to describe the level-2 individual development

trajectory, and the level-3 model that included two explanatory variables was considered.

The structural model can be written as
θti = π0i + π1idti + π2id

2
ti + eti,

π0i = β00 + β01x1i + β02x2i + u0i,

π1i = β10 + β11x1i + β12x2i + u1i,

π2i = β20 + β21x1i + β22x2i + u2i.

(10)

In Equation (10), eti ∼ N (0, σ2), t = 1, 2, 3;
u0i

u1i

u2i

 ∼ N




0

0

0

 , Ω

 , where Ω =


τ00 τ01 τ02

τ10 τ11 τ12

τ20 τ21 τ22

 ;

and dti were the time-specific covariates. True item discrimination parameters atk for

different time points were generated from log(N (exp (1) , 0.15)), t = 1, 2, 3. The item

difficulty parameters bik were respectively generated from three normal distributions, i.e.,

b1k ∼ N (0, 0.05), b2k ∼ N (0.25, 0.05), and b3k ∼ N (0.5, 0.05). The ability parame-

ters of individuals θi were generated from the normal distribution N (Aiπi, σ
2IT×T ) ,

where the true value of the level-2 residual variance was set to 0.15 (i.e., σ2 = 0.15)

and Di was a time-based loading matrix for examinee i (for further details, please
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see step 4 in the appendix), and where the level-2 random regression coefficients πi

were induced by a normal distribution with mean vector X iβ and covariance matrix

Ω. Therefore, to generate πi, we only need to know the true values of the fixed effec-

t β and covariance matrix Ω where β = (0 0.15 0.05; 0.35− 0.05 0.5; 0.3 − 0.225 0.15)

and Ω = (0.1 0.05 0.025; 0.05 0.1 0.005; 0.025 0.005 0.1). Explanatory variables X were

drawn from N (0.5, 1).

Prior distributions

We assume that priors of the discrimination and difficulty parameters were taken

to be atk ∼ logN (0, 0.5) and btk ∼ N (0, 2) from Patz & Junker(1999a, 1999b). The

fixed effect β followed the normal prior distribution N (0, 100). The prior to the variance

of the level-2 residual was assumed to follow an inverse gamma distribution with shape

parameter v = 0.001 and rate parameter ω = 0.001. The prior to the level-3 covariance

matrix Ω was set to be an inverse Wishart distribution with small degrees of freedom

λ = 4 and identity matrix Ξ.

Convergence diagnostics

As an illustation, convergence diagnostics consider a situation in which the test length

was 60 for three time points, and the individual sample size was set to 1,000. The

following two methods were used to check the convergence of our algorithm: the Gelman-

Rubin method (Gelman, 1996; Gelman & Rubin, 1992) and the Raftery-Lewis diagnostic

method (Raftery & Lewis, 1996). The convergence of the MCMC sampler was checked by

monitoring 5 chain trace plots of parameters for consecutive sequences of 10,000 iterations.

The first 2500 iterations were discarded as burn-in period.

Figures 1 and 2 represented trace and autocorrelation plots for the fixed-effect param-

eter vector β, level-2 variance parameter σ2, and level-3 variance-covariance parameter

Ω, respectively. The Brooks-Gelman ratio diagnostic R̂ (as an updated Gelman-Rubin

statistic) plots were also used to monitor the convergence and stability (Gelman, 1996;
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Brooks & Gelman, 1998). From Figure 3, it can be seen that nine plots of R̂ were all close

to 1 rapidly and finally less than 1.2, which supported the convergence of the MCMC

sampler (Lunn et al., 2000).

Parameter recovery

The accuracy of the parameter estimates was measured by five evaluation criteria,

i.e., Bias, Root Mean Squared Error (RMSE), Standard deviation (SD), Standard error

(SE) and coverage probability (CP) of the 95% highest posterior density intervals (HPDI)

statistics. Let η be the parameter of interest. Assume that M = 500 data sets were

generated. Also, let η̂(m) and SD(m) (η) denoted the posterior mean and the posterior

standard deviation of η obtained from the mth simulated data set for m = 1, . . . ,M .

The Bias for parameter η is defined as

Bias (η) =
1

M

M∑
m=1

(
η̂(m) − η

)
, (11)

and the RMSE for parameter η is defined as

RMSE (η) =

√√√√ 1

M

M∑
m=1

(η̂(m) − η)
2
. (12)

The simulation SE is the square root of the sample variance of the posterior estimates

over different simulated data sets. It can be defined as

Simulation SE(η) =

√√√√ 1

M

M∑
m=1

(
η̂(m) − 1

M

M∑
`=1

η̂(`)

)2

. (13)

and the average of posterior standard deviation can be defined as

SD (η) =
1

M

M∑
m=1

SD(m) (η) . (14)
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The coverage probability can be defined as

CP (η) =
# of 95% HPDI containing η in M simulated data sets

M
. (15)

Results

The average Bias, RMSE, SD, SE and CP for discrimination and difficulty parameters

at each time point were shown in Tables 1. From Table 1, the following conclusions can

be obtained. (1) Given the total test length, when the number of individuals increased

from 500 to 2000, the average Bias, RMSE, SD and SE for discrimination and difficulty

parameters obviously decreased. For example, the total test length was 60 items and

the three time points were considered, when the number of individuals increased from

500 to 2000, the average Bias of all discrimination parameters decreased from 0.018 to

0.004, the average RMSE of all discrimination parameters decreased from 0.013 to 0.067,

the average SD of all discrimination parameters decreased from 0.156 to 0.076, and the

average of SE of all discrimination parameters decreased from 0.158 to 0.093. (2) The

average SD were slightly less than the average SE, but they were very close. This indicated

that the fluctuation of posterior mean between different replications was large compared

with the fluctuation of posterior mean in each replication. (3) At different time points,

the average CP of the discrimination and difficulty parameters were about 0.95. (4) When

the total test length increased from 60 to 90, the average Bias, RMSE, SD and SE shown

that the recovery results of the discrimination and difficulty parameters were close to the

case that total test length was 60, which indicated that our algorithm was stable and did

not reduce the accuracy due to the increase in the number of items.

The recovery performance of structure parameters for six kinds of simulation design

was shown in Table 2. From Table 2, it can be found that the Bias of the fixed effect

parameters (βs) had a range of −0.011∼0.006 under all six conditions. The Bias had a

range of −0.021∼ −0.016 for the level-2 variance parameter (σ2), and −0.039∼0.094 for
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the level-3 covariance parameters (τ) . The RMSE had a range of 0.009∼0.100 for the

fixed effect parameters , 0.021∼0.024 for the level-2 variance parameter, and 0.008∼0.101

for the level-3 covariance parameters. Additionally, the SD of the fixed effect parameters

had a range of 0.010∼0.101. The SD had a range of 0.014∼0.021 for the level-2 variance

parameter, 0.007∼0.067 for the level-3 covariance parameters. The SE had a range of

0.009∼0.100 for the fixed effect parameters, 0.007∼0.013 for the level-2 variance, and

0.007∼0.036 for the level-3 covariance parameters. Moreover, the CP of the fixed effect

parameters had a range of 0.914∼0.966 under six different design conditions. The CP

had a range of 0.784∼0.926 for the level-2 variance parameter. The CP had a range

of 0.802∼0.958 for the level-3 covariance parameters. In summary, it is obvious that

the Bayesian sampling algorithm provided accurate estimates of the item and structure

parameters in term of five indexes evaluation results.

4.2 Simulation study 2

The purpose of this simulation was to show our Bayesian sampling algorithm was

effective to recover various prior distributions of the item parameters, where the sensitivity

analysis based on item parameter prior distribution with a larger variance was addressed.

Simulation Design

As an illustration, the number of individuals was fixed on 1000. Three time points

were considered and test length per occasion was K = 20 (i.e., there were 4 anchor items at

each measurement occasion). Response data were generated from the level-1 time-specific

IRT model given by Equation (1). The growth model and the level-3 model were same as

the simulation study 1. The true values of parameters were also same as the simulation

study 1. Next, the four types of priors were given by the following: (i) aj ∼ logN (0, 0.5)

and bj ∼ N (0, 0.5); (ii) aj ∼ logN (0, 1) and bj ∼ N (0, 1); (iii) aj ∼ logN (0, 10) and

bj ∼ N (0, 10); (iv) aj ∼ logN (0, 100) and bj ∼ N (0, 100).
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Results

The Bayesian sampling algorithm was iterated 10,000 times. The first 2,500 iterations

were discarded as burn-in period. 500 replications were considered in this simulation. The

recovery performance of item parameters for four kinds of simulation design was shown

in Table 3. It can be found that the average Bias of the discrimination parameters had a

range of 0.008∼0.029 under four conditions (−0.031∼0.004 for difficulty parameters). Ad-

ditionally, the average RMSE of the discrimination parameters had a range of 0.095∼0.174

under four conditions (0.067∼0.099 for difficulty parameters). The average SD and SE

of the discrimination parameters had the range of 0.108∼0.191 and 0.118∼0.201 under

four conditions, and the average SD and SE of the difficulty parameters had the range of

0.073∼0.110 and 0.087∼0.121 under four conditions. The average SD were slightly less

than the average SE, but they were very close. Moreover, we found that when the prior

variances of the discrimination and difficulty parameters increased from 0.5 to 10, the

average RMSE of the discrimination and difficulty parameters increased slightly, which

indicated that there was almost no change in the estimation accuracy when the prior

changed from informative prior to non-informative prior (variance increased from 0.5 to

10). When the prior variances of the discrimination and difficulty parameters increased

from 10 to 100, the average Bias, RMSE, SD, SE and CP of the discrimination and diffi-

culty parameters were almost the same for both cases. This indicated that when the prior

variance researchs 10, the prior was “flat” enough to provide relatively little information.

The recovery performance of structure parameters for four kinds of prior design

was shown Table 4. From Table 4, it can be found that the Bias of the fixed effect

parameters had a range of −0.018∼0.005 under all four conditions. The Bias had a range

of −0.021∼ −0.019 for the level-2 variance parameter, and −0.034∼0.086 for the level-

3 covariance parameters . The RMSE had a range of 0.014∼0.074 for the fixed effect

parameters , 0.022∼0.024 for the level-2 variance parameter, and 0.013∼0.091 for the

level-3 covariance parameters. Additionally, the SD of the fixed effect parameters had
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a range of 0.015∼0.071. The SD is 0.017 for the level-2 variance parameter under all

four conditions, 0.012∼0.058 for the level-3 covariance parameters. The SE had a range

of 0.014∼0.074 for the fixed effect parameters, 0.011∼0.012 for the level-2 variance, and

0.011∼0.031 for the level-3 covariance parameters. The recovery results of the structure

parameters were almost the same under the four simulation conditions.

4.3 Simulation study 3

In this section, simulation study was designed to evaluate the performance of the

two criteria in terms of selection the true model. We used the DIC and WAIC tools to

identify a TS-IRT model combined with three different longitudinal multilevel models.

The true LMTS-IRT model differed by (1)whether linear growth or quadratic growth was

used as the true individual growth model; (2)whether significant individual covariates

were included. The simulation study was described in detail below.

Simulation design

The number of time points was fixed at 3, the total number of items was set to 60

and there had 20 items including 4 anchor items at each time point. In addition, the

number of individuals (N = 500, 1000, 2000) were considered. The same true values and

the prior distributions were used as in simulation study 1. Three longitudinal multilevel

models were given by

Model 1.


θti = π0i + π1idti + eti,

π0i = β00 + β01x1i + β02x2i + u0i,

π1i = β10 + β11x1i + β12x2i + u1i,

(16)
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where eti ∼ N (0, σ2) , t = 1, 2, 3 ,

(
u0i

u1i

)
∼ N

((
0

0

)
,

(
τ00 0

0 τ11

))
, and

Model 2.


θti = π0i + π1idti + π2id

2
ti + eti,

π0i = β00 + β01x1i + β02x2i + u0i,

π1i = β10 + u1i,

π2i = β20 + u2i.

(17)

where eti ∼ N (0, σ2) , t = 1, 2, 3 ,


u0i

u1i

u2i

 ∼ N




0

0

0

 ,Ω

 , and

Model 3.


θti = π0i + π1idti + π2id

2
ti + eti,

π0i = β00 + β01x1i + β02x2i + u0i,

π1i = β10 + β11x1i + β12x2i + u1i,

π2i = β20 + β21x1i + β22x2i + u2i.

(18)

where eti ∼ N (0, σ2) , t = 1, 2, 3 ,


u0i

u1i

u2i

 ∼ N




0

0

0

 ,Ω

 .

Nine simulated datasets (3 sample sizes × 3 growth trajectories) were generated from

the TS-IRT model combined with longitudinal multilevel models(TS-IRT⊕Model 1, TS-

IRT⊕Model 2 and TS-IRT⊕Model 3). To compare the performances of different model

selection methods, we ran 500 replications in each condition and computed the proportion

of times when the generating model was selected as the true model.

Results

From Table 5, the results indicated that the percentages were fairly consistent be-

tween DIC and WAIC. When data were generated from TS-IRT⊕Model 1, and those

chose TS-IRT⊕Model 1 with probalility higher than 92%. When data were generated

from TS-IRT⊕Model 3, and those chose TS-IRT⊕Model 3 with probalility higher than
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98.2%. However, When data were generated from TS-IRT⊕Model 2, the percentages of

two criteria cannot easily distinguish models(TS-IRT⊕Model 2 and TS-IRT⊕Model 3)

that differ by multilevel covariates. This might be because the unremarkable difference

between the TS-IRT⊕Model 2 and TS-IRT⊕Model 3 in the process of model selection.

By calculating the specific values of the DIC and WAIC, we found that the DIC was

low difference between the two models, and WAIC was low difference between the two

models too. In the case of three sample sizes (N =500,1000 and 2000), Figure 4 showed

that the medians of DIC differences between TS-IRT⊕Model 2 and TS-IRT⊕Model 3

were 3.844, 5.053 and 4.172, respectively. The medians of WAIC differences between

TS-IRT⊕Model 2 and TS-IRT⊕Model 3 were 4.159, 5.444 and 4.673, respectively. Con-

sidering the very low difference, both DIC and WAIC were difficult to accurately select

the true model, additional indexs might be needed. Other similar kinds of situations also

occured in educational psychology (Zhang, Wang, & Tao, 2018). In our simulation study,

the inclusion of covariates were considered ,the 95%HPDI of β11, β12, β21 and β22 can be

calculated as a variable selection index(Zhang, Wang, & Tao, 2018) to evaluate whether

the inclusion of covariates were needed in the model. This was because TS-IRT⊕Model

2 to TS-IRT⊕Model 3 differ essentially on whether the certain covariates were included.

The proportions of the 95% HPDI of β11, β12, β21 and β22 contained zero were higher

than 93.4% in the TS-IRT⊕Model 3. The results indicated that these parameters were

not significantly different from 0 and were not included in the model. Therefore, the

TS-IRT⊕Model 2 was an appropriate model to fit the 500 data sets which were generated

from TS-IRT⊕Model 2. In addition, as the number of individuals increased, the percent-

ages of correct selection increased in most cases. Specifically, although WAIC seemed to

perform slightly better than DIC, there were some conditions in which WAIC perform

slightly worse. For example, when the generating model is TS-IRT⊕Model 2, DIC has a

slightly higher percentage of choosing the true model.
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Table 5: The percentage of correct selection for the different simulated data sets using
DIC and WAIC.

The number of individuals N=500

Model assessment methods
DIC WAIC

Generation model Generation model
Calibration Model Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Model 1 92 0 1 93.8 0 1.8
Model 2 0 36 0 0 34 0
Model 3 8 64 99 6.2 66 98.2

The number of individuals N=1,000

Model assessment methods
DIC WAIC

Generation model Generation model
Calibration Model Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Model 1 92.6 0 0 92.8 0 0
Model 2 0 32 0 0 32 0
Model 3 7.4 68 100 7.2 68 100

The number of individuals N=2,000

Model assessment methods
DIC WAIC

Generation model Generation model
Calibration Model Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Model 1 94.1 0 0 95.3 0 0
Model 2 0 38.4 0 0 35.4 0
Model 3 5.9 61.6 100 4.7 64.6 100
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5 Analysis of the longitudinal education quality as-

sessment data

The dataset analyzed came from the Student Development Program (SDP) initiat-

ed by the Changchun Education Bureau that includes short-term and long-term plans.

Compared to the long-term plan (three academic years from grade 1 to grade 3), the short-

term plan (half a semester in an academic year) used in this study was focused mainly on

the development of achievement in mathematics measured over a relatively short period

of time. The short-term plan was designed to modify current teaching programs in a

timely manner, and to put forward corresponding teaching strategies for different groups

(genders or family socioeconomic statuses) of students with different growth trajectories.

The test data included a two-stage cluster sample of 3,109 students in grade 2 of junior

middle schools. The students were from 16 different schools. The number of enrolled

students ranged from 124 to 255 for different schools. The sampling population was first

classified according to district, and schools were then selected at random. Second, students

were selected at random from each school. Achievement in mathematics was measured

over four time points (FSE, the first sectional examination; MTE, a middle-term exam;

TSE, the third sectional examination; and FE, a final exam). Moreover, all 3,109 students

were assessed at exactly the same time over the course of the study. Students took 24

items at each time point. Each set of items included 4 anchor items that do not overlap

across time points. This lack of overlapping items across time points was designed to

eliminate potential practical effects and to prevent the occurrence of security breaches.

The anchor items were known and pre-linked. Here, we focused on a core sample of 2,000

students from 3,109 students. In addition, the level-2 background covariates of individuals

were measured. At the individual level, gender (0=male, 1=female) and socioeconomic

status (SES) were measured. The SES was measured based on the parents’ degrees of

education and scaled as five-point Likert items ranging from 0 to 4 (0=lowest, 4=highest).
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5.1 Longitudinal multilevel IRT models

We considered four competing LMTS-IRT models to fit the real data. The level-

1 model was a two-parameter TS-IRT model used to define the relationship between

observable item responses and latent constructs. The TS-IRT model was the same but

with four different longitudinal multilevel models.

Model 4 consists of the level-2 linear growth model and multilevel model. The random

intercept π0i in model 4 is explained by two background variables (SES and Gender) at

level 3. The model has the following form:

Model 4.


θti = π0i + π1iTimei + eti,

π0i = β00 + β01Genderi + β02SESi + u0i,

π1i = β10 + u1i.

(19)

where the error eti is normally distributed with mean zero and variance σ2. The error

terms at level 3, u0i and u1i, are bivariate normally distributed with mean vector 0 and

covariance matrix Ω1, and they are independent of the level-2 residuals.

Model 5 is an extended version of model 4 by including two variables (SES and

Gender) at level 3 to explain the random slope. Model 5 has the following form:

Model 5.


θti = π0i + π1iTimei + eti,

π0i = β00 + β01Genderi + β02SESi + u0i,

π1i = β10 + β11Genderi + β12SESi + u1i.

(20)

Model 6 consists of the level-2 quadratic growth model and level-3 multilevel model.

The random intercept π0i and random slopes for the first (π1i) and second (π2i) order

polynomial time effects, where the random intercept is defined conditionally on the Gender
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and SES variables. Model 6 is given by

Model 6.


θti = π0i + π1iTimei + π2iTime

2
i + eti,

π0i = β00 + β01Genderi + β02SESi + u0i,

π1i = β10 + u1i,

π2i = β20 + u2i.

(21)

Model 7 is an extended version of model 6 by including two background variables

(SES and Gender) at level 3 to explain the random slopes. Model 7 has the following

form:

Model 7.


θti = π0i + π1iTimei + π2iTime

2
i + eti,

π0i = β00 + β01Genderi + β02SESi + u0i,

π1i = β10 + β11Genderi + β12SESi + u1i,

π2i = β20 + β21Genderi + β22SESi + u2i.

(22)

The combined sampling procedure was applied to estimate parameters of various

models. For each chain, 10,000 iterations were run with the first 2,500 iterations as the

burn-in period.

5.2 Model selection and parameter estimation

First, the DIC and WAIC tools were used to identify the competing LMTS-IRT

models. From Table 6, combining model 7 with the TS-IRT model generated the smallest

effective number of model parameters, which was preferred given the DIC and WAIC

values among the four competing models. It can be found that the quadratic growth

model was more appropriate for fitting the real data than the linear growth model. In

addition, the level-2 random-effect coefficients, which were modeled by individual-level

covariates (level-3 Gender and SES ), led to a serious reduction in the effective number of

model parameters inferred from the pD and pWAIC values in Table 6.

According to the above model selection results, model 6 combined with the TS-IRT
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model as the best-fitting model is used to analyze the real data. The expectation a pos-

teriori estimation, standard deviation, and 95% HPDI of the structural parameters were

shown in Table 7. Figure 5 represented the posterior means and 95% HPDIs of the item

discrimination and difficulty parameters, respectively. As the anchor items were known

and pre-linked, there were totally 80 items need to be estimated. Now, we considered the

following two practical issues.

Conditional on the level-3 SES, how should the male students perform compared

to female students in terms of mathematics performance as measured at the four time

points? Figure 6 showed the differences between male and female students in terms

of mathematics performance given the level-3 SES (SES=0,...,4). Over time, the male

students’ mathematics abilities (circle) were generally better than those of the female stu-

dents (pentagram). For the first two time points, differences between the male and female

students in terms of mathematical ability were not remarkable. The findings revealed that

the male students may have strong logical thinking and spatial thinking capacities that

had not been fully identified through the preliminary assessment. Moreover, improve-

ments in ability for the male and female students from families of moderate to high SES

were found to occur faster than those of the other three categories (steeper growth tra-

jectory). In addition, the students who are of the same Gender but have different SES

do have different effects. According to Figure 7, for the male and female students, the

average growth rates of the five curves were not the same. Over time, all of students’

mathematical abilities improved. However, the higher one’s SES was, the greater one’s

capacity becomed. Furthermore, the capacities of the female students with the lowest

SES (i.e., SES=0) improved more slowly than those of the other four categories.

The analysis of growth trajectories may help one gain a stronger understanding of

the development of student achievement over time. Both educators and students should

properly understand Gender\SES differences and teachers should consciously manage

to improve female student training in logical thinking and spatial thinking capacities in
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Table 6: The results of Bayesian model assessment for the real data.

Model specification pD DIC pWAIC WAIC

The linear latent growth model

Model 4: Random intercept and slope. Intercept
is explatined by Gender and SES variables 5,682.5 142,604.3 5,303.8 142,557.2

Model 5: Random intercept and slope. Intercept
and slope are explatined by Gender and SES variables 5,384.6 142,350.1 4,991.9 142,240.4

The quadratic latent growth model

Model 6: Random intercept, first and second order
and slopes. Intercept is explatined by Gender and 5,386.3 142,042.5 5,066.0 142,051.3

SES variables

Model 7: Random intercept, first and second order
and slopes. Intercept and slopes are explatined 5,035.3 141,721.7 4,748.3 141,710.1

by Gender and SES variables

Table 7: Parameter estimates of the longitudinal multilevel model parameters for real
data.

Fixed effect Coefficient Standard deviation HPDI
β00 0.027 0.018 [−0.007, 0.061]
β01 −0.041 0.012 [−0.064,−0.018]
β02 0.510 0.012 [0.487, 0.534]
β10 1.459 0.020 [1.431, 1.510]
β11 −0.110 0.011 [−0.132,−0.087]
β12 0.506 0.013 [0.482, 0.532]
β20 0.015 0.016 [−0.014, 0.047]
β21 −0.154 0.011 [−0.175,−0.133]
β22 0.018 0.012 [−0.004, 0.041]

Random effect Coefficient Standard deviation HPDI
σ2 (level-2 var.) 0.142 0.008 [0.126, 0.156]

τ00 0.117 0.009 [0.097, 0.135]
τ10 0.058 0.007 [0.045, 0.072]
τ11 0.011 0.009 [0.089, 0.125]
τ20 0.015 0.006 [0.004, 0.027]
τ21 −0.025 0.006 [−0.032,−0.013]
τ22 0.108 0.008 [0.093, 0.125]
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junior middle school period.

6 Concluding Remarks

The developed LMTS-IRT model has three levels. At level 1, a TS-IRT model is

selected to characterize item responses across time points. At level 2, a latent ability

growth model that takes into account variations in latent traits across measurement oc-

casions among persons is formulated. In the latent ability growth model, a polynomial

growth curve is specified to describe how the expected value of a response variable changes

over time. At level 3, a multilevel regression model is incorporated to describe variations

in growth trajectories between persons. The simulation results show that our combined

Bayesian algorithm provides accurate estimates of the model parameters in terms of s-

maller bias and RMSE values. Simultaneously, the SD and SE are close to each other

and the CP of 95% HPDI is around 95% for item parameters and fixed effect parameters.

Therefore, the algorithm is effective and can be used to analyze the real data. In our

simulation, DIC and WAIC are used to assess the competing models.

In the analysis of the longitudinal mathematical achievement data, some phenomena

well worthy of consideration are revealed: first, male and female students with similar

family SES do not show remarkable differences in ability during early periods of learning.

However, over time, the mathematical capacities of male students become superior to

those of female students. In addition, family SES has an important effect on students’

mathematical abilities. The findings can help educators modify current teaching pro-

grams and put forward corresponding teaching strategies for different groups (Gender or

SES ) of students with different development trajectories. Therefore, it is expected that

the analysis results may guide the development and improvement of educational quality

monitoring mechanisms. The results of DIC and WAIC are similar, and select the same

best model among a set of candidate models.
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The current study has its limitation. Firstly, the CP for level-2 variance and level-

3 covariance parameters were low to 78%. The Inverse Gamma distribution is generally

considered as an uninformative prior of a single variance(level-2 variance), but studies have

shown that when the variance is very small, Inverse Gamma distribution will indeed lead to

the underestimation of the variance (Browne & Draper, 2006; Gelman, 2006). This may be

the reason for the low CP value of the level 2 variance. For level-3 covariance, the typically

used Inverse Wishart prior with small df and identity matrix Ξ is relatively uninformative.

In many cases, this type of prior will have the smallest impact on the result. When the

variances are quite small, the Inverse -Wishart prior distribution is informative so that

the estimates for the variances will be sensitive to the Inverse -Wishart prior specification,

resulting in over- or under-estimation for the variances depending on the specification of

the prior distribution(Schuurman, Grasman, & Hamaker, 2016b; Chung et al., 2015). This

may be the reason for the low CP value of the level 3 covariance matrix. In education and

psychology , covariance structures are of great interests to researchers. However, forming

new types of priors for covariance matrices can be very difficult. A popular way to form

new priors for a covariance matrix is based on the matrix decomposition. Barnard et

al. (2000) introduced a separation strategy to decompose a covariance matrix, and Liu,

Zhang, and Grimm (2016) investigated the influence of separation strategy priors. They

found that the use of separation strategy priors took much longer time than with Inverse-

Wishart priors to obtain posterior samples. Moreover, with the increase of the dimension

of covariance matrix, the use of separation strategy priors might cause some practical

issues. In the existing educational and psychological literature, almost all studies have

applied the Inverse -Gamma and Inverse-Wishart priors in Bayesian estimation. We will

draw more attention to the choice of priors on the variance and covariance matrix in the

future studies. Secondly, from an empirical perspective, we should assess the effect of

more covariates and explore the effect of missing data, because longitudinal research with

complete data are rare. Thirdly, more model selection methods can be used and expanded

to select models for those more complex IRT models.
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7 Appendix

Step 1: Sample the ability parameter θti for the ith individual for the measurement

occasion t. We independently draw θ∗ti from the normal proposal distribution, i.e., θ∗ti ∼

N
(
θ
(r−1)
ti , v2θ

)
. The acceptance probability is measured as

α
(
θ
(r−1)
ti , θ∗ti

)
= min

1,
p
(
Y ti

∣∣∣θ∗ti,a(r−1)
t· , b

(r−1)
t·

)
p
(
θ∗ti

∣∣∣π(r−1)
i , (σ2)

(r−1)
,dti

)
p
(
Y ti

∣∣∣θ(r−1)
ti ,a

(r−1)
t· , b

(r−1)
t·

)
p
(
θ
(r−1)
ti

∣∣∣π(r−1)
i , (σ2)(r−1) ,dti

)
 .

(23)

Otherwise, the value of the preceding iteration is retained, i.e., θti = θ
(r−1)
ti . Here, Y ti =

(Yti1, Yti2, · · · , YtiK) . In Equation (23), p
(
Y ti

∣∣∣θ∗ti,a(r−1)
t· , b

(r−1)
t·

)
=

K∏
k=1

(ptik)
ytik (1− ptik)1−ytik .

Step 2: Sample the difficulty parameter btk for the measurement occasion t. We

independently draw b∗tk from the normal proposal distribution, i.e., b∗tk ∼ N
(
b
(r−1)
tk , v2b

)
.

The acceptance probability is measured as

α
(
b
(r−1)
tk , b∗tk

)
= min

1,
p
(
Y tk

∣∣∣θ(r)t· , a(r−1)
tk , b∗tk

)
p (b∗tk)

p
(
Y tk

∣∣∣θ(r)t· , a(r−1)
tk , b

(r−1)
tk

)
p
(
b
(r−1)
tk

)
 . (24)

Otherwise, the value of the preceding iteration is retained, i.e., btk = b
(r−1)
tk . Here, Y tk =

(Yt1k, Yt1k, · · · , Ytnk) . In Equation (24), p (Y tk |θt·, atk, btk ) =
n∏
i=1

(ptik)
ytik (1− ptik)1−ytik .

In addition, p (btk) is a normal prior distribution, i.e., p (btk) ∼ N (µb, σ
2
b ).

Step 3: Sample the discrimination parameter atk for the measurement occasion

t. We independently draw a∗tk from the log-normal proposal distribution, i.e., a∗tk ∼

logN
(

log a
(r−1)
ik , v2a

)
. The acceptance probability is measured as

α
(
a
(r−1)
tk , a∗tk

)
= min

1,
p
(
Y tk

∣∣∣θ(r)t· , a∗tk, b(r)tk ) p (a∗tk) a
∗
tk

p
(
Y tk

∣∣∣θ(r)t· , a(r−1)
tk , b

(r)
tk

)
p
(
a
(r−1)
tk

)
a
(r−1)
tk

 . (25)
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Otherwise, the value of the preceding iteration is retained, i.e., atk = a
(r)
tk . In Equation

(25), . In addition, p (atk) is a log-normal prior distribution, i.e., p (atk) ∼ logN (µa, σ
2
a).

Step 4: Sample the level-2 random coefficients πi = (π0i, π1i, ..., πHi)
′

given θ, σ2,

β, and Ω.

θti = π0i + π1idti + π2id
2
ti + ...+ πHid

H
ti + eti,


θ1i

θ2i
...

θT i

 =


1 d1i d21i · · · dH1i

1 d2i d22i · · · dH2i
...

...
...

. . .
...

1 dT i d2T i · · · dHTi




π0i

π1i
...

πHi

+


e1i

e2i
...

eT i

 . (26)

Equation (26) can be rewritten as

θi = Diπi + ei. (27)

According to Equation (27), πi is the vector of random regression coefficients following

a normal distribution with mean vector π̃i =
(
D
′

iDi

)−1 (
D
′

iθi

)
and covariance matrix

Σi =
(
D
′

iDi

)−1

σ2, and the random regression coefficients πi are induced by a normal

prior distribution with mean vector X iβ and covariance matrix Ω. Here, we define

xi = (1, x1i, x2i, ..., xSi)
′
, and X i is the Kronecker product of an (H + 1) identity matrix

and xi. That is, X i = I(H+1)⊗x
′
i. Let βh = (βh0, βh1, ..., βhS)

′
and β =

(
β
′

1,β
′

2, ...,β
′

H

)′
,

the full conditional posterior distribution of πi is given by

p (πi |θi,Σi,β,T ) ∝ p (θi |πi,Σi ) p (πi |β,Ω)

∝ exp

{
−(πi − π̃i)

′
D
′

iDi (πi − π̃i)
2σ2

}
exp

{
−(πi −X iβ)

′
Ω−1 (πi −X iβ)

2

}
, (28)

πi

∣∣∣θ(r)i ,
(
σ2
)(r−1)

,β(r−1),Ω(r−1) ∼ N
((

Σ−1
i + Ω−1

)−1
(
σ−2D

′

iθi + Ω−1X iβ
)
,
(
Σ−1
i + Ω−1

)−1
)
.
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Step 5: Sample β, β =
(
β
′

1,β
′

2, ...,β
′

H

)′
. β is the matrix of regression coefficients

of regression of πi on X i. The full conditional posterior distribution of β is given by

p (β |π,Ω) ∝
n∏
i=1

p (πi |β,Ω) p (β |Ω)

∝ exp

−
n∑
i=1

(πi −X iβ)
′
Ω−1 (πi −X iβ)

2

 p (β |Ω) ,

β
∣∣∣π(r),Ω(r−1) ∼ N

( n∑
i=1

X
′

iΩ
−1X i

)−1 n∑
i=1

X
′

iΩ
−1πi,

(
n∑
i=1

X
′

iΩ
−1X i

)−1
 . (29)

Step 6: Sample the level-2 residual variance σ2. A prior for is an Inverse−Gamma (v, ω)

distribution. The full conditional posterior distribution of is given by

p
(
σ2 |θ,π, v, ω

)
∝ p

(
θ
∣∣π, σ2I(T×T )

)
p
(
σ2
)

∝
(
σ2
)−n×T

2 exp

−
n∑
i=1

(θi −Diπi)
′ (
σ2I(T×T )

)−1
(θi −Diπi)

2


(
σ2
)−(v+1)

exp
(
− ω

σ2

)
.

Let F =
n∑
i=1

(θi −Diπi)
′
(θi −Diπi) /2, then we have

σ2
∣∣∣θ(r),π(r), v, ω ∼ Inverse−Gamma (v + nT/2, ω + F ) . (30)

Step 7: Sample Ω. Ω is the covariance matrix of ability at level 3. A prior for Ω is

an Inverse−Wishart (λ,Ξ) distribution. The full conditional posterior distribution of Ω
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is given by

p (Ω |π,β, λ,Ξ) ∝ p (πi |β,Ω) p (Ω |λ,Ξ)

∝ |Ω|−
n
2 exp

−
n∑
i=1

(πi −X iβ)
′
Ω−1 (πi −X iβ)

2

 |Ω|
−λ+H+2

2 exp

{
−
trace

(
Ω−1Ξ

)
2

}
.

Let F1 =
n∑
i=1

(πi −X iβ) (πi −X iβ)
′
, then we have

Ω
∣∣∣π(r),β(r), λ,Ξ ∼ Inverse−Wishart (λ+ n, F1 + Ξ) . (31)
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Figure 1: The trace and autocorrelation plots for the fixed-effect parameters β. Note that
the first 2500 iterations are discarded as burn-in time.
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Figure 2: The trace and autocorrelation plots for the fixed-effect parameters β, level-2
variance parameter σ2, and the level-3 covariance parameters Ω. Note that the first 2500
iterations are discarded as burn-in time.
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Figure 3: The sequence of R̂ values of for multilevel model parameters.

(a)n=500 (b) n=1000 (c) n=2000

(d)n=500 (e) n=1000 (f) n=2000

Figure 4: Boxpolts of DIC and WAIC based on the true model 2 in the simulation study
3.n=the number of individuals.
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Figure 5: Posterior means and 95% HPDIs for the discrimination and difficulty parameters
of SDP data.
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Figure 6: The development trajectories of latent ability for male and female students
given a family SES.

Figure 7: The development trajectories of latent ability for students for different family
SES.
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