McIntyre and McKitrick – Discussion of McShane and Wyner

As McShane and Wyner (2010) observe, there are formidable statistical problems in “reconstructing” past temperatures from networks of so-called “proxy” data with weak “signal” and complicated autocorrelated structures. Wegman et al (2006) regretted the combination of the lack of involvement of the statistical community with the statistical inexperience of paleoclimatologists struggling with these complicated problems. Oxburgh et al (2010), one of the Climategate inquiries, made similar observations. Thus, the interest of McShane and Wyner in these problems is very much to be welcomed and hopefully presages wider participation by the statistical community in the very interesting problems presented by paleoclimate reconstructions.

Pseudoproxies and Benchmarking

In sections 2 and 3, MW make a variety of interesting and useful comparisons between holdout RMSE from a proxy reconstruction using the lasso method, as against a variety of null models. MW do not translate their results into “local” paleoclimate terminology, which may cause many paleoclimate scientists to miss or misinterpret some provocative MW results.

In paleoclimate terms, their results are best interpreted as an extended commentary on what paleoclimate scientists call the “RE” statistic, the most prevalent statistical test in present-day paleoclimate. In MW terminology, the RE statistic is calculated from the ratio of the holdout RMSE from the proxy reconstruction compared to the holdout RMSE from the in-sample mean as shown below.

(1) \[RE_{\text{proxy}} = 1 – \frac{\text{Holdout}_\text{RMSE}_{\text{proxy}}}{\text{Holdout}_\text{RMSE}_{\text{intercept}}} \]

The significance of the RE statistic for a proxy reconstruction is assessed by comparison with the 95th (99th) percentile of RE statistics generated from pseudoproxy simulations.

(2) \[RE_{\text{pseudoproxy}} = 1 – \frac{\text{Holdout}_\text{RMSE}_{\text{pseudoproxy}}}{\text{Holdout}_\text{RMSE}_{\text{intercept}}} \]

The boxplots shown in MW Figure 9 and 10 can be readily seen to be addressing the same issue from a different perspective, with MW extending and sharpening previous discussion. Their low-order AR1 pseudoproxy networks implement typical climate science methodology (e.g. Mann et al 1998; Wahl and Ammann 2007), in which proxies are assumed to be well modeled by low order AR1 processes, an assumption seemingly contradicted by the observed distribution of AR1 coefficients, as shown, for example, in MW Figure 4 for the network of Mann et al 2008. Their “empirical AR1” network implements (and simplifies) the opposed approach of McIntyre and McKitrick 2005a,c, in which pseudoproxies are constructed to have autocorrelation properties observed in the actual proxies. Their holdout strategy generalizes standard climate science practice, by considering all possible holdouts of 30 years, instead of restricting their holdout to the first and last half of the reconstruction.
Several of their results are new and surprising. For example, they observe (see Figure 10) that the performance of proxy reconstructions with holdout periods at either endpoint (the usual paleoclimate practice) is noticeably superior to results from interior holdouts. They also observe (see Figure 9) that white noise pseudoproxies outperform low order AR1 pseudoproxies (the usual paleoclimate practice). Both results warrant further investigation.

That empirical AR1 pseudoproxies perform at least as well as proxy reconstructions is implicit in the RE benchmarks of McIntyre and McKitrick (2005a,c) for the MBH98 network. MW demonstrate that empirical AR1 pseudoproxies outperform actual proxies for the Mann et al 2008 network using Lasso methodology; the degree of outperformance is a surprise.

We entirely agree with MW’s conclusion that “Lasso generated reconstructions using the proxies ... do not achieve statistical significance against sophisticated null models.

Lasso

Some climate scientists will undoubtedly criticize MW for their use of the lasso method as a template for comparing proxy and pseudoproxy networks (as opposed to carrying out the same analysis using the presently popular paleoclimate methods of CPS and RegEM).

However, for their stated purpose of understanding the statistical properties of the proxy network, it seems to us that there is much to recommend the use of a statistical method whose properties are relatively well understood and which has a relatively efficient algorithm (as opposed to RegEM), as this enables a focus on the properties of the proxy network relative to pseudoproxies rather than intricacies of a non-standard methodology. Given our own similar results using an MBH setup (McIntyre and McKitrick 2005c), we would be surprised if their key comparisons of proxy and pseudoproxy results were sensitive to such methodological variations. Nonetheless, the point is worth checking.

Some climate scientists will probably contest the use of “empirical” AR1 coefficients for the construction of pseudoproxy networks – a point anticipated by MW, as this issue was raised previously by Ammann and Wahl (2007) against our use of networks constructed using empirical autocorrelation coefficients. MW disagree sharply with the objection previously raised by Ammann and Wahl (2007): that using autocorrelation coefficients estimated from actual proxies results in “train[ing] the stochastic engine with significant (if not dominant) low frequency climate signal rather than purely non-climatic noise and its persistence”. In our opinion, if the proxy networks contained a “dominant” or even “significant” “low frequency climate signal” (as Ammann and Wahl assert but do not demonstrate), then the graphs of the proxy series would have a consistent low frequency appearance (as opposed to the visually inconsistent appearance shown in MW Figure 6 and elsewhere. The very inconsistency of the series within proxy networks such as Mann et al 2008 argues forcefully against the interpretation of high empirical autocorrelation coefficients as being imported from a climate “signal”, as opposed to being an inherent feature of the proxies themselves. MW makes the following
additional and reasonable observation in dismissing Ammann and Wahl’s objection to empirical AR1 coefficients:

it is hard to argue that a procedure is truly skillful if it cannot consistently outperform noise– no matter how artfully structured.

Reconstructions
In their sections 4.2 and 5, MW make temperature reconstructions using principal components regression on the network of Mann et al 2008 proxies extending back to AD1000, this time retaining the first one, five, ten and twenty principal components of the proxies (after removing three Tiljander proxies from the same site to avoid singularity.) They observe that remarkably different appearing reconstructions can have very similar cross-validation statistics, a phenomenon that very much complicates the uncertainty analysis. A similar phenomenon can be seen in the context of a very different network, also involving the use of principal components, in Briffa et al 2001 Figure 4, which presents eight very different backcasts with virtually indistinguishable cross-validation statistics. The problem was also raised in McIntyre (2006), observing that a reconstruction could not be “99.8% significant” if there was an alternative reconstruction with virtually identical cross-validation properties, but very different backcast medieval values. MW correctly place the issue squarely back on the table.

Within the family of backcasts, MW observe that the reconstruction with one PC “corresponds quite well to backcasts such as those in Mann et al 1999”. This reconstruction not only “corresponds quite well” to the MBH99 reconstruction; for practical purposes, it is MBH99 reconstruction, so the resemblance is unsurprising. In both reconstructions, the characteristic hockey stick shape derives from Graybill strip bark (bristlecone) chronologies.

The dependence of the MBH99 on bristlecones has been well publicized (McIntyre and McKitrick 2005a, b; Wahl and Ammann 2007). The 93-series AD1000 network of Mann et al 2008 contains the same bristlecone chronologies: it contains no fewer than 19 Graybill strip bark chronologies, despite recommendations of the NAS panel that strip bark bristlecones be “avoided” and an undertaking by Mann et al 2008 to comply with their recommendations. Because the Graybill bristlecones have a strong common pattern, the Graybill bristlecones dominate the weights of the PC1 even without the use of a skew PC methodology (see also McIntyre and McKitrick 2005b). The tendency of the early portion of the MW reconstructions to increase with more PCs reflects a phenomenon involving bristlecone weighting that has attracted considerable comment and controversy in many venues. As more PCs are added to the network, the weight of the bristlecones is diminished, resulting in a less hockey-stick shaped reconstruction – as also observed in McIntyre and McKitrick (2003, 2005a,b).

MW observe that the standard methods of estimating uncertainty in paleoclimate literature do not remotely address the underlying complications of the multivariate methodology. Their own estimates of uncertainty are much wider than the uncertainty bands in Mann et al 2008. Despite
these very large increases, it is not clear to us that even these wider bands fully allow for the problem of proxy inconsistency. In our own comment on Mann et al 2008 (McIntyre and McKitrick, 2009), we observed that paleoclimate reconstructions are an application of multivariate calibration and that the inconsistency test of Brown and Sundberg (1989) applied to the AD1000 network of Mann et al 2008 yielded infinite confidence intervals prior to AD1800. The difference between these results and the MW estimates warrants close examination.

It also needs to be clearly recognized, that, even though MW results are rather discouraging for the reconstructions using the Mann et al 2008 network, they are, in a sense, a best case as they assume that the quality of the data set is satisfactory (thereby not taking a position on prominent controversies over the proxies within this data set. For example, the Korttajarvi sediment series have been contaminated in their modern portion by bridge and other construction sediments, a point made in the original publication (Tiljander et al 2003). The explosive increase in these series is due to non-climatic causes, contrary to the best case assumption stipulated by MW. The correlation of this non-climatic increase with temperature is a classic example of spurious correlation, one which, in this case, leads ironically to a reversal of the data set from the orientation set out in the underlying publication. In addition, nearly 10% of the Mann et al 2008 network (105 series) are series derived from the Briffa et al, 2001 network, notorious for its 20th century decline. However, actual data after 1960 has been deleted and replaced by data infilled by a RegEM process (Rutherford et al 2005.) Use of the actual post-1960 data will further erode performance of the proxy reconstruction.

References:
Oxburgh, Lord et al., 2010. Report of the International Panel set up by the University of East Anglia to examine the research of the Climatic Research Unit.