Estimation of a probability with optimum guaranteed confidence in inverse binomial sampling

LUIS MENDO* and JOSÉ M. HERNANDO
E.T.S. Ingenieros de Telecomunicación, Polytechnic University of Madrid, 28040 Madrid, Spain.
E-mail: lmendo@grc.ssr.upm.es; hernando@grc.ssr.upm.es

Sequential estimation of a probability \(p \) by means of inverse binomial sampling is considered. For \(\mu_1, \mu_2 \geq 1 \) given, the accuracy of an estimator \(\hat{p} \) is measured by the confidence level \(P[p/\mu_2 \leq \hat{p} \leq p\mu_1] \). The confidence levels \(c_0 \) that can be guaranteed for \(p \) unknown, i.e. such that \(P[p/\mu_2 \leq \hat{p} \leq p\mu_1] \geq c_0 \) for all \(p \in (0,1) \), are investigated. It is shown that, within the general class of randomized or nonrandomized estimators based on inverse binomial sampling, there is a maximum \(c_0 \) that can be guaranteed for \(p \) arbitrary. A nonrandomized estimator is given that achieves this maximum guaranteed confidence under mild conditions on \(\mu_1, \mu_2 \).

Keywords: Confidence level, Interval estimation, Inverse binomial sampling, Sequential estimation.

1. Introduction

In a sequence of Bernoulli trials with probability of success \(p \) at each trial, consider the estimation of \(p \) by inverse binomial sampling. This sampling scheme, first discussed by Haldane (1945), consists in observing the sequence until a given number \(r \) of successes is obtained. The resulting number of trials \(N \) is a sufficient statistic for \(p \) (Lehmann & Casella, 1998, p. 101). The uniformly minimum variance unbiased estimator of \(p \) is (Mikulski & Smith, 1976)

\[
\hat{p} = \frac{r - 1}{N - 1},
\]

and for \(r \geq 3 \) it has a normalized mean square error \(E[(\hat{p} - p)^2]/p^2 \) (or \(\text{Var}[\hat{p}]/p^2 \)) lower than \(1/(r - 2) \) irrespective of \(p \) (Mikulski & Smith, 1976; Sathe, 1977; Prasad & Sahai, 1982).

This paper analyzes inverse binomial sampling from a different point of view, related to interval estimation. Given \(\mu_1, \mu_2 > 1 \), the accuracy of an estimator \(\hat{p} \) is measured by the probability \(c \) that \(\hat{p} \) lies in the interval \([p/\mu_2, p\mu_1]\). The motivation to use a relative interval \([p/\mu_2, p\mu_1]\), instead of an interval \([x_1, x_2]\) with \(x_1, x_2 \) fixed, is the fact that \(P[p/\mu_2 \leq \hat{p} \leq p\mu_1] \), unlike \(P[x_1 \leq \hat{p} \leq x_2] \), has a definite meaning independent of \(p \). Moreover, using a relative interval allows another interpretation of \(c \): since \(p/\mu_2 \leq \hat{p} \leq p\mu_1 \) if and only if \(\hat{p}/\mu_1 \leq p \leq \hat{p}\mu_2 \), \(c \) gives the probability that the true value \(p \) is covered by the random interval \([\hat{p}/\mu_1, \hat{p}\mu_2] \). In the sequel, \(c \) will be referred to as the confidence (or confidence level) associated to \(\mu_1, \mu_2 \).
Recently, Mendo & Hernando (2006, 2008) have shown that the estimator
\[\hat{p} = \frac{r - 1}{N} \]
(1.2)
has the following properties for \(r \geq 3 \). The confidence level \(c \) associated to \(\mu_1, \mu_2 \) has an asymptotic value \(\bar{c} \) as \(p \to 0 \), namely \(\bar{c} = \gamma(r, (r - 1)\mu_2) - \gamma(r, (r - 1)/\mu_1) \), where \(\gamma(r, t) = (\Gamma(r))^{-1} \int_0^t s^{r-1} \exp(-s)ds \) is the regularized incomplete gamma function. Furthermore, the confidence for any \(p \in (0, 1) \) exceeds this asymptotic value provided that \(\mu_1 \) and \(\mu_2 \) satisfy certain lower bounds. Using a more general setting in which the Bernoulli random variables are substituted by arbitrary bounded random variables, Chen (2007) has obtained comparable (somewhat less tight) results for (1.1), as well as for the maximum likelihood estimator
\[\hat{p} = \frac{r}{N}. \]
(1.3)

From the mentioned results, the question naturally arises whether the attained confidence could be improved using other estimators, different than (1.2) or (1.3). This motivates the study of arbitrary estimators based on inverse binomial sampling. In this regard, it is noted that \(1 - c \) can be expressed as the risk \(E[L(\hat{p})] \) corresponding to the loss function \(L \) defined as
\[L(x) = \begin{cases} 0 & \text{if } x \in [p/\mu_2, p\mu_1], \\ 1 & \text{otherwise}. \end{cases} \]
(1.4)

Since \(N \) is a sufficient statistic, for an arbitrary estimator defined in terms of the observed Bernoulli random variables, there exists an estimator that can be defined using \(N \) only and that has the same risk; this equivalent estimator is possibly a randomized one (Lehmann & Casella, 1998, p. 33). (The fact that \(L \) is nonconvex prevents application of a corollary of the Rao-Blackwell theorem (Lehmann & Casella, 1998, p. 48) to discard randomized estimators.) Thus, attention can be restricted to estimators that depend on the observed variables only through \(N \); but randomized as well as nonrandomized estimators have to be considered.

The purpose of the present paper is to investigate the limits on the confidence levels \(c_0 \) that can be guaranteed (in the sense that the actual confidence equals or exceeds \(c_0 \) irrespective of \(p \)) in inverse binomial sampling. More specifically, the objectives are:

- to determine the supremum of \(\inf_{p \in (0, 1)} c \) over all (randomized or nonrandomized) estimators based on inverse binomial sampling; and
- to find an estimator, if it exists, that can achieve this supremum.

According to this, the main focus of the paper is on nonasymptotic results, valid for \(p \in (0, 1) \). Nonetheless, asymptotic results for \(p \to 0 \) will also be derived, as, apart from their own theoretical importance, they provide an upper bound on (and an indication of) what can be achieved for \(p \) arbitrary.

Section 2 shows that \(\lim \inf_{p \to 0} c \) has a maximum over all estimators based on inverse binomial sampling, and computes this maximum. This sets an upper bound on the confidence that can be guaranteed by an arbitrary estimator. Section 3 establishes that the referred upper bound is also a maximum, i.e. estimators exist that can achieve this guaranteed confidence. Specifically,
estimators are given that guarantee the maximum confidence for sufficiently small \(p \); and that guarantee the maximum confidence for any \(p \), under certain conditions on the considered relative interval. Section 4 discusses the results, comparing them with those from other works. Section 5 contain proofs to all results in the paper.

2. Asymptotic analysis

It is assumed in the sequel that \(r \geq 3 \). Let \(t^{(j)} \) denote \(t(t - 1) \cdots (t - j + 1) \). The probability function of \(N, f(n) = P[N = n] \), is

\[
f(n) = \frac{(n - 1)^{(r-1)}}{(r-1)!} p^r (1 - p)^{n-r} \quad \text{for } n \geq r. \tag{2.1}
\]

As justified in Section 1, it is sufficient to consider (possibly randomized) estimators defined in terms of the sufficient statistic \(N \). Let \(\mathcal{F} \) denote the set of all functions from \(\{ r, r + 1, r + 2, \ldots \} \) to \(\mathbb{R} \). A nonrandomized estimator \(\hat{p} \) can be described as \(\hat{p} = g(N) \), with \(g \in \mathcal{F} \). Thus, a nonrandomized estimator is entirely specified by its function \(g \). A randomized estimator is a random variable \(\tilde{p} \) whose distribution depends, in general, on the value taken by \(N \). Let \(\Pi_n \) denote the distribution function of \(\tilde{p} \) conditioned on \(N = n \) The randomized estimator is completely specified by the functions \(\Pi_n, n \geq r \). Thus, denoting by \(\mathcal{F}_R \) the class of all functions from \(\{ r, r + 1, r + 2, \ldots \} \) to the set of real functions of a real variable, a randomized estimator is defined by a function \(G \in \mathcal{F}_R \) that to each \(n \) assigns \(\Pi_n \).

Nonrandomized estimators form a subset of the class of randomized estimators. Thus, any statement that applies to randomized estimators will also be valid, in particular, for nonrandomized estimators. The reason that the specialized class of nonrandomized estimators has been explicitly defined is that, on one hand, their simplicity makes them more attractive for applications; and on the other hand, it will be seen that, under certain conditions, no loss of optimality in guaranteed confidence is incurred by restricting to nonrandomized estimators. Throughout the paper, when referring to an arbitrary estimator without specifying its type, the general class of randomized estimators (including the nonrandomized ones) will be meant.

Given any estimator, defined by \(G \in \mathcal{F}_R \), the confidence associated to \(\mu_1, \mu_2 \) will be denoted in the sequel as a function \(c(p) \) (i.e. the dependence on \(p \) will be explicitly indicated). Given \(r, \mu_1 \) and \(\mu_2 \), the latter function is determined by \(G \). An estimator is said to guarantee a confidence level \(c_0 \) in the interval \((p_1, p_2) \) if \(c(p) \geq c_0 \) for all \(p \in (p_1, p_2) \). If the interval is \((0, 1)\), the estimator is said to globally guarantee the referred confidence level. An estimator asymptotically guarantees a certain \(c_0 \) if there exists \(\epsilon > 0 \) such that it guarantees \(c_0 \) in \((0, \epsilon) \).

The addressed problem can be rephrased as that of optimizing the globally guaranteed confidence within the general class of estimators based on inverse binomial sampling; or finding a minimax estimator with respect to the risk defined by the loss function (1.4). The following proposition, and its ensuing particularization, provides the motivation for studying \(\lim \inf_{p \to 0} c(p) \) as part of this optimization problem.

Proposition 1. If a given estimator, with confidence function \(c(p) \), guarantees a confidence level \(c_0 \) in an interval \((p_1, p_2) \), then necessarily \(\lim \inf_{p \to p_0} c(p) \geq c_0 \) for any \(p_0 \in (p_1, p_2) \).
Particularizing Proposition 1 to $p_1 = p_0 = 0$, it is seen that $\lim \inf_{p \to 0} c(p)$ represents an upper bound on the confidence levels that can be globally or asymptotically guaranteed.

An important subclass of nonrandomized estimators is formed by those defined by functions $g \in \mathcal{F}$ for which $c(p)$ has an asymptotic value, i.e., for which $\lim_{p \to 0} P[p/\mu_2 \leq g(N) \leq p\mu_1]$ exists. The set of all such functions will be denoted as \mathcal{F}_p. As will be seen, another important subclass is that corresponding to the set of functions $g \in \mathcal{F}$ for which $\lim_{n \to \infty} ng(n)$ exists, is finite and nonzero. This set will be denoted as \mathcal{F}_n. The following result establishes that $\mathcal{F}_n \subset \mathcal{F}_p$.

Proposition 2. For a nonrandomized estimator defined by $g \in \mathcal{F}_n$, the limit $\lim_{p \to 0} c(p)$ exists and equals \bar{c} given as

$$\bar{c} = \gamma(r, \Omega\mu_2) - \gamma(r, \Omega/\mu_1), \quad \Omega = \lim_{n \to \infty} ng(n).$$

(2.2)

The converse of Proposition 2 is not true; that is, $\mathcal{F}_n \neq \mathcal{F}_p$. A simple counterexample is

$$g(n) = \begin{cases} \omega'/n & \text{if there exists } k \in \mathbb{N} \text{ such that } n = 2^k, \\ \omega/n & \text{otherwise,} \end{cases}$$

with $\omega' \neq \omega$. It is easily seen that this function is in \mathcal{F}_p, with $\lim_{p \to 0} c(p) = \gamma(r, \omega\mu_2) - \gamma(r, \omega/\mu_1)$; but $\lim_{n \to \infty} ng(n)$ does not exist.

Given r, μ_1 and μ_2, the maximum of \bar{c} over all $g \in \mathcal{F}_n$ is attained when $\lim_{n \to \infty} ng(n) = \Omega^*$,

$$\Omega^* = r \log \frac{\mu_2}{\mu_1} - \log \left(\frac{1}{\mu_1}\right) \mu_2 - \frac{1}{\mu_1}.$$

(2.3)

as is readily seen differentiating \bar{c} in (2.2). Let c^* denote the resulting maximum. Defining

$$M = \mu_1\mu_2,$$

(2.4)

the terms Ω^*/μ_1 and $\Omega^*\mu_2$ can be expressed as

$$\Omega^*/\mu_1 = \frac{r \log M}{M - 1}, \quad \Omega^*\mu_2 = \frac{r M \log M}{M - 1},$$

(2.5)

and thus

$$c^* = \gamma \left(r, \frac{r M \log M}{M - 1} \right) - \gamma \left(r, \frac{r \log M}{M - 1} \right).$$

(2.6)

The following theorem establishes that c^* is not only the maximum of $\lim_{p \to 0} c(p)$ within the subclass of nonrandomized estimators defined by \mathcal{F}_n, but also the maximum of $\lim \inf_{p \to 0} c(p)$ within the general class of randomized estimators defined by \mathcal{F}_R.

Theorem 1. The maximum of $\lim \inf_{p \to 0} c(p)$ over all estimators defined by functions $G \in \mathcal{F}_R$ is c^* given by (2.6).
As can be seen from (2.6), \(c^* \) depends on \(\mu_1 \) and \(\mu_2 \) only through \(M \). An explanation of this result is as follows. Given \(\mu_1, \mu_2 \), let \(\hat{\theta} \) be an arbitrary estimator, and consider \(a > 0 \). If \(\mu_1 \) and \(\mu_2 \) are substituted by \(\mu'_1 = a\mu_1 \) and \(\mu'_2 = \mu_2/a \) respectively, defining a modified estimator \(\hat{\theta}' = a\hat{\theta} \) it is clear that \(\hat{\theta}/\mu'_2 \leq \hat{\theta}' \leq \hat{\theta}\mu'_1 \) if and only if \(\hat{\theta}/\mu_2 \leq \hat{\theta} \leq \hat{\theta}\mu_1 \). This shows that any value of \(\lim_{p \to 0} c(p) \) that can be achieved for \(\mu_1, \mu_2 \) can also be achieved for \(a\mu_1, \mu_2/a \) (using a different estimator), and conversely. Thus \(c^* \) is the same for \(\mu_1, \mu_2 \) and for \(a\mu_1, \mu_2/a \).

3. An optimum estimator for certain relative intervals

The asymptotic results in Section 2 impose a limit on the confidence levels that can be guaranteed, as established by the following corollary of Proposition 1 and Theorem 1.

Corollary 1. No estimator can guarantee a confidence level greater than \(c^* \), given by (2.6), in an interval \((0, p_2)\).

According to Corollary 1, \(c^* \) is an upper bound on the confidence that can be guaranteed either asymptotically or globally. It remains to be seen if there exists some estimator that can actually guarantee the confidence level \(c^* \). If it exists, that estimator will be optimum from the point of view of guaranteed confidence. A related question is if one such optimum estimator can be found within the restricted class of nonrandomized estimators. As will be shown, the answer to both questions turns out to be affirmative for all values of \(\mu_1 \) and \(\mu_2 \) in the case of asymptotic guarantee, and for certain values of \(\mu_1 \) and \(\mu_2 \) in the case of global guarantee.

Consider a nonrandomized estimator \(\hat{\theta} = g(N) \) of the form

\[g(n) = \frac{\Omega}{n + d}, \]

where \(\Omega = \lim_{n \to \infty} ng(n) \) and \(d \) are parameters. This is a generalization of the estimators (1.1), (1.2) and (1.3). Note that (3.1) has an asymptotic confidence \(\hat{\alpha} \) given by (2.2), and for \(\Omega = \Omega^* \) it achieves the maximum \(\lim_{p \to 0} \inf c(p) \) that any estimator can have, according to Theorem 1.

Under a mild condition on \(d \), the estimator given by (3.1) with \(\Omega = \Omega^* \) can be shown to asymptotically guarantee the confidence \(c^* \) for any \(\mu_1, \mu_2 > 0 \), as established by Theorem 2 below.

Theorem 2. The nonrandomized estimator

\[\hat{\theta} = \frac{\Omega^*}{N + d} \]

asymptotically guarantees the optimum confidence \(c^* \) given in (2.6) if

\[d > \frac{1}{2} \left(-r + \frac{M + 1}{M - 1} \right), \]

where \(M \) is defined by (2.4).
An estimator of this form can also **globally** guarantee the confidence level c^* provided that μ_1, μ_2 are not too small, as discussed in the following.

For $d \in \mathbb{Z}$ the estimator defined by (3.1) lends itself to an analysis similar to that carried out by Mendo & Hernando (2006, 2008) for the particular case (1.2). This allows deriving sufficient conditions on μ_1, μ_2 that assure $c(p) \geq \bar{c}$ for all $p \in (0, 1)$. The least restrictive conditions are obtained for $d = 1$, and are given in the following proposition, which, particularized to $\Omega = \Omega^*$, will yield the desired result on globally guaranteeing the optimum confidence.

Proposition 3. The confidence of the nonrandomized estimator

$$\hat{p} = \frac{\Omega}{N + 1}$$

(3.4)

exceeds its asymptotic value \bar{c}, given by (2.2), for all $p \in (0, 1)$ if

$$\mu_1 \geq \frac{\Omega}{r - \sqrt{r}}, \quad \mu_2 \geq \frac{r + \sqrt{r} + 1}{\Omega}.$$

(3.5)

Particularizing to $\Omega = \Omega^*$, Proposition 3 establishes that there exists a nonrandomized estimator that can globally guarantee the optimum confidence c^* for certain values of μ_1, μ_2. It turns out that for $\Omega = \Omega^*$ and r given, one of the two inequalities in (3.5) implies the other. Thus, for each r, only one of the inequalities needs to be considered in order to determine the allowed range for μ_1, μ_2. The result is stated in the following theorem.

Theorem 3. The nonrandomized estimator

$$\hat{p} = \frac{\Omega^*}{N + 1},$$

(3.6)

with Ω^* as in (2.3), globally guarantees the optimum confidence c^* given by (2.6) if either of the following conditions is satisfied:

$$\frac{M - 1}{\ln M} \geq \frac{r + \sqrt{r}}{r - 1} \quad \text{for} \quad r \in \{3, 4\},$$

(3.7)

$$\frac{M \ln M}{M - 1} \geq \frac{r + \sqrt{r} + 1}{r} \quad \text{for} \quad r \geq 5,$$

(3.8)

where M is defined by (2.4). These conditions can be jointly expressed as $M \geq h(r)$, where h is an increasing function.

Given r, consider the region of (μ_1, μ_2) values that satisfy the appropriate condition (3.7) or (3.8), with $\mu_1, \mu_2 > 1$. From Theorem 3, the boundary of this region is a continuous, decreasing, concave curve in $(1, \infty) \times (1, \infty)$, namely, that determined by the equation $\mu_1 \mu_2 = h(r)$. The referred region is the union of this curve and the portion of the plane lying above and to the right. Besides, the region for $r' > r$ contains that for r.
According to the preceding results, the problem of optimum estimation of p, in the sense of globally guaranteeing the maximum possible confidence, is solved by the nonrandomized estimator (3.6) for μ_1, μ_2 satisfying (3.7) or (3.8). Equivalently, this estimator is minimax with respect to the risk defined by the loss function given in (1.4) (maximin with respect to confidence).

The fact that c^* depends on μ_1, μ_2 only through M gives rise to another interpretation of the result in Theorem 3. For r and M given, consider the problem of finding, among all interval estimators of p with a ratio M between their endpoints, that which maximizes the globally guaranteed confidence. The solution, if M satisfies (3.7) or (3.8), is

$$c^* = \begin{cases} \frac{r \log M}{(M-1)(N+1)}, & M \leq 1 + \frac{r}{N} \frac{\log M}{N} \\ \frac{r M \log M}{(M-1)(N+1)}, & M > 1 + \frac{r}{N} \frac{\log M}{N} \end{cases}$$

(3.9)

and the resulting maximum is c^* as expressed by (2.6). Equivalently, given r and a prescribed confidence c^0, if M is computed such that (2.6) holds with $c^* = c^0$, and if it satisfies (3.7) or (3.8), the interval estimator (3.9) minimizes the ratio between interval endpoints subject to a globally guaranteed confidence level c^0. Observe that it is meaningful to prescribe, or minimize, the ratio of the interval endpoints, rather than their difference, as a given value for the latter might be either unacceptably high or unnecessarily small depending on the unknown p, whereas the ratio has a definite meaning regardless of p.

According to Proposition 3, conditions (3.5) are sufficient; but they may not be necessary. The same applies to (3.7) and (3.8). Determining the most general conditions which assure optimality of (3.6) is a difficult problem. Nevertheless, as will be illustrated, the sufficient conditions (3.7) or (3.8) cover most cases of interest.

4. Discussion

Figure 1(a) depicts the relationship between c^*, M and r, for M satisfying (3.7) or (3.8). The guaranteed confidence c^* is represented, for convenience, as a function of $\sqrt{M} - 1$, each dashed curve corresponding to a different r. The figure also represents, with solid line, the minimum c^* that fulfills inequalities (3.7) or (3.8); this corresponds to the lowest r for which the applicable inequality holds. Figure 1(b) shows this minimum r as a function of $\sqrt{M} - 1$, with c^* as a parameter. From Corollary 1, this figure also has a more general interpretation as the minimum r that is required in order to guarantee (either globally or asymptotically) a desired confidence level using any estimator based on inverse binomial sampling.

Given μ_1, μ_2 and c, if the point $(\sqrt{M} - 1, c)$ with $M = \mu_1 \mu_2$ lies in the region above the solid curve in Figure 1(a), there exist values of r for which the estimator (3.6) globally guarantees the confidence level c for the relative interval defined by μ_1 and μ_2; the minimum such r is given by Figure 1(b). As mentioned earlier, the referred region in Figure 1(a) (or equivalently conditions (3.7) and (3.8)) covers most cases of interest. For example, any confidence greater than 85% can be globally guaranteed for any relative interval with $\sqrt{M} - 1 \leq 1.108$, i.e. such that $\mu_1 \mu_2 \leq 4.443$.

\[1\] Although $c(p)$ (or a lower bound thereof) can be expressed in terms of the Gauss hypergeometric function $\frac{\log M}{(M-1)(N+1)}$, standard algorithms for evaluation of hypergeometric sums (Petkovšek et al., 1996) are not directly applicable, because of the existing dependence between b and t.

An important subclass of relative intervals is that for which $\mu_1 = \mu_2 = 1 + m$, $m > 0$. An interval of this form corresponds to the requirement that \hat{p} and p do not deviate from each other by a factor greater than $1 + m$; the parameter m is thus interpreted as a relative error margin. The guaranteed confidence and required r in this case can be read directly from Figures 1(a) and 1(b), as $\sqrt{M} - 1 = m$. This particular case is analyzed by Mendo & Hernando (2006, 2008) for the estimator (1.2). Comparing figure 1 of Mendo & Hernando (2008) with Figure 1(a), the individual (dashed) curves in the latter are seen to be above those in the former (this is most noticeable for small r), in accordance with the fact that the estimator (3.6) is optimum. This yields a reduction in the error margin m for a given r and a desired guaranteed confidence. For example, taking $r = 10$, the estimator (1.2) guarantees a confidence level of 95% for $m = 0.9074$, whereas (3.6) guarantees the same confidence for $m = 0.8808$. Furthermore, the latter value is the smallest m for which a confidence level of 95% can be guaranteed by any estimator with the considered r.

As another manifestation of the optimum character of the estimator (3.6), the curves in Figure 1(b) for $\sqrt{M} - 1 = m$ are farther to the left than those in Figure 5(a) of Mendo & Hernando (2006). Since, from (2.1), $E[N] = r/p$, for certain combinations of m and c this gives a reduction in average observation time to achieve a globally guaranteed confidence c for an error margin m. (The fact that the reduction is obtained only for certain combinations of m and c is a consequence of the discrete character of r.) Thus, for $m = 50\%$, the estimator (1.2) requires $r = 18$ in order to globally guarantee a 90% confidence level, whereas $r = 17$ suffices for the estimator (3.6); furthermore, this is the lowest required r that can be achieved by any estimator.

Comparing the attainable region shown in Figure 1(a), i.e. that above the solid curve, with the corresponding region in figure 1 of Mendo & Hernando (2008), they are seen to have similar shape and size, except that for small m the boundary curve is slightly higher in Figure 1(a). Thus the applicability of the estimator (3.6) is similar to that of (1.2) (while achieving better...
5. Proofs

The following notation is introduced for convenience:

\[
\phi(t) = \frac{tr^{-1}\exp(-t)}{(r-1)!}, \quad n_1 = \lceil \Omega/(p\mu_1) - d \rceil, \quad n_2 = \lceil \Omega\mu_2/p - d \rceil.
\]

Proof of Proposition 1. Let \(c_1\) denote \(\liminf_{p=p_0} c(p)\), and assume that \(c_1 < c_0\). For \(\epsilon = (c_0 - c_1)/2\), the definition of limit inferior implies that there exists \(p_\epsilon \in (p_1, p_2)\) such that \(c(p_\epsilon) < c_1 + \epsilon < c_0\), and thus the estimator does not guarantee the confidence level \(c_0\) in \((p_1, p_2)\). This establishes the result.

Lemma 1. For all \(t > 0\), the function \(\phi\) defined in (5.1) satisfies

\[
0 < \phi(t) \leq \frac{(r-1)^{r-1}\exp(-r+1)}{(r-1)!} < 1.
\]

Proof. The first inequality in (5.3) is obvious. Let \(Q_r = (r-1)^{r-1}\exp(-r+1)/(r-1)!\). Maximizing \(\phi(t)\) with respect to \(t\), it is seen that \(\phi(t) \leq Q_r\). Since \(Q_{r+1}/Q_r = (1 + 1/(r-1))^{r-1}\exp(-1) < 1\) and \(Q_3 = 2\exp(-2) < 1\), it stems that \(Q_r < 1\) for all \(r \geq 3\).

Proof of Proposition 2. Consider \(g \in F_n\), and let \(\Omega = \lim_{n \to \infty} ng(n)\). Given \(\epsilon > 0\), there exists \(n_\epsilon\) such that \(|ng(n) - \Omega| < \epsilon\) for all \(n \geq n_\epsilon\), i.e. \((\Omega - \epsilon)/n < g(n) < (\Omega + \epsilon)/n\). Using this, the confidence \(c(p) = P[p/\mu_2 \leq g(N) \leq \mu_1]\) can be bounded for \(p \leq (\Omega - \epsilon)/(\mu_1 n_\epsilon)\) as

\[
c(p) \geq P[[((\Omega + \epsilon)/(p\mu_1)] \leq N \leq [((\Omega - \epsilon)\mu_2/p]],
\]

\[
c(p) \leq P[[((\Omega - \epsilon)/(p\mu_1)] \leq N \leq [((\Omega + \epsilon)\mu_2/p]].
\]

Let \(b(n, p; i)\) denote the binomial probability function with parameters \(n\) and \(p\) evaluated at \(i\). From the relationship between binomial and negative binomial distributions, (5.4) is written as

\[
c(p) \geq \sum_{i=0}^{r-1} b(i; ((\Omega + \epsilon)/(p\mu_1)] - 1, p; i) - \sum_{i=0}^{r-1} b(i; ((\Omega - \epsilon)\mu_2/p], p; i).
\]
Lemma 1 implies thatLemma 2

Using Lemma 2, the first term in the right-hand side of (5.11) is bounded as Lemma 3. Let (p_k) be a positive sequence which converges to 0. For any ν_1, ν_2 with $\nu_2 > \nu_1 > 0$, the sequence of functions (ϕ_k) defined as

$$\phi_k(\nu) = \frac{(1 - p_k)^{\nu/p_k - r}}{(r - 1)!} \prod_{i=1}^{r-1} (\nu - ip_k)$$

converges uniformly to $\phi(\nu)$, given by (5.1), in the interval $[\nu_1, \nu_2]$.

Proof. In order to obtain an upper bound on $|\phi_k(\nu) - \phi(\nu)|$, it is first noted that

$$|\phi_k(\nu) - \phi(\nu)| = \min\{\phi_k(\nu), \phi(\nu)\} \left(\max\left\{\frac{\phi_k(\nu)}{\phi(\nu)}, \frac{\phi(\nu)}{\phi_k(\nu)}\right\} - 1\right).$$

(5.9)

Lemma 1 implies that $\min\{\phi_k(\nu), \phi(\nu)\} \leq 1$. On the other hand, $\max\{\phi_k(\nu)/\phi(\nu), \phi(\nu)/\phi_k(\nu)\}$ can be written as $\exp|\log(\phi_k(\nu)/\phi(\nu))|$. Substituting into (5.9),

$$|\phi_k(\nu) - \phi(\nu)| \leq \exp\left|\log\frac{\phi_k(\nu)}{\phi(\nu)}\right| - 1.$$

(5.10)

From (5.8) and (5.1) it stems that

$$\log\frac{\phi_k(\nu)}{\phi(\nu)} \leq \sum_{i=1}^{r-1} \log\left(1 - \frac{ip_k}{\nu}\right) + \left|\frac{\nu}{p_k} - r\right| \log(1-p_k) + \nu.$$

(5.11)

Using Lemma 2, the first term in the right-hand side of (5.11) is bounded as

$$\sum_{i=1}^{r-1} \log\left(1 - \frac{ip_k}{\nu}\right) = - \sum_{i=1}^{r-1} \log\left(1 - \frac{ip_k}{\nu}\right) < \sum_{i=1}^{r-1} \frac{ip_k}{\nu - ip_k}.$$

(5.12)

As for the second term, since $\nu \in [\nu_1, \nu_2]$, there is k_0 such that $(\nu/p_k - r) \log(1-p_k) < 0$ for $k \geq k_0$, whereas $\nu > 0$. From Lemma 2, $-p_k/(1-p_k) < \log(1-p_k) < -p_k$. It follows that

$$\left|\left(\frac{\nu}{p_k} - r\right) \log(1-p_k) + \nu\right| \leq \max\left\{\left|\frac{\nu}{p_k} - r\right| p_k + \nu, \left|\frac{\nu}{p_k} - r\right| \frac{p_k}{1-p_k} + \nu\right\} \leq \max\left\{\left|\frac{r - \nu}{1-p_k}\right| p_k \leq \max\{\nu, \nu_2\} \frac{p_k}{1-p_k}.$$

(5.13)
Combining (5.10)–(5.13) yields the following bound, valid for all $\nu \in [\nu_1, \nu_2]$, $k \geq k_0$:

$$|\phi_k(\nu) - \phi(\nu)| \leq \exp \left[\left(\frac{\sum_{i=1}^{\nu} i - \nu p_k - \max\{\nu, \nu_2\}}{1 - p_k} \right) p_k \right] - 1.$$ (5.14)

The right-hand side of (5.14) tends to 0 as $k \to \infty$. Therefore $\sup_{\nu \in [\nu_1, \nu_2]} |\phi_k(\nu) - \phi(\nu)|$ tends to 0 as well, which establishes the result. \hfill \Box

Proof of Theorem 1. For $\alpha \in (0, 1]$, let the sequence (p_k), $k \in \mathbb{N}$ be defined as $p_k = \alpha M^{-k}$, with M given by (2.4), and let the sequence of intervals (I_k) be defined as $I_k = (p_k/\mu_2, p_k\mu_1]$. Consider also the sequence (f_k), where f_k is the probability function of N with parameters r and p_k. From (2.1) and (5.8),

$$f_k(n) = p_k \phi_k(np_k).$$ (5.15)

To facilitate the development, it is convenient to first analyze nonrandomized estimators, and then generalize to randomized estimators. Given a nonrandomized estimator specified by $g \in \mathcal{F}$, let the sequence of sets (S_k) be defined such that $n \in S_k$ if and only if $g(n) \in I_k$. Since the intervals I_k are disjoint for different k, the sets S_k are also disjoint. Let the function σ be defined such that $\sigma(n) = k$ if and only if $n \in S_k$, with $\sigma(n) = 0$ (or an arbitrary negative value) if $n \notin S_k$ for all $k \in \mathbb{N}$. Thus, σ gives the index k of the interval I_k that g associates to each n, if any. The function σ is determined by g; and, for a given n_0, $\sigma(n_0)$ can be modified without affecting the rest of values $\sigma(n)$, $n \neq n_0$ by adequately choosing $g(n_0)$.

For the considered nonrandomized estimator, let c_k denote the probability that \hat{p} lies in I_k when $p = p_k$, i.e. $c_k = \sum_{n \in S_k} f_k(n)$. Further, let $C(h, H) = \sum_{k=h}^{h+H-1} c_k$ for $h, H \in \mathbb{N}$ arbitrary. Defining

$$s(n) = \begin{cases} f_{\sigma(n)}(n) & \text{if } n \in S_h \cup \cdots \cup S_{h+H-1}, \\ 0 & \text{otherwise}, \end{cases}$$

the sum $C(h, H)$ can be expressed as $\sum_{n=r}^{\infty} s(n)$. It follows that

$$C(h, H) \leq \sum_{n=r}^{\infty} \max_{k \in \{h, \ldots, h+H-1\}} f_k(n),$$ (5.16)

which holds with equality if the estimator satisfies

$$\sigma(n) = \arg \max_{k \in \{h, \ldots, h+H-1\}} f_k(n) \quad \text{for all } n \in \mathbb{N}, \ n \geq r,$$ (5.17)

where, if the maximum is reached at more than one index k, the arg max function is arbitrarily defined to give the lowest such index.

As for randomized estimators, consider an arbitrary function $G \in \mathcal{F}_R$, that for each n specifies Π_n, the distribution function of \hat{p} conditioned on $N = n$. Let $I^c = (-\infty, p_{h+H-1}/\mu_2] \cup (p_{h+H+1}, \infty)$. Conditioned on $N = n$, let $\pi_{n,k}$ and π_n^c respectively denote the probabilities that \hat{p} is in I_k and in I^c. Obviously,

$$\pi_{n,h} + \cdots + \pi_{n,h+H-1} + \pi_n^c = 1.$$ (5.18)
For \(N = n \), the numbers \(\pi_{n,h}, \ldots, \pi_{n,h+H-1}, \pi_n^c \) indicate how the conditional probability associated to all possible values of \(\hat{p} \) (that is, 1 in total) is divided among \(I_h, \ldots, I_{h+H-1}, I^c \). For a given \(n_0 \), any combination of values \(\pi_{n_0,h}, \ldots, \pi_{n_0,h+H-1}, \pi_{n_0}^c \) allowed by (5.18) can be realized, without affecting other values \(\pi_{n,k}, \pi_n^c \) for \(n \neq n_0 \), by adequately choosing the distribution function \(\Pi_{n_0} \). Defining \(c_k \) and \(C(h, H) \) as in the nonrandomized case, the former is expressed as

\[
c_k = \sum_{n=r}^{\infty} \pi_{n,k} f_k(n). \tag{5.19}
\]

Since all terms in (5.19) are positive, the series converges absolutely, and thus \(C(h, H) \) can be written as

\[
C(h, H) = \sum_{k=h}^{h+H-1} c_k = \sum_{n=r}^{\infty} \sum_{k=h}^{h+H-1} \pi_{n,k} f_k(n).
\]

It is evident from this expression that \(C(h, H) \) is maximized if, for each \(n \), the values \(\pi_{n,k}, \pi_n^c \) are chosen as \(\pi_{n,l} = 1 \) for \(l = \arg \max_k f_k(n) \), \(\pi_{n,k} = 0 \) for \(k \neq l \), \(\pi_n^c = 0 \); and the resulting maximum coincides with the right-hand side of (5.16). Thus the inequality (5.16), initially derived for nonrandomized estimators, also holds for the general class of randomized estimators. This implies that for any randomized estimator there exists a nonrandomized estimator that attains the same or greater \(C(h, H) \).

Let the function \(\bar{g} \in \mathcal{F} \) be defined as \(\bar{g}(n) = \Omega^*/n \), and consider the nonrandomized estimator specified by this function. The sets \(\bar{S}_k \) and function \(\sigma \) associated to this estimator will be denoted as \(S_k \) and \(\bar{\sigma} \) respectively. It stems that

\[
\bar{S}_k = \{\Omega^*/(\mu_1 p_k), \Omega^*/\mu_2/p_k\} \cap \{r, r+1, r+2, \ldots\}. \tag{5.20}
\]

Let the sequence of functions \(\bar{f}_k \) be defined as \(\bar{f}_k(n) = p_k \phi(np_k) \). It is readily seen that the equation \(\bar{f}_k(t) = \bar{f}_{k+1}(t) \) has only one solution, given as \(t = \Omega^*/\mu_2/p_k \). Similarly, \(\bar{f}_{k-1}(t) = \bar{f}_k(t) \) has the solution \(t = \Omega^*/(\mu_1 p_k) \). Taking into account that the functions \(\bar{f}_k \) are unimodal, this implies that \(\bar{f}_k(n) \geq \bar{f}_{k-1}(n) \) and \(\bar{f}_k(n) \geq \bar{f}_{k+1}(n) \) for \(n \in \bar{S}_k \). An analogous argument shows that \(\bar{f}_k(n) > \bar{f}_{k-1}(n) \) and \(\bar{f}_k(n) > \bar{f}_{k+1}(n) \) for \(n \in \bar{S}_k \) and \(i \geq 2 \). Therefore, the function \(\bar{\sigma} \) associated to \(\bar{g} \) satisfies a modified version of (5.17) in which \(f_k \) is replaced by \(\bar{f}_k \), that is, \(\phi_k \) in (5.15) is replaced by its limit \(\phi \). In the following, using the fact that the difference between \(\phi_k \) and \(\phi \) is small for large \(k \), the estimator defined by \(\bar{g} \) will be used to derive from (5.16) a more explicit upper bound on \(C(h, H) \). Since the sum \(C(h, H) \) attained by any estimator is equalled or exceeded by some nonrandomized estimator, it will be sufficient to restrict to the class of nonrandomized estimators.

Consider an arbitrary nonrandomized estimator defined by \(g \in \mathcal{F} \) with its corresponding function \(\sigma \). Differentiating (2.1) with respect to \(p \), it is seen that \(\partial f(n)/\partial p \) is positive for \(p < r/n \) and negative for \(p > r/n \). According to (5.20),

\[
\Omega^*/(\mu_1 n) \leq p_k < \Omega^*/\mu_2/n \quad \text{for } n \in \bar{S}_k. \tag{5.21}
\]

Using Lemma 2, it stems from (2.5) that

\[
\Omega^*/\mu_1 < r < \Omega^*/\mu_2. \tag{5.22}
\]
The first inequality in (5.21) and the second in (5.22) imply that \(p_{k-1} = M p_k \geq \Omega^* \mu_2 / n > r / n \) for \(n \in \bar{S}_k \). Thus \(\partial f(n) / \partial p < 0 \) for \(p > p_{k-1} \). This implies that \(f_{k+1}(n) < f_{k-1}(n) \) for \(n \in \bar{S}_k \) and \(i \leq -2 \). It follows that if \(\sigma(n_0) < \bar{\sigma}(n_0) - 1 \) for a given \(n_0 \), the sum \(C(h, H) \) could be made larger by modifying the value \(g(n_0) \) so as to attain \(\bar{\sigma}(n_0) = \bar{\sigma}(n_0) - 1 \); unless \(\sigma(n_0) = h + H - 1 \), in which case modifying \(g(n_0) \) cannot make \(C(h, H) \) larger. Analogously, the second inequality in (5.21) and the first in (5.22) yield \(f_{k+1}(n) < f_{k+1}(n) \) for \(n \in \bar{S}_k \) and \(i \geq 2 \). Therefore, if \(\sigma(n_0) > \bar{\sigma}(n_0) + 1 \) for some \(n_0 \), \(C(h, H) \) could be made larger by modifying \(g(n_0) \), unless \(\sigma(n_0) = h \).

According to the above, in order to obtain an upper bound on \(C(h, H) \), it suffices to consider nonrandomized estimators such that \(\sigma(n) \in \{ \bar{\sigma}(n) - 1, \bar{\sigma}(n), \bar{\sigma}(n) + 1 \} \) for \(n \in \bar{S}_h \cup \cdots \cup \bar{S}_{h+H-1} \), \(\sigma(n) = h \) for \(n < [\Omega^* / (\mu_1 p_k)] \) and \(\sigma(n) = h + H - 1 \) for \(n \geq [\Omega^* \mu_2 / p_h + H - 1] \). Thus, from (5.16),

\[
C(h, H) \leq \sum_{h = k}^{h+H-1} \sum_{n \in \bar{S}_k} \max_{i \in \{-1,0,1\}} f_{k+i}(n) + \sum_{n = [\Omega^* / (\mu_1 p_h)]}^{[\Omega^* / (\mu_1 p_h)] - 1} f_h(n) + \sum_{n = [\Omega^* \mu_2 / p_h + H - 1]}^{\infty} f_{h+H-1}(n) \leq \sum_{h = k}^{h+H-1} \sum_{n \in \bar{S}_k} \max_{i \in \{-1,0,1\}} f_{k+i}(n) + 2.
\]

(5.23)

Let \(\nu_1 = \Omega^* / \mu_1, \nu_2 = \Omega^* \mu_2 \), and consider \(\epsilon > 0 \). From Lemma 3, there exists \(k_1 \) such that \(|\phi_k(\nu) - \phi(\nu)| < \epsilon \) for \(\nu \in [\nu_1, \nu_2], k \geq k_1 \). In addition, (5.20) implies that \(n p_k \in [\nu_1, \nu_2] \) for \(n \in \bar{S}_k \). From these facts and (5.15) it stems that \(|f_k(n) / p_k - \phi(np_k)| < \epsilon \) for \(n \in \bar{S}_k, k \geq k_1 \). Thus, for \(k \geq k_1 + 1 \)

\[
\max_{i \in \{-1,0,1\}} f_{k+i}(n) < \max_{i \in \{-1,0,1\}} [p_{k+i}(\phi(np_{k+i}) + \epsilon)] \leq \max_{i \in \{-1,0,1\}} (p_{k+i}(\phi(np_{k+i}) + \epsilon p_{k-1}).
\]

(5.24)

As previously shown, \(\tilde{f}_k(n) = p_k \phi(np_k) \) equals or exceeds \(\tilde{f}_{k-1}(n) \) and \(\tilde{f}_{k+1}(n) \) for \(n \in \bar{S}_k \). Therefore

\[
\max_{i \in \{-1,0,1\}} f_{k+i}(n) < p_k \phi(np_k) + \epsilon p_{k-1}.
\]

Substituting (5.24) into (5.23),

\[
C(h, H) \leq \sum_{h = k}^{h+H-1} \sum_{n \in \bar{S}_k} (p_k \phi(np_k) + \epsilon p_{k-1}) + 2.
\]

(5.25)

The number of elements in the set \(\bar{S}_k \) is less than \(\Omega^* (\mu_2 - 1 / \mu_1) / p_k + 1 \), according to (5.20). From (2.5), this upper bound equals \(r \log M / p_k + 1 \). Using this in (5.25), and taking into account that \(p_{k-1} < 1 \),

\[
C(h, H) < \sum_{h = k}^{h+H-1} \sum_{n \in \bar{S}_k} p_k \phi(np_k) + \epsilon H(r \log M + 1) + 2.
\]

(5.26)
The term $\sum_{n \in S_k} p_k \phi(n \mu_k)$ in (5.26) converges to $\int_{\Omega_1}^{n^2} \phi(\nu) d\nu = c^*$ as $k \to \infty$. Thus, for the considered ϵ, there exists k_2 such that for all $k \geq k_2$

$$\left| \sum_{n \in S_k} p_k \phi(n \mu_k) - c^* \right| < \epsilon. \quad (5.27)$$

Consequently, defining $k_0 = \max\{k_1 + 1, k_2\}$, inequalities (5.26) and (5.27) imply that for all $h \geq k_0$, for all H, and for $\alpha \in (0, 1]$,

$$C(h, H) < H(c^* + \epsilon) + \epsilon H(rM \log M + 1) + 2 = H(c^* + \epsilon P) + 2, \quad (5.28)$$

where $P = rM \log M + 2 > 0$.

Since the minimum of a set cannot be larger than the average of the set, from (5.28) it stems that there is some $k_3 \in \{h, \ldots, h + H - 1\}$ such that $c_{k_3} \leq C(h, H)/H < c^* + \epsilon P + 2/H$.

Using the foregoing results, the bound $\lim \inf_{p \to 0} c(p) \leq c^*$ for an arbitrary estimator can be established by contradiction. Assume that there is some estimator, defined by $G \in \mathcal{F}_R$, such that $\lim \inf_{p \to 0} c(p) = c^* + d$ with $d > 0$. This means that for any $c' > 0$ there exists p_0 such that $c(p) \geq c^* + d - c'$ for all $p \leq p_0$. Thus taking $c' = d/3$, there is p_0 such that

$$c(p) \geq c^* + 2d/3 \quad \text{for all } p \leq p_0. \quad (5.29)$$

On the other hand, taking $\epsilon = d/(6P)$, $H = \lceil 12/d \rceil$, and with $\alpha \in (0, 1]$ arbitrary, the result in the preceding paragraph assures that for any h not smaller than a certain k_0 (which depends on the considered ϵ) there exists $k_3 \in \{h, \ldots, h + H - 1\}$ with

$$c_{k_3} < c^* + \epsilon P + 2/H \leq c^* + d/3. \quad (5.30)$$

Let h be selected such that $h \geq \max\{k_0, -\log p_0/\log M\}$. For each $k = h, \ldots, h + H - 1$, let X_k denote the (possibly empty) set of all points $x \in \mathbb{R}$ such that, for the considered estimator and for $p = p_k$, the probability that \hat{p} equals x is at least $d/3$. The number of points in X_k cannot exceed $\lceil 3/d \rceil$, for otherwise the sum of their probabilities would be greater than 1. The set X_k is determined by f_k and G (or by f_k and g, in the case of a nonrandomized estimator defined as $\hat{p} = g(N)$).

Let $\alpha \in (0, 1]$ be chosen such that $p_k/\mu_2 \notin X_k$ for all $k = h, \ldots, h + H - 1$. Such α necessarily exists because this condition excludes only a finite number of possible values from $(0, 1]$. This choice of α assures that for $p = p_k$, $k = h, \ldots, h + H - 1$, the probability that \hat{p} equals p_k/μ_2 is smaller than $d/3$. Thus $c(p_k) < c_k + d/3$ for $k = h, \ldots, h + H - 1$, which, together with (5.30), gives

$$c(p_{k_3}) < c^* + 2d/3. \quad (5.31)$$

On the other hand, since $k_3 \geq h$, from the choice of h it follows that

$$p_{k_3} = \alpha M^{-k_3} \leq \alpha M^{-h} \leq \alpha M^{\log p_0/\log M} = \alpha p_0 \leq p_0.$$

This implies, according to (5.29), that $c(p_{k_3}) \geq c^* + 2d/3$, in contradiction with (5.31). Therefore $\lim \inf_{p \to 0} c(p) \leq c^*$.

Proof of Theorem 2. Let $I_p(z,w)$ denote the regularized incomplete beta function,

\[I_p(z,w) = \frac{1}{B(z,w)} \int_0^p t^{z-1}(1-t)^{w-1}dt, \quad B(z,w) = \int_0^1 t^{z-1}(1-t)^{w-1}dt = \frac{\Gamma(z)\Gamma(w)}{\Gamma(z+w)}. \]

From eq. (6.6.4) of Abramowitz & Stegun (1970), $P[N \leq n] = I_p(r,n-r+1)$ for $n \in \mathbb{N}$, $n \geq r$. The confidence for the estimator (3.2) can thus be written as

\[c(p) = P[n_1 \leq N \leq n_2] = I_p(r,n_2 - r + 1) - I_p(r,n_1 - r), \quad (5.32) \]

where n_1 and n_2 are given by (5.2) with $\Omega = \Omega^*$. It is easy to show that $I_p(z,w)$ is an increasing function of w for $w \in \mathbb{R}$. Since $n_1 < \Omega^*/(\mu_1) - d + 1$ and $n_2 > \Omega^*\mu_2/p - d - 1$, from (5.32) it stems that

\[c(p) > \tilde{c}_2(p) - \tilde{c}_1(p), \quad (5.33) \]

with $\tilde{c}_1(p) = I_p(r,\Omega^*/(\mu_1) - r - d + 1)$ and $\tilde{c}_2(p) = I_p(r,\Omega^*\mu_2/p - r - d)$.

Expressing $I_p(z,w)$ as (Abramowitz & Stegun, 1970, eq. (26.5.23))

\[I_p(z,w) = \frac{2F_1(z,1-w;z+1;p)w}{B(z,w)z}, \quad 2F_1(a,b;c;t) = \sum_{j=0}^{\infty} \frac{(a+j-1)(b+j-1)(j)!}{(c+j-1)(j)!}, \]

the term $\tilde{c}_2(p)$ can be written as

\[\tilde{c}_2(p) = \frac{1}{B(r,\Omega^*\mu_2/p - r - d)} \frac{p^r}{r} 2F_1(r,r+d+1-\Omega^*\mu_2/p;r+1;p) = \frac{(\Omega^*\mu_2/p - d - 1)^{(r)}}{(r-1)!} \sum_{j=0}^{\infty} \frac{(-1)^j (\Omega^*\mu_2/p - r - d - 1)^{(j)}}{(r+j)j!} p^{r+j} \]

\[= \frac{1}{(r-1)!} \sum_{j=0}^{\infty} \frac{(-1)^j (\Omega^*\mu_2 - (d+1)p) \cdots (\Omega^*\mu_2 - (d+r+j)p)}{(r+j)j!}; \quad (5.35) \]

and similarly

\[\tilde{c}_1(p) = \frac{1}{(r-1)!} \sum_{j=0}^{\infty} \frac{(-1)^j (\Omega^*/\mu_1 - dp) \cdots (\Omega^*/\mu_1 - (d+r+j)p)}{(r+j)j!}. \quad (5.36) \]

According to (5.35) and (5.36), both $\tilde{c}_1(p)$ and $\tilde{c}_2(p)$ can be expressed as power series in p: $\tilde{c}_1(p) = \sum_{i=0}^{\infty} v_i p^i$, $\tilde{c}_2(p) = \sum_{i=0}^{\infty} v_i p^i$. Thus the right-hand side of (5.33) is also a power series, $\sum_{i=0}^{\infty} w_i p^i$, with $w_i = v_i - u_i$. The zero-order coefficient is

\[w_0 = \frac{1}{(r-1)!} \left(\sum_{j=0}^{\infty} \frac{(-1)^j (\Omega^*\mu_2)^{r+j}}{(r+j)j!} - \sum_{j=0}^{\infty} \frac{(-1)^j (\Omega^*/\mu_1)^{r+j}}{(r+j)j!} \right). \]
From the Taylor expansion of $\gamma(r,t)$ (Abramowitz & Stegun, 1970, eq. (6.5.29)),
\[
\gamma(r,t) = \frac{1}{\Gamma(r)} \sum_{j=0}^{\infty} \frac{(-1)^j t^{r+j}}{(r+j)j!},
\]
the coefficient w_0 is recognized to be c^*, reflecting the fact that the difference between both sides of (5.33) is vanishingly small as $p \to 0$. In addition, the first-order coefficient w_1 coincides with the derivative of the right-hand side of (5.33) evaluated at $p = 0$. It follows that $w_1 > 0$ is a sufficient condition for the estimator (3.2) to asymptotically guarantee the confidence level c^*.

The coefficient $w_1 = v_1 - u_1$ is computed as follows. The term v_1 is obtained from (5.35) as
\[
v_1 = \frac{1}{(r-1)!} \sum_{j=0}^{\infty} \frac{(-1)^{j+1}(\Omega^* \mu_2)^{r+j-1}[(d + 1) + \cdots + (d + r + j)]}{(r+j)j!}.
\tag{5.37}
\]
Substituting $(d + 1) + \cdots + (d + r + j) = (r+j)(r+j+1+2d)/2$ into (5.37) and taking into account that $\exp(t) = \sum_{j=0}^{\infty} t^j/j!$,
\[
v_1 = \frac{r + 1 + 2d}{2(r-1)!} \sum_{j=0}^{\infty} \frac{(-1)^{j+1}(\Omega^* \mu_2)^{r+j-1}}{j!} + \frac{1}{2(r-1)!} \sum_{j=0}^{\infty} \frac{(-1)^j(\Omega^* \mu_2)^{r+j}}{j!}
\tag{5.38}
\]
Similarly,
\[
u_1 = \frac{(\Omega^* / \mu_1)^{r-1} \exp(-\Omega^* / \mu_1)}{2(r-1)!} (\Omega^* / \mu_1 - r - 1 - 2d).
\tag{5.39}
\]
From (5.38) and (5.39), and making use of (2.5),
\[
w_1 = \frac{(\Omega^* / \mu_1)^{r-1}}{2(r-1)!} \left[M^{r-1} \exp(-\Omega^* \mu_2)(\Omega^* \mu_2 - r - 1 - 2d)
- \exp(-\Omega^* / \mu_1)(\Omega^* / \mu_1 - r - 1 - 2d) \right]
= \frac{1}{2(r-1)!} \frac{r \log M}{M - 1} M^{r-1} \left(M - 1 \right) \left[-(r + 1 + 2d)/M + r - 1 + 2d \right],
\]
which is positive if (3.3) holds. Thus (3.2) asymptotically guarantees the confidence level c^* for d as in (3.3).

Lemma 4. For $r, n_0 \in \mathbb{N}$ with $r \geq 3$ and $n_0 \leq (r - \sqrt{r})/p$,
\[
\int_r^{n_0+1} t^{r-1} \exp(-pt)dt \geq \sum_{n=r}^{n_0} (n-1)^{(r-1)(1-p)n-r}.
\tag{5.40}
\]
Proof. For \(n_0 \) as given, the sub-integral function in (5.40) is increasing within the integration range. Consequently, for (5.40) to hold it is sufficient that \(n^{-1} \exp(-np) \geq (n - 1)^{(r-1)}(1 - p)^{n-r} \) for \(n = r, \ldots, (r - \sqrt{r})/p \). This condition can be shown to be satisfied by a reasoning analogous to that in the proof of lemma 1 of Mendo & Hernando (2008), part (i).

\(\square \)

Proof of Proposition 3. The confidence for the estimator (3.4) can be expressed as \(c_2(p) - c_1(p) \), where \(n_1 \) and \(n_2 \) are given by (5.2) with \(d = 1 \). Let \(c_2' = 1 - c_2 \). A similar argument as in the proof of Proposition 2, based on the Poisson theorem, shows that \(\lim_{p \to 0} c_1(p) = c_1 \) and \(\lim_{p \to 0} c_2'(p) = c_2' \), with \(c_1 = \gamma(r, \Omega/\mu_1) \), \(c_2' = 1 - \gamma(r, \Omega \mu_2) \). Thus, to establish the desired result it suffices to prove that \(c_1(p) < c_1 \) and \(c_2'(p) < c_2' \) for \(\mu_1, \mu_2 \) as in (3.5).

Regarding \(c_2'(p) \), it is shown by Mendo & Hernando (2006, appendix C) that \(P[N \leq \lfloor a/p \rfloor] > \lim_{p \to 0} P[N \leq \lfloor a/p \rfloor] \) for \(a > r + \sqrt{r} \). Equivalently, for any \(\theta > 1 \)

\[P[N \geq \lfloor \theta(r + \sqrt{r})/p \rfloor + 1] < \lim_{p \to 0} P[N \geq \lfloor \theta(r + \sqrt{r})/p \rfloor + 1]. \]

This can be made to correspond to \(c_2'(p) < c_2' \) by taking \(\lfloor \Omega \mu_2 / p - 1 \rfloor = \lfloor \theta(r + \sqrt{r}) / p \rfloor \), i.e.

\[\mu_2 = \frac{(\theta(r + \sqrt{r}) + p)}{\Omega}. \] \hfill (5.41)

Thus the inequality \(c_2'(p) < c_2' \) holds if \(\mu_2 \) is given by (5.41) for some \(\theta > 1 \), or equivalently if \(\mu_2 > (r + \sqrt{r} + p)/\Omega \). Therefore it holds for \(p \) arbitrary if \(\mu_2 \) satisfies (3.5).

As for \(c_1(p) \), from (2.1) it can be expressed as

\[c_1(p) = \sum_{n=r}^{n_1-1} f(n) = \frac{p^r}{(r-1)!} \sum_{n=r}^{n_1-1} (n-1)^{(r-1)}(1-p)^{n-r}. \] \hfill (5.42)

According to (5.2) with \(d = 1, n_1 \leq \Omega/(p \mu_1) \), and thus

\[c_1 = \gamma(r, \Omega/\mu_1) = \frac{p^r}{(r-1)!} \int_0^{\Omega/(p \mu_1)} t^{r-1} \exp(-pt)dt > \frac{p^r}{(r-1)!} \int_r^{n_1} t^{r-1} \exp(-pt)dt. \] \hfill (5.43)

From (5.42), (5.43) and Lemma 4 it follows that the inequality \(c_1(p) < c_1 \) is satisfied if

\[n_1 - 1 \leq (r - \sqrt{r})/p. \] \hfill (5.44)

Since \(n_1 < \Omega/(p \mu_1) \), a sufficient condition for (5.44) to be fulfilled is \(\mu_1 \geq \Omega/(r - \sqrt{r} + p) \), which holds for \(p \) arbitrary if \(\mu_1 \) satisfies (3.5).

\(\square \)

Proof of Theorem 3. For \(\Omega = \Omega^* \), using (2.4) and (2.5), the conditions in (3.5) are written as (3.7) and (3.8). The left-hand sides of (3.7) and (3.8) are increasing functions of \(M \), whereas the right-hand sides decrease with \(r \). These inequalities can thus be written as \(M \geq h_1(r), M \geq h_2(r) \), where \(h_1, h_2 \) are decreasing functions. This proves that, for each \(r \), one of the inequalities implies the other. Furthermore, defining \(h(r) = \min\{h_1(r), h_2(r)\} \), the allowed
range for M is expressed as $M \geq h(r)$; and h is a decreasing function. It only remains to prove that the limiting condition is \eqref{eq:3.7} for $r = \{3, 4\}$, and \eqref{eq:3.8} for $r \geq 5$.

The left-hand sides of \eqref{eq:3.7} and \eqref{eq:3.8} are continuous functions of $M > 1$. Considering r as if it were a continuous variable, the right-hand sides also are continuous functions. Assume that \eqref{eq:3.7} implies \eqref{eq:3.8} for a given r_1, i.e. that the latter is satisfied when the former holds with equality. Likewise, assume that \eqref{eq:3.8} implies \eqref{eq:3.7} for a given r_2. Then, the continuity of the involved functions implies that there exists $t \in [\min\{r_1, r_2\}, \max\{r_1, r_2\}]$ such that both \eqref{eq:3.7} and \eqref{eq:3.8} hold with equality for $r = t$, i.e.

$$
\frac{M - 1}{\log M} = \frac{t + \sqrt{t}}{t - 1}, \quad \frac{M \log M}{M - 1} = \frac{t + \sqrt{t} + 1}{t}.
$$

\tag{5.45}

Multiplying both equalities in \eqref{5.45} and substituting into the first yields

$$
\log \frac{t + \sqrt{t} + 1}{t - \sqrt{t}} - \frac{2\sqrt{t} + 1}{t} = 0.
$$

\tag{5.46}

It is easily shown that \eqref{5.46} has only one solution, which lies in the interval $(4, 5)$. Thus the limiting condition is the same for r_1 and r_2 if $r_1, r_2 \in \{3, 4\}$ or if $r_1, r_2 \in \{5, 6, 7, \ldots\}$. Taking any value from each set, the limiting condition is seen to be \eqref{eq:3.7} in the former case, and \eqref{eq:3.8} in the latter.

\section*{References}

