Nonparametric estimation of jump rates for a specific class of piecewise deterministic Markov processes

NATHALIE KRELL and ÉMELINE SCHMISSER

Address of Nathalie Krell
Univ Rennes, CNRS, IRMAR
UMR 6625, F-35000 Rennes
E-mail: nathalie.krell@univ-rennes1.fr

Address of Émeline Schmisser
Université de Lille, Laboratoire Paul Painlevé, CNRS UMR 8524.
Bâtiment M2, Cité Scientifique, 59655 Villeneuve d’Ascq, France.
E-mail: emeline.schmisser@math.univ-lille1.fr

Abstract
In this paper, we consider a unidimensional piecewise deterministic Markov process (PDMP), with homogeneous jump rate $\lambda(x)$. This process is observed continuously, so the flow ϕ is known.
To estimate nonparametrically the jump rate, we first construct an adaptive estimator of the stationary density, then we derive a quotient estimator $\hat{\lambda}_n$ of λ. Under some ergodicity conditions, we bound the risk of these estimators (and give a uniform bound on a small class of functions), and prove that the estimator of the jump rate is nearly minimax (up to a $\ln^2(n)$ factor). The simulations illustrate our theoretical results.

MSC 2010 subject classifications: Primary 62G05, 62G07, 62M05, 60J25.
Keywords: Piecewise deterministic Markov processes, model selection, nonparametric estimation.

1. Introduction

Piecewise deterministic Markov processes are a large class of continuous-time stochastic models first introduced by Davis [13]. They are used to model deterministic phenomenons in which randomness appears as point events. They are not diffusions, which adds complexity to their study. This family of stochastic processes is well adapted to model various problems in biology (see for instance Cloez et al. [10], Rudnicki and Tyran-Kamińska [29]), neuroscience (Höpfner and Brodda [22], Renault et al. [28]), physics (Blanchard and Jadczyk [9]), reliability (de Saporta et al. [14]), optimal consumption and exploitation (Farid and Davis [18]), risk insurance, seismology,. . . . See also the references in the survey Azaïs et al. [4].

In this article, we consider a filtered piecewise deterministic Markov process (PDMP) $(X_t)_{t \geq 0}$ taking values in \mathbb{R}^+, with flow ϕ, transition measure $Q(x, dy)$ and homogeneous
jump rate $\lambda(x)$. Starting from initial value x_0, the process follows the flow ϕ until the first
jump time T_1 which occurs spontaneously in a Poisson-like fashion with rate $\lambda(\phi(x, t))$.
The post-jump location of the process at time T_1 is governed by the transition distribution $Q(\phi(x_0, T_1), dy)$ and the motion restarts from this new point as before.

To fix the ideas, let us consider two major examples of unidimensional PDMP.
The TCP (transmission control protocol) (see Dumas et al. [17], Guillemot et al. [20]
for instance) is one of the main data transmission protocol in Internet. The maximum
number of packets that can be sent at time t_k in a round is a random variable X_{t_k}. If
the transmission is successful, then the maximum number of packets is increased by one:
$X_{t_{k+1}} = X_{t_k} + 1$. If the transmission fails, then we set $X_{t_{k+1}} = \kappa X_{t_k}$ with $\kappa \in (0, 1)$.
A correct scaling of this process leads to a piecewise deterministic Markov process (X_t)
with flow $\phi(x,t) = x + ct$ and deterministic transition measure $Q(x,y) = \mathbb{1}_{y=\kappa x}$. This
process grows linearly (by construction) and the constant κ can be configured in the
server implementation (so it is also known), but the moment when the transmission fails
is of course unknown. In the literature it is usually supposed that the jump rate satisfies
$\lambda(x) = x$, but with this work we can check whether it is a realistic assumption or not.
Another example of PDMP is the size of a marked bacteria (see Doumic et al. [16], Ly-
dia Robert et al. [26], Lauren¸ cot and Perthame [25]). We randomly choose a bacteria, and
follow its growth, until it divides in two. Then we randomly choose one of its daughters,
and so on. Between the jumps, the bacteria grows exponentially: $\phi(x,t) = xe^{ct}$. The size
of the bacteria after the division is random, as the bacteria does not divide itself in two
equal parts.

The process (X_t) is observed continuously without errors (so the flow ϕ is known):
it is assumed to be ergodic, with fast convergence toward the stationary measure, and
exponentially β-mixing. We denote by (T_1, \ldots, T_n) the jump times and consider the
Markov chain $(Z_0 = x_0, (Y_k = X_{T_k}, Z_k = X_{T_k})_{k \in \mathbb{N}})$. Our aim is to construct a non-
parametric adaptive estimator of the jump rate λ on a compact interval.

There exist few results concerning PDMP’s estimation. Azaïs et al. [5] and Azaïs
and Muller-Gueudin [3] consider a more general model, for a multidimensional PDMP.
They construct a quotient of kernel estimators, which estimate the compound function $\lambda(\phi(x,t))$. Their estimator is consistent ([5]), asymptotically normal, and its pointwise
rate of convergence depends on the bandwidth of the kernel (see [3]). They explain how
to construct an adaptive estimator, but do not bound its risk.

Doumic et al. [16] and Hodara et al. [21] also consider multi-dimensional PDMPs but
for very specific biological models.

Fujii [19] and Krell [24] both consider unidimensional PDMP, and provide estimators
of $\lambda(x)$. [19] constructs an estimator of $\lambda(x)$ thanks to a Rice formula, by estimating local
times. He proves the consistency of his estimators. [24] considers a deterministic transition
measure (so Y_k is a function of Z_k). Her estimator of λ is a quotient of a kernel estimator
of the stationary density of Z_k and an empirical estimator \hat{D}_n of another function D with
the parametric rate of convergence $n^{1/2}$. This nonparametric estimator is asymptotically
normal, and bounds for the pointwise risk are provided. In a very recent article, Azaïs and
Genadot [2] construct a nonparametric estimator of $\lambda(x)$ for a multidimensional PDMP
Adaptive jump estimation for PDMP
and prove its consistency.
This article is an extension of the work of [24]. We consider a wider class of models (in particular, the transition measure Q does not need to be deterministic any more). We bound the L^2 risk of the adaptive estimator, whereas [24] only considers the pointwise risk of the nonparametric estimator with fixed bandwidth h. We also prove that our estimator is minimax (up to a $\ln^2(n)$ factor).

For this purpose, in analogy with [24], we use the equality
$$\lambda(x) = \nu(x) D(x)$$
where ν is the stationary density of pre-jump locations Y_k (see Assumption A2 for the existence of this stationary density) and D a function defined in equation (5). We get an estimator $\hat{D}_n(x)$, which converges with rate $n^{1/2}$. To estimate the density function ν, we use a projection method. We obtain a series of estimators ($\hat{\nu}_0, \hat{\nu}_1, \ldots, \hat{\nu}_m, \ldots$) of ν. Then we choose the "best" estimator by a penalization method, in the same way as Barron et al. [6], and give an oracle inequality for the adaptive estimator $\hat{\nu}_m$. The constant in the penalty term is intractable, but can be estimated thanks to a slope heuristic. Finally, we construct a quotient estimator of λ, $\hat{\lambda} = \hat{\nu}_m / \hat{D}_n$, and bound its L^2-risk.

In Section 2, we specify the model and its assumptions. The main results are stated in Section 3. Proofs are gathered in Section 4 and in Appendix A for the technical results. In Appendix B, some simulations for the TCP protocol and the bacterial growth are provided, with various functions λ. The outcomes are consistent with the theoretical results.

2. PDMP
A piecewise deterministic Markov process (PDMP) is defined by its local characteristics, namely, the jump rate λ, the flow ϕ and the transition measure Q according to which the location of the process is chosen after the jump. In this article, we consider a unidimensional PDMP $\{X(t)\}_{t \geq 0}$. More precisely,

Assumption A1.

(a) The flow $\phi: \mathbb{R}^+ \times \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is a one-parameter group of homeomorphisms: ϕ is C^1, for each $t \in \mathbb{R}^+$, $\phi(.,t)$ is an homeomorphism satisfying the semigroup property: $\phi(.,t+s) = \phi(\phi(.,s),t)$ and for each $x \in \mathbb{R}^+$, $\phi_x(.) := \phi(x,.)$ is an increasing C^1-diffeomorphism. This implies that $\phi(x,0) = x$.

(b) The jump rate $\lambda: \mathbb{R}^+ \rightarrow \mathbb{R}^+$ is a measurable function satisfying
$$\forall x \in \mathbb{R}^+, \exists \varepsilon' > 0 \text{ such that } \int_0^{\varepsilon'} \lambda(\phi(x,s)) \, ds < \infty$$
that is, the jump rate does not explode.
\[Q(x, \mathbb{R}^+ \setminus \{x\}) = 1. \]

For instance, we can take \(\phi(x,t) = x + ct \) (linear flow) or \(\phi(x,t) = x e^{ct} \) (exponential flow). The transition measure may be continuous with respect to the Lebesgue measure or deterministic \((Q(x, \{y\}) = 1_{y = f(x)}). \)

Given these three characteristics, it can be shown (Davis [13, p62-66]), that there exists a filtered probability space \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}, \{\mathbb{P}_x\})\) such that the motion of the process \(\{X(t)\}_{t \geq 0} \) starting from a point \(x_0 \in \mathbb{R}^+ \) may be constructed as follows. Consider a random variable \(T_1 \) with survival function

\[P(T_1 > t | X_0 = x_0) = e^{-\Lambda(x_0, t)}, \] where \(\Lambda(x, t) = \int_0^t \lambda(\phi(x, s)) ds. \) (1)

If \(T_1 \) is equal to infinity, then the process \(\{X(t)\}_{t \geq 0} \) follows the flow, i.e. for \(t \in \mathbb{R}^+ \),
\[X(t) = \phi(x_0, t). \] Otherwise let \(Y_1 = \phi(x_0, T_1^-) \) the pre-jump location and \(Z_1 \) the post-jump location. \(Z_1 \) is defined through the transition kernel \(Q \): \(P(Z_1 \in A | Y_1 = y) = \int_A Q(y, dz) \).

The trajectory of \(\{X(t)\} \) starting at \(x_0 \), for \(t \in [0, T_1] \), is given by
\[X(t) = \begin{cases} \phi(x_0, t) & \text{for } t < T_1, \\ Z_1 & \text{for } t = T_1. \end{cases} \]

Inductively starting from \(X(T_n) = Z_n \), we now select the next inter-jump time \(T_{n+1} - T_n \) and post-jump location \(X(T_{n+1}) = Z_{n+1} \) in a similar way. This construction properly defines a strong Markov process \(\{X(t)\}_{t \geq 0} \) with jump times \(\{T_k\}_{k \in \mathbb{N}} \) (where \(T_0 = 0 \)). A very natural Markov chain is linked to \(\{X(t)\}_{t \geq 0} \), namely the jump chain \(\{Y_n, Z_n\}_{n \in \mathbb{N}} \) (or, equivalently, \(\{T_n, Z_n\}_{n \in \mathbb{N}} \)).

Figure 1. Examples of simulations of processes \(\{X_t\}_{t \geq 0} \) and \(\{Z_k\}_{k \in \mathbb{N}} \)

TCP protocol Bacterial growth

\[\phi(x,t) = x + t, \quad Z_k = Y_k/2, \quad \lambda(x) = \sqrt{x} \]
\[\phi(x,t) = xe^t, \quad Z_k = Y_k U, \quad U \sim \beta(20,20), \quad \lambda(x) = x^2 \]

\(\cdot \) : process \(\{Z_k\}_{k \in \mathbb{N}} \) \(\cdot \) : process \(\{X(t)\}_{t \geq 0} \)
To simplify the notations, let us set $\phi_x(t) = \phi(x,t)$ and $z_0 = x_0$. By (1),
\[
\mathbb{P}(Y_1 > y|Z_0 = z_0) = \mathbb{P} \left(T_1 > (\phi_{x_0})^{-1}(y) \big| Z_0 = z_0 \right) = \exp \left(-\int_0^{(\phi_{x_0})^{-1}(y)} \lambda(\phi_{x_0}(s))ds \right) \mathbb{1}_{\{y \geq z_0\}}
\]
and by the change of variable $u = \phi_{x_0}(s)$ (we recall that for any $z \in \mathbb{R}^+$, ϕ_z is a monotonic function), we get
\[
\mathbb{P}(Y_1 > y|Z_0 = z_0) = \exp \left(-\int_{z_0}^y \lambda(u) (\phi_{x_0}^{-1})'(u)du \right) \mathbb{1}_{\{y \geq z_0\}}.
\] (2)

If the function $\lambda(y)(\phi_{x_0}^{-1})'(y)$ is finite, we obtain the conditional density:
\[
\mathcal{P}(z_0, y) := \lambda(y)(\phi_{x_0}^{-1})'(y)e^{-\int_{z_0}^y \lambda(u)(\phi_{x_0}^{-1})'(u)du} \mathbb{1}_{\{y \geq z_0\}}.
\] (3)

By analogy, we set $\mathcal{P}(z_0, dy) = \mathbb{P}(Y_1 \in dy|Z_0 = z_0)$. Our aim is to estimate the jump rate λ on the compact interval $I := [i_1, i_2] \subset (0, \infty)$. The ergodicity is often a keystone in statistical inference for Markov processes. We also assume fast convergence toward the stationary density.

Assumption A2.

a. The jump rate does not explode before i_2: for all $x \leq i_1$, $\int_0^{i_1} \lambda(y)(\phi_x^{-1})'(y)dy < \infty$ and $\sup_{y \in [i_1, i_2]} \lambda(y) < \infty$.

b. The process (Y_k, Z_k) is recurrent positive and strongly ergodic. We denote by ν the stationary measure of Y_k, by μ that of Z_k, by ρ the stationary measure of the couple (Y_k, Z_k) and by ξ that of (Z_k, Y_{k+1}). We have that:
\[
\mu(dz) = \int_{\mathbb{R}^+} \nu(dy)Q(y, dz) = \int_{\mathbb{R}^+} \rho(dy, dz), \quad \rho(dy, dz) = \nu(dy)Q(y, dz),
\]
\[
\nu(dy) = \int_{\mathbb{R}^+} \xi(dx, dy) = \int_{\mathbb{R}^+} \mathcal{P}(z, dy)\mu(dz), \quad \xi(dx, dy) = \mu(dz)\mathcal{P}(z, dy).
\] (4)

c. There exist a function V_λ greater than 1, two constants $\gamma \in [0, 1]$, $R \in \mathbb{R}^+$ such that, for any function $\psi : (\mathbb{R}^+)2 \to \mathbb{R}^+$, $|\psi| \leq V_\lambda$, for any integer k:
\[
|\mathbb{E}(\psi(Y_k, Z_k)|Z_0 = z_0) - \mathbb{E}_\rho(\psi(Y_1, Z_1))| \leq RV_\lambda(z_0)\gamma^k.
\]
The inequality $|\psi| \leq V_\lambda$ means that, for any $(y, z) \in (\mathbb{R}^+)2$, $|\psi(y, z)| \leq V_\lambda(z)$. This inequality is true in particular for any function ψ bounded by 1 and for $\psi(y, z) = V_\lambda(z)$.

Under Assumption A2a, the conditional measure \mathcal{P} is continuous with respect to the Lebesgue measure on $[0, i_2] \times [i_1, i_2]$ and $\sup_{x, y \in [0, i_2]} |x, y| \mathcal{P}(x, y) < \infty$. So is $y \to \nu(y)$:
\[\nu(dy) = \nu(y)dy.\] Moreover,

\[
\sup_{y \in [a, b]} \nu(y) = \sup_{y \in [a, b]} \int_{0}^{1} \mathcal{P}(z, y)\mu(dz) < \infty.
\]

We can also remark that, for any \(x > 0\), \(|E_{\mu}(V_{\lambda}(Z_1))| \leq V_{\lambda}(x) + RV_{\lambda}(x) < \infty\).

Let us set \(E_{\mu_0}(U) = E(U|Z_0 = z_0)\). Under Assumption A2, the empirical mean is close to its expectation under the stationary density, as shown by the following lemma (proved in the Appendix).

Lemma 1. Under Assumptions A1-A2, for any bounded function \(s:\)

\[
\left| E_{\mu_0} \left(\frac{1}{n} \sum_{k=1}^{n} s(Y_k, Z_k) \right) - \int s(y, z)\rho(dy, dz) \right| \leq \|s\|_\infty \frac{RV_{\lambda}(z_0)}{n(1 - \gamma)}
\]

and

\[
\text{Var}_{\mu_0} \left(\frac{1}{n} \sum_{k=1}^{n} s(Y_k, Z_k) \right) \leq \frac{1}{n} \int s^2(y, z)\rho(dy, dz) + \frac{\|s\|_\infty}{n} \int |s(y, z)|G_{\lambda}(z)\rho(dy, dz) + \frac{c_\lambda\|s\|_\infty^2}{n^2}
\]

where \(G_{\lambda}(z) = \frac{R}{1 - \gamma} (V_{\lambda}(z) + \int V_{\lambda}(u)\mu(du))\) and \(c_\lambda\) depends explicitly on \((\gamma, R, V_{\lambda})\).

We can remark that \(C_\lambda := \int G_{\lambda}(z)\mu(dz) = \frac{2R}{1 - \gamma} \int V_{\lambda}(z)\mu(dz)\).

In the bound of the variance, the first term is the same as for i.i.d variables. The second term is due to covariance terms (we found a similar term for stationary \(\beta\)-mixing processes), the third comes from the non-stationarity of the random vectors \((Y_k, Z_k)\).

To study an adaptive estimator of \(\nu\), we need to prove that the Markov chain \((Y_k, Z_k)\) is weakly dependent. It is the case if the process is \(\beta\)-mixing.

Definition 2. Let \((X_k)_{k \geq 0}\) be a Markov process. Let us define the \(\sigma\)-algebra

\[\mathcal{E}_a = \sigma\{X_{j_1} \in I_1, \ldots, X_{j_n} \in I_n\}, a \leq j_1 \leq \ldots \leq j_n \leq b, n \in \mathbb{N}, I_k \in \mathcal{B}(\mathbb{R}^+)\}.
\]

The \(\beta\)-mixing coefficient of the Markov chain \((X_k)\) is

\[\beta_X(t) = \sup_{\mathcal{E}} \sup_{\mathcal{E}_a^{\infty} \times \mathcal{E}_b^{\infty}} |P_{\mathcal{E}_a^{\infty} \times \mathcal{E}_b^{\infty}}(E) - P_{\mathcal{E}_a^{\infty} \times \mathcal{E}_b^{\infty}}(E)|\]

where \(P_{\mathcal{E} \times \mathcal{S}}\) is the joint law of an event on \(\mathcal{E} \times \mathcal{S}\). The \(\beta\)-mixing coefficient characterizes the dependence between what happens before \(T_k\) and what happens after \(T_{k+1}\). The process \((X_k)_{k \geq 0}\) is \(\beta\)-mixing if \(\lim_{k \to \infty} \beta_X(k) = 0\). It is exponentially (or geometrically) \(\beta\)-mixing if there exists two positive constants \(c, \beta\) such that \(\beta_X(k) \leq ce^{-\beta k}\).
The following lemma is a consequence of Assumption A2. It is proved in the Appendix.

Lemma 3. Under Assumptions A1-A2, the Markov chain \((Y_k, Z_k)\) is geometrically \(\beta\)-mixing. Moreover, its \(\beta\)-mixing coefficient satisfies: \(\forall k \in \mathbb{N}:\)

\[
\beta_{Y,Z}(k) \leq c \gamma^k \quad \text{where} \quad c = R \int V_\lambda(z) \mu(dz) + R(1 + R)V_\lambda(x_0).
\]

Estimating directly \(\lambda\) is difficult, but we can construct a quotient estimator. By (2) and (3), we get that, for any \(y \in I\),

\[
\lambda(y)(\phi_{z_0}^{-1})'(y) \mathbb{I}_{\{z_0 \leq y\}} \mathbb{P}(Y_1 > y | Z_0 = z_0) = \mathcal{P}(z_0, y)
\]

\[
\lambda(y) \mathbb{E} \left(\mathbb{I}_{\{z_0 \leq y < Y_1\}} (\phi_{z_0}^{-1})'(y) \big| Z_0 = z_0 \right) = \mathcal{P}(z_0, y)
\]

and we integrate with respect to the stationary distribution \(\mu\) of \(Z_0\)

\[
\lambda(y) \mathbb{E}_\xi \left((\phi_{Z_0}^{-1})'(y) \mathbb{I}_{\{Z_0 \leq y < Y_1\}} \right) = \int \mathcal{P}(z, y) \mu(dz) = \nu(y)
\]

recalling that \(\xi\) is the stationary measure of the couple \((Z_0, Y_1)\). Let us set

\[
D(y) := \mathbb{E}_\xi \left((\phi_{Z_0}^{-1})'(y) \mathbb{I}_{\{Z_0 \leq y < Y_1\}} \right).
\]

(5)

Then, if \(D(y) > 0\), we get:

\[
\lambda(y) = \frac{\nu(y)}{D(y)}.
\]

(6)

It remains to ensure that \(D(y) > 0\) on \(I = [i_1, i_2]\).

Assumption A3. There exists \(D_0 > 0\) such that

\[
\inf_{y \in I} D(y) \geq D_0 > 0.
\]

Remark. Assumption A3 is very natural; indeed, let us set \(\Phi_0 := \inf_{x \leq i_2, y \in I} (\phi_x^{-1})'(y)\).

As \(\phi_x\) is invertible, and \(\phi_x'(\cdot)\) is continuous, \(\Phi_0 > 0\). Then

\[
D(y) \geq \Phi_0 \mathbb{P}_\xi (Z_0 \leq y < Y_1).
\]

If the probability \(\mathbb{P}_\xi (Z_0 \leq y < Y_1)\) is null, then under the stationary distribution, the probability that \((X_t)\) passes through \(y\) is null and the jump rate at that point can not be measured.

We can remark that if \(D > 0\) for some point \(y\), then so is \(\mathbb{P}(1_{Z_0 \leq y < Y_1}) > 0\) and its estimator

\[
\hat{D}_n(y) = \frac{1}{n} \sum_{k=1}^{n} (\phi_{Z_k}^{-1})'(y) 1_{Z_{k-1} \leq y \leq Z_k} > 0.
\]
Then if we take an interval $[\hat{t}_1, \hat{t}_2]$ such that for some n, and some observation $(X_t)_{t\geq 0}, \hat{D}_n$ is positive on this interval, then Assumption A3 is satisfied on $[\hat{t}_1, \hat{t}_2]$. However, the true value of D_0 is unknown in that case. It should be noted that the interval $[\hat{t}_1, \hat{t}_2]$ should not be changed for each simulation, otherwise the convergence of the estimator on the whole interval can not be guaranteed (the interval of estimation would become larger and larger, and as D is smaller on the edges on the new interval, and the convergence of the estimator is therefore slower).

Assumptions A2 and A3 are not explicit in (λ, Q, ϕ), so it is not easy to check that a particular model satisfies those assumptions. We give some explicit sufficient conditions on the coefficients (λ, Q, ϕ). For the next assumption, we use the Hölder spaces H^α, as defined in Appendix A.4.

Assumption (S).

- a. The transition kernel is a contraction mapping: there exists $\kappa < 1$, such that $\mathbb{P}(Z_1 \leq \kappa Y_1) = 1$.
- b. The flow is bounded: there exist two functions m and M such that, $\forall x, y \in (\mathbb{R}^+)^2$:
 \[0 < m(y) \leq (\phi_y^{-1})'(y) \leq M(y). \]
- c. The jump rate is positive on $[i_1, \infty]$ and there exists $a > 0, b > -1$ such that
 \[\forall y \geq i_1, \quad \lambda(y)m(y) \geq \frac{a y^b}{b + 1}. \]
 Then $\forall y \geq z$, $\mathbb{P}_z(Y_1 \geq y) \leq \exp(-a(y^{b+1} - z^{b+1}))$ and $\lim_{y \to \infty} \mathbb{P}_z(Y_1 \geq y) = 0$.
- d. The jump rate does not explode too soon: there exist two positive constants L, κ, such that $\|\lambda\|_{L^\infty([i_1, i_2])} \leq L$ and $\int_0^{i_1} \lambda(u) M(u) du \leq L$ where
 \[i_2' = \max(i_2, (i_2 - i_1) + \left(\frac{1}{a(1 - \kappa b + 1)} \ln \left(\frac{2 \kappa b + 1}{1 - \kappa b + 1}\right)\right)^{1/(b+1)} \mathbb{I}_{\{\kappa b + 1 \geq 1/3\}}. \]
 These conditions ensure that Assumptions A2 and A3 are satisfied. The following two assumptions allow us to control the regularity of ν (the rate of convergence of the estimator $\hat{\lambda}_n$ depends on the regularity of ν, not on the regularity of λ).
- e. For any $y \in \mathbb{R}^+$, $\lambda(y) < \infty$. This ensures that ν and \mathcal{P} are continuous with respect to the Lebesgue measure on \mathbb{R}^+.
- f. There exists $\alpha > 0$ such that:
 - $\forall K \subset \mathbb{R}^{++}$ compact, $\forall z \in \mathbb{R}^+$, the function $(\phi_z^{-1})'(. \mid z)$ belongs to $H^\alpha([0, z] \times K)$.
 - $\forall K \subset \mathbb{R}^{++}$ compact, $\lambda \in H^\alpha(K)$.
 - The transition measure Q can be written
 \[Q(x, dy) = Q_1(x, y) dy + p_0(x)\delta_0(dy) + \sum_{i=1}^{j_Q} p_i(x)\delta_{f_i(z)}(dy) \]
with, for any compact K, Q_1 and $(p_i)_{0 \leq i \leq jQ}$ in $H^{\alpha - 1}(K)$, and $(f_i)_{1 \leq i \leq jQ}$ invertible functions such that $(f_i^{-1})_{1 \leq i \leq jQ} \in H^\alpha(K)$.

If Assumption (S) is satisfied, for fixed flow ϕ and transition measure Q, we can introduce the class of functions

$$E(s,b,\alpha) = \left\{ \lambda \in H^\alpha(J), \forall y \geq i_1, \lambda(y)m(y) \geq \frac{ay^b}{b+1}, \int_0^{i_1} \lambda(u)M(u) \leq 1, \|\lambda\|_{H^{\alpha}(J)} \leq L \right\}$$

with $s = (a,1,L) \in (\mathbb{R}^+)^3$ and the convex set

$$J = J_{[\alpha]} \cup [i_1,i_2] := [j_1,j_2]$$

is defined by the recurrence:

$$J_0 = I \quad \text{and} \quad J_{k+1} = \text{Conv} \left(I \cup \bigcup_{i=1}^{jQ} f_i^{-1}(J_k) \right).$$

The following lemmas are proved in the Appendix.

Lemma 4. Under Assumptions A1 and (S)

a. Assumption A2 is satisfied for $\forall \nu_b(x) := \exp(\alpha x^{b+1})$: there exists R, γ, for any function $|\psi| \leq \nu_b$,

$$\sup_{\lambda \in E(s,b,\alpha)} \left| E_{\gamma_b}(\psi(Y_k,Z_k)) - E_{\rho}(\psi(Y_0,Z_0)) \right| \leq RV_b(z_0) y^k$$

recalling that the inequality $|\psi| \leq \nu_b$ means that, for any $(y,z) \in (\mathbb{R}^+)^2$, $|\psi(y,z)| \leq \nu_b(z)$.

b. Assumption A3 is satisfied. Moreover, there exists $\eta > 0$, $D_0 > 0$ such that

$$\inf_{\lambda \in E(s,b,\alpha)} \mu([0,i_1]) \geq \eta \quad \text{and} \quad \inf_{\lambda \in E(s,b,\alpha)} \inf_{y \in I} D(y) \geq D_0.$$

Lemma 5. If Assumptions A1 and (S) are satisfied, we can control the regularity of ν:

$$\|\nu\|_{H^{\alpha}(I)} \leq \psi_Q \left(\|\lambda\|_{H^{\alpha}(J)}, \|\phi^{-1}\|_{H^{\alpha}([0,j_2] \times J)} \right)$$

with $J = [j_1,j_2]$ defined in (7).

Remark. In [24], the author introduces the set of functions $F(c,b)$ with very similar conditions. As she considers a transition measure Q deterministic, the sets $F(c,b)$ and $E(s,b,\alpha) \cap H^{\alpha}$ may not be equal. In particular, if $\lambda \in E(s,b,\alpha)$, then there exists c such that $\lambda \in F(c,b) \cap H^{\alpha}$. On the contrary, if λ belongs to $F(c,b) \cap H^{\alpha}$ and the deterministic transition f is $f(x) = cx$, then for i_1 large enough, there exists s such that $\lambda \in E(s,b,\alpha)$. This is no longer the case if, for instance, $f(x) \propto x^d$. As the transition measure Q is unknown, it is not possible to exploit its characteristics.

Another difference between the two sets is that λ is estimated on the fixed interval $[i_1,i_2]$ and the assumptions depends on (i_1,i_2), whereas in [24], the interval of estimation depends on the set $F(c,b)$.

Note: The text is a transcription of the content, ensuring that all mathematical symbols and structures are accurately represented. It is formatted to maintain the natural flow of the document, adhering to standard mathematical notation and conventions.
3. Estimation of the jump rate

3.1. The observation scheme

As in [3] and [24], the statistical inference is based on the observation scheme \((X(t), t \leq T_n)\) and asymptotics are considered when the number of jumps of the process, \(n\), goes to infinity. Actually the simpler observation scheme: \((X(0), (X(T_i), X(T_{i+1})), 1 \leq i \leq n) = (Z_0, (Y_i, Z_i), 1 \leq i \leq n)\) is sufficient, as \(\phi\) is known and one can remark that for all \(n \geq 1, T_n = \phi^{-1}_{Z_n - 1}(Y_n)\).

3.2. Methodology

[24] and [3] construct a pointwise kernel estimator of \(\nu\) before deriving an estimator of \(\lambda\). Indeed, densities are often approximated by kernels methods (see Tsybakov [30] for instance). If the kernel is positive, the estimator is also a density. However, we want to control the \(L^2\) risk of our estimator (not the pointwise risk), and also to construct an adaptive estimator. Estimators by projection are well adapted for \(L^2\) estimation: if they are longer to compute at a single point than pointwise estimators, it is sufficient to know the estimated coefficients to construct the whole function. Furthermore, to find an adaptive estimator, we minimize a function of the norm of our estimator, that is the sum of the square of the coefficients, and the dimension. That is the reason why we choose an estimation by projection.

We first aim at estimating \(\nu\) on the compact set \(I\). We construct a sequence of \(L^2\) estimators by projection on an orthonormal basis. As usual in nonparametric estimation, their risks can be decomposed in a variance term and a bias term which depends of the regularity of the density function \(\nu\). We choose to use the Besov spaces (see Section A.4) to characterize the regularity, which are well adapted to \(L^2\) estimation (particularly for the wavelet decomposition). The "best" estimator is then selected by penalization. To construct the sequence of estimators, we introduce a sequence of vectorial subspaces \(S_m\).

We construct an estimator \(\hat{\nu}_m\) of \(\nu\) on each subspace and then select the best estimator \(\hat{\nu}_{\hat{m}}\).

Assumption A4.

\(a\). The subspaces \(S_m\) are increasing and have finite dimension \(D_m\).

\(b\). The \(L^2\)-norm and the \(L^\infty\)-norm are connected:

\[\exists \psi_1 > 0, \forall m \in \mathbb{N}, \forall s \in S_m, \quad \|s\|^2_{\infty} \leq \psi_1 D_m \|s\|^2_{L^2}. \]

This implies that, for any orthonormal basis \((\varphi_l)\) of \(S_m\),

\[\left\| \sum_{l=1}^{D_m} \varphi_l^2 \right\|_{\infty} \leq \psi_1 D_m. \]
c. There exists a constant $\psi_2 > 0$ such that, for any $m \in \mathbb{N}$, there exists an orthonormal basis φ_1 such that:

$$\left\| \sum_{l=1}^{D_m} \| \varphi_l \|_\infty |\varphi_l(x)| \right\|_\infty \leq \psi_2 D_m.$$

d. There exists $r \in \mathbb{N}$, called the regularity of the decomposition, such that:

$$\exists C > 0, \forall \alpha \leq r, \forall s \in B_{2,\infty}^r, \quad \| s - s_m \|_{L^2} \leq C D_m^{-\alpha} \| s \|_{B_{2,\infty}^r}$$

where s_m is the orthogonal projection of s on S_m and $B_{2,\infty}^r$ is a Besov space (see Appendix A.4).

Conditions a, b and d are usual (see Comte et al. [12, section 2.3] for instance). They are satisfied for subspaces generated by wavelets, piecewise polynomials or trigonometric polynomials (see DeVore and Lorentz [15] for trigonometric polynomials and piecewise polynomials and Meyer [27] for wavelets). Condition c is necessary because we are not in the stationary case; it helps us to control some covariance terms. It is obviously satisfied for bounded bases (trigonometric polynomials), and localized bases (piecewise polynomials). Let us prove it for a wavelet basis. Let φ be a father wavelet function, then $D_m = 2^m$ and $\varphi_l(x) = 2^{m/2} \varphi(2^m x - l)$. We get that $\left\| \sum_{l=1}^{D_m} \| \varphi_l \|_\infty |\varphi_l(x)| \right\|_\infty \leq 2^m \| \varphi \|_\infty \left\| \sum_{l \in \mathbb{Z}} |\varphi(x - l)| \right\|_\infty$. As φ is at least 0-regular, for $m = 2$, there exists a constant C such that $|\varphi(x)| \leq C (1 + |x|^{-2})$. Then $\sup_x \sum_{l \in \mathbb{Z}} |\varphi(x - l)| \leq C \sup_x \sum_{l \in \mathbb{Z}} (1 + |x - l|^{-2}) < \infty$ and condition c is satisfied.

3.3. Estimation of the stationary density

Let us now construct an estimator $\hat{\nu}_m$ of ν on the vectorial subspace S_m. We consider an orthonormal basis (φ_l) of S_m, satisfying Assumption A4. Let us set

$$a_l = \langle \varphi_l, \nu \rangle = \int_I \varphi_l(x) \nu(x) dx \quad \text{and} \quad \nu_m(x) = \sum_{l=1}^{D_m} a_l \varphi_l(x).$$

The function ν_m is the orthogonal projection of ν on $L^2(I)$. We consider the estimator

$$\hat{\nu}_m(x) = \sum_{l=1}^{D_m} \hat{a}_l \varphi_l(x) \quad \text{with} \quad \hat{a}_l = \frac{1}{n} \sum_{k=1}^{n} \varphi_l(Y_k).$$

Proposition 6. If $D_m^2 \leq n$, under Assumptions A1-A2 and A4,

$$\mathbb{E}_{\nu} \left(\| \hat{\nu}_m - \nu \|^2_{L^2(I)} \right) \leq \| \nu_m - \nu \|^2_{L^2(I)} + (\psi_1 + C_\lambda \psi_2) \frac{D_m}{n} + \frac{c}{n}$$

where $C_\lambda = \frac{2R}{1-\gamma} \int V_\lambda(z) \mu(dz)$ and c depends explicitly on V_λ, γ, R.

Adaptive jump estimation for PDMP 11
When m increases, the bias term decreases whereas the variance term increases. It is important to find a good bias-variance compromise. If ν belongs to the Besov space $B_{2,\infty}^\alpha(I)$, then $\|\nu_m - \nu\|_{L^2(I)}^2 \leq C \|\nu\|_{B_{2,\infty}^\alpha(I)} D_m^{-2\alpha}$ (see Assumption A4d). If $\alpha \geq 1/2$, the risk is then minimum for $D_m = n^{1/(2\alpha + 1)}$ and we have, for some continuous function ψ:

$$
\mathbb{E}_{Z_0} \left(\|\nu_{m_{\text{opt}}} - \nu\|_{L^2(I)}^2 \right) \leq \psi \left(\|\nu\|_{B_{2,\infty}^\alpha(I)}, \mathbf{V}_\lambda, R, \gamma \right) n^{-2\alpha/(2\alpha + 1)}.
$$

This is the usual nonparametric convergence rate (see Tsybakov [30]). If $\alpha < 1/2$, the risk is minimum for $D_m = n^{1/2}$ and the bias term is greater than the variance term.

We can remark that a piecewise continuous function belongs to $B_{2,\infty}^{1/2}$.

Let us now construct the adaptive estimator. We compute $(\hat{\nu}_0, \ldots, \hat{\nu}_m, \ldots)$ for $m \in \mathcal{M}_n = \{m, D_m^2 \leq n\}$. Our aim is to select automatically m, without knowing the regularity of the stationary density ν. Let us introduce the contrast function $\gamma_n(s) = \|s\|_{L^2}^2 - \frac{2}{n} \sum_{k=1}^n s(Y_k)$. If $s \in S_m$, then we can write $s = \sum b_l \varphi_l$ and

$$
\gamma_n(s) = \sum_{l=1}^{D_m} b_l^2 - \sum_{l=1}^{D_m} b_l \frac{2}{n} \sum_{k=1}^n \varphi_l(Y_k).
$$

The minimum is obtained for $b_l = \hat{a}_l = \frac{1}{n} \sum_{k=1}^n \varphi_l(Y_k)$. Therefore

$$
\hat{\nu}_m = \arg \min_{s \in S_m} \gamma_n(s). \quad (8)
$$

As the subspaces S_m are increasing, the function $\gamma_n(\hat{\nu}_m)$ decreases when m increases. To find an adaptive estimator, we need to add a penalty term $\text{pen}(m)$. Let us set $\text{pen}(m) = \frac{48(\psi_1 + C_\lambda \psi_2)D_m}{n} + \frac{48C_\lambda \psi_1 n}{n}$ (or more generally $\text{pen}(m) = \frac{2D_m}{n} + \frac{\sigma}{n}$, with $\sigma \geq 48(\psi_1 + C_\lambda \psi_2)$, $\sigma' \geq 48C_\lambda \psi_1$) and choose

$$
\hat{m} = \arg \min_{m \in \mathcal{M}_n} \gamma_n(\hat{\nu}_m) + \text{pen}(m). \quad (9)
$$

We obtain an adaptive estimator $\hat{\nu}_{\hat{m}}$.

Theorem 7 (Risk of the adaptive estimator). Under Assumptions A1-A2 and A4,

$$
\forall \sigma \geq 48(\psi_1 + C_\lambda \psi_2), \sigma' \geq 48C_\lambda \psi_1, \text{pen}(m) = \frac{2D_m}{n} + \frac{\sigma}{n},
$$

$$
\mathbb{E}_{Z_0} \left(\|\nu - \hat{\nu}_{\hat{m}}\|_{L^2(I)}^2 \right) \leq \min_{m \in \mathcal{M}_n} \left(3 \|\nu_m - \nu\|_{L^2(I)}^2 + 4\text{pen}(m) \right) + \frac{\epsilon'}{n},
$$

where ϵ' is a function of $(\mathbf{V}_\lambda, R, \gamma, \|\nu\|_{L^2(I)})$. We recall that $\mathcal{M}_n = \{m, D_m^2 \leq n\}$.

The estimator is adaptive: it realizes the best bias-variance compromise, up to a multiplicative constant. We have an explicit rate of convergence if ν belongs to some (unknown) Besov space $B_{2,\infty}^\alpha$: in that case,

$$
\|\nu - \nu_{m_{\text{opt}}}\|_{L^2(I)}^2 \leq 3 \|\nu_{m_{\text{opt}}} - \nu\|_{L^2(I)}^2 + 4\text{pen}(m_{\text{opt}}) + \frac{\epsilon}{n} \leq C \|\nu\|_{B_{2,\infty}^\alpha} D_m^{-2\alpha}
$$

and if $\alpha \geq 1/2$,
\[\mathbb{E}_{z_0} \left(\|\nu - \hat{\nu}_m\|^2_{L^2(X)} \right) \leq \psi \left(\|\nu\|_{B^2_{\infty}(X)}, \mathbf{V}_\lambda, R, \gamma \right) n^{-2\alpha/(2\alpha+1)} \]
for some continuous function ψ.

3.4. Estimation of the jump rate

By (6), we have
\[\lambda(y) = \frac{\nu(y)}{D(y)} \]
recalling that
\[D(y) = \mathbb{E}_\xi \left((\phi_{Z_0}^{-1})'(y) \mathbb{I}_{\{Z_0 \leq y \leq Y_1\}} \right) \]
where ξ is the stationary measure of (Z_k, Y_{k+1}).

Remark. We notice that this formula is different as the one used in [24]
\[\lambda(y) = \frac{f(\nu(y))}{\tilde{D}(y)} \]
where
\[\tilde{D}(y) := \mathbb{E}_\nu \left((f \circ \phi_{Z_0}^{-1})'(f(y)) \mathbb{I}_{\{f(Z_0) \leq f(y)\}} \mathbb{I}_{\{Z_1 \geq f(y)\}} \right). \]
As in [24], the author works under the assumption that $Q(x, \{y\}) = \mathbb{I}_{\{y = f(x)\}}$, the study was easier, here we need to consider the Markov chain $(Y_k, Z_k)_{k \in \mathbb{N}}$.

To estimate the jump rate, we construct a quotient estimator. Let us consider the estimator
\[\hat{\lambda}_n(y) = \frac{\hat{\nu}_m(y)}{\tilde{D}_n(y)} \mathbb{I}_{\{\hat{\nu}_m(y) \geq 0\}} \mathbb{I}_{\{\tilde{D}_n(y) \geq \ln(n) - 1\}} \]
where
\[\tilde{D}_n(y) := \frac{1}{n} \sum_{k=1}^{n} (\phi_{Z_{k-1}}^{-1})'(y) \mathbb{I}_{\{Z_{k-1} \leq y \leq Y_k\}}. \]

Remark. As the process $\{X(t)\}$ is observed continuously without errors, ϕ^{-1} (and therefore $(\phi^{-1})'$) is known on $\cup_k [Z_{k-1}, Y_k]$ so $\tilde{D}_n(y)$ is computable.

The estimator $\hat{\lambda}_n$ converges with nearly the same rate of convergence as $\hat{\nu}$:

Theorem 8. Under A1-A4, as soon as $\ln(n)^{-1} \leq D_0/2$,
\[\mathbb{E}_{Z_0} \left(\left\| \hat{\lambda}_n - \lambda \right\|^2_{L^2(X)} \right) \leq 3 \ln^2(n) \mathbb{E}_{Z_0} \left(\left\| \hat{\nu}_m - \nu \right\|^2_{L^2(X)} \right) + c'_\lambda \frac{\ln^2(n)}{n} \]
\[\leq 3 \ln^2(n) \min_{m \in \mathcal{M}} \left\{ 3 \left\| \hat{\nu}_m - \nu \right\|^2_{L^2(X)} + 4pen(m) \right\} + c'_\lambda \frac{\ln^2(n)}{n} \]
where
\[c'_\lambda = \Phi_1^2 + \frac{C_\lambda}{D_0^2} \left(3\|\lambda\|^2_{L^2(I)} + 12\|\nu\|^2_{L^2(I)} \right), \quad \Phi_1 = \sup_{x \in [0, i], y \in I} (\phi_x^{-1}(y)). \]

The bias term depends on the regularity of the stationary density \(\nu \), not on the regularity of \(\lambda \). If we consider \(\lambda \) and \(\nu \) as functions of a Besov space, their regularities are not related: the Besov spaces are not stable by product (as they are subspaces of \(L^2(I) \)).

We would like to link the rate of convergence of \(\hat{\lambda}_n \) to the regularity of \(\lambda \) rather than \(\nu \), at least when \(\lambda \in \mathcal{E}(s, b, \alpha) \). In that case, \(\lambda \) belong to some Hölder space, which is stable by product, composition and integration. See Appendix A.4 for the definition and properties of Besov and Hölder spaces. We obtain the following corollary:

Corollary 9. Under A1, (S) and A4, as soon as \(\ln(n)^{-1} \leq D_0/2 \), for any \(\alpha \geq 1/2 \),
\[
\sup_{\lambda \in \mathcal{E}(s, b, \alpha)} \mathbb{E}_{\mathcal{Z}_0} \left(\left\| \hat{\lambda}_n - \lambda \right\|^2_{L^2(I)} \right) \lesssim \ln^2(n)n^{-2\alpha/(2\alpha+1)}.
\]

Remark. [24] obtain the same rate of convergence for a kernel estimator (with the regularity of \(\lambda \) known).

3.5. Minimax bound for the estimator of the jump rate

We have proved that, under assumptions A1, (S) and A4,
\[
\sup_{\lambda \in \mathcal{E}(s, b, \alpha)} \mathbb{E}_{\mathcal{Z}_0} \left(\left\| \hat{\lambda}_n - \lambda \right\|^2_{L^2(I)} \right) \lesssim \ln^2(n)n^{-2\alpha/(2\alpha+1)}.
\]

We would like to verify that our estimator converges with the minimax rate of convergence, i.e.
\[
\inf_{\hat{\lambda}_n} \sup_{\lambda \in \mathcal{E}(s, b, \alpha)} \mathbb{E}_{\mathcal{Z}_0} \left(\left\| \hat{\lambda}_n - \lambda \right\|^2_{L^2(I)} \right) \geq C \ln^2(n)n^{-2\alpha/(2\alpha+1)}.
\]

The \(\ln^2(n) \) factor comes from the quotient estimator, we can not expect it will stay in the minimax bound. Indeed, it is clear that one could replace \(\ln^{-1}(n) \) in (11) by any function \(w(n) \) greater than \(D_0/2 \). The best estimator will be obtained of course by taking \(w(n) = D_0/2 \) and the risk of this estimator (unreachable as \(D_0 \) is unknown) will be proportional to \(n^{-2\alpha/(2\alpha+1)} \).

Theorem 10 (Minimax bound). If A1, (S) and A4 are satisfied, then
\[
\inf_{\hat{\lambda}_n} \sup_{\lambda \in \mathcal{E}(s, b, \alpha)} \mathbb{E}_{\mathcal{Z}_0} \left(\left\| \hat{\lambda}_n - \lambda \right\|^2_{L^2(I)} \right) \geq C n^{-2\alpha/(2\alpha+1)}
\]
where the infimum is taken among all estimators.
4. Proofs

Lemmas 1, 3, 4 and 5 are proved in the Appendix.

4.1. Proof of Proposition 6

We have the following bias-variance decomposition:

$$
\mathbb{E}_{z_0} \left(\| \nu - \hat{\nu}_m \|^2_{L^2(I)} \right) = \int_I \mathbb{E}_{z_0} \left((\nu(x) - \hat{\nu}_m(x))^2 \right) dx
$$

$$
= \int_I (\nu(x) - \mathbb{E}_{z_0} (\hat{\nu}_m(x)))^2 dx + \int_I \text{Var}_{z_0} (\hat{\nu}_m(x)) dx
$$

$$
= \| \mathbb{E}_{z_0} (\hat{\nu}_m) - \nu \|^2_{L^2(I)} + \int_I \text{Var}_{z_0} (\hat{\nu}_m(x)) dx.
$$

The estimator $\hat{\nu}_m$ (and therefore its expectation $\mathbb{E}_{z_0} (\hat{\nu}_m)$) belongs to the subspace S_m.

Then, by orthogonality

$$
\mathbb{E}_{z_0} \left(\| \nu - \hat{\nu}_m \|^2_{L^2(I)} \right) = \| \nu - \nu_m \|^2_{L^2(I)} + \| \mathbb{E}_{z_0} (\hat{\nu}_m) - \nu_m \|^2_{L^2(I)} + \int_I \text{Var}_m (\hat{\nu}_m(x)) dx.
$$

The first terms are two terms of bias, the third is a variance term. Let us first bound the second term of bias. As the functions $(\varphi_l)_{1 \leq l \leq D_m}$ form an orthonormal basis of S_m, we have

$$
\left\| \mathbb{E}_{z_0} (\hat{\nu}_m) - \nu_m \right\|_{L^2(I)}^2 = \sum_{l=1}^{D_m} \left(\mathbb{E}_{z_0} (\hat{\varphi}_l) - \alpha_l \right)^2
$$

$$
= \sum_{l=1}^{D_m} \left(\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}_{z_0} (\varphi_l(Y_k)) - \int_I \varphi_l(x) \nu(x) dx \right)^2.
$$

By Lemma 1,

$$
\left| \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}_{z_0} (\varphi_l(Y_k)) - \int_I \varphi_l(x) \nu(x) dx \right| \leq \| \varphi_l \|_{\infty} \frac{R \lambda \nu(z_0)}{n(1 - \gamma)}.
$$

As the L^2 and the L^∞-norms are connected (see Assumption A4b), $\| \varphi_l \|_{\infty} \leq \psi_1 D_m$ and, since $D_m^2 \leq n$, we get:

$$
\left\| \mathbb{E}_{z_0} (\hat{\nu}_m - \nu_m) \right\|_{L^2(I)}^2 \leq \sum_{l=1}^{D_m} \frac{\| \varphi_l \|_{\infty}^2 R^2 \lambda \nu(z_0)}{n^2 (1 - \gamma)^2} \leq \psi_1 \frac{D_m^2}{n^2} \frac{R^2 \lambda \nu(z_0)}{(1 - \gamma)^2} \leq \psi_1 \frac{1}{n} \frac{R^2 \lambda \nu(z_0)}{(1 - \gamma)^2}.
$$
Let us now consider the variance term. As the functions \(\varphi_i \) form an orthonormal basis of \(S_m \), the integrated variance of \(\hat{\nu}_m \) is the sum of the variances of the coefficients \(\hat{a}_\lambda \):

\[
\int \text{Var}_{z_0} (\hat{\nu}_m (x)) \, dx = \int \text{Var}_{z_0} \left(\sum_{l=1}^{D_m} \hat{a}_l \varphi_l (x) \right) \, dx = \sum_{k,l} \text{Cov}_{z_0} (\hat{a}_k, \hat{a}_l) < \varphi_l, \varphi_k >_{L^2(\mathcal{I})}
\]

\[
= \sum_{l=1}^{D_m} \text{Var}_{z_0} (\hat{a}_l).
\]

By Lemma 1, as \(\int_{\mathbb{R}^+} \rho(x, dz) = \nu(x) \), we get:

\[
\text{Var}_{z_0} (\hat{a}_l) = \text{Var}_{z_0} \left(\frac{1}{n} \sum_{i=1}^{n} \varphi_i (Y_k) \right)
\]

\[
\leq \frac{1}{n} \int \varphi_i^2 (x) \nu(x) \, dx + \frac{\|\varphi_i\|_{\infty}}{n} \int_{\mathbb{R}^+} |\varphi_i(x)| G_\lambda (z) \rho(dx, dz) + \frac{c_\lambda \|\varphi_i\|_{\infty}^2}{n^2}.
\]

By Assumptions A4b and c, \(\forall x, \sum_{l=1}^{D_m} \varphi_l^2 (x) \leq \psi_1 D_m, \sum_{l=1}^{D_m} \|\varphi_l\|_{\infty} |\varphi_l(x)| \leq \psi_2 D_m \) and \(\sum_{l=1}^{D_m} \|\varphi_l\|_{\infty}^2 \leq \psi_1 D_m^2 \leq \psi_1 n \). Therefore:

\[
\int \text{Var}_{z_0} (\hat{\nu}_m (x)) \, dx = \sum_{l=1}^{D_m} \text{Var}_{z_0} (\hat{a}_l) \leq (\psi_1 + C_\lambda \psi_2) \frac{D_m}{n} + \frac{c_\lambda}{n} \psi_1 \tag{12}
\]

where \(C_\lambda = \int G_\lambda (z) \mu(dz) = \frac{2M}{1-\gamma} \int_{\mathcal{I}} V_\lambda (z) \mu(dz) \) and \(c_\lambda \) depends only on \(V_\lambda, R \) and \(\gamma \).

4.2. Proof of Theorem 7

The number of coefficients in the adaptive estimator is random. If we are still able to control easily the bias term, we can not simply control the variance of our estimator by adding the variances of its coefficients. For any \(m \in \mathcal{M}_\alpha \), by definition of \(\hat{m} \) (see (8) and (9)), we have the following inequality:

\[
\gamma_n (\hat{\nu}_m) \leq \gamma_n (\nu_m) + \text{pen}(m) - \text{pen}(\hat{m}) \leq \gamma_n (\nu_m) + \text{pen}(m) - \text{pen}(\hat{m}),
\]

with \(\gamma_n (s) = \|s\|_{L^2(\mathcal{I})}^2 - 2n^{-1} \sum_{k=1}^{n} s(Y_k) \). Then

\[
\|\hat{\nu}_m\|_{L^2(\mathcal{I})}^2 \leq \|\nu_m\|_{L^2(\mathcal{I})}^2 + \text{pen}(m) - \text{pen}(\hat{m}) + \frac{2}{n} \sum_{k=1}^{n} (\hat{\nu}_m (Y_k) - \nu_m (Y_k)). \tag{13}
\]

We have that, for any function \(s \in L^2(\mathcal{I}), \|s\|_{L^2(\mathcal{I})}^2 = \|s - \nu\|_{L^2(\mathcal{I})}^2 - \|\nu\|_{L^2(\mathcal{I})}^2 + 2 \int_{\mathcal{I}} s(x) \nu(x) \, dx \). We apply this equality to \(\hat{\nu}_m \) and \(\nu_m \). Equation (13) becomes:

\[
\|\hat{\nu}_m - \nu\|_{L^2(\mathcal{I})}^2 \leq \|\nu_m - \nu\|_{L^2(\mathcal{I})}^2 + \text{pen}(m) - \text{pen}(\hat{m})
\]

\[
+ \frac{2}{n} \sum_{k=1}^{n} (\hat{\nu}_m (Y_k) - \nu_m (Y_k)) - 2 \int_{\mathcal{I}} (\hat{\nu}_m (x) - \nu_m (x)) \nu(x) \, dx.
\]
The function $\hat{\nu}_m - \nu_m$ belongs to the vectorial subspace $S_m + S_m$. Therefore:

$$
\|\hat{\nu}_m - \nu\|^2_{L^2(I)} \leq \|\nu_m - \nu\|^2_{L^2(I)} + \text{pen}(m) - \text{pen}(\hat{m})
$$

$$
+ 2 \|\hat{\nu}_m - \nu_m\|^2_{L^2(I)} \sup_{s \in B_{m,n}} \left| \sum_{k=1}^{n} \frac{1}{n} s(Y_k) - \int_{I} s(x)\nu(x)dx \right|
$$

where $B_{m,n} = \{ s \in S_m + S_m, \|s\|_{L^2(I)} = 1 \}$. As the sequence (S_m) is increasing, $S_m + S_m$ is simply the largest of the two subspaces. By the inequality of arithmetic and geometric means,

$$
\|\hat{\nu}_m - \nu\|^2_{L^2(I)} \leq \|\nu_m - \nu\|^2_{L^2(I)} + \text{pen}(m) - \text{pen}(\hat{m}) + \frac{1}{4} \|\hat{\nu}_m - \nu_m\|^2_{L^2(I)}
$$

$$
+ \sup_{s \in B_{m,n}} 4 \left\{ \frac{1}{n} \sum_{k=1}^{n} s(Y_k) - \int_{I} s(x)\nu(x)dx \right\}^2
$$

By the triangular inequality, $\|\hat{\nu}_m - \nu_m\|^2_{L^2(I)} \leq 2 \|\hat{\nu}_m - \nu\|^2_{L^2(I)} + 2 \|\nu_m - \nu\|^2_{L^2(I)}$, and:

$$
\|\hat{\nu}_m - \nu\|^2_{L^2(I)} \leq 3 \|\nu_m - \nu\|^2_{L^2(I)} + 2\text{pen}(m) - 2\text{pen}(\hat{m})
$$

$$
+ 8 \sup_{s \in B_{m,n}} \left(\frac{1}{n} \sum_{k=1}^{n} s(Y_k) - \int_{I} s(x)\nu(x)dx \right)^2
$$

We can decompose the last term in a bias term and a variance term. Let us set:

$$
I_n(s) := \frac{1}{n} \sum_{k=1}^{n} s(Y_k) - \mathbb{E}_{z_0} (s(Y_k)), J_n(s) := \frac{1}{n} \sum_{k=1}^{n} \left(\mathbb{E}_{z_0} (s(Y_k)) - \int_{I} s(x)\nu(x)dx \right)
$$

(14)

and $p(m, m') := (\text{pen}(m) + \text{pen}(m'))/8$. Then:

$$
\mathbb{E}_{z_0} \left(\|\hat{\nu}_m - \nu\|^2_{L^2(I)} \right) \leq 3 \|\nu_m - \nu\|^2_{L^2(I)} + 4\text{pen}(m)
$$

$$
+ 16\mathbb{E}_{z_0} \left(\sup_{s \in B_{m,n}} I_n^2(s) + J_n^2(s) \right) - 16p(m, \hat{m}).
$$

(15)

By Assumption A4b, $s \in B_{m,n}$ implies that $\|s\|_{\infty}^2 \leq \psi_1(D_m + \hat{D}_m) \leq 2\psi_1 n^{1/2}$ (we recall that D_m and $D_{\hat{m}}$ are smaller than $n^{1/2}$). Then by Lemma 1,

$$
\sup_{s \in B_{m,n}} J_n^2(s) \leq \sup_{s \in B_{m,n}} \frac{R^2\mathbb{V}^2_{z}(z_0) \|s\|^2_{\infty}}{n^2(1 - \gamma)^2} \leq \frac{4\psi_1^2 R^2\mathbb{V}^2_{z}(z_0)}{n(1 - \gamma)^2}.
$$

(16)

It remains to bound $\mathbb{E}_{z_0} \left(\sup_{s \in B_{m,n}} I_n^2(s) - p(m, \hat{m}) \right)$. The unit ball $B_{m,n}$ is random.

We can not bound $I_n^2(s)$ on it, we have to control the risk on the fixed balls $B_{m,m'}$. We
can write:
\[E_{z_0} \left(\sup_{s \in \mathcal{B}_{m,m'}} I_n^2(s) - p(m, m') \right) \leq \sum_{m,m' \in \mathcal{M}} E_{z_0} \left(\sup_{s \in \mathcal{B}_{m,m'}} I_n^2(s) - p(m, m') \right) + \] (17)

The Markov chain \((Y_1, \ldots, Y_n)\) is exponentially \(\beta\)-mixing with \(\beta\)-mixing coefficient \(\beta_Y(k) \leq c \gamma^k e^{-b_k k} \). The following lemma is deduced from the Berbee’s coupling lemma and a Talagrand inequality. It is proved in the appendix.

Lemma 11 (Talagrand’s inequality for \(\beta\)-mixing variables). Let \(Y_1, \ldots, Y_n\) be a Markov chain exponentially \(\beta\)-mixing, with \(\beta\)-mixing coefficient \(\beta_Y(k) \leq c \gamma^k e^{-b_k k} \). We choose \(q_n := c_q \ln(n)\) with \(c_q \geq 2/b_0\), \(p_n = n/(2q_n)\). We have that \(\beta_Y(q_n) \leq c \gamma^2 \ln(n) \leq n^{-2}\). Let us consider
\[I_n(s) = \frac{1}{n} \sum_{k=1}^n s(Y_k) - E_{z_0} \left(s(Y_k) \right) . \]

If we can find a triplet \((M_2, V \text{ and } H)\) such that:
\[\forall i, \sup_{s \in \mathcal{B}_{m,m'}} \text{Var}_{z_0} \left(\frac{1}{q_n} \sum_{k=1}^{q_n+i} s(Y_k) \right) \leq \frac{V}{q_n}, \]
\[\sup_{s \in \mathcal{B}_{m,m'}} \|s\|_\infty \leq M_2 \text{ and } E_{z_0} \left(\sup_{s \in \mathcal{B}_{m,m'}} |I_n(s)| \right) \leq \frac{H}{\sqrt{n}} , \]
then we have:
\[E_{z_0} \left(\sup_{s \in \mathcal{B}_{m,m'}} |I_n^2(s) - 6H^2| \right) \leq K_1 \frac{V}{n} \exp \left(-k_1 \frac{H^2}{V} \right) + K_2 \frac{M_2^2}{p_n} \exp \left(-k_2 \frac{\sqrt{p_n} H}{\sqrt{q_n} M_2} \right) + 2 \frac{M_2^2}{n^2} \]

where \(K_1, K_2, k_1\) and \(k_2\) are universal constants.

For the sake of simplicity, let us set \(D = D_m + D_{m'}\) and \(\mathcal{B} = \mathcal{B}_{m,m'}\). By Assumption A4b,
\[\sup_{s \in \mathcal{B}} \|s\|_\infty \leq \sup_{s \in \mathcal{B}} \psi_1^{1/2} D^{1/2} \|s\|_{L^2(\mathcal{I})} = \psi_1^{1/2} D^{1/2} := M_2. \]

By Lemma 1,
\[\text{Var}_{z_0} \left(\frac{1}{q_n} \sum_{k=1}^{q_n} s(Y_k) \right) \leq \frac{1}{q_n} \int_\mathcal{I} s^2(z) \nu(z) dz + \frac{\|s\|_\infty}{q_n} \int_\mathcal{I} |s(z)| \nu(z) G_\lambda(z) dz + \frac{c_\lambda \|s\|_\infty^2}{q_n}. \]

By Cauchy-Schwarz,
\[\|s^2\nu\|_{L^2(\mathcal{I})} \leq \|s\|_{L^2(\mathcal{I})} \|s\nu\|_{L^2(\mathcal{I})} \leq \|s\|_{L^2(\mathcal{I})} \|s\|_\infty \|\nu\|_{L^2(\mathcal{I})} \]
and
\[\| s \nu G_\lambda \|_{L^1(\mathcal{I})} \leq \| G_\lambda \|_{L^\infty(\mathcal{I})} \| s \|_{L^2(\mathcal{I})} \| \nu \|_{L^2(\mathcal{I})}. \]

Then
\[
\text{Var}_{z_0} \left(\frac{1}{q_n} \sum_{k=1}^{q_n} s(Z_k) \right) \leq \frac{\| s \|_{L^2(\mathcal{I})} \| \nu \|_{L^2(\mathcal{I})}}{q_n} \left(\| s \|_\infty + \| G_\lambda \|_{L^\infty(\mathcal{I})} \right) + c_\lambda \| s \|_\infty^2.
\]

By Assumption A4b, \(\| s \|_\infty \leq \psi_1^{1/2} D^{1/2} \), moreover, \(\sup_{s \in \mathcal{B}} s \| _{L^2(\mathcal{I})} = 1 \) and then
\[
\sup_{s \in \mathcal{B}} \text{Var}_{z_0} \left(\frac{1}{q_n} \sum_{k=1}^{q_n} s(Z_k) \right) \leq \frac{\psi_1^{1/2} D^{1/2} \| \nu \|_{L^2(\mathcal{I})}}{q_n} \left(1 + \| G_\lambda \|_{L^\infty(\mathcal{I})} \right) + c_\lambda \psi_1 D \frac{1}{q_n}.
\]

It remains to find \(H \) such that \(\mathbb{E}_{z_0} \left(\sup_{s \in \mathcal{B}} | I_n(s) | \right) \leq H / \sqrt{n} \). Let us introduce \((\varphi_i)_{1 \leq i \leq D} \) an orthonormal basis of \(S_m + S_m' = S_{\max(m,m')} \) satisfying Assumption A4.

Then we can write \(s = \sum_i b_i \varphi_i \). As the function \(s \rightarrow I_n(s) \) is linear:
\[
\sup_{s \in \mathcal{B}} I_n^2(s) = \sup_{s \in \mathcal{B}} \left(\sum_{i=1}^{D} b_i I_n(\varphi_i) \right)^2 \leq \sup_{s \in \mathcal{B}} \left(\sum_{i=1}^{D} b_i^2 \right) \left(\sum_{i=1}^{D} I_n^2(\varphi_i) \right) = \sum_{i=1}^{D} I_n^2(\varphi_i).
\]

We can remark that \(I_n(\varphi_i) = \hat{a}_i - \mathbb{E}_{z_0}(\hat{a}_i) \) (see equation (14)) and by consequence, \(\mathbb{E}_{z_0}(I_n^2(\varphi_i)) = \text{Var}_{z_0}(\hat{a}_i) \).

By (12):
\[
\mathbb{E}_{z_0} \left(\sup_{s \in \mathcal{B}} I_n^2(s) \right) \leq \sum_{i=1}^{D} \mathbb{E}_{z_0}(I_n^2(\varphi_i)) = \sum_{i=1}^{D} \text{Var}_{z_0}(\hat{a}_i) \leq \frac{(\psi_1 + C_\lambda \psi_2) D}{n} + c_\lambda \psi_1 \frac{D}{n} := \frac{H^2}{n}.
\]

We can now apply Lemma 11 with
\[M_2 = \psi_1^{1/2} D^{1/2}, \quad V = c_1 D^{1/2} + c_2 D / q_n \quad \text{and} \quad H^2 = (\psi_1 + C_\lambda \psi_2) D + c_\lambda \psi_1. \]

For \(p(m,m') \geq 6(\psi_1 + C_\lambda \psi_2) D / n + 6c_\lambda \psi_1 / n \), we get
\[
E_1 := \mathbb{E}_{z_0} \left(\sup_{s \in \mathcal{B}} I_n^2(s) - p(m,m') \right) + \leq K_1 \frac{V}{n} \exp \left(-k_1 \frac{H^2}{V} \right) + K_2 \frac{M_2^2}{p_n} \exp \left(-k_2 \frac{\sqrt{p_n} H}{\sqrt{q_n} M_2} \right) + 2 \frac{M_2^2}{n^2}.
\]
As \(2/(x + y) \geq \min(1/x, 1/y)\),

\[
\exp\left(-k_1 \frac{H^2}{\nu}\right) \leq \exp\left(-\frac{k_1}{2} \min\left(\frac{H^2}{c_1 D^{1/2}}, \frac{H^2}{c_2 D/q_n}\right)\right) \\
\leq \exp\left(-\frac{k_1 H^2}{2c_1 D^{1/2}}\right) + \exp\left(-\frac{k_1 H^2}{2c_2 D/q_n}\right)
\]

and therefore

\[
E_1 \leq K_1 \left(\frac{D^{1/2}}{n} + \frac{D}{nq_n}\right) \left(\exp\left(-\frac{k'_1 D}{D^{1/2}}\right) + \exp\left(-\frac{k''_1 Dq_n}{D}\right)\right)
\]

+ \frac{K_2 D}{m n^2} \exp\left(-k'_2 p^{1/2} \frac{D^{1/2}}{q_n^{1/2} D^{1/2}}\right) + K_3 \frac{D}{n^2}

\[
\leq K_1 \left(\frac{D}{n} \exp(-k'_1 D^{1/2}) + \frac{D}{n} \exp(-k_1 q_n)\right)
\]

+ \frac{K_2 D\ln^2(n)/n^2}{m} \exp\left(-k_2 \frac{n^{1/2}}{\ln(n)}\right) + \frac{K_3 \frac{D}{n^2}}{m}

where \((K'_1)_{1 \leq i \leq 3}\) and \((k'_1)_{1 \leq i \leq 2}\) depend on \((V, R, \gamma, \psi_1, \psi_2, \|\nu\|_{L^2(\Sigma)})\). The second term can be made smaller than \(\frac{c}{n}\) for \(c_n\) large enough. The third is also smaller to \(\frac{c}{n}\) thanks to the exponential term. Then

\[
\mathbb{E}_{z_0} \left(\sup_{s \in \mathcal{S}_{m, m'}} I^2_n(s) - p(m, m')\right) \leq K_1 \frac{D_{m, m'}}{n} \exp(-k_1 \frac{D^{1/2}}{m}) + K_4 \frac{D_{m, m'}}{n^2}.
\]

All the dimensions \(D_{m, m'}\) are different, so \(\sum_{m' \in \mathcal{M}} D_{m, m'} e^{-cD^{1/2}} \leq \sum_{m' \in \mathcal{M}} D_{m, m'} \leq \max_{m' \in \mathcal{M}} D_{m, m'} \leq n\). Then by (17),

\[
\mathbb{E}_{z_0} \left(\sup_{s \in \mathcal{S}_{m, m}} I^2_n(s) - p(m, \hat{m})\right) \leq \frac{c}{n}.
\]

Collecting (15), (16) and (18), for any \(m \in \mathcal{M}_n\):

\[
\mathbb{E}_{z_0} \left(\|\hat{\nu}_m - \nu\|_{L^2}^2\right) \leq 3 \|\nu_m - \nu\|_{L^2}^2 + 4pen(m) + \frac{c}{n},
\]

All the constants involved in the bound of \(J_n^2\) and \(I^2_n\) \((M_2, H, V)\) depends on \(V, R, \gamma\) and \(\|\nu\|_{L^2(\Sigma)} \leq \|\nu\|_{\mathcal{B}_{2, \infty}(\Sigma)}\). Then there exists an continuous function \(\psi\) such that \(x \rightarrow \psi(x, v, c, r)\) is increasing and

\[
\mathbb{E}_{z_0} \left(\|\hat{\nu}_m - \nu\|_{L^2(\Sigma)}^2\right) \leq 3 \|\nu_m - \nu\|_{L^2(\Sigma)}^2 + 4pen(m) + \frac{\psi\left(\|\nu\|_{\mathcal{B}_{2, \infty}}, V, \gamma, R\right)}{n}.
\]
4.3. Proof of Theorem 8

Let us first control $E_z\left((\mathbf{D}_n(y) - \mathbf{D}(y))^2 \right)$. As ϕ is a diffeomorphism, the function $(\phi^{-1}_x)'(y)$ is bounded on $[0, i_2] \times \mathcal{I}$. The function $s_{x,z}(y) = (\phi^{-1}_x)'(y)I_{\{x \leq y \leq z\}}$ is bounded by a constant on \mathcal{I}:

$$
\|s_{x,z}\|_{L^{\infty}(\mathcal{I})} \leq \sup_{x \in [0,i_2], y \in \mathcal{I}} (\phi^{-1}_x)'(y) := \Phi_1.
$$

We have that

$$
E_z\left((\mathbf{D}_n(y) - \mathbf{D}(y))^2 \right) = E_z\left(\left(\frac{1}{n} \sum_{k=1}^n s_{Z_{k-1}, Y_k}(y) - E_x(s_{Z_0,Y_1}(y)) \right)^2 \right)
$$

with ξ the stationary density of (Z_{k-1}, Y_k) introduced in Assumption A2. By Lemma 1, we have

$$
E_z\left((\mathbf{D}_n(y) - \mathbf{D}(y))^2 \right) \leq \frac{1}{n} \left(\Phi_1^2 + \Phi_1^2 \int G_\lambda(z) \mu(dz) \right) + \frac{\Phi_1^2 c_\lambda}{n^2} + \Phi_1^2 \frac{R^2 V_0^2(z_0)}{n^2 (1 - \gamma)^2}
$$

and therefore

$$
E_z\left((\mathbf{D}_n(y) - \mathbf{D}(y))^2 \right) \leq \frac{\Phi_1^2}{n} (1 + C_\lambda) + \frac{c}{n^2}.
$$

For n large enough, $1/\ln(n)$ is smaller than $D_0/2$ (D_0 is defined in Assumption A3) and then by Markov inequality,

$$
\mathbb{P} \left(\hat{\lambda}_n(y) \leq 1/\ln(n) \right) \leq \mathbb{P} \left(|\mathbf{D}_n(y) - \mathbf{D}(y)| \geq D_0/2 \right) \leq \frac{4}{D_0^2} E_z\left((\mathbf{D}_n(y) - \mathbf{D}(y))^2 \right).
$$

As ν is a positive function, $|\hat{\lambda}_n(y) - \lambda(y)|I_{\{\hat{\nu}_n(y) \geq 0\}} \leq |\hat{\lambda}_n(y) - \lambda(y)|$ and therefore, according to the definition of the estimator $\hat{\nu}_n$ (see (11)),

$$
|\hat{\lambda}_n(y) - \lambda(y)| \leq \frac{\hat{\nu}_n(y)}{\mathbf{D}_n(y)} - \nu(y) \frac{\mathbf{D}_n(y) - \mathbf{D}(y)}{\mathbf{D}(y)} I_{\{\mathbf{D}_n(y) \geq 1/\ln(n)\}} + \lambda(y) I_{\{\mathbf{D}_n(y) \leq 1/\ln(n)\}}.
$$

We can write:

$$
\frac{\hat{\nu}_n(y)}{\mathbf{D}_n(y)} - \nu(y) \left(\frac{\mathbf{D}_n(y) - \mathbf{D}(y)}{\mathbf{D}(y)} \right) \leq \frac{\hat{\nu}_n(y) - \nu(y)}{\mathbf{D}_n(y)} + \nu(y) \frac{\mathbf{D}_n(y) - \mathbf{D}(y)}{\mathbf{D}(y)}
$$

As $\mathbf{D} \geq D_0$ by Assumption A3:

$$
|\hat{\lambda}_n(y) - \lambda(y)| \leq \ln(n) \left(|\hat{\nu}_n(y) - \nu(y)| \right) + \ln(n) \frac{D_0}{\mathbf{D}_n(y) - \mathbf{D}(y)} \nu(y) + \lambda(y) I_{\{\mathbf{D}_n(y) \leq 1/\ln(n)\}}.
$$
By (20) and (21),
\[
\frac{\lambda}{3} \ln^2(n) \frac{\ln^2(n)}{D_0^2 \ln^2(n)} \int \mathbb{E}_{\mathcal{S}_0} \left(\left\| \hat{\lambda} - \lambda \right\|^2_{L^2(I)} \right) \\
+ 12D_0^2 \ln^2(n) \int \mathbb{E}_{\mathcal{S}_0} \left(\left(\hat{D}_n(y) - D(y) \right)^2 \right) \lambda^2(y) dy \\
\leq 3 \ln^2(n) \mathbb{E}_{\mathcal{S}_0} \left(\left\| \hat{\nu} - \nu \right\|^2_{L^2(I)} \right) + c_0 \frac{\ln^2(n)}{n}
\]
with \(c_0 = \frac{\Phi^2}{\mathcal{P}_0} (n) (3 \mathbb{E}_I \left(\left\| \nu \right\|^2_{L^2(I)} + 12 \left\| \lambda \right\|^2_{L^2(I)}) \).

4.4. Proof of Theorem 10

We use the reduction scheme described in Tsybakov [30, chapter 2]. By Markov inequality,
\[
C^2 n^{-2\alpha/(2\alpha+1)} \mathbb{P} \left(\left\| \hat{\lambda} - \lambda \right\|^2_{L^2(I)} \right) \geq \mathbb{P} \left(\left\| \hat{\lambda} - \lambda \right\|_{L^2(I)} \geq C' n^{-\alpha/(2\alpha+1)} \right).
\]

Our aim is to show that
\[
\inf_{\lambda_n} \sup_{\lambda \in \mathcal{E}(s,b,\alpha)} \mathbb{P} \left(\left\| \hat{\lambda} - \lambda \right\|_{L^2(I)} \geq C' n^{-\alpha/(2\alpha+1)} \right) > 0.
\]

Instead of searching an infimum on the whole class \(\mathcal{E}(s,b,\alpha) \), we can limit ourselves to the finite set \(\{\lambda_0, \ldots, \lambda_{P_n}\} \in \mathcal{E}(s,b,\alpha) \), such that
\[
\left\| \lambda_i - \lambda_j \right\|_{L^2(I)} \geq 2C' n^{-\alpha/(2\alpha+1)} \mathbb{I}_{(i \neq j)}.
\]

Then
\[
E_2 := \inf_{\lambda_n} \sup_{\lambda \in \mathcal{E}(s,b,\alpha)} \mathbb{P} \left(\left\| \hat{\lambda} - \lambda \right\|_{L^2(I)} \geq C' n^{-\frac{\alpha}{2\alpha+1}} \right)
\geq \inf_{\lambda_n} \max_{j} \mathbb{P} \left(\left\| \hat{\lambda} - \lambda_j \right\|_{L^2(I)} \geq C' n^{-\frac{\alpha}{2\alpha+1}} \right).
\]

We note \(\psi^* \) the predictor
\[
\psi^* := \arg \min_{0 \leq j \leq P_n} \left\| \hat{\lambda} - \lambda_j \right\|_{L^2(I)}.
\]

By the triangular inequality,
\[
\left\| \hat{\lambda} - \lambda_j \right\|_{L^2(I)} \geq \left\| \lambda_j - \psi^* \right\|_{L^2(I)} \geq \left\| \psi^* - \lambda_j \right\|_{L^2(I)} - \left\| \hat{\lambda} - \hat{\lambda} \right\|_{L^2(I)}.
\]
Consequently, as \(\| \hat{\lambda}_n - \lambda_j \|_{L^2(\mathcal{I})} \geq \| \hat{\lambda}_n - \lambda^* \|_{L^2(\mathcal{I})} \),

\[
\left\{ \| \hat{\lambda}_n - \lambda_j \|_{L^2(\mathcal{I})} \geq A_n \right\} \supseteq \left\{ \left\{ \| \lambda^* - \hat{\lambda}_n \|_{L^2(\mathcal{I})} \geq A_n \right\} \cup \left\{ \| \lambda^* - \lambda_j \|_{L^2(\mathcal{I})} \geq 2A_n \right\} \right\}.
\]

By (22), \(\| \lambda^* - \lambda_j \|_{L^2(\mathcal{I})} \geq 2C' n^{-\alpha/(2\alpha+1)} \| \psi^* \|_{\mathcal{I}} \). Then setting \(A_n = C' n^{-\alpha/(2\alpha+1)} \),

\[
\left\{ \| \hat{\lambda}_n - \lambda_j \|_{L^2(\mathcal{I})} \geq C' n^{-\alpha/(2\alpha+1)} \right\} \supseteq \{ \psi^* \neq j \} \text{ and therefore:}
\]

\[
\inf_{\hat{\lambda}_n} \sup_{\lambda \in \mathcal{E}(s,b,\alpha)} \mathbb{P}^\lambda \left(\| \hat{\lambda}_n - \lambda \|_{L^2(\mathcal{I})} \right) \geq C' n^{-\alpha/(2\alpha+1)} \geq \inf_{\lambda} \max_{j} \mathbb{P}^{\lambda_j} (\psi^* \neq j).
\]

We denote by \(\mathbb{P}^{\lambda_j} \) the law of \((Z_0, Y_1, Z_1, \ldots, Y_n, Z_n)\) under \(\lambda_j \). The following lemma is exactly Theorem 2.5 of Tsybakov [30].

Lemma 12. Let us consider a series of functions \(\lambda_0, \ldots, \lambda_{P_n} \) such that:

a. The functions \(\lambda_i \) are sufficiently apart: \(\forall i \neq j \)

\[
\| \lambda_i - \lambda_j \|_{L^2(\mathcal{I})} \geq 2C' n^{-\alpha/(2\alpha+1)}.
\]

b. For all \(i \), the function \(\lambda_i \) belongs to the subspace \(\mathcal{E}(s,b,\alpha) \).

c. Absolute continuity: \(\forall 1 \leq j \leq P_n, \mathbb{P}^{\lambda_j} \ll \mathbb{P}^{\lambda_0} \).

d. The distance between the measures of probabilities is not too large:

\[
\frac{1}{P_n} \sum_{j=1}^{P_n} \chi^2(\mathbb{P}^{\lambda_j},\mathbb{P}^{\lambda_0}) \leq c \ln(P_n)
\]

with \(0 < c < 1/8 \), and \(\chi^2(.,.\,.) \) the \(\chi \)-square divergence.

Then

\[
\inf_{\hat{\lambda}_n} \sup_{\lambda \in \mathcal{E}(s,b,\alpha)} \mathbb{E}^\lambda \left(\| \hat{\lambda}_n - \lambda \|_{L^2(\mathcal{I})} \right) \geq \inf_{\lambda} \max_{j} \mathbb{P}^{\lambda_j} (\psi^* \neq j)
\]

\[
\geq \sqrt{\frac{P_n}{1 + \sqrt{P_n}}} \left(1 - 2c - 2 \sqrt{\frac{c}{\ln(P_n)}} \right) > 0.
\]

Step 1: Construction of \((\lambda_0, \ldots, \lambda_{P_n})\). Let us set

\[
\lambda_0(x) = \varepsilon \mathbb{I}_{\{i_1 \leq x \leq j_2\}} + a \frac{x^b}{(b + 1) m(x)} \mathbb{I}_{\{x > j_2\}} \text{ where } \varepsilon = \max_{x \in [i_1, j_2]} a \frac{x^b}{(b + 1) m(x)}
\]

with \(\mathcal{J} = [j_1, j_2] \) defined in (7). As \(\lambda_0 \) is constant on \(\mathcal{J} \), this function belongs to the Hölder space \(H^\alpha(\mathcal{J}) \) and \(\| \lambda_0 \|_{H^\alpha(\mathcal{J})} = \varepsilon \) (see Appendix A.4 for the definition of the Hölder
space). It remains to ensure that it belongs to $\mathcal{E}(s, b, \alpha)$. If $\varepsilon > L$, then $\mathcal{E}(s, b, \alpha) = \emptyset$. If $L = \varepsilon$, then any function $\lambda \in \mathcal{E}(s, b, \alpha)$ satisfies: $\forall x \in [i_1, j_2], \lambda(x) = \lambda_0(x)$. Let us assume that $\varepsilon < L$: in that case, there exists $\delta > 0$ such that $\|\lambda_0\|_{H^\alpha(J)} \leq L - \delta$.

We consider a non-negative function $K \in H^\alpha(\mathbb{R})$, bounded, with support in $[0, j_2 - i_1]$ and such that $\|K\|_{L^1} \leq 1$. We set $h_n = n^{-1/(2\alpha + 1)}$, $p_n = [1/h_n]$ and, for $0 \leq k \leq p_n - 1$, $x_k = i_1 + h_n k (j_2 - i_1)$. We consider the functions $\varphi_k(x) := ah_n^\alpha K((x - x_k)/h_n)$ with $a < 1$. The functions φ_k have support in $[x_k, x_{k+1}) \subset J$. Moreover, by a change of variable $y = (x - x_k)/h_n$, $\|\varphi_k\|_{L^1} = ah_n^{\alpha + 1} \|K\|_{L^1} \leq ah_n^{\alpha + 1}$ and $\|\varphi_k\|_{L^2}^2 = a^2 h_n^{2\alpha + 1} \|K\|_{L^2}^2$. We consider the set of functions $\mathcal{G}_n := \left\{ \lambda_c := \lambda_0 + \sum_{k=0}^{p_n-1} \epsilon_k \varphi_k, \quad (\epsilon_k) \in \{0, 1\}^{p_n} \right\}$.

The cardinal of \mathcal{G}_n is 2^{p_n}. For two vectors (ϵ, η) with values in $\{0, 1\}^{p_n}$, the distance between two functions λ_ϵ and λ_η is:

$$\|\lambda_\epsilon - \lambda_\eta\|_{L^2}^2 = a^2 h_n^{2\alpha + 1} \|K\|_{L^2}^2 \sum_{k=1}^{p_n} (\epsilon_k - \eta_k)^2.$$

(23)

As the series ϵ_k and η_k have values in $\{0, 1\}$, the quantity

$$\rho(\epsilon, \eta) := \sum_{k=1}^{p_n} \mathbb{I}_{(\epsilon_k \neq \eta_k)} = \sum_{k=1}^{p_n} (\epsilon_k - \eta_k)^2$$

is the Hamming distance between η and ϵ. To apply Lemma 12, we need that, $\forall \eta \neq \epsilon$, $\|\lambda_\epsilon - \lambda_\eta\|_{L^2}^2 \geq 4C^2 h_n^{2\alpha}$ and consequently $\rho(\epsilon, \eta) \geq C h_n^{-1}$.

This is not the case if we take the whole \mathcal{G}_n (the minimal Hamming distance between two vectors ϵ and η is 1). We need to extract a sub-series of functions. According to Tsybakov [30, Lemma 2.7] (bound of Varshamov-Gilbert), it is possible to extract a family $(\epsilon(0), \ldots, \epsilon(p_n))$ of the set $\Omega = \{0, 1\}^{p_n}$ such that $\epsilon(0) = (0, \ldots, 0)$ and

$$\forall \ 0 \leq j < k \leq P_n, \quad \rho(\epsilon(j), \epsilon(k)) \geq p_n/8, \quad \text{and} \quad P_n \geq 2^{p_n/8}.$$

As $p_n \geq n^{1/(2\alpha + 1)}$, $\ln(P_n) \geq \ln(2)n^{1/(2\alpha + 1)}/8$.

(24)

We define $\lambda_j := \lambda_{\epsilon(j)}$ and $\mathcal{H}_n = \{\lambda_0, \lambda_1, \ldots, \lambda_{P_n}\}$.

Then, for any $\lambda_j, \lambda_k \in \mathcal{H}_n$, if $j \neq k$, as $p_n = [1/h_n]$, by (23),

$$\|\lambda_j - \lambda_k\|_{L^2}^2 \geq a^2 \|K\|_{L^2}^2 h_n^{2\alpha + 1} p_n/8 \geq a^2 \|K\|_{L^2}^2 h_n^{2\alpha}/8.$$

This is exactly the expected lower bound if we take $C' = a \|K\|_{L^2} / (4\sqrt{2})$.

N. Krell and Œ. Schmisser
Step 2: Functions λ_j belong to $E(s, b, \alpha)$. We already know that λ_0 belongs to $E(s, b, \alpha)$. Let us first compute the norm of λ_j on $H^\alpha(\mathcal{J})$. We set $r = \lfloor \alpha \rfloor$. We have that $(K(\cdot/h_n))^{(r)} = h_n^{-r}K^{(r)}(\cdot/h_n)$. We compute the modulus of smoothness:

$$\omega(\varphi_k^{(r)}, t)_\infty = a\omega\left(h_n^\alpha \left(K\left(\frac{-x_k}{h_n} \right) \right)^{(r)}, t \right)_\infty = ah_n^{\alpha-r}\omega\left(h_n^{-r}K^{(r)}\left(\frac{-x_k}{h_n} \right), t \right)_\infty$$

and

$$|\varphi_k|_{H^\alpha} = \sup_{t > 0} t^{r-\alpha}\omega(\varphi_k^{(r)}, t)_\infty = a\sup_{t > 0} t^{\alpha-r}h_n^\alpha \omega\left(K^{(r)}\left(\frac{t}{h_n} \right) \right)_\infty$$

by the change of variable $z = t/h_n$. The functions φ_k have disjoint supports. For any $(x, y) \in \mathcal{J}$, there exists (i, j) such that $x \in [x_i, x_{i+1})$ and $y \in [x_j, x_{j+1})$. Then

$$\lambda_k^{(r)}(x) - \lambda_k^{(r)}(y) = \varepsilon_i \left(\varphi_i^{(r)}(x) - \varphi_i^{(r)}(y) \right) + \varepsilon_j \left(\varphi_j^{(r)}(x) - \varphi_j^{(r)}(y) \right).$$

Therefore

$$\omega(\lambda_k^{(r)}, t)_\infty \leq \sup_{i, j} \left(\omega(\varphi_i^{(r)}, t)_\infty + \omega(\varphi_j^{(r)}, t)_\infty \right) \leq 2\omega(\varphi_1^{(r)}, t)_\infty$$

and $|\lambda_k|_{H^\alpha(\mathcal{J})} \leq 2a|K|_{H^\alpha}$. Moreover,

$$||\lambda_k||_{L^\infty(\mathcal{J})} \leq ||\lambda_0||_{L^\infty(\mathcal{J})} + ah_n^\alpha ||K||_{L^\infty} \leq ||\lambda_0||_{L^\infty(\mathcal{J})} + 2a ||K||_{L^\infty}$$

and consequently $||\lambda_k||_{H^\alpha(\mathcal{J})} \leq ||\lambda_0||_{H^\alpha(\mathcal{J})} + 2a ||K||_{H^\alpha}$. Then $\lambda_k \in H^\alpha(\mathcal{J}, L)$ for a sufficiently small a. It remains to check that $\lambda_k \in E(s, b, \alpha)$. For any $0 \leq k \leq P_n$:

a. As K is non-negative, $\forall x \geq i_1, \lambda_k(x) \geq a\frac{x^b}{(b+1)m(x)}$.

b. $||\lambda_k||_{H^\alpha(\mathcal{J})} \leq L$ for a small enough.

c. $\int_0^{\bar{s}} \lambda_k(u)M(u)du = 0 \leq 1$.

Therefore $\lambda_k \in E(s, b, \alpha)$ for a small enough.

Step 3: Absolute continuity. We denote by \mathcal{P}_j the transition densities \mathcal{P}_{λ_j}. As $(Z_0, Y_1, Z_1, \ldots, Y_n, Z_n)$ is a Markov process,

$$P^{\lambda_j}(z_0, dy_1, dz_1, \ldots, dy_n, dz_n) = \mathcal{P}_j(z_0, y_1)Q(y_1, dz_1) \ldots \mathcal{P}_j(z_{n-1}, y_n)Q(y_n, dz_n)dy_1 \ldots dy_n.$$

By (3), we can rewrite: $\mathcal{P}_0(x, y) = A_{x,y} \exp(-\tilde{A}_{x,y})$ where

$$A_{x,y} := \lambda_0(y)(\phi_x^{-1})'(y)1_{\{y \geq x\}}, \quad \tilde{A}_{x,y} := \int_x^y \lambda_0(u)(\phi_x^{-1})'(u)du$$

(25)
and \(\mathcal{P}_j(x, y) = (A_{x,y} + B_{x,y}) \exp(-\tilde{A}_{x,y} - \tilde{B}_{x,y}) \) where \(B_{x,y} = \sum_{k=1}^m \epsilon_k B^k_{x,y}, \tilde{B}_{x,y} = \sum_{k=1}^m \epsilon_k \tilde{B}^k_{x,y} \) and

\[
B^k_{x,y} := \varphi_k(x)(\phi_x^{-1})'(y) \mathbb{I}_{y \geq x}, \quad \tilde{B}^k_{x,y} := \int_x^y \varphi_k(u)(\phi_x^{-1})'(u) du. \tag{26}
\]

The probability density \(\mathbf{P}^{\lambda_0} \) is null if one of the \(Q(y, dz_i) \) is null, if one of the indicator function \(\mathbb{I}_{y_{i+1} \geq z_i} = 0 \), or if one \(y_i \) is smaller than \(y_1 \); then \(\mathbf{P}^{\lambda_j} \) is absolutely continuous with respect to \(\mathbf{P}^{\lambda_0} \).

Step 4: The \(\chi^2 \) divergence. As \(\mathbf{P}^{\lambda_0}, \mathbf{P}^{\lambda_j} \) are equivalent measures, we have:

\[
\chi^2(\mathbf{P}^{\lambda_j}, \mathbf{P}^{\lambda_0}) = \int \left(\frac{d\mathbf{P}^{\lambda_j}}{d\mathbf{P}^{\lambda_0}} \right)^2 d\mathbf{P}^{\lambda_0} - 1.
\]

Let us set \(E_3 := \chi^2(\mathbf{P}^{\lambda_j}, \mathbf{P}^{\lambda_0}) + 1. \) We can write:

\[
E_3 = \int_{(\mathbb{R}^+)^n} \left(\frac{\mathcal{P}_j(z_0, y_1) \cdots \mathcal{P}_j(z_{n-1}, y_n)}{\mathcal{P}_0(z_0, y_1) \cdots \mathcal{P}_0(z_{n-1}, y_n)} \right)^2 \mathcal{P}_0(z_0, y_1) \cdots \mathcal{P}_0(z_{n-1}, y_n) \times \int_{(\mathbb{R}^+)^n} Q(y_1, dz_1) \cdots Q(y_n, dz_n) dy_1 \cdots dy_n.
\]

As \(Q \) is the transition density, for any \(y_n, \int_{\mathbb{R}^+} Q(y_n, dz_n) = 1 \). Moreover, as \(\int_{\mathbb{R}^+} \mathcal{P}_0(x, y) dy = \int_{\mathbb{R}^+} \mathcal{P}_j(x, y) dy = 1 \),

\[
E_3 = \int_{(\mathbb{R}^+)^{2(n-1)}} \left(\frac{\mathcal{P}_j(z_0, y_1) \cdots \mathcal{P}_j(z_{n-2}, y_{n-1})}{\mathcal{P}_0(z_0, y_1) \cdots \mathcal{P}_0(z_{n-2}, y_{n-1})} \right)^2 Q(y_1, dz_1) \cdots Q(y_{n-1}, dz_{n-1}) dy_1 \cdots dy_{n-1} \times \int_{\mathbb{R}^+} \frac{\mathcal{P}_j(z_{n-1}, y_n)^2}{\mathcal{P}_0(z_{n-1}, y_n)} dy_n. \tag{27}
\]

This expression of the \(\chi^2 \) divergence enables us to approximate it more closely. Let us set

\[
DP := \int_{\mathbb{R}^+} \left(\frac{\mathcal{P}_j(x, y)^2}{\mathcal{P}_0(x, y)} \right)^2 dy - 1 = \int_{\mathbb{R}^+} \left(\frac{\mathcal{P}_j(x, y)^2}{\mathcal{P}_0(x, y)} - 1 \right)^2 \mathcal{P}_0(x, y) dy = \int_{\mathbb{R}^+} \left(1 + \frac{B_{x,y}}{A_{x,y}} \right) \exp \left(-\tilde{B}_{x,y} - 1 \right)^2 A_{x,y} \exp \left(-\tilde{A}_{x,y} \right) dy. \tag{28}
\]

As the support of \(\varphi_k \) is included in \(J \), we can remark that \(B_{x,y} \) is null on \(J^c \) and

\[
\tilde{B}^k_{x,y} = \int_{[x,y] \cap J} \varphi_k(u)(\phi_x^{-1})'(u) du.
\]
Adaptive jump estimation for PDMP

We bound the χ^2-divergence differently on \mathcal{J} and \mathcal{J}^c: $DP = R_1 + R_2$ where

$$\begin{align*}
R_1 &= \int_{\mathcal{J}} \left(\left(1 + \frac{B_{x,y}}{A_{x,y}}\right) \exp \left(-\hat{B}_{x,y}\right) - 1 \right)^2 A_{x,y} \exp(-\hat{A}_{x,y}) dy, \\
R_2 &= \int_{\mathcal{J}^c} \left(\exp \left(-\hat{B}_{x,y}\right) - 1 \right)^2 A_{x,y} \exp(-\hat{A}_{x,y}) dy.
\end{align*}$$

We have that $B_{x,y}^k \leq M(y) \|\varphi_k\|_\infty \mathbb{I}_{\{y \geq x\}} \mathbb{I}_{\{y \in [x, x_k+1]\}}$ and therefore, as $\|\varphi_k\|_\infty = ah_n \|K\|_\infty$,

$$B_{x,y} = \sup_{y \in \mathcal{J}} M(y) ah_n \|K\|_\infty \mathbb{I}_{\{y \in \mathcal{J}\}} \leq C ah_n \mathbb{I}_{\{y \in \mathcal{J}\}}. \tag{29}$$

By (26), we obtain, as the functions φ_k are supported in \mathcal{J}:

$$\hat{B}_{x,y}^k = \int_x^y \varphi_k(z)(\phi_x^{-1})'(z) dz \leq \sup_{z \in \mathcal{J}} (M(z)) \sup_{z \in \mathcal{J}} \|\varphi_k\|_{L^1} \leq ah_n \sup_{z \in \mathcal{J}} (M(z))$$

and, as $p_n = [1/h_n]$, $\hat{B}_{x,y} \leq \sum_{k=1}^{p_n} \hat{B}_{x,y}^k \leq C' ap_n h_n^{\alpha+1} \leq C' ah_n. \tag{30}$

Then by (30) and as $\int_{\mathbb{R}^+} A_{x,y} \exp(-\hat{A}_{x,y}) dy = 1$

$$R_2 \leq \int_{\mathbb{R}^+} O\left(a^2 h_n^{2\alpha}\right) A_{x,y} \exp(-\hat{A}_{x,y}) dy = O\left(a^2 h_n^{2\alpha}\right).$$

As $\lambda_0 = \varepsilon$ on \mathcal{J}, we get by (25) that

$$\varepsilon \mathbb{I}_{\{y \geq x\}} \inf_{y \in \mathcal{J}} M(y) \leq \sup_{y \in \mathcal{J}} A_{x,y} \leq \sup_{y \in \mathcal{J}} M(y) \varepsilon \mathbb{I}_{\{y \geq x\}}.$$

Moreover, on \mathbb{R}^+, $\exp(-\hat{A}_{x,y}) \leq 1$. Then by (29) and (30), we get that

$$R_1 = \int_{\mathcal{J}} \left((1 + O(ah_n^{\alpha})) \exp(-O(ah_n^{\alpha}))-1 \right)^2 O(1) dy = \int_{\mathcal{J}} O(a^2 h_n^{2\alpha}) dy = O(a^2 h_n^{2\alpha}).$$

Therefore $DP = O(a^2 h_n^{2\alpha})$ and, by (27) and (28), we get by recurrence

$$E_3 = \int_{(\mathbb{R}^+)^2(n-1)} \frac{P_1(z_0, y_1) \ldots P_1(z_{n-2}, y_{n-1})}{P_0(z_0, y_1) \ldots P_0(z_{n-2}, y_{n-1})} Q(y_1, dz_1) \ldots Q(Y_{n-1}, dz_{n-1}) dy_1 \ldots dy_{n-1} \times O\left(a^2 h_n^{2\alpha} + 1\right)$$

$$= \prod_{i=1}^n \left(O\left(a^2 h_n^{2\alpha} + 1\right) = 1 + a^2 n O\left(h_n^{2\alpha}\right)\right).$$
As $h_n = n^{-\frac{1}{2\alpha+1}}$,
\[\chi^2(P^{\lambda_0}, P^{\lambda_j}) = E_3 - 1 \leq a^2O \left(n^{1/(2\alpha+1)} \right). \]

By (24), $\ln(P_n) \geq \ln(2)n^{1/(2\alpha+1)}/8$ and therefore,
\[\frac{1}{P_n} \sum_{k=1}^{P_n} \chi^2(P^{\lambda_0}, P^{\lambda_j}) = a^2O \left(n^{1/(2\alpha+1)} \right) = a^2O \left(\ln(P_n) \right) \leq \ln(P_n)/8
\]
for a small enough, which concludes the proof.

Acknowledgements

N. Krell was partly supported by the Agence Nationale de la Recherche PIECE 12-JS01-0006-01. The research of E. Schmisser was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01)

References

Adaptive jump estimation for PDMP

