On Consistency and Sparsity for High-Dimensional Functional Time Series with Application to Autoregressions

SHAOJUN GUO1 and XINGHAO QIAO2

1Institute of Statistics and Big Data, Renmin University of China, Beijing, 100872, P.R. China. E-mail: sjguo@ruc.edu.cn

2Department of Statistics, London School of Economics, London, WC2A 2AE, U.K. E-mail: x.qiao@lse.ac.uk

Modelling a large collection of functional time series arises in a broad spectral of real applications. Under such a scenario, not only the number of functional variables can be diverging with, or even larger than the number of temporally dependent functional observations, but each function itself is an infinite-dimensional object, posing a challenging task. In this paper, we propose a three-step procedure to estimate high-dimensional functional time series models. To provide theoretical guarantees for the three-step procedure, we focus on multivariate stationary processes and propose a novel functional stability measure based on their spectral properties. Such stability measure facilitates the development of some useful concentration bounds on sample (auto)covariance functions, which serve as a fundamental tool for further convergence analysis in high-dimensional settings. As functional principal component analysis (FPCA) is one of the key dimension reduction techniques in the first step, we also investigate the non-asymptotic properties of the relevant estimated terms under a FPCA framework. To illustrate with an important application, we consider vector functional autoregressive models and develop a regularization approach to estimate autoregressive coefficient functions under the sparsity constraint. Using our derived non-asymptotic results, we investigate convergence properties of the regularized estimate under high-dimensional scaling. Finally, the finite-sample performance of the proposed method is examined through both simulations and a public financial dataset.

Keywords: functional principal component analysis, functional stability measure, high-dimensional functional time series, non-asymptotics, sparsity, vector functional autoregression.

1. Introduction

In functional data analysis, it is commonly assumed that each measured function, treated as the unit of observation, is independently sampled from some realization of an underlying stochastic process. Functional time series, on the other hand, refers to a collection of curves observed consecutively over time, where the temporal dependence across observations exhibits. The literature has mainly focused on univariate or bivariate functional time series, see, e.g., Hörmann and Kokoszka (2010); Cho et al. (2013); Panaretos

1
and Tavakoli (2013); Hörmann, Kidziński and Hallin (2015); Jirak (2016); Li, Robinson and Shang (2020) and the reference therein. Recent advances in technology have made multivariate or even high-dimensional functional time series datasets become increasingly common in many applications. Examples include cumulative intraday return trajectories (Horváth, Kokoszka and Rice, 2014) and functional volatility processes (Müller, Sen and Stadtmüller, 2011) for a large number of stocks, daily concentration curves of particulate matter and gaseous pollutants at different locations (Li et al., 2017), and intraday energy consumption curves for thousands of London households (available at https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households). These applications require understanding relationships among a relatively large collection of functional variables based on temporally dependent functional observations.

Throughout the paper, suppose we observe \(p \)-dimensional vector of functional time series, \(\mathbf{X}_t = (X_{t1}(\cdot), \ldots, X_{tp}(\cdot))' \) for \(t = 1, \ldots, n \), defined on a compact interval \(U \). Addressing multivariate or even high-dimensional functional time series problems poses challenges and is largely untouched in the literature. Under such a scenario, not only \(p \) is large relative to \(n \), but each \(X_{tj}(\cdot) \) is an infinite-dimensional object with temporal dependence across observations. A standard procedure towards the estimation of models involving high-dimensional functional data consists of three steps. In the first step, due to the infinite-dimensional nature of functional data, some form of dimension reduction, e.g. data-driven basis expansion via functional principal component analysis (FPCA) or its dynamic version (Hörmann, Kidziński and Hallin, 2015) and pre-fixed basis expansion (Fan, James and Radchenko, 2015), is needed to approximate each \(X_{tj}(\cdot) \) by the \(q_j \)-dimensional truncation, which transforms the problem of modelling a \(p \)-dimensional vector of functional time series into that of modelling \((\sum_{j=1}^p q_j) \)-dimensional vector time series. The second step involves the estimation under a high-dimensional and dependent setting, where some lower-dimensional structure is commonly imposed on the model parameter space. One large class assumes sparse function-valued parameters involved in high-dimensional functional time series models. Under functional sparsity constraints, the first step results in the estimation of block sparse vector- or matrix-valued parameters in the second step, where different regularized estimation procedures can be developed in a blockwise fashion, see, e.g., under an independent setting, Fan, James and Radchenko (2015); Kong et al. (2016) and Qiao, Guo and James (2019). Finally, for interpretation and prediction, the third step recovers functional sparse estimates from those block sparse estimates obtained in the second step.

The essential challenge to support such three-step estimation procedure is to provide theoretical guarantees in a range of high-dimensional settings, e.g., \(\log p/n \to 0 \). Within such high-dimensional statistics framework, one main goal is to obtain some non-asymptotic results, i.e. error bounds on a given performance metric that hold with high probability for a finite sample size \(n \) and provide explicit control on the dimension \(p \) as well as other structural parameters. Compared with non-functional data, the intrinsic infinite-dimensionality of each process \(X_{tj}(\cdot) \) leads to a significant rise in theoretical complexity of the problem, since one needs to develop some operator- and FPCA-based non-asymptotic results for dependent processes within an abstract Hilbert space and to
propose a dependence measure to capture the effect of temporal dependence on non-asymptotic properties. The existing theoretical work mainly for the first step has focused on studying its asymptotic properties by treating \(p \) as fixed under a moment-based dependence structure (Hörmann and Kokoszka, 2010) or its non-asymptotic properties under either an independent setting (Koltchinskii and Lounici, 2017; Qiao et al., 2020; Araya Valdivia, 2020) or a special autoregressive structure (Bosq, 2000). These results, however, are not sufficient to evaluate the performance of the three-step procedure in a high-dimensional regime with a general dependence structure. Such a challenging task motivates us to develop some essential non-asymptotic results under the setting we consider, which fills the gap between practical implementation and theoretical justification and forms the core of our paper.

A key innovation in our paper is to propose a functional stability measure for a large class of stationary Gaussian processes, \(\{X_t(\cdot)\} \), based on their spectral density functions. Such stability measure provides new insights into the effect of temporal dependence on theoretical properties of \(\Sigma_h \)'s, the estimators for autocovariance functions

\[
\Sigma_h(u, v) = \text{Cov}(X_t(u), X_{t+h}(v))
\]

with \(h = 0, \pm 1, \ldots \) and \((u, v) \in U^2 \), and, in particular, facilitates the development of some novel concentration bounds on \(\hat{\Sigma}_h \) serving as a fundamental tool for further convergence analysis under high-dimensional scaling. Based on these concentration bounds, we establish non-asymptotic error bounds on relevant estimated terms under a FPCA framework so as to provide theoretical guarantees for our proposed three-step procedure. Such concentration results can also lead to convergence analysis of other possible high-dimensional functional time series models, e.g. those mentioned in Section 4. It is worth noting that the functional stability measure is fundamentally different from the direct extension of the stability measure (Basu and Michailidis, 2015) to the functional domain. This is because, for truly infinite-dimensional functional objects, in contrast to the functional analog of Basu et al.’s stability measure, which just controls the maximum eigenvalue for spectral density functions of \(\{X_t(\cdot)\} \), the functional stability measure utilizes the functional Rayleigh quotients of spectral density functions relative to \(\Sigma_0 \) and hence can more precisely capture the effect of small decaying eigenvalues. Such functional stability measure also leads to non-asymptotic results of normalized versions of relevant estimated terms, making the characterization of relevant tail behaviours more accurate for small eigenvalues. To the best of our knowledge, we are the first to propose such a dependence measure for high-dimensional functional time series and rely on it to develop some essential non-asymptotic results.

To illustrate the proposed three-step approach and the usefulness of the derived non-asymptotic results with an important application, we consider vector functional autoregressive (VFAR) models, which characterize the temporal and cross-sectional inter-relationships in \(\{X_t(\cdot)\} \). One advantage of a VFAR model is that it accommodates dynamic linear interdependencies in \(\{X_t(\cdot)\} \) into a static framework within a Hilbert space. Moreover, a sparse VFAR model facilitates the extraction of Granger causal networks (Basu, Shojaie and Michailidis, 2015) under the functional domain. The VFAR estimation is intrinsically a very high-dimensional problem, since, in the second step of our procedure, we need to fit a vector autoregressive (VAR) model, whose dimensionality,
\((\sum_{j=1}^{p} q_j)^2\), grows quadratically with \(\sum_{j=1}^{p} q_j\). For example, estimating a VFAR model of order 1 with \(p = 20\) and \(q_j = 5\) requires estimating \(100^2 = 10,000\) parameters. Under high-dimensional scaling and sparsity assumptions on the functional transition matrices, the second step requires to estimate a block sparse VAR model. We then propose the regularized estimates of block transition matrices, on which the block sparsity constraint is enforced via a standardized group lasso penalty (Simon and Tibshirani, 2012). Using the derived non-asymptotic results, we show that the proposed three-step approach can produce consistent estimates for sparse VFAR models in high dimensions.

Related literature. Our work lies in the intersection of high-dimensional statistics, functional data analysis and time series analysis, each of which corresponds to a vast literature, hence we will only review the most closely related intersectional work to ours. (i) For high-dimensional independent functional data, regularization methods have recently been proposed to estimate different types of functional sparse models, e.g., functional additive regression (Fan, James and Radchenko, 2015; Kong et al., 2016; Xue and Yao, 2020), static functional graphical models (Li and Solea, 2018; Qiao, Guo and James, 2019) and its dynamic version (Qiao et al., 2020). (ii) For high-dimensional time series, some essential concentration bounds were established for Gaussian processes (Basu and Michailidis, 2015), linear processes with more general noise distributions (Sun et al., 2018) and heavy tailed non-Gaussian processes (Wong, Li and Tewari, 2020). (iii) For examples of recent developments in high-dimensional VAR models, Kock and Callot (2015); Basu and Michailidis (2015) and Wong, Li and Tewari (2020) studied the theoretical properties of \(\ell_1\)-type regularized estimates. Basu, Shojaie and Michailidis (2015) and Billio, Casarini and Rossini (2019) considered extracting Granger causal networks from sparse VAR models. See also Han, Lu and Liu (2015), Guo, Wang and Yao (2016) and Ghosh, Khare and Michailidis (2019). (iv) For examples of research on functional autoregressive models, see Bosq (2000); Kokoszka and Reimherr (2013); Aue, Norinho and Hörmann (2015) Kowal, Matteson and Ruppert (2019) and the reference therein.

Outline of the paper. In Section 2, we first introduce a functional stability measure and rely on it to establish concentration bounds on the quadratic/bilinear forms of \(\hat{\Sigma}_h\) leading to elementwise concentration results for \(\hat{\Sigma}_h\). We then establish theoretical guarantees for the proposed three-step approach by deriving some useful non-asymptotic error bounds under a FPCA framework. In Section 3, we develop a three-step procedure to estimate the sparse VFAR model, connect with causal network modelling, present the convergence analysis of the regularized estimate and finally examine the finite-sample performance through both simulation studies and an analysis of a public financial dataset. In Section 4, we conclude our paper by discussing several potential extensions. All technical proofs are relegated to the Supplementary Material.

Notation. We summarize here some notation to be used throughout the paper. Let \(\mathbb{Z}\) denotes the set of integers. For two positive sequences \(\{a_n\}\) and \(\{b_n\}\), we write \(a_n \preceq b_n\) or \(b_n \succeq a_n\) if there exists an absolute constant \(c\), such that \(a_n \leq cb_n\) for all \(n\). We write \(a_n \asymp b_n\) if and only if \(b_n \preceq a_n\) and \(a_n \preceq b_n\). We use \(x \vee y = \max(x, y)\). For matrices \(A, B \in \mathbb{R}^{p_1 \times p_2}\), we let \(\langle A, B \rangle = \text{trace}(A^T B)\) and denote the Frobenius norm of \(B\) by \(||B||_F = \left(\sum_{j,k} B_{jk}^2\right)^{1/2}\). Let \(L_2(\mathcal{U})\) denote a Hilbert space of square integrable functions.
defined on the compact set \mathcal{U} equipped with the inner product $\langle f, g \rangle = \int_{\mathcal{U}} f(u)g(u)du$ for $f, g \in L^2(\mathcal{U})$ and the induced norm $\| \cdot \| = \langle \cdot , \cdot \rangle^{1/2}$. We denote its p-fold Cartesian product by $\mathbb{H} = L^2(\mathcal{U}) \times \cdots \times L^2(\mathcal{U})$ and the tensor product by $\mathbb{S} = L^2(\mathcal{U}) \otimes L^2(\mathcal{U})$. For $f = (f_1, \ldots, f_p)^T$ and $g = (g_1, \ldots, g_p)^T$ in \mathbb{H}, we denote the inner product by $\langle f, g \rangle_{\mathbb{H}} = \sum_{j=1}^{p} \langle f_j, g_j \rangle$ and the induced norm by $\| \cdot \|_{\mathbb{H}} = \langle \cdot , \cdot \rangle^{1/2}_{\mathbb{H}}$. For any $K \in \mathbb{S}$, it can be viewed as the kernel function of a linear operator acting on $L^2(\mathcal{U})$, i.e. for each $f \in L^2(\mathcal{U})$, K maps $f(u)$ to $K(f)(u) = \int_{\mathcal{U}} K(u, v)f(v)dv$. For notational economy, we will use K to denote both the kernel function and the operator. Moreover, we denote the operator and Hilbert-Schmidt norms by $\| K \|_{\mathcal{C}} = \sup_{\| f \| \leq 1} \| K(f) \|$ and $\| K \|_{\mathcal{S}} = \left(\int \int \| K(u, v)^2 \| dudv \right)^{1/2}$, respectively. For $A = (A_{jk})_{1 \leq j, k \leq p}$ with its (j,k)-th component $A_{jk} \in \mathbb{S}$, we define the functional versions of Frobenius, elementwise ℓ_∞ and matrix ℓ_∞ norms by $\| A \|_F = \left(\sum_{j,k} \| A_{jk} \|_{\mathcal{S}}^2 \right)^{1/2}$, $\| A \|_{\text{max}} = \max_{j,k} \| A_{jk} \|_{\mathcal{S}}$ and $\| A \|_\infty = \max_{j,k} \| A_{jk} \|_{\mathcal{S}}$, respectively.

2. Main results

Suppose that $\{X_t(\cdot)\}_{t \in \mathbb{Z}}$, defined on \mathcal{U}, is a sequence of p-dimensional vector of centered and covariance-stationary Gaussian processes with mean zero and $\pi \times \pi$ autocovariance functions, $\Sigma_h = (\Sigma_{jk}^{(h)})_{1 \leq j, k \leq p}$ with its (j,k)-th component $\Sigma_{jk}^{(h)} \in \mathbb{S}$ for $h \in \mathbb{Z}$. In particular when $h = 0$, one typically refers to $\Sigma_{jk}^{(0)}$ as marginal-covariance functions for $j = k$, and cross-covariance functions for $j \neq k$. To simplify notation, we will also use Σ_h to denote the lag-h autocovariance operator induced from the kernel function Σ_h, i.e., for any given $\Phi \in \mathbb{H}$,

$$\Sigma_h(\Phi)(u) := \int_{\mathcal{U}} \Sigma_h(u, v)\Phi(v)dv = \left(\langle \sigma_{1}^{(h)}(u, \cdot), \Phi(\cdot) \rangle_{\mathbb{H}}, \ldots, \langle \sigma_{p}^{(h)}(u, \cdot), \Phi(\cdot) \rangle_{\mathbb{H}} \right)^T \in \mathbb{H},$$

where $\sigma_{j}^{(h)}(u, \cdot) = (\Sigma_{j1}^{(h)}(u, \cdot), \ldots, \Sigma_{jp}^{(h)}(u, \cdot))^T$ for $j = 1, \ldots, p$. In the special case of $h = 0$, the covariance function Σ_0 is symmetric and non-negative definite, i.e. $\Sigma_0(u, v) = \Sigma_0(v, u)^T$ for any $(u, v) \in \mathcal{U}^2$ and $\langle \Phi, \Sigma_0(\Phi) \rangle_{\mathbb{H}} \geq 0$ for any $\Phi \in \mathbb{H}$.

2.1. Functional stability measure

To introduce the functional stability measure, we first consider the spectral density operator of $\{X_t(\cdot)\}_{t \in \mathbb{Z}}$, defined from the Fourier transform of autocovariance operators $\{\Sigma_h\}_{h \in \mathbb{Z}}$, which encodes the second-order dynamical properties of $\{X_t(\cdot)\}_{t \in \mathbb{Z}}$.

Definition 1. We define the spectral density operator of $\{X_t(\cdot)\}_{t \in \mathbb{Z}}$ at frequency θ by

$$f_{X, \theta} = \frac{1}{2\pi} \sum_{h \in \mathbb{Z}} \Sigma_h \exp(-ih\theta), \quad \theta \in [-\pi, \pi].$$

(1)
The spectral density operator (or function) generalizes the notion of the spectral density matrix (Basu and Michailidis, 2015) to the functional domain, and it can also be viewed as a generalization of the spectral density operator (or function) (Panaretos and Tavakoli, 2013) to the multivariate setting. Furthermore, if \(\sum_{k=0}^{\infty} |\Sigma_h| < \infty \), then \(f_{X,\theta} \) is uniformly bounded and continuous in \(\theta \) with respect to \(\| \cdot \|_{\mathcal{L}} \), where we denote by \(\| \Sigma_h \|_{\mathcal{L}} = \sup_{|\Phi| \leq 1, \Phi \in \mathcal{H}} \| \Sigma_h(\Phi) \|_{\mathcal{H}} \) the operator norm of \(\Sigma_h \), and the following inversion formula holds:

\[
\Sigma_h = \int_{-\pi}^{\pi} f_{X,\theta} \exp(ih\theta) d\theta, \quad \text{for all } h \in \mathbb{Z}.
\]

The inversion relationships in (1) and (2) indicate that spectral density operators and autocovariance operators comprise a Fourier transform pair. Hence, to study the second-order dynamics of \(\{\Sigma_t(\cdot)\}_{t \in \mathbb{Z}} \), we can impose conditions on \(\Sigma_0 \) and \(\{f_{X,\theta}, \theta \in [-\pi, \pi]\} \) in the following Conditions 1 and 2, respectively, which together imply that \(\{f_{X,\theta}, \theta \in [-\pi, \pi]\} \) are trace-class operators.

Condition 1. (i) The marginal-covariance functions, \(\Sigma_{ij}^{(0)} \)'s, are continuous on \(\mathcal{U}^2 \) and uniformly bounded over \(j \in \{1, \ldots, p\} \); (ii) \(\lambda_0 = \max_{1 \leq j \leq p} \int_{\mathcal{U}} \Sigma_{jj}^{(0)}(u, u) du = O(1) \).

Condition 2. (i) The spectral density operators \(f_{X,\theta}, \theta \in [-\pi, \pi] \) exist; (ii) The functional stability measure of \(\{X_t(\cdot)\}_{t \in \mathbb{Z}} \) defined as follows, is bounded, i.e.

\[
\mathcal{M}(f_X) = 2\pi \cdot \underset{\Theta \in [-\pi, \pi]}{\text{esssup}} \frac{\langle \Phi, f_{X,\theta}(\Phi) \rangle_{_{\mathcal{H}}}}{\langle \Phi, \Sigma_0(\Phi) \rangle_{_{\mathcal{H}}}} < \infty,
\]

where \(\mathcal{H}_0 = \{ \Phi \in \mathcal{H} : \langle \Phi, \Sigma_0(\Phi) \rangle_{_{\mathcal{H}}} \in (0, \infty) \} \).

In general, we can relax Condition 1(ii) by allowing \(\lambda_0 \) to grow at some slow rate as \(p \) increases. Then our established non-asymptotic bounds, e.g., those in (17) and (18), will depend on \(\lambda_0 \). We next provide several comments for Condition 2. First, the functional stability measure is proportional to the essential supremum of the functional Rayleigh quotient of \(f_{X,\theta} \) relative to \(\Sigma_0 \) over \(\theta \in [-\pi, \pi] \). In particular, under the non-functional setting with \(\Phi \in \mathbb{R}^p \) and \(f_{X,\theta}, \Sigma_0 \in \mathbb{R}^{p \times p} \), (3) reduces to

\[
2\pi \cdot \underset{\Theta \in [-\pi, \pi]}{\text{esssup}} \frac{\Phi^T f_{X,\theta} \Phi}{\Phi^T \Sigma_0 \Phi} < \infty,
\]

which is equivalent to the upper bound condition for the stability measure, \(\widetilde{\mathcal{M}}(f_X) \), introduced by Basu and Michailidis (2015), i.e.

\[
\widetilde{\mathcal{M}}(f_X) = \underset{\Theta \in [-\pi, \pi]}{\text{esssup}} \frac{\Phi^T f_{X,\theta} \Phi}{\Phi^T \Phi} < \infty.
\]

Second, if \(X_{t1}(\cdot), \ldots, X_{tp}(\cdot) \) are finite-dimensional objects, the upper bound conditions for \(\mathcal{M}(f_X) \) and the functional analog of \(\widetilde{\mathcal{M}}(f_X) \) are equivalent. However, for truly infinite-dimensional functional objects, \(\mathcal{M}(f_X) \) makes more sense, since it can more precisely
capture the effect of small eigenvalues of $f\mathbf{X}$’s relative to those of Σ_0. Moreover, Condition 2 is satisfied by a large class of infinite-dimensional functional data, see examples in Appendix A for details. Third, it is clear that, unlike $\hat{M}(f\mathbf{X})$, $M(f\mathbf{X})$ is a scale-free stability measure. In the special case of no temporal dependence, $M(f\mathbf{X}) = 1$. Fourth, since the autocovariance function characterizes a multivariate Gaussian process, it can be used to quantify the temporal and cross-sectional dependence for this class of models. In particular, the spectral density functions provide insights into the stability of the process. In our analysis of high-dimensional functional time series, we will use $M(f\mathbf{X})$ as a stability measure of the process of $\{X_t(\cdot)\}_{t \in \mathbb{Z}}$. Larger values of $M(f\mathbf{X})$ would correspond to a less stable process.

We next illustrate the superiority of the functional stability measure to possible competitors using VFA models as an example. See Section 3 for details on VFA models. In particular, we consider a VFA model of order 1, denoted by VFA(1), as follows

$$X_t(u) = \int_{\mathcal{U}} A(u, v)X_{t-1}(v)dv + \epsilon_t(u), \ u \in \mathcal{U}. \quad (4)$$

In the special case of a symmetric A, i.e. $A(u, v) = A(v, u)^T$, equation (4) has a stationary solution if and only if $\|A\|_{\mathcal{L}} < 1$. See Theorem 3.5 of Bosq (2000) for $p = 1$. However, this restrictive condition is violated by many stable VFA(1) models with non-symmetric A. Moreover, it does not generalize beyond VFA(1) models.

We consider an illustrative example with

$$A(u, v) = \begin{pmatrix} a\psi_1(u)\psi_1(v) & b\psi_1(u)\psi_2(v) \\ 0 & a\psi_2(u)\psi_2(v) \end{pmatrix}, \ X_t(u) = \begin{pmatrix} x_{t1}\psi_1(u) \\ x_{t2}\psi_2(u) \end{pmatrix}, \ \epsilon_t(u) = \begin{pmatrix} e_{t1}\psi_1(u) \\ e_{t2}\psi_2(u) \end{pmatrix}, \quad (5)$$

where $(e_{t1}, e_{t2})^T \overset{i.i.d.}{\sim} \mathcal{N}(0, I_2)$ and $\|\psi_j\| = 1$ for $j = 1, 2$. Section D of the Supplementary Material provides details to calculate $\rho(A)$ (spectral radius of A), $\|A\|_{\mathcal{L}}$ and $M(f\mathbf{X})$ for this example. In particular, $\rho(A) = |a| < 1$ corresponds to a stationary solution to equation (4). Figure 1 visualizes $\|A\|_{\mathcal{L}}$ and $M(f\mathbf{X})$ for various values of $a \in (0, 1)$. We observe a few apparent patterns. First, increasing a results in a value for larger $\|A\|_{\mathcal{L}}$. As $|b|$ grows large enough, the condition of $\|A\|_{\mathcal{L}} < 1$ will be violated, but equation (4) still have a stationary solution. Second, processes with stronger temporal dependence, i.e. with larger values of a or $|b|$, have larger values of $M(f\mathbf{X})$ and will be considered less stable. For a high-dimensional VFA(1) model, it is more sensible to use $M(f\mathbf{X})$ rather than $\|A\|_{\mathcal{L}}$ or $\|A^j\|_{\mathcal{L}}$ for some $j \geq 1$ (Theorem 5.1 of Bosq, 2000)) as a measure of stability of the process.

Definition 2. For all k-dimensional subprocesses of $\{X_t(\cdot)\}_{t \in \mathbb{Z}}$, i.e. $\{(X_{t_j}(\cdot)) : j \in J_{t \in \mathbb{Z}}\}$ for $J \subseteq \{1, \ldots, p\}$ and $|J| \leq k$, we define the corresponding functional stability measure by

$$M_k(f\mathbf{X}) = 2\pi \cdot \underset{\theta \in [-\pi, \pi]}{\text{ess sup}} \frac{\langle \Phi, f\mathbf{X}_\theta(\Phi) \rangle_{\mathcal{H}}}{\langle \Phi, A(\Phi) \rangle_{\mathcal{H}}}, \quad k = 1, \ldots, p. \quad (6)$$
It is obvious from definitions in Condition 2 and (6) that $M_1(f_X) \leq M_2(f_X) \leq \cdots \leq M_p(f_X) = M(f_X) < \infty \text{ and } M_1(f_X) = \max_{1 \leq j \leq p} M(f_{X_j})$, which is allowed to evolve with p satisfying $M_1(f_X) \leq M^{-(\alpha_1 + 1)}\{n/\log(pM)\}^{1/2}$, implied from Theorems 3–4 and Condition 9 below.

\section*{2.2. Concentration bounds on $\hat{\Sigma}_h$}

Based on n temporally dependent observations $X_1(\cdot), \ldots, X_n(\cdot)$, we construct an empirical estimator of Σ_h by

$$\hat{\Sigma}_h(u, v) = \frac{1}{n - h} \sum_{t=1}^{n-h} X_t(u)X_{t+h}(v)^T, \quad h = 0, 1, \ldots, (u, v) \in \mathcal{U}^2. \quad (7)$$

The following theorem provides concentration bounds on $\hat{\Sigma}_0$ under the quadratic and bilinear forms. These concentration bounds form the core of our theoretical results, which serve as a starting point to establish further non-asymptotic error bounds presented in Sections 2.2 and 2.3.

\textbf{Theorem 1.} \textit{Suppose that Conditions 1 and 2 hold. Then for any given vectors Φ_1, $\Phi_2 \in \mathbb{H}_0$ satisfying $\|\Phi_1\|_0 \vee \|\Phi_2\|_0 \leq k$ with some integer k ($1 \leq k \leq p$), there exists some universal constant $c > 0$ such that for any $\eta > 0$,

$$P \left\{ \left| \frac{\langle \Phi_1, (\hat{\Sigma}_0 - \Sigma_0)(\Phi_1) \rangle_{\mathbb{H}}}{\langle \Phi_1, \Sigma_0(\Phi_1) \rangle_{\mathbb{H}}} \right| > M_1(f_X)\eta \right\} \leq 2 \exp \left\{ - c n \min(\eta^2, \eta) \right\}, \quad (8)$$

Figure 1. The illustrative VFAR(1) model. Left: $||A||_{\mathcal{L}}$ as a function of a and b, plotted against b for different a. Right: $M(f_X)$ as a function of a and b, plotted against b for different a.}
and
\[
P \left\{ \left| \frac{\langle \Phi_1, (\Sigma_0 - \Sigma)(\Phi_2) \rangle}{\langle \Phi_1, \Sigma_0(\Phi_1) \rangle} + \langle \Phi_2, \Sigma_0(\Phi_2) \rangle}{\langle \Phi_1, \Sigma_0(\Phi_1) \rangle} \right| \geq M_k(f_X) \eta \right\} \leq 4 \exp \left\{ -cn \min(\eta^2, \eta) \right\}. \tag{9}
\]

The concentration inequalities in (8) and (9) suggest that the temporal dependence may affect the tail behaviors via $M_k(f_X)$ in two different ways, depending on which term in the tail bounds is dominant. With suitable choices of Φ_1 and Φ_2, we can derive non-asymptotic results for entries of Σ_h and relevant estimated terms under a FPCA framework. For example, under the Karhunen-Loève expansion of each $X_j(\cdot)$ (see details in Section 2.3), choosing $\Phi_1 = (0, \ldots, 0, \phi_{jl}, 0, \ldots, 0)^T$ leads to $\langle \Phi_1, \Sigma_0(\Phi_1) \rangle = \lambda_j$ and $\langle \Phi_1, \Sigma_0(\Phi_1) \rangle = n^{-1} \sum_{t=1}^n \langle X_{jt}, \phi_{jl} \rangle^2$, both of which are useful terms in our further analysis. Moreover, if we choose $\Phi_1 = (0, \ldots, 0, \lambda^{-1/2}_jl \phi_{jl}, 0, \ldots, 0)^T$ and $\Phi_2 = (0, \ldots, 0, \lambda^{-1/2}_km \phi_{km}, 0, \ldots, 0)^T$, an application of (9) and some calculations yield elementwise concentration bounds on Σ_0 as stated in the following theorem.

Theorem 2. Suppose that Conditions 1 and 2 hold. Then there exists some universal constant $\tilde{c} > 0$ such that for any $\eta > 0$ and each $j, k = 1, \ldots, p$,
\[
P \left\{ \left\| \hat{\Sigma}_{jk}^{(0)} - \Sigma_{jk}^{(0)} \right\|_S > 2M_1(f_X) \lambda_0 \eta \right\} \leq 4 \exp \left\{ -\tilde{c}n \min(\eta^2, \eta) \right\}, \tag{10}
\]
and
\[
P \left\{ \left\| \hat{\Sigma}_0 - \Sigma_0 \right\|_{\text{max}} > 2M_1(f_X) \lambda_0 \eta \right\} \leq 4p^2 \exp \left\{ -\tilde{c}n \min(\eta^2, \eta) \right\}. \tag{11}
\]
In particular, if $n \geq \rho^2 \log p$, where ρ is some constant with $\rho \geq \sqrt{2}e^{-1/2}$, then with probability greater than $1 - 4\rho^2 - \tilde{c}^2$, the estimate $\hat{\Sigma}_0$ satisfies
\[
\left\| \hat{\Sigma}_0 - \Sigma_0 \right\|_{\text{max}} \leq 2M_1(f_X) \lambda_0 \rho \sqrt{\frac{\log p}{n}}. \tag{12}
\]

Under an independent setting, the diagonalwise concentration properties of $\hat{\Sigma}_0$ were studied in Koltchinskii and Lounici (2017) and Qiao, Guo and James (2019). In particular, Koltchinskii and Lounici (2017) established the concentration bound under operator norm, i.e., with probability greater than $1 - e^{-\delta}$ for all $\delta \geq 1$,
\[
\left\| \hat{\Sigma}_{jj}^{(0)} - \Sigma_{jj}^{(0)} \right\|_L \leq \left\| \Sigma_{jj}^{(0)} \right\|_L \left\{ \sqrt{\frac{\hat{\rho}(\Sigma_{jj}^{(0)})}{n}} \vee \frac{\hat{\rho}(\Sigma_{jj}^{(0)})}{n} \vee \frac{\delta}{n} \right\}, \tag{13}
\]
where $\hat{\rho}(\Sigma_{jj}^{(0)}) = \int_{\mathcal{U}} \Sigma_{jj}^{(0)}(u, u) du / \left\| \Sigma_{jj}^{(0)} \right\|_L$. By contrast, when $X_1(\cdot), \ldots, X_n(\cdot)$ are temporally dependent, (10) implies that, with probability greater than $1 - 4e^{-\delta}$,
\[
\left\| \hat{\Sigma}_{jk}^{(0)} - \Sigma_{jk}^{(0)} \right\|_S \leq M_1(f_X) \max_j \left\| \Sigma_{jj}^{(0)}(u, u) du \right\| \left(\sqrt{\frac{\delta}{n}} \vee \frac{\delta}{n} \right). \tag{14}
\]
Note (13) and (14) are both essential concentration bounds of independent interests and share the the common term, $\int_{\mathbb{H}} \Sigma_j^{(0)}(u,u)du$, and the same rate via $(n^{-1}\delta)^{1/2} \vee n^{-1}\delta$ but with different multiplicative terms. However, concentration bounds in (14) under Hilbert–Schmidt norm with free choices of (j,k) play a crucial role in deriving the convergence results for FPCA via Theorems 3 and 4 below in a high-dimensional and dependent setting. In the bounds established in Theorem 2–4, the effects of temporal dependence are commonly captured by $\mathcal{M}_1(f_X)$ with larger values yielding a slower convergence rate.

We next present similar concentration bounds on $\hat{\Sigma}_h$'s for $h > 0$.

Proposition 1. Suppose that Conditions 1–2 hold and h is fixed. Then for any given vectors $\Phi_1, \Phi_2 \in \mathbb{H}$ satisfying $\|\Phi_1\|_0 \vee \|\Phi_2\|_0 \leq k$ with some integer k ($1 \leq k \leq p$), there exists some universal constant $c > 0$ such that for any $\eta > 0$,

$$P \left\{ \frac{\alpha_{\Phi_1}(\hat{\Sigma}_h - \Sigma_h)(\Phi_1)}{\langle \Phi_1, \Sigma_0(\Phi_1)\rangle_{\mathbb{H}}} \geq 2\mathcal{M}_k(f_X)\eta \right\} \leq 4 \exp \left\{ -cn \min(\eta^2, \eta) \right\},$$

(15)

and

$$P \left\{ \frac{\alpha_{\Phi_1}(\hat{\Sigma}_h - \Sigma_h)(\Phi_2)}{\langle \Phi_1, \Sigma_0(\Phi_1)\rangle_{\mathbb{H}}} + \langle \Phi_2, \Sigma_0(\Phi_2)\rangle_{\mathbb{H}} \geq 2\mathcal{M}_k(f_X)\eta \right\} \leq 8 \exp \left\{ -cn \min(\eta^2, \eta) \right\}. \quad (16)$$

With the same choices of Φ_1 and Φ_2 as those used in applying Theorem 1 to prove Theorem 2, the concentration bounds in (15) and (16) can lead to $\|\hat{\Sigma}_h - \Sigma_h\|_{\max} = O_P\{M_1(f_X)(\log p/n)^{1/2}\}$. Moreover, these concentration results are useful to address other important high-dimensional functional time series problems, e.g., high-dimensional functional factor models and non-asymptotic analysis of dynamic FPCA, as discussed in Section 4.

2.3. Rates in elementwise ℓ_∞-norm under a FPCA framework

For each $j = 1, \ldots, p$, we assume that $X_{ij}(\cdot)$ admits the Karhunen-Loève expansion, i.e., $X_{ij}(\cdot) = \sum_{l=1}^{\infty} \xi_{ijl}\phi_{ijl}(\cdot)$, which forms the foundation of FPCA. The coefficients $\xi_{ijl} = \langle X_{ij}, \phi_{ijl} \rangle$, $l \geq 1$, namely functional principal component (FPC) scores, correspond to a sequence of random variables with $E(\xi_{ij}) = 0$, $\text{Var}(\xi_{ij}) = \lambda_{ij}$ and $\text{Cov}(\xi_{ij}, \xi_{ij'}) = 0$ if $l \neq l'$. The eigenpairs $\{(\lambda_{ij}, \phi_{ijl})\}_{l=1}^{\infty}$ satisfy the eigen-decomposition $\langle \Sigma_j^{(0)}(u,\cdot), \phi_{ijl}(\cdot) \rangle = \lambda_{ij}\phi_{ijl}(u)$ with $\lambda_{ij} \geq \lambda_{ij+1} \geq \cdots$. We say that $X_{ij}(\cdot)$ is d_j-dimensional if $\lambda_{ijd_j} \neq 0$ and $\lambda_{ij(d_j+1)} = 0$ for some positive integer d_j. If $d_j = \infty$, all the eigenvalues are nonzero and $X_{ij}(\cdot)$ is a truly infinite-dimensional functional object.

To implement FPCA based on realizations $\{X_{ij}(\cdot), \ldots, X_{nj}(\cdot)\}$, we first compute the sample estimator of $\Sigma_j^{(0)}$ by $\hat{\Sigma}_j^{(0)}(u,v) = n^{-1}\sum_{i=1}^{n} X_{ij}(u)X_{ij}(v)$. Performing an eigenanalysis on $\hat{\Sigma}_j^{(0)}$, i.e., $\langle \hat{\Sigma}_j^{(0)}(u,\cdot), \hat{\phi}_{ijl}(\cdot) \rangle = \hat{\lambda}_{ij}\hat{\phi}_{ijl}(u)$ for $l \geq 1$, leads to estimated eigenpairs $(\hat{\lambda}_{ij}, \hat{\phi}_{ijl})$ and estimated FPC scores $\hat{\xi}_{ijl} = \langle X_{ij}, \hat{\phi}_{ijl} \rangle$.
2.3.1. Eigenvalues and eigenfunctions

We first impose the following regularity condition.

Condition 3. For each \(j = 1, \ldots, p \), all the nonzero eigenvalues of \(\Sigma_{ij}^{(0)} \) are different, i.e. \(\lambda_{ij} > \lambda_{ij+1} > \cdots > 0 \), and there exist some positive constants \(c_0 \) and \(\alpha > 1 \) such that \(\lambda_{ij} - \lambda_{ij+l} \geq c_0 l^{-\alpha-1} \) for \(l = 1, \ldots, \infty \).

Condition 3 is standard in functional data analysis literature, see, e.g., Hall and Horowitz (2007) and Kong et al. (2016). The parameter \(\alpha \) controls lower bounds for spacings between adjacent eigenvalues with larger values of \(\alpha \) allowing tighter eigen-gaps. This condition also implies that \(\lambda_{ij} \geq c_0 \alpha^{-1} l^{-\alpha} \) as \(\lambda_{ij} = \sum_{k=1}^{\infty} \{\lambda_{jk} - \lambda_{j(k+1)}\} \geq c_0 \sum_{k=1}^{\infty} k^{-\alpha-1} \).

In the following theorem, we present relative error bounds on \(\{\hat{\lambda}_{ij}\} \) and \(\{\hat{\phi}_{ij} - \phi_{ij}\} \) in elementwise \(\ell_2 \) norm, which plays a crucial rule for the further consistency analysis under high-dimensional scaling.

Theorem 3. Suppose that Conditions 1–3 hold. Let \(M \) be a positive integer possibly depending on \((n, p) \). If \(n \geq M^{4\alpha+2} M^2 f(x) \log(pM) \), then there exist some positive constants \(c_1 \) and \(c_2 \) independent of \((n, p, M) \) such that, with probability greater than \(1 - c_1 (pM)^{-c_2} \), the estimates \(\{\hat{\lambda}_{ij}\} \) and \(\{\hat{\phi}_{ij}(\cdot)\} \) satisfy

\[
\max_{1 \leq j < p, 1 \leq l < M} \left(\left| \frac{\hat{\lambda}_{ij} - \lambda_{ij}}{\lambda_{ij}} \right| + \left\| \frac{\hat{\phi}_{ij} - \phi_{ij}}{l^{\alpha+1}} \right\| \right) \lesssim M_1(fX) \sqrt{\log(pM)} n^{-1/2}.
\]

We provide three remarks for the relative errors of \(\{\hat{\lambda}_{ij}\} \) and \(\{\hat{\phi}_{ij} - \phi_{ij}\} \). First, compared with the non-asymptotic results for the absolute errors of \(\{\lambda_{ij}\} \) under an independent setting (Qiao, Guo and James, 2019), Theorem 3 does not require the upper bound condition for eigenvalues. Moreover, when \(M_1(fX) \) remains constant with respect to \(p \), provided that \(\lambda_{ij} \) converges to zero as \(l \) grows to infinity, (17) leads to a faster rate of convergence for small eigenvalues, i.e. \(|\hat{\lambda}_{ij} - \lambda_{ij}| = O_P(\lambda_{ij} n^{-1/2}) \). Such rate is also sharp in the sense of Jirak (2016). See also Araya Valdivia (2020), which, under an independent setting, established relative concentration bounds on \(\{\hat{\lambda}_{ij}\} \) similar to Lemma 1 in the Supplementary Material. Second, when each \(X_{ij}(\cdot) \) is finite-dimensional with \(\lambda_{ij} = 0 \) for \(l > d_j \), the estimators of zero-eigenvalues enjoy the faster rates due to the property of first order degeneracy (Bathia, Yao and Ziegelmann, 2010). Third, error bounds on \(\hat{\phi}_{ij} \) under \(\ell_2 \) norm are derived using a well-known pathway bound in Lemma 4.3 of Bosq (2000). For finite-dimensional functional objects, such error bounds lead to the optimal \(\sqrt{n} \) rate. Under an infinite-dimensional setting, our derived error bounds on \(\hat{\phi}_{ij}(\cdot) \)'s can possibly be improved from a probabilistic perspective as long as \(l \) diverges. Interestingly, Jirak (2016) established a sharper rate by \(\Lambda_{ij}^{-1/2} \left\| \hat{\phi}_{ij} - \phi_{ij} \right\| = O_P(n^{-1/2}) \) with \(\Lambda_{ij} = \sum_{k \neq l} \frac{\lambda_{ij} \lambda_{jk}}{\lambda_{ij} - \lambda_{jk}} \). In particular, when \(\lambda_{ij} \approx l^{-\alpha} \) with \(\alpha > 1 \), \(\Lambda_{ij} \leq l^2 \) as \(l \to \infty \).
We believe that, with the help of techniques used in Jirak (2016), the relevant bounds in Theorems 3 and 4 can be further sharpened. The extra complication, however, will make the theoretical justification of the VFAR estimate in Section 3 more challenging. We leave the development of optimal results as a topic for future research.

Finally, we give two remarks on the parameter M. First, M can be viewed as the truncated dimension of $X_{t,t}$, $\sum_{j=1}^{M} \xi_{ij}(\cdot)$. In general, M can depend on j, say M_j, then the right-side of (17) becomes $M_1(f_X)\{\log(\sum_{j=1}^{M_j} M_j)/n\}^{1/2}$. Second, the sample size lower bound in Theorem 3 implies that $M \leq \left[n/\{M'_1(f_X) \log p\}\right]^{1/(4\alpha+2)}$, which controls the rate that M can grow at most as a function of $n, p, M_1(f_X)$ and α, with larger values of n or smaller values of p or α allowing a larger M.

2.3.2. Covariance between FPC scores

For each $j, k = 1, \ldots, p$, $l, m = 1, 2, \ldots$, and $h = 0, 1, \ldots$, let $\sigma_{jklm}^{(h)} = E(\xi_{ijl}(\cdot)_{(i+h)km})$ and its sample estimator be $\hat{\sigma}_{jklm}^{(h)} = (n-h)^{-1} \sum_{i=1}^{n-h} \xi_{ijl}(\cdot)_{(i+h)km}$. In the second step of the three-step procedure, our main target is to fit a sparse model based on temporally dependent estimated FPC scores, $\{\xi_{ijl}\}$. To provide the theoretical guarantee for this step, we present the convergence analysis of $\{\hat{\sigma}_{jklm}^{(h)}\}$ in elementwise ℓ_1 norm as follows.

Theorem 4. Suppose that Conditions 1–3 hold and h is fixed. Let M be a positive integer possibly depending on (n, p). If $n \geq M^{4\alpha+2}M_1(f_X)\log(pM)$, then there exist some positive constants c_2 and c_3 independent of (n, p, M) such that, with probability greater than $1-c_3(pM)^{-c_1}$, the estimates $\{\hat{\sigma}_{jklm}^{(h)}\}$ satisfy

$$
\max_{1 \leq l, m \leq M} \frac{|\hat{\sigma}_{jklm}^{(h)} - \sigma_{jklm}^{(h)}|}{(l + m)^{\alpha+1} \lambda_{jl}^{-1/2} \lambda_{km}^{-1/2}} \leq M_1(f_X) \frac{\log(pM)}{n}. \tag{18}
$$

We provide three comments here. First, compared with the convergence rate of absolute errors of $\{\hat{\sigma}_{jklm}^{(h)}\}$ under an independent setting, i.e. $|\hat{\sigma}_{jklm}^{(h)} - \sigma_{jklm}^{(h)}| = O_P\{(l + m)^{\alpha+1}n^{-1/2}\}$ (Qiao, Guo and James, 2019), we obtain that of scaled errors of $\{\hat{\sigma}_{jklm}^{(h)}\}$ as $\lambda_{jl}^{-1/2} \lambda_{km}^{-1/2} |\hat{\sigma}_{jklm}^{(h)} - \sigma_{jklm}^{(h)}| = O_P\{M_1(f_X)(l + m)^{\alpha+1}n^{-1/2}\}$, which can more precisely characterize the effect of small eigenvalues on the convergence. Second, in the special case of $j = k$ and $l = m$ with $\sigma_{jklm}^{(h)} = \lambda_{jl}$ and $\hat{\sigma}_{jklm}^{(h)} = \hat{\lambda}_{jl}$, the scaled errors of $\{\hat{\sigma}_{jklm}^{(h)}\}$, i.e. $\lambda_{jl}^{-1}|\hat{\lambda}_{jl} - \lambda_{jl}|$, would correspond to a faster convergence rate due to (17). Third, if we relax Condition 3 by allowing the parameter α to depend on j, the resulting scaled error rate becomes $\lambda_{jl}^{-1/2} \lambda_{km}^{-1/2} |\hat{\sigma}_{jklm}^{(h)} - \sigma_{jklm}^{(h)}| = O_P\{M_1(f_X)(t^{\alpha+1} \lambda_{jl} \lambda_{km})n^{-1/2}\}$.
3. Vector functional autoregressive models

Inspired from the standard VAR formulation, we propose a VFAR model of lag L, namely VFAR(L), which is able to characterize linear inter-dependencies in $\{X_t(\cdot)\}_{t \in \mathbb{Z}}$ as follows

$$X_t(u) = \sum_{h=1}^{L} \int A_h(u,v)X_{t-h}(v)dv + \varepsilon_t(u), \quad t = L + 1, \ldots, n,$$

where $\varepsilon_t(\cdot) = (\varepsilon_{t1}(\cdot), \ldots, \varepsilon_{tp}(\cdot))^T$ are independently sampled from a p-dimensional vector of mean zero Gaussian processes, independent of $X_{t-1}(\cdot), X_{t-2}(\cdot), \ldots$, and $A_h = (A_{h,jk}^{(h)})_{1 \leq j,k \leq p}$ is the transition function at lag h with $A_{h,jk}^{(h)} \in \mathbb{S}$. The structure of transition functions provides insights into the temporal and cross-sectional inter-relationship amongst p functional time series. To make a feasible fit to (19) in a high-dimensional regime, we assume the functional sparsity in A_1, \ldots, A_L, i.e. most of the components in $\{X_{t-h,k}(\cdot) : h = 1, \ldots, L, k = 1, \ldots, p\}$ are unrelated to $X_{tj}(\cdot)$ for $j = 1, \ldots, p$.

Due to the infinite-dimensional nature of functional data, for each j, we take a standard dimension reduction approach through FPCA to approximate $X_{tj}(\cdot)$ using the leading q_j principal components, i.e. $X_{tj}(\cdot) \approx \sum_{l=1}^{q_j} \xi_{lj} \phi_{lj}(\cdot) = \xi_{lj} \phi_{lj}(\cdot)$, where $\xi_{lj} = (\xi_{lj1}, \ldots, \xi_{ljq_j})^T$, $\phi_{lj}(\cdot) = (\phi_{lj1}(\cdot), \ldots, \phi_{ljq_j}(\cdot))^T$ and q_j is chosen data-adaptively to provide a reasonable approximation to the trajectory $X_{tj}(\cdot)$.

Once the FPCA has been performed for each $X_{tj}(\cdot)$, we let $V_j^{(h)} \in \mathbb{R}^{(n-L) \times q_j}$ with its row vectors given by $\xi_{(L+1-h)j}, \ldots, \xi_{(n-h)j}$ and $\Psi_{jk}^{(h)} = \int_\mathcal{U} \int_\mathcal{U} \phi_k(u)A_{jk}^{(h)}(u,v)\phi_j(u)^T dudv \in \mathbb{R}^{q_k \times q_j}$. Then further derivations in Section E.1 of the Supplementary Material lead to the matrix representation of (19) as

$$V_j^{(0)} = \sum_{h=1}^{L} \sum_{k=1}^{p} V_k^{(h)} \Psi_{jk}^{(h)} + R_j + E_j, \quad j = 1, \ldots, p,$$

where R_j and E_j are $(n-L) \times q_j$ error matrices whose row vectors are formed by the truncation and random errors, respectively. Hence, we can rely on the block sparsity pattern in $\{\Psi_{jk}^{(h)} : h = 1, \ldots, L, j, k = 1, \ldots, p\}$ to recover the functional sparsity structure in $\{A_{jk}^{(h)} : h = 1, \ldots, L, j, k = 1, \ldots, p\}$. It is also worth noting that (20) can be viewed as a $(\sum_{j=1}^{p} q_j)$-dimensional VAR(L) model with the error vector consisting of both the truncation and random errors.

3.1. Estimation procedure

The estimation procedure proceeds in the following three steps.

Step 1. We perform FPCA based on observed curves, $X_{1j}(\cdot), \ldots, X_{nj}(\cdot)$ and thus obtain estimated eigenfunctions $\hat{\phi}_j(\cdot) = (\hat{\phi}_{j1}(\cdot), \ldots, \hat{\phi}_{jq_j}(\cdot))^T$ and FPC scores $\hat{\xi}_{lj} = \sum_{l=1}^{q_j} \xi_{lj} \phi_{lj}(\cdot)$.
\((\hat{\xi}_{tj1}, \ldots, \hat{\xi}_{tjq_j})^\top \) for each \(j \). See Section F.1 of the Supplementary Material for the selection of \(q_j \)'s in practice.

Step 2. Motivated from the matrix representation of a VFAR(L) model in (20), we propose a penalized least squares (LS) approach, which minimizes the following optimization criterion over \(\{ \Psi_{jk}^{(h)} : h = 1, \ldots, L, k = 1, \ldots, p \} \):

\[
\frac{1}{2} \left\| \hat{V}_j^{(h)} - \sum_{h=1}^{L} \sum_{k=1}^{p} \hat{V}_k^{(h)} \Psi_{jk}^{(h)} \right\|_F^2 + \gamma_{nj} \sum_{h=1}^{L} \sum_{k=1}^{p} \left\| \hat{V}_k^{(h)} \Psi_{jk}^{(h)} \right\|_F, \tag{21}
\]

where \(\hat{V}_j^{(h)} \), the estimate of \(V_j^{(h)} \), is a \((n - L) \times q_j \) matrix with its \(i \)-th row vector given by \(\xi_{(L+i-1)j} \) for \(i = 1, \ldots, (n - L) \), and \(\gamma_{nj} \geq 0 \) is a regularization parameter. The \(\ell_1/\ell_2 \) type of standardized group lasso penalty (Simon and Tibshirani, 2012) in (21) forces the elements of \(\Psi_{jk}^{(h)} \) to either all be zero or non-zero. Potentially, one could modify (21) by adding an unstandardized group lasso penalty (Yuan and Lin, 2006) in the form of \(\gamma_{nj} \sum_{h=1}^{L} \sum_{k=1}^{p} \left\| \Psi_{jk}^{(h)} \right\|_F \) to produce the block sparsity in \(\{ \Psi_{jk}^{(h)} \} \). However, orthonormalization within each group would correspond to the uniformly most powerful invariant test for inclusion of a group, hence we use a standardized group lasso penalty here. In Section F.3 of the Supplementary Material, we develop a block version of fast iterative shrinkage-thresholding algorithm (FISTA), which mirrors recent gradient-based techniques (Beck and Teboulle, 2009; O’Donoghue and Candès, 2015), to solve the optimization problem in (21) with the solution given by \(\{ \hat{\Psi}_{jk}^{(h)} \} \). The proposed block FISTA algorithm is easy to implement and converges very fast, thus is suitable for solving large-scale optimization problems.

Step 3. Finally, we recover the functional sparse estimates of elements in \(\{ A_{jk}^{(h)} \} \) by the block sparse estimates in \(\{ \hat{\Psi}_{jk}^{(h)} \} \) via

\[
\hat{A}_{jk}^{(h)}(u, v) = \hat{\phi}_k(v)^\top \hat{\Psi}_{jk}^{(h)} \hat{\phi}_j(u), \quad h = 1, \ldots, L, \quad j, k = 1, \ldots, p. \tag{22}
\]

3.2. Functional network Granger causality

In this section, we extend the definition of network Granger causality (NGC) under a VAR framework (Lütkepohl, 2005) to the functional domain and then use the extended definition under our proposed VFAR framework to understand the causal relationship in \(\{ X_t(\cdot) \}_{t \in \mathbb{Z}} \).

In an analogy to the NGC formulation, a functional NGC (FNGC) model consists of \(p \) nodes, one for each functional variable, and a number of edges with directions connecting a subset of nodes. Specifically, functional times series of \(\{ X_{tk}(\cdot) \}_{t \in \mathbb{Z}} \) is defined to be Granger causal for that of \(\{ X_{tj}(\cdot) \}_{t \in \mathbb{Z}} \) or equivalently there is an edge from node \(k \) to node \(j \), if \(A_{jk}^{(h)}(u, v) \neq 0 \) for some \((u, v) \in \mathcal{U}^2 \) or \(h \in \{ 1, \ldots, L \} \). Then our proposed FNGC
model can be represented by a directed graph \(G = (V, E) \) with vertex set \(V = \{1, \ldots, p\} \) and edge set

\[
E = \left\{ (k, j) : A_{jk}^h(u, v) \neq 0 \text{ for some } (u, v) \in \mathcal{U}^2 \text{ or } h \in \{1, \ldots, L\}, (j, k) \in V^2 \right\}.
\]

It is worth noting that, at lag \(h \), \(A_{jk}^h \) can be viewed as explaining the global Granger-type casual impact of \(X_k(\cdot) \) on \(X_j(\cdot) \), while \(A_{jk}^h(u, v) \) itself accounts for the local Granger-type casual impact of \(X_k(v) \) on \(X_j(u) \). To explore the FNGC structure and the direction of influence from one node to the other, we need to develop an approach to estimate \(E \), i.e. identifying the locations of non-zero entries in \(\hat{\mathbf{A}}_1, \ldots, \hat{\mathbf{A}}_L \) under the Hilbert-Schmidt norm, the details of which are presented in Section 3.1.

3.3. Theoretical properties

According to Section E.2 of the Supplementary Material, all VFAR(\(L \)) models in (19) can be reformulated as a VFAR(1) model. Without loss of generality, we consider a VFAR(1) model in the form of

\[
\mathbf{X}_t(u) = \int_{\mathcal{U}} \mathbf{A}(u, v)\mathbf{X}_{t-1}(v)dv + \mathbf{\varepsilon}_t(u), \quad t = 2, \ldots, n, \ u \in \mathcal{U}.
\]

To simplify our notation in this section, we focus on the setting where \(q_j \)'s are the same across \(j = 1, \ldots, p \). However, our theoretical results extend naturally to the more general setting. In our empirical studies, we select different \(q_j \)'s, see Section F.1 of the Supplementary Material for details. Let \(\hat{\mathbf{Z}} = (\hat{\mathbf{V}}_1^{(1)}, \ldots, \hat{\mathbf{V}}_p^{(1)})^T \in \mathbb{R}^{(n-1) \times pq} \), \(\mathbf{\Psi}_j = ((\psi_{j1}^{(1)})^T, \ldots, (\psi_{jp}^{(1)})^T)^T \in \mathbb{R}^{pq \times q} \), and \(\hat{\mathbf{D}} = \text{diag}(\hat{\mathbf{D}}_1, \ldots, \hat{\mathbf{D}}_p) \in \mathbb{R}^{pq \times pq} \), where \(\hat{\mathbf{D}}_k = \{(n-1)^{-1} (\hat{\mathbf{V}}_k^{(1)})^T \hat{\mathbf{V}}_k^{(1)})^{1/2} \in \mathbb{R}^{q \times q} \) for \(k = 1, \ldots, p \). Then minimizing (21) over \(\mathbf{\Psi}_j \in \mathbb{R}^{pq \times q} \) is equivalent to minimizing the following criterion over \(\mathbf{B}_j \in \mathbb{R}^{pq \times q} \),

\[
-\left\langle \hat{\mathbf{Y}}_j, \mathbf{B}_j \right\rangle + \frac{1}{2} \left\langle \mathbf{B}_j, \hat{\mathbf{B}}_j \right\rangle + \gamma_n \|\mathbf{B}_j\|_1^{(q)},
\]

where \(\hat{\mathbf{Y}}_j = (n-1)^{-1} \hat{\mathbf{D}}^{-1} \hat{\mathbf{Z}}^T \hat{\mathbf{V}}_j^{(0)}, \hat{\mathbf{A}} = (\hat{\mathbf{A}}_j) \) with its \(j \)-th row block given by \(\hat{\mathbf{A}}_j \) and \(\hat{\mathbf{A}} = (\hat{\mathbf{A}}_j) \) with its \((j, k) \)-th entry, \(\hat{A}_{jk}(u, v) = \hat{\phi}_k(v)^T \hat{\mathbf{\Psi}}_{jk} \hat{\mathbf{A}}_j(u) \) for \(j, k = 1, \ldots, p \) and \((u, v) \in \mathcal{U}^2 \).

Before imposing the condition on the entries of \(\mathbf{A} = (\hat{\mathbf{A}}_j) \), we begin with some notation. For the \(j \)-th row of \(\mathbf{A} \), we denote the set of non-zero functions by \(S_j = \{k \in \{1, \ldots, p\} : \|A_{jk}\|_S \neq 0 \} \) and its cardinality by \(s_j = |S_j| \) for \(j = 1, \ldots, p \). We also denote the maximum degree or row-wise cardinality by \(s = \max_j s_j \) (possibly depends on \(n \) and \(p \)), corresponding to the maximum number of non-zero functions in any row of \(\mathbf{A} \). For a sparse VFAR(\(L \)) model in (19) with \(s_{jh} = \sum_{h=1}^L I(\|A_{jh}\|_S \neq 0) \) for \(j = 1, \ldots, p \) and \(h = 1, \ldots, L \), according to Appendix E.2, the equivalent sparse VFAR(1) model in (E.47) has the maximum degree \(s = \max_j (\sum_h s_{jh}) \) assuming a fixed lag order \(L \).
Condition 4. For each $j = 1, \ldots, p$ and $k \in S_j$, $A_{jk}(u, v) = \sum_{l,m=1}^{\infty} a_{jklm}(u) \phi_{km}(v)$ and there exist some positive constants $\beta > \alpha/2 + 1$ and μ_{jk} such that $|a_{jklm}| \leq \mu_{jk}(l + m)^{-\beta - 1/2}$ for $l, m \geq 1$.

For each (j, k), the basis with respect to which coefficients $\{a_{jklm}\}_{l,m \geq 1}$ are defined is determined by $\{\phi_{jl}(\cdot)\}_{l \geq 1}$ and $\{\phi_{km}(\cdot)\}_{m \geq 1}$. The parameter β in Condition 4 determines the decay rate of the upper bounds for coefficients $\{a_{jklm}\}_{l,m \geq 1}$ and hence characterizes the degree of smoothness in $\{A_{jk}\}$, with larger values of β yielding smoother functions. See also Hall and Horowitz (2007) and Kong et al. (2016) for similar smoothness conditions in functional linear models.

We next establish the consistency of the VFAR estimate based on the sufficient conditions in Conditions 5–7 below. To be specific, we first establish an upper bound on the decay rate of the upper bounds for coefficients $\{a_{jklm}\}_{l,m \geq 1}$ and there exist some positive constants $\alpha > 1$ and λ_{jk}.

Condition 5. The symmetric matrix $\tilde{\Gamma} \in \mathbb{R}^{pq \times pq}$ satisfies the restricted eigenvalue condition with tolerance $\tau_1 > 0$ and curvature $\tau_2 > 0$ if

$$\theta^T \tilde{\Gamma} \theta \geq \tau_2 \|\theta\|^2 - \tau_1 \|\theta\|_1^2 \quad \forall \theta \in \mathbb{R}^{pq}. \quad (24)$$

Condition 5 comes from a class of conditions commonly referred to as restricted eigenvalue (RE) conditions in the lasso literature (Bickel, Ritov and Tsybakov, 2009; Loh and Wainwright, 2012). Intuitively speaking, Condition 5 implies that $\theta^T \tilde{\Gamma} \theta / \|\theta\|^2$ is strictly positive as long as $\|\theta\|_1$ is not large relative to $\|\theta\|$. Denote the estimation error by $\Delta_j = \hat{B}_j - B_j$, this condition ensures that $\langle \Delta_j, \tilde{\Gamma} \Delta_j \rangle \geq \tau_2 \|\Delta_j\|_F^2 / 2$ if $\tau_2 \geq 32 \tau_1 q^2 s$, as stated in Theorem 5 below.

Condition 6. There exist some positive constants C_λ and C_ϕ independent of (n, p, q) such that

$$\max_{1 \leq j \leq p, 1 \leq l \leq q} \left| \frac{\lambda_{jl}^{-1/2} - \lambda_{jl}^{-1/2}}{\lambda_{jl}^{-1/2}} \right| \leq C_\lambda \mathcal{M}_1(f_X) \sqrt{\frac{\log(pq)}{n}},$$

$$\max_{1 \leq j \leq p, 1 \leq l \leq q} \|\hat{\phi}_{jl} - \phi_{jl}\| \leq C_\phi \mathcal{M}_1(f_X) q^{\alpha + 1} \sqrt{\frac{\log(pq)}{n}}. \quad (25)$$
Condition 7. There exists some positive constant C_E independent of (n, p, q) such that

$$
\|\hat{Y}_j - \hat{\Gamma}B_j\|^{(q)}_{\max} \leq C_E M_1(f_X) s_j \left\{ q^{\alpha+2} \sqrt{\frac{\log(pq)}{n}} + q^{-\beta+1} \right\}, \quad j = 1, \ldots, p. \tag{26}
$$

Condition 6 and 7 are two deviation conditions, which guarantee the good behaviours of relevant estimated terms by controlling their deviation bounds. Specifically, Condition 7 ensures that \hat{Y}_j and $\hat{\Gamma}$ are nicely concentrated around their population versions. See also similar deviation conditions in the lasso literature (Loh and Wainwright, 2012; Basu and Michailidis, 2015).

We are now ready to present the theorem on the convergence rate of the VFAR estimate.

Theorem 5. Suppose that Conditions 1–7 hold with $\tau_2 \geq 32 \tau_1 q^{2} s$. Then, for any regularization parameter, $\gamma_{nj} \geq 2C_E M_1(f_X) s_j \left\{ q^{\alpha+2} (\log(pq)/n)^{1/2} + q^{-\beta+1} \right\}$, $\gamma_n = \max_j \gamma_{nj}$ and $q^{3/2} s \gamma_n \to 0$ as $n, p, q \to \infty$, any minimizer \hat{B}_j of (23) satisfies

$$
\|\hat{B}_j - B_j\|_F \leq \frac{24 s_j^{1/2} \gamma_{nj}}{\tau_2}, \quad \|\hat{B}_j - B_j\|_1^{(q)} \leq \frac{96 s_j \gamma_{nj}}{\tau_2} \quad \text{for } j = 1, \ldots, p,
$$

and the estimated transition function, \hat{A}, satisfies

$$
\|\hat{A} - A\|_{\infty} \leq \frac{96 \alpha^{1/2} q^{2\gamma/2} s \gamma_n}{c_0^{1/2} \tau_2} \left\{ 1 + o(1) \right\}. \tag{27}
$$

The convergence rate of \hat{A} under functional matrix ℓ_∞ norm is governed by dimensionality parameters (n, p, s) and internal parameters $(M_1(f_X), q, \tau_1, \tau_2, \alpha, \beta)$. We provide three remarks for the error bound in (27). First, it is easy to see that larger values of α (tighter eigengaps) or $M_1(f_X)$ (less stable process of $\{X_{ij}(\cdot)\}$) or s (denser structure in A) yield a slower convergence rate, while enlarging β or τ_2 will increase the entrywise smoothness in A or the curvature of the RE condition, respectively, thus resulting in a faster rate. Second, the convergence rate consists of two terms corresponding to the variance-bias tradeoff as commonly considered in nonparametric statistics. Specifically, the variance is of the order $O_P(M_1(f_X) s^2 q^{(3\alpha+4)/2} (\log(pq)/n)^{1/2})$ and the bias term is bounded by $O(M_1(f_X) s^2 q^{(\alpha-2\beta+2)/2})$. To balance both terms, we can choose an optimal q satisfying $\log(pq)q^{2\alpha+2\beta+2} = n$, which leads to $q \approx \{n/\log(p \vee n)\}^{1/(2\alpha+2\beta+2)}$. Third, when each $X_{ij}(\cdot)$ is finite-dimensional, although the truncation step is no longer required, the FPC scores still need to be estimated. The resulting convergence rate becomes $O_P(M_1(f_X) s^2 (\log p/n)^{1/2})$, which is slightly different from that of the high-dimensional VAR estimate in Basu and Michailidis (2015).

Finally, we turn to verify that, when $X_1(\cdot), \ldots, X_n(\cdot)$ are drawn from model (19), Conditions 5–7 are satisfied with high probability as stated in the following Propositions 2–4. Before presenting these propositions, we list two regularity conditions.
Condition 8. For $\Sigma_0 = (\Sigma_0^{(j,k)})_{1 \leq j,k \leq p}$, we denote by $D_0 = \text{diag}(\Sigma_0^{(0)}, \ldots, \Sigma_0^{(p)})$ the diagonal function. The infimum μ of the functional Rayleigh quotient of Σ_0 relative to D_0, defined as follows, is bounded below by zero, i.e.

$$
\mu = \inf_{\Phi \in \mathbb{H}_0} \frac{\langle \Phi, \Sigma_0(\Phi) \rangle_{\mathbb{H}}}{\langle \Phi, D_0(\Phi) \rangle_{\mathbb{H}}} > 0,
$$

(28)

where $\mathbb{H}_0 = \{ \Phi \in \mathbb{H} : \langle \Phi, D_0(\Phi) \rangle_{\mathbb{H}} \in (0, \infty) \}$.

Condition 9. The sample size n satisfies the bound $n \geq q^{4\alpha+2}M_1^2(f_X)\log(pq)$.

In Condition 8, the lower bound on μ, chosen as the curvature τ_2 in the proof of Proposition 2, can be understood as requiring the minimum eigenvalue of the correlation function for X_t to be bounded below by zero. Specially, if X_t is d_j-dimensional for $j = 1, \ldots, p$ it is easy to show that μ reduces to the minimum eigenvalue of the correlation matrix for the $(\sum_j d_j)$-dimensional vector, $\xi_t = (\xi_{t11}, \ldots, \xi_{tp1}, \ldots, \xi_{tpd_p})^T$.

Condition 9 is required here due to its presence in Theorems 3 and 4.

Proposition 2. (Verify Condition 5) Suppose that Conditions 2–3 and 8–9 hold. Then there exist three positive constants C_Γ, c_5 and c_6 independent of (n, p, q) such that

$$
\theta^T \hat{\theta} \geq \mu \| \theta \|^2_2 - C_\Gamma M_1(f_X)q^{\alpha+1} \sqrt{\frac{\log(pq)}{n}} \| \theta \|_1^2
$$

with probability greater than $1 - c_5(pq)^{-c_6}$.

Proposition 3. (Verify Condition 6) Suppose that Conditions 2–3 and 9 hold. Then there exist four positive constants C_ϕ, C_λ, c_5 and c_6 independent of (n, p, q) such that (25) holds with probability greater than $1 - c_5(pq)^{-c_6}$.

Proposition 4. (Verify Condition 7) Suppose that Conditions 2–4 and 9 hold. Then there exist three positive constants C_E, c_5 and c_6 independent of (n, p, q) such that (26) holds with probability greater than $1 - c_5(pq)^{-c_6}$.

Propositions 2–4 can be proved by applying the convergence results in Theorems 3 and 4. With suitable choices of common constants c_5 and c_6 in Propositions 2–4, we can show that the joint probability for the three events corresponding to the non-asymptotic upper bounds in (17) and (18) is greater than $1 - c_5(pq)^{-c_6}$. Consequently, with probability greater than $1 - c_5(pq)^{-c_6}$, the estimate $\hat{\Lambda}$ satisfies the error bound in (27).

3.4. Simulation studies

In this section, we conduct a number of simulations to compare the finite-sample performance of our proposed method to potential competitors.
In each simulated scenario, we generate functional variables by $X_{tj}(u) = s(u)^T \theta_t$, for $j = 1, \ldots, p$ and $u \in U = [0, 1]$, where $s(\cdot)$ is a 5-dimensional Fourier basis function and each $\theta_t = (\theta_{t1}^\top, \ldots, \theta_{tp}^\top)^\top \in \mathbb{R}^{5p}$ is generated from a stationary VAR(1) process, $\theta_t = B \theta_{t-1} + \eta_t$, with block transition matrix $B \in \mathbb{R}^{5p \times 5p}$, whose (j, k)-th block is given by B_{jk} for $j, k = 1, \ldots, p$ and innovations η_t's being independently sampled from $N(0, I_{5p})$. To mimic a real data setting, we observe errors, $W_{tjs} = X_{tj}(u_s) + \varepsilon_{tjs}$, from $T = 50$ equally spaced time points, $0 = u_1, \ldots, u_T = 1$ with errors ε_{tjs}'s being randomly sampled from $N(0, 0.5^2)$. In our simulations, we generate $n = 100$ or $n = 200$ observations of $p = 40$ or $p = 80$ functional variables, and we aim to show that, although our method is developed for fully observed functional time series, it still works well even for the dense design with measurement error. It is worth noting that, as discussed in Section 1, the VFAR estimation is naturally a very high-dimensional problem. For example, to fit a VFAR(1) model under our most “low-dimensional” setting with $p = 40$ and $n = 200$, we need to estimate $40^2 \times 5^2 = 40,000$ parameters based on only 200 observations.

According to Section E.3 of the Supplementary Material, $X_t(\cdot)$ follows from a VFAR(1) model in (4), where $\varepsilon_{tj}(u) = s(u)^T \eta_j$ and autocoefficient functions satisfy $A_{jk}(u, v) = s(u)^T B_{jk} s(v)$ for $j, k = 1, \ldots, p$, $(u, v) \in U^2$. Hence, the functional sparsity structure in A can be characterized by the block sparsity pattern in B. In the following, we consider two different scenarios to generate B.

1. **Block sparse.** We generate a block sparse B without any special structure. Specifically, we generate $B_{jk} = w_{jk} C_{jk}$ for $j, k = 1, \ldots, p$, where entries in C_{jk} are randomly sampled from $N(0, 1)$ and w_{jk}'s are generated from $\{0, 1\}$ under the constraint of $\sum_{k=1}^p w_{jk} = 5$ for each j, such that the same row-wise cardinality for B can be produced in a blockwise fashion. To guarantee the stationarity of $\{X_t(\cdot)\}$, we rescale B by $iB / \rho(B)$, where i is generated from Unif[0.5, 1].

2. **Block banded.** We generate a block banded B, with entries in B_{jk} being randomly sampled from $N(0, 1)$ if $|j - k| \leq 2$, and being zero at other locations. B is then rescaled as described in (i).

For each $j = 1, \ldots, p$, we perform regularized FPCA (Ramsay and Silverman, 2005) on observations $\{W_{tjs}\}$ to obtain smoothed estimates of $\phi_{j}(\cdot)$'s, and use 5-fold cross-validation to choose q_j and the smoothing parameter, the details of which are presented in Sections F.1 and F.2 of the Supplementary Material. Typically $q_j = 4, 5$ or 6 are selected in our simulations. To choose the regularization parameters γ_{nj}'s, there exist a number possible methods such as AIC/BIC and cross-validation. While the third one is computationally intensive and remains largely unexplored in the literature for serially dependent functional observations, we take an approach motivated by the information criterion for sparse additive models (Voorman, Shojaie and Witten, 2014). For each j, our proposed information criterion is

$$IC_J(\gamma_{nj}) = n \log \left(\left\| \hat{\mathbf{V}}_J^{(h)} - \sum_{h=1}^L \sum_{k=1}^P \hat{\Phi}_{jk}^{(h)} \Phi_{jk}(\gamma_{nj}) \right\|^2_P \right) + \kappa_n d_f(\gamma_{nj}),$$

(29)
where \(\kappa_n = 2 \) and \(\log n \) correspond to AIC and BIC, respectively, and \(\text{df}_j(\gamma_{nj}) \) is the effective degrees of freedom used in fitting (21) with

\[
\text{df}_j(\gamma_{nj}) = \sum_{h=1}^{\ell} \sum_{k=1}^{\tilde{p}} I\left((h, k) : \| \hat{\Phi}_{jk}^{(h)}(\gamma_{nj}) \|_F \neq 0 \right) - (q_j q_k - 1) \cdot \frac{\| \hat{\mathbf{V}}_k^{(h)} \hat{\Phi}_{jk}^{(h)}(\gamma_{nj}) \|_F^2}{\| \hat{\mathbf{V}}_k^{(h)} \hat{\Phi}_{jk}^{(h)}(\gamma_{nj}) \|_F^2 + \gamma_{nj}}.
\]

(30)

We compare our proposed \(\ell_1/\ell_2 \)-penalized LS estimate using all selected principal components, namely \(\ell_1/\ell_2\text{-LS}_a \), to its two competitors. One method, \(\ell_1/\ell_2\text{-LS}_2 \), relies on minimizing \(\ell_1/\ell_2 \)-penalized LS based on the first two estimated principal components, which capture partial curve information. The other approach, \(\ell_1\text{-LS}_1 \), projects the functional data into a standard format by computing the first estimated FPC score and then implements an \(\ell_1 \)-based technique with most of curve information being captured, providing highly significant improvements over its two competitors and \(\ell_1\text{-LS}_1 \) gives the worst results. To evaluate the estimation accuracy, Table 2 presents numerical results of relative errors of different regularized estimates. We also report the performance of the LS estimate in the oracle case, where we know locations of non-zero entries of \(\mathbf{A} \) in advance. Several conclusions can be drawn from Table 2. First, in all scenarios, the proposed BIC-based \(\ell_1/\ell_2\text{-LS}_a \) method provides the highest estimation accuracy among all the comparison methods. Second, the performance of AIC-based methods severely deteriorate in comparison with their BIC-based counterparts. Given the high-dimensional, dependent and

Table 1. The mean and standard error (in parentheses) of AUROCs over 100 simulation runs. The best values are in bold font.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(p)</th>
<th>Model (i) (\ell_1/\ell_2\text{-LS}_a)</th>
<th>Model (ii) (\ell_1\text{-LS}_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>40</td>
<td>0.840(0.018)</td>
<td>0.869(0.019)</td>
</tr>
<tr>
<td>80</td>
<td>0.829(0.015)</td>
<td>0.682(0.017)</td>
<td>0.869(0.014)</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>0.951(0.011)</td>
<td>0.764(0.020)</td>
</tr>
<tr>
<td>80</td>
<td>0.946(0.010)</td>
<td>0.770(0.017)</td>
<td>0.969(0.005)</td>
</tr>
</tbody>
</table>

\(\ell_1/\ell_2\text{-LS}_a \), \(\ell_1\text{-LS}_1 \)
Table 2. The mean and standard error (in parentheses) of relative estimation errors of \(\hat{A} \) over 100 simulation runs. The best values are in bold font.

<table>
<thead>
<tr>
<th>Model (n, p)</th>
<th>(\gamma_n)</th>
<th>(\ell_1/\ell_2-LS_a)</th>
<th>(\ell_1/\ell_2-LS_b)</th>
<th>(\ell_1-LS)</th>
<th>(LS_{oracle})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(100,40)</td>
<td>AIC</td>
<td>1.783(0.044)</td>
<td>1.455(0.032)</td>
<td>1.047(0.008)</td>
<td>1.483(0.044)</td>
</tr>
<tr>
<td></td>
<td>BIC</td>
<td>0.971(0.007)</td>
<td>0.997(0.002)</td>
<td>1.002(0.002)</td>
<td></td>
</tr>
<tr>
<td>(100,80)</td>
<td>AIC</td>
<td>1.546(0.037)</td>
<td>1.576(0.030)</td>
<td>1.124(0.013)</td>
<td>1.530(0.050)</td>
</tr>
<tr>
<td></td>
<td>BIC</td>
<td>0.991(0.003)</td>
<td>0.999(0.001)</td>
<td>1.002(0.001)</td>
<td></td>
</tr>
<tr>
<td>(200,40)</td>
<td>AIC</td>
<td>1.419(0.035)</td>
<td>1.159(0.016)</td>
<td>1.020(0.004)</td>
<td>0.990(0.029)</td>
</tr>
<tr>
<td></td>
<td>BIC</td>
<td>0.850(0.012)</td>
<td>0.989(0.003)</td>
<td>0.999(0.002)</td>
<td></td>
</tr>
<tr>
<td>(200,80)</td>
<td>AIC</td>
<td>1.544(0.045)</td>
<td>1.350(0.022)</td>
<td>1.032(0.004)</td>
<td>1.016(0.033)</td>
</tr>
<tr>
<td></td>
<td>BIC</td>
<td>0.915(0.013)</td>
<td>0.994(0.002)</td>
<td>1.000(0.001)</td>
<td></td>
</tr>
</tbody>
</table>

- **Functional natural of the model structure**, computing the effective degrees of freedom in (30) leads to a very challenging task and requires further investigation. In practice, with some prior knowledge about the targeted graph density under a FNGC framework, one can choose the values of \(\gamma_{nj} \) that result in the graph with a desired sparsity level. Third, \(LS_{oracle} \) estimates give much worse results than BIC-based regularized estimates. This is not surprising, since even in the “large \(n \), small \(p \)” scenario, e.g. \(n = 100, p = 40 \) for Model (i), implementing LS requires estimating \(5 \times 5^2 = 125 \) parameters based on only 100 observations, which intrinsically results in a high-dimensional estimation problem.

3.5. Real data analysis

In this section, we apply our proposed method to a public financial dataset, which was downloaded from https://wrds-web.wharton.upenn.edu/wrds. The dataset consists of high-frequency observations of prices for a collection of S&P100 stocks from \(n = 251 \) trading days in year 2017. We removed several stocks for which the data are not available during the observational period. See Table 3 in the Supplementary Material for tickers, company names and classified sectors of the inclusive \(p = 98 \) stocks. We then obtained data at a sampling frequency one-minute per datum such that the impact of microstructure noise is reduced (Zhang, Mykland and Aït-Sahalia, 2005). The daily trading period (9:30-16:00) is thus converted to \(\mathcal{U} = [0, T] \) with \(T = 390 \) minutes. Let \(P_{tj}(u_k) (t = 1, \ldots, n, j = 1, \ldots, p, k = 1, \ldots, T) \) be the price of the \(j \)-th stock at intraday time \(u_k \) on the \(t \)-th trading day. We denote the cumulative intraday return (CIDR) trajectory, in percentage, by \(r_{tj}(u_k) = 100\log\{P_{tj}(u_k)\}/\log\{P_{tj}(u_1)\} \) (Horváth, Kokoszka and Rice, 2014). This transformation not only guarantees the shape of CIDR...
curves nearly the same as original daily price curves, but also makes the assumption of stationarity for curves more plausible. According to the definition, CIDR curves always start from zero enforcing level stationary and the logarithm helps reduce potential scale inflation. See Horváth, Kokoszka and Rice (2014) for an empirical study on testing the stationary of CIDR curves.

Our main target is to construct a directed graph under a FNGC framework and to display the Granger-type casual relationships among intraday returns of different stocks. To achieve this goal, we first center all the series of \(t_{r_{ij}} \) about their empirical means and then apply the three-step approach to fit a sparse VFAR(1) model on the demeaned curves. In the first step, we implement regularized FPCA to smooth these curves and therefore the effects of microstructure noise are further reduced to be almost negligible. See Sections F.1–F.2 and F.3 of the Supplementary Material for details on regularized FPCA with the selection of relevant tuning parameters and block FISTA algorithm, respectively.

Figure 2. Left and right graphs plot the directed networks with indegree=3 for \(p = 14 \) stocks in the financial and IT sectors, respectively.

To better visualize and interpret the network, we focus on \(p = 14 \) stocks in the financial and information technology (IT) sectors, respectively and set the row-wise sparsity to 3/14, i.e. each node receives connections from 3 (indegree) out of 14 nodes. A more systematic method for determining the network sparsity level, e.g. via a significance testing, needs to be developed. Figure 2 displays two directed networks based on the identified sparsity structures in \(\hat{A} \) (estimated transition function) for stocks in two sectors. It suggests that “MET” (Metlife) and “INTC” (Intel) together with “PYPL” (PayPal), placed in the center of each network, provide the lowest levels of column-wise sparsity in the financial and IT sectors, respectively, thus resulting in highest Granger-type causal im-
pacts on all the stocks in terms of their CIDR curves. Moreover, we consider $p = 28$ stocks in both financial and IT sectors. Setting the row-wise sparsity to $1/7$, we plot a larger directed graph in Figure 3. We observe that more IT companies, e.g. PayPal, Qualcomm and Intel, have relatively higher causal impacts. Interestingly, PayPal, as a leading financial technology (FinTech) company belonging to both financial and IT sectors leads to the highest causal influence on others. See also Section G.2 of the Supplementary Material for additional empirical analysis.

4. Discussion

We identify several important directions for future research. The first topic considers the functional extension of high-dimensional factor models (Bai and Ng, 2002; Lam and Yao, 2012), where the observations, $X_t(\cdot)$'s, can be decomposed as the sum of two unobservable and mutually orthogonal components

$$X_t(u) = W_t(u) + \epsilon_t(u), \quad t = 1, \ldots, n, \quad u \in \mathcal{U}. \quad (31)$$

Here $W_t(\cdot) = Bf_t(\cdot)$ are the common components driven by r (much smaller than p) functional factors $f_t(\cdot) = (f_{t1}(\cdot), \ldots, f_{tr}(\cdot))^T$, $B \in \mathbb{R}^{p \times r}$ is the factor loading matrix and $\epsilon_t(\cdot) = (\epsilon_{t1}(\cdot), \ldots, \epsilon_{tp}(\cdot))^T$ are idiosyncratic components. For each $h \in \mathbb{Z}$ and $\{X_t(\cdot)\}_{t=1}^n$, denote $\Sigma^X_h(u, v) = \text{Cov}\{X_t(u), X_{t+h}(v)\}$ and its sample estimator by $\hat{\Sigma}^X_h(u, v)$. To estimate such functional factor model (31), we discuss two different approaches. (i) The first
one is based on the following integrated covariance decomposition,

\[\int \int \Sigma^X(u, v) dudv = B \left\{ \int \int \Sigma^f_0(u, v) dudv \right\} B^T + \int \int \Sigma^0_0(u, v) dudv. \]

(32)

Intuitively, by imposing some eigenvalue conditions on two terms on the right-hand side of (32) similar to those in Fan, Liao and Mincheva (2013), the above decomposition is asymptotically identified as \(p \to \infty \) and hence \(B \) can be recovered by performing an eigenanalysis of \(\int \int \Sigma^X_0(u, v) dudv \). (ii) If \(\{e_t(\cdot)\} \) follows a white noise process, then, inspired from Lam and Yao (2012) and the fact that \(\Sigma^X_h(u, v) = B \Sigma^f_h(u, v) B^T \) for \(h \geq 1 \), an autocovariance-based procedure can be developed to estimate model (31). To theoretically support both estimation procedures under high-dimensional settings, the main challenge is to investigate convergence properties of \(\Sigma^X_h - \Sigma^X_0 \) for \(h = 0, 1, \ldots \), and hence our concentration results in Theorem 1 and Proposition 1 can be applied.

Second, in the dimension reduction step of the three-step procedure, one can also perform dynamic FPCA (Hörmann, Kidziński and Hallin, 2015) based on \(\{X_{1j}(\cdot)\}_{j=1}^n \) for each \(j \). Such dimension reduction technique provides an optimal truncated approximation for functional time series, but is computationally intensive as it relies on the eigenanalysis of spectral density functions \(f_{X, \theta} \) with sample estimators given by \(\hat{f}_{X, \theta} = (2\pi)^{-1} \sum_h w_H(h) \hat{\Sigma}_h \exp(-ith\theta) \), where \(w_H(\cdot) = w(\cdot/H) \) is some appropriate weight function with \(H \) (the lag window size). To provide theoretical guarantees for relevant estimated terms under a dynamic FPCA framework similar to those in Theorems 3 and 4, our established non-asymptotic error bounds on \(\hat{\Sigma}_h \) for \(h \in \mathbb{Z} \) become applicable.

Third, within the proposed functional stability measure framework, we believe our established concentration results can be extended beyond Gaussian functional time series to accommodate linear processes with functional sub-Gaussian errors. It is also interesting to develop suitable concentration results for heavy-tailed non-Gaussian functional time series under the functional generalization of the \(\beta \)-mixing condition in Wong, Li and Tewari (2020).

Fourth, it is of great interest to develop new inference tools for high-dimensional functional time series and to apply these techniques to quantify deviations of autocoeficient functions in sparse VFAR models. Fifth, our analysis is based on the estimation where smoothness parameters are assumed to be known. It is interesting to develop adaptive estimation procedures that do not require the knowledge of the parameter space and automatically adjust to the smoothness properties. However, this would pose complicated challenges under the high-dimensional, functional and dependent setting we consider.

These topics are beyond the scope of the current paper and will be pursued elsewhere.

Appendix A: Examples satisfying Condition 2

It is clear that Condition 2 holds for finite-dimensional functional data. In the following, we give five illustrative examples for infinite-dimensional functional data, where the upper bounds of their functional stability measures can be easily controlled. As long as the
Consistency and Sparsity for High-Dim Funct Time Series

Let

\[X_t(u) = \sum_{l=1}^{\infty} \lambda_l^{1/2} a_l \phi_l(u), \quad u \in [0, 1], \quad \lambda_l = l^{-\alpha}, \quad t = 1, \ldots, n, \]

where \(\alpha > 1 \), \(\{\phi_l(\cdot)\}_{l=1}^{\infty} \) are orthonormal basis functions,

\[
A = \frac{1}{4} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, \quad \left(\begin{array}{c} e_t(2l-1) \\ e_t(2l) \end{array} \right) \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1/4 & -1/16 \\ -1/16 & 1/16 \end{pmatrix} \right),
\]

and \((e_t(2l-1), e_t(2l))^T \)'s are independent for all \(t \) and \(l \). Here the covariance structure of \((e_t(2l-1), e_t(2l))^T \) can guarantee that the covariance matrix of \((\xi_t(2l-1), \xi_t(2l))^T \) is an identity matrix, which means that \(\xi_t(2l-1) \) and \(\xi_t(2l) \) are independent. In this setting, some specific calculations yield that \(\Sigma_0(u, v) = E \{ X_t(u) X_t(v) \} = \sum_{l=1}^{\infty} \lambda_l \phi_l(u) \phi_l(v) \) and for \(h = 1, 2, \ldots, \)

\[
\Sigma_h(u, v) = E \{ X_t(u) X_{t+h}(v) \} = \sum_{l=1}^{\infty} \left(\lambda_{2l-1}^{1/2} \phi_{2l-1}(u), \lambda_{2l}^{1/2} \phi_{2l}(u) \right) A^h \left(\lambda_{2l-1}^{1/2} \phi_{2l-1}(v), \lambda_{2l}^{1/2} \phi_{2l}(v) \right)^T.
\]

Let \(\Omega(\theta) = I_2 + \sum_{h=1}^{\infty} \{ \exp(-i\theta) + \exp(ih\theta) \} A^h \). We can calculate the spectral density function of \(X_t(\cdot) \) at frequency \(\theta \in [-\pi, \pi] \) by

\[
fx,\phi(u, v) = \frac{1}{2\pi} \sum_{l=1}^{\infty} \left(\lambda_{2l-1}^{1/2} \phi_{2l-1}(u), \lambda_{2l}^{1/2} \phi_{2l}(u) \right) \Omega(\theta) \left(\lambda_{2l-1}^{1/2} \phi_{2l-1}(v), \lambda_{2l}^{1/2} \phi_{2l}(v) \right)^T.
\]

For each \(\phi(u) = \sum_{l=1}^{\infty} x_i \phi_i(u) \) with \(x = (x_1, x_2, \ldots)^T \in \mathbb{R}^\infty \) and \(\sum_{l=1}^{\infty} x_l^2 < \infty \), we have

\[
\frac{2\pi \int_{[0,1]^2} \phi(u) \phi(v) fx,\phi(u, v) dudv}{\int_{[0,1]^2} \phi(u) \phi(v) \sum_0(u, v) dudv} = \sum_{l=1}^{\infty} \left(x_{2l-1} \lambda_{2l-1}^{1/2} x_{2l} \lambda_{2l}^{1/2} \right) \frac{2\pi \int_{[0,1]^2} \phi(u) \phi(v) \Omega(\theta) \left(\lambda_{2l-1}^{1/2} \phi_{2l-1}(u), \lambda_{2l}^{1/2} \phi_{2l}(v) \right)^T}{\sum_{l=1}^{\infty} \left(x_{2l-1} \lambda_{2l-1} + x_{2l} \lambda_{2l} \right)}.
\]

Since \((a + b)/(c + d) \leq \max(a/c, b/d) \) for any positive real numbers \(a, b, c, d, \) we have

\[\mathcal{M}(fx) = \sup_{\theta \in [-\pi, \pi]} \sup_{x \in \mathbb{R}^\infty} \left(x_{2l-1} \lambda_{2l-1}^{1/2} x_{2l} \lambda_{2l}^{1/2} \right) \frac{2\pi \int_{[0,1]^2} \phi(u) \phi(v) \Omega(\theta) \left(\lambda_{2l-1}^{1/2} \phi_{2l-1}(u), \lambda_{2l}^{1/2} \phi_{2l}(v) \right)^T}{x_{2l-1} \lambda_{2l-1} + x_{2l} \lambda_{2l}}. \]
It is easy to see that $\Omega(\theta)$ is positive definite and its maximum eigenvalue, $\lambda_{\max}(\Omega)$, exists and is uniformly bounded over $\theta \in [-\pi, \pi]$. As a result, it follows that $M(f_X) \leq \lambda_{\max}(\Omega) < \infty$.

It is also worth noting that the dimension of A can be larger and we only require that all eigenvalues of A are in $\left[\delta', \delta\right]$ for some $\delta' \in (0, 1)$ to guarantee the stationarity of $\{a_{tm}\}$.

Example 3. It can be shown that for any $p > 1$, if $\{X_{t1}, t \in \mathbb{Z}\}, \ldots, \{X_{tp}, t \in \mathbb{Z}\}$ are independent and $\sup_{1 \leq j \leq p} M(f_{X_j}) < \infty$, then the functional stability measure of $X_t = (X_{t1}, \ldots, X_{tp})^T$ is $M(f_X) \leq \sup_{1 \leq j \leq p} M(F_{X_j}) < \infty$.

Example 4. Consider a general case $Y_t(u) = AX_t(u)$ with $A \in \mathbb{R}^{p \times p}$ and $M(f_X) < \infty$. We can easily obtain that $M(f_Y) \leq M(f_X) < \infty$, which implies that linear transformation of X_t does not increase the functional stability measure. It is also worth noting that components of Y_t can be dependent in this example.

Example 5. Consider a more general scenario, $Y_t(u) = AX_t(u) + \xi_t(u)$, where $A \in \mathbb{R}^{p \times r}$, $X_t(u)$ is a r-dimensional vector of Gaussian processes and $X_t(u), \xi_t(u)$ are independent for all t and s. When r is fixed, it implies that $Y_t(u)$ can be expressed under a factor model structure. Note that $(a + b)/(c + d) \leq \max(a/c, b/d)$ for all positive real numbers a, b, c and d. Hence if $\max\{M(f_X), M(f_\xi)\} < \infty$, then $M(f_Y) \leq \max\{M(f_X), M(f_\xi)\} < \infty$.

Acknowledgements

We are grateful to the Editor, the Associate Editor and two referees for their insightful comments, which have led to significant improvement of our paper. Shaojun Guo was partially supported by the National Natural Science Foundation of China (No. 11771447).

References

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models. *Econometrica* 70 191–221. MR1926259

Consistency and Sparsity for High-Dim Funct Time Series

regression in high dimensions. Biometrika 103 147–159. MR3465827

Consistency and Sparsity for High-Dim Funct Time Series

Assoc. 100 1394–1411. MR2236450