Adaptively weighted group Lasso for semiparametric quantile regression models

Toshio Honda, Ching-Kang Ing, and Wei-Ying Wu

Abstract

We propose an adaptively weighted group Lasso procedure for simultaneous variable selection and structure identification for varying coefficient quantile regression models and additive quantile regression models with ultra-high dimensional covariates. Under a strong sparsity condition, we establish selection consistency of the proposed Lasso procedure when the weights therein satisfy a set of general conditions. This consistency result, however, is reliant on a suitable choice of the tuning parameter for the Lasso penalty, which can be hard to make in practice. To alleviate this difficulty, we suggest a BIC-type criterion, which we call high-dimensional information criterion (HDIC), and show that the proposed Lasso procedure with the tuning parameter determined by HDIC still achieves selection consistency. Our simulation studies support strongly our theoretical findings.

Keywords: Additive models; B-spline; high-dimensional information criteria; Lasso; structure identification; varying coefficient models.

1 Introduction

We propose adaptively weighted group Lasso (AWG-Lasso) procedures for simultaneous variable selection and structure identification for varying coefficient quantile regression models and additive quantile regression models with ultra-high dimension covariates. Let the number of covariates be denoted by p. Throughout this paper, we assume $p = O(\exp(n^\iota))$, where n is the sample size and ι is a positive constant specified later in Assumption A4 and A4’ of Section 5. Under a strong sparsity condition, we establish selection consistency of AWG-Lasso when its weights, determined by some initial estimates, e.g., Lasso and group Lasso, obey a set of general conditions. This consistency
result, however, is reliant on a suitable choice for the tuning parameter for the Lasso penalty, which can be hard to make in practice. To alleviate this difficulty, we suggest a BIC-type criterion, which we call high-dimensional information criterion (HDIC), and show that AWG-Lasso with the penalty determined by HDIC (denoted by AWG-Lasso+HDIC hereafter) still achieves selection consistency. This latter result improves previous ones in [21] and the BIC results in [38] since the former does not deal with semiparametric models and the latter concentrates on linear models. See also [5] and [19] for recent developments in BIC-type model selection criteria. With the selected model, one can conduct final statistical inference by appealing to the results as in [34], [4], [28]. Moreover, our approach can be implemented at several different quantiles, thereby leading to a deeper understanding of the data in hand. There are some other approaches to quantile estimation from ours. For example, [13] deals with quantile estimation based on the transnormal model.

High dimensional covariate issues have been important and intractable ones. However, some useful procedures have been proposed, for example, the SCAD in [9], the Lasso in [30], and the group Lasso in [36] and [26]. The properties of the Lasso were studied in [40] and [2]. The adaptive Lasso was proposed by [40] and it has the selection consistency property. The SCAD cannot deal with too many covariates and needs some screening procedures such as the SIS procedure in [11]. [15] proposed a quantile based screening procedure. There are some papers on screening procedures for varying coefficient and additive models, for example, [8], [10], and [20]. Forward type selection procedures are considered in e.g. [33] and [17]. We name [3], [14], and [32] as general references on high-dimensional issues.

Because parsimonious modelling is crucial for statistical analysis, simultaneous variable selection and structure identification in semiparametric regression models has been studied by many authors, see, among others, [37], [22], [35], [6], [23], and [16]. Another important reason to attain this purpose is that in some high-dimensional situations, there may be a lack of priori knowledge on how to decide which covariates to be included in the parametric part and which covariates to be included in the nonparametric part. On the other hand, to the best of our knowledge, no theoretical sound procedure has been proposed to achieve the aforementioned goal in the high-dimensional quantile regression setups. Note that [22] and [23] proposed using the estimated derivatives of coefficient functions to identify the structures of additive models. These estimated derivatives, however, usually have slow convergence rates. Moreover, as shown in Section S.3 of the
supplementary document, the conditions imposed on the B-spline basis functions in [22] and [23] seem too stringent to be satisfied in practice. Instead of relying on the estimated derivatives of coefficient functions, we appeal to the orthogonal decomposition method through introducing an orthonormal spline basis with desirable properties as in [16], which is devoted to the study of Cox regression models. Our approach not only can be justified theoretically under a set of reasonable assumptions, but also enables a unified analysis of varying coefficient models and additive models. The single index model is another important semiparametric quantile regression model. However, we don’t deal with the model because the theoretical treatment is completely different from that of the varying coefficient and additive model. We just refer to [39] and [25] here.

The Lasso for quantile linear regression is considered in [1] and the adaptively weighted Lasso for quantile linear regression are considered in [7] and [38]. Some authors such as [18] and [29] deal with group Lasso procedures for additive models and varying coefficient models, respectively. [24] applied a reproducing kernel Hilbert space approach to additive models. [28] deals with SCAD type variable selection for parametric part. In [28], the authors applied the adaptively weighted Lasso iteratively to obtain their SCAD estimate starting from the Lasso estimate. However, in the quantile regression setup, there doesn’t seem to exist any theoretical or numerical result for simultaneous variable selection and structure identification based on the adaptively weighted group Lasso, in particular when its penalty is determined by a data-driven fashion. To fill this gap, we establish selection consistency of AWG-Lasso and AWG-Lasso+HDIC in Section 3, and illustrate the finite sample performance of AWG-Lasso+HDIC through a simulation study in Section 4. Our simulation study reveals that AWG-Lasso+HDIC performs satisfactorily in terms of true positive and true negative rates.

This paper is organized as follows: We describe our procedures in Section 2. We present our theoretical results in Section 3. The results of numerical studies are given in Section 4. We state assumptions and prove our main results in Section 5 and describe some important properties of B-spline bases in the supplementary document, which also contains a real application of the proposed methods and more technical details.

We end this section with some notation used throughout the paper. \overline{A} and $|A|$ stand for the complement and the number of the elements of a set A, respectively. For a vector a, $|a|$ and a^T are the Euclidean norm and the transpose, respectively. For a function g on the unit interval, $\|g\|$ and $\|g\|_{\infty}$ stand for the L_2 and sup norms, respectively. We denote the maximum and minimum eigenvalues of a matrix A by $\lambda_{\text{max}}(A)$ and $\lambda_{\text{min}}(A)$,
respectively. Besides, \(C, C_1, C_2, \ldots \), are generic positive constants and their values may change from line to line. Note that \(a_n \sim b_n \) means \(C_1 < a_n/b_n < C_2 \) and that \(a \vee b \) and \(a \wedge b \) stand for the maximum and the minimum of \(a \) and \(b \), respectively. Convergence in probability is denoted by \(P \).

2 Simultaneous variable selection and structure identification

We consider varying coefficient models and additive models in this paper. We can deal with both models in the same way and we concentrate on varying coefficient models in sections 2 and 3 to save space. We present the specific procedure for additive models in the supplement.

Suppose that we have \(n \) i.i.d. observations \(\{(Y_i, X_i, Z_i)\}_{i=1}^n \), where \(X_i = (X_{i1}, X_{i2}, \ldots, X_{ip})^T \) is a \(p \)-dimensional covariate vector and \(Z_i \) is a scalar index covariate. Then we assume a quantile varying coefficient model holds for these observations. First we define the \(\tau \)-th quantile check function \(\rho_\tau(u) \) and its derivative \(\rho'_\tau(u) \) by

\[
\rho_\tau(u) = u(\tau - I\{u \leq 0\}) \quad \text{and} \quad \rho'_\tau(u) = \tau - I\{u \leq 0\}.
\]

Then our varying coefficient model is

\[
Y_i = \sum_{j=1}^{p} X_{ij} g_j(Z_i) + \epsilon_i,
\]

where \(Z_i \in [0,1] \) and \(E\{\rho'_\tau(\epsilon_i) | X_i, Z_i\} = 0 \). Usually we take \(X_{i1} \equiv 1 \) for varying coefficient models.

To deal with partially linear varying coefficient models, we decompose \(g_j(z) \) as \(g_j(z) = g_{cj} + g_{vj}(z) \), where

\[
g_{cj} = \int_0^1 g_j(z) \, dz \quad \text{and} \quad g_{vj}(z) = g_j(z) - g_{cj}.
\]

We define the index set, \(S^0 = (S^0_c, S^0_v) \), for the true model, where

\[
S^0_c = \{ j \mid g_{cj} \neq 0 \} \quad \text{and} \quad S^0_v = \{ j \mid g_{cj}(z) \neq 0 \}.
\]

The index set for a candidate model can be similarly given by \(S = (S_c, S_v) \). In the following, we refer to \(S^0 \) and \(S \) as the true model and the candidate model, respectively whenever confusion is unlikely. When some \(j \)'s satisfy both \(j \in S^0_c \) and
$j \not\in S^0_v$ simultaneously, our true model is a partially linear varying coefficient model, for example, $S^0 = \{(1, 2, 3), \{1, 2\}\}$ with $S^0_c = \{1, 2, 3\}$ and $S^0_v = \{1, 2\}$. Moreover, $S_1 \supset S_2$ means $S_{c1} \supset S_{c2}$ and $S_{v1} \supset S_{v2}$, where $S_j = (S_{cj}, S_{vj}), j = 1, 2$. In addition, $S_1 \cup S_2 = (S_{c1} \cup S_{c2}, S_{v1} \cup S_{v2})$.

We use the regression spline method to estimate coefficient functions and the covariates for regression spline are defined by

$$W_i = X_i \otimes B(Z_i),$$

where $B(z) = (B_1(z), B_2(z), \ldots, B_L(z))^T$ is an orthonormal basis constructed from the equispaced B-spline basis $B_0(z) = (B_{01}(z), \ldots, B_{0L}(z))^T$ on $[0, 1]$ and \otimes is the Kronecker product. We can represent $B(z)$ as $B(z) = A_0 B_0(z)$ and we calculate the $L \times L$ matrix A_0 numerically. As in [16], let $B(z)$ satisfy $B_1(z) = 1/\sqrt{L}$, $B_2(z) = \sqrt{12/L}(z - 1/2)$, and

$$\int_0^1 B(z)(B(z))^T dz = L^{-1} I_L. \quad (3)$$

We denote the $L \times L$ identity matrix by I_L. Note that $B_1(z)$ is for g_{c_1} (the j-th constant component) and $B_{-1}(z) = (B_2(z), \ldots, B_L(z))^T$ is for $g_{v_1}(z)$ (the j-th non-constant component). More details are given in Section S.3 of the supplement.

To carry out simultaneous variable selection and structure identification, we apply AWG-Lasso to

$$Y_i = W_i^T \gamma + \epsilon_i, \quad (4)$$

where $\gamma = (\gamma_1^T, \ldots, \gamma_p^T)^T$. For a given $\lambda > 0$, the corresponding objective function is given by

$$Q_V(\gamma; \lambda) = \frac{1}{n} \sum_{i=1}^{n} \rho_r(Y_i - W_i^T \gamma) + \lambda \sum_{j=1}^{p} (w_{1j}|\gamma_{1j}| + w_{-1j} |\gamma_{-1j}|), \quad (5)$$

where $\{(w_{1j}, w_{-1j})\}_{j=1}^{p}$ is obtained from some initial estimates such as Lasso and group Lasso, and $(\gamma_{1j}, \gamma_{-1j}^T)^T = \gamma_j$, noting that γ_{1j} is for $B_1(z)$ and γ_{-1j} is for $B_{-1}(z)$. Minimizing $Q_V(\gamma; \lambda)$ w.r.t. γ, one gets

$$\hat{\gamma}_\lambda = \arg\min_{\gamma \in \mathbb{R}^{pL}} Q_V(\gamma; \lambda).$$

Denote $\hat{\gamma}_\lambda$ by $(\hat{\gamma}_{11}, \hat{\gamma}_{-11}^T, \ldots, \hat{\gamma}_{1p}, \hat{\gamma}_{-1p}^T)^T$. Then, the model selected by AWG-Lasso is $\hat{S}^\lambda = (\hat{S}^\lambda_c, \hat{S}^\lambda_v)$, where $\hat{S}^\lambda_c = \{j | \hat{\gamma}_{1j}^\lambda \neq 0\}$ and $\hat{S}^\lambda_v = \{j | \hat{\gamma}_{-1j}^\lambda \neq 0\}$, and this enables us to identify variables and structures simultaneously.
Theorem 1 in Section 3 establishes the selection consistency of \hat{S}^λ under a set of general conditions on $\{(w_{ij}, w_{-ij})\}_{j=1}^p$ and a strong sparsity condition on the regression coefficients that $|S^0_c|$ and $|S^0_v|$ are bounded. Theorem 1, however, also requires that λ falls into a suitable interval, which can sometimes be hard to decide in practice. We therefore introduce a BIC-type criterion, HDIC, to choose a λ in a data-driven fashion. Express W_i as $(v_{11i}, v_{12i}, \ldots, v_{1pi}, v_{1pi})^T$, where $(v_{1ji}, v_{1ji}^T)^T$ is the regressor vector corresponding to γ_j. For a given model $S = (S_c, S_v)$, define $R_V(\gamma_S)$ and $\tilde{\gamma}_S$ by

$$R_V(\gamma_S) = \frac{1}{n} \sum_{i=1}^n \rho_r(Y_i - W_{iS}^T \gamma_S) \quad \text{and} \quad \tilde{\gamma}_S = \arg\min_{\gamma_S \in R^{S_c} \cup \{L-1\} | S_v|} R_V(\gamma_S),$$

where $W_{iS} \in R^{|S_c| \cup \{L-1\} | S_v|}$ consists of $\{v_{1ji} | j \in S_c\}$ and $\{v_{-1ji} | j \in S_v\}$. The corresponding coefficient vector γ_S consists of $\{\gamma_{1ji} | j \in S_c\}$ and $\{\gamma_{-1ji} | j \in S_v\}$ as well. The elements of these vectors are suitably arranged. In this paper, we sometimes take two index sets S_1 and S_2 satisfying $S_1 \subset S_2$ and compare γ_{S_1} and γ_{S_2} by enlarging γ_{S_1} with 0 elements or something, for example, $(\gamma_{S_1}, 0^T)^T$. Then $(\gamma_{S_1}, 0^T)^T$ and γ_{S_2} have the same dimension and the elements of these vectors are assumed to be conformably rearranged.

The HDIC value for model S is stipulated by

$$\text{HDIC}(S) = \log R_V(\tilde{\gamma}_S) + (|S_c| + (L-1) | S_v|) \frac{q_n \log p_n}{2n},$$

where $p_n = p \lor n$ and $q_n \rightarrow \infty$ at a slow rate described in Section 5. We consider a set of models $\{\hat{S}^\lambda\}$ chosen by AWG-Lasso, where $\lambda \in \Lambda$ with Λ being a prescribed set of positive numbers, and select \hat{S}^λ among $\{\hat{S}^\lambda\}$, where

$$\hat{\lambda} = \arg\min_{\lambda \in \Lambda, \hat{S}^\lambda \leq M_c, |\hat{S}^\lambda| \leq M_v} \text{HDIC}(\hat{S}^\lambda),$$

with M_c and M_v being known upper bounds for $|S^0_c|$ and $|S^0_v|$, respectively. Under some regularity conditions, the consistency of \hat{S}^λ is established in Corollary 1.

Note that in the case of high-dimensional sparse linear models, it is shown in [17] that (7) with $\rho_r(\cdot)$ replaced by the squared loss $(\cdot)^2$ can be used in conjunction with the orthogonal greedy algorithm (OGA) to yield selection consistency. The major difference between (7) and the BIC-type criteria considered in [21] is that we deal with semiparametric models in this paper. It seems difficult to derive the consistency of \hat{S}^λ in any high-dimensional regression setups without the additional penalty term q_n in (7).
3 Consistency results

We prove the consistency of AWG-Lasso and AWG-Lasso+HDIC separately in Subsection 3.1 and 3.2. It is worth pointing out that due to the similarity between (4)-(7) and (S.2)-(S.5) in the supplement, the theoretical treatment is almost the same for the two types of models considered in this paper. Therefore, this section concentrates only on the varying coefficient model. On the other hand, our numerical studies are conducted for both types of models, see Section 4.

3.1 Adaptively weighted group Lasso

The consistency of AWG-Lasso for suitably chosen λ and weights is stated in Theorem 1. The proof of Theorem 1 is reliant on the methods of [7], [38], and [28] subject to non-trivial modifications. The details are deferred to Section 5. For clarity of presentation, all the technical assumptions of Theorem 1 are also given in Section 5. Roughly speaking, we assume that the coefficient functions have second order derivatives and we put $L = cLn^{1/5}$. More smoothness is necessary for Theorem 2. If X_{ij} is uniformly bounded, the Hölder continuity of the second order derivatives with exponent $\alpha = 1/2$ is sufficient for Theorem 2.

Define $d_{V}(S) = |S_c|^c + (L - 1)|S_v|$ and let w_{S^0} denote a weight vector consisting of {$w_{1j} | j \in S^0_c$} and {$w_{-1j} | j \in S^0_v$}. For an index set S, we define $\hat{\gamma}^\lambda_S$ by

$$\hat{\gamma}^\lambda_S = \arg\min_{\gamma_S \in R^{d_{V}(S)}} Q_{V}(\gamma_S; \lambda).$$

Then $\hat{\gamma}^\lambda_{S^0}$ is an oracle estimator on $R^{d_{V}(S^0)}$ with the knowledge of S^0. Assumption A2 assumes that the relevant coefficients and the coefficient functions are large enough to be detected.

Theorem 1 Assume that Assumptions A1, A3-5 and B1-4 in Section 5 hold. Moreover, assume

$$\max_{j \in S^0_v} w_{1j} \vee \max_{j \in S^0_v} w_{-1j} = O_p(1),$$

and for some sufficiently large $0 < a_1, a_2 < \infty$,

$$\min_{j \notin S^0_v} w_{1j} \geq (a_1 |w_{S^0}|) \vee 1 \quad \text{and} \quad \min_{j \notin S^0_v} w_{-1j} \geq (a_2 |w_{S^0}|) \vee 1,$$
with probability tending to 1. We enlarge $\hat{\gamma}_{S_0}$ by adding 0 elements for the S_0^c part so that $(\hat{\gamma}_{S_0}^T, 0^T)^T \in \mathbb{R}^{pL}$ and define \hat{S}^λ from this $(\hat{\gamma}_{S_0}^T, 0^T)^T$. Then for any λ satisfying
\[
a_3 \frac{(\log p_n)^{1/2}}{n^{1/2}} \leq \lambda \leq (\log n)^{\kappa} \frac{(\log p_n)^{1/2}}{n^{1/2}}
\] (10) asymptotically, where a_3 is a sufficiently large constant and κ is any positive constant, $(\hat{\gamma}_{S_0}^T, 0^T)^T (= \hat{S}^\lambda)$ is actually an optimal solution to minimizing $Q_V(\gamma; \lambda)$ w.r.t. $\gamma \in \mathbb{R}^{pL}$ with probability tending to 1. If Assumption A2 also holds, we have for \hat{S}^λ defined here that
\[
\lim_{n \to \infty} P(\hat{S}^\lambda = S_0) = 1.
\]

The order of $L^{1/2} \lambda$ from (10) is the standard one in the literature since $(\log p_n)^{1/2}$ is due to the large number of covariates and $(L/n)^{1/2}$ is the standard rate for regression spline estimation. Recall that our normalization factor of the orthonormal basis is $1/L$. The upper bound of λ in Theorem 1 is a technical one since we approximate $R_V(\gamma)$ by a quadratic function in γ on a suitable bounded region.

We will further discuss the convergence rate of the AWG-Lasso estimators and present two examples of data-driven weights.

First we discuss the convergence rate of the AWG-Lasso estimators by referring to Proposition 1 in Section 5. We have derived the consistency of \hat{S}^λ in Theorem 1. Then if we apply Proposition 1 with $S = S_0$, we have from Remark 1 there that
\[
P(|\hat{\gamma}_S^\lambda - \gamma_S^*| \geq \eta_n) \to 0,
\]
where $\eta_n \sim L\{(n^{-1} \log p_n)^{1/2} + \lambda|w_{S_0}|\}$. We state the proposition for the proofs of Theorems 1 and 2 to take care of uniformity with respect to the indices of covariates and we can improve the rate sightly and replace $\log p_n$ with $\log n$ for this one index set S_0. Hence the convergence rate of the oracle AWG-Lasso estimators of $g_{cj}, j \in S_0^c$, and $g_{vj}, j \in S_0^v$, is $L^{1/2}\{(n^{-1} \log n)^{1/2} + \lambda|w_{S_0}^c|\}$ in the setup of Remark 1.

Next we present two examples of data-driven weights here. A simple sufficient condition for (9) is that with probability tending to 1,
\[
\frac{\min_{j \in S_0^c} w_{1j} \wedge \min_{j \in S_0^c} w_{-1j}}{1 \lor \max_{j \in S_0^c} w_{1j} \lor \max_{j \in S_0^c} w_{-1j}} \to \infty.
\] (11)

Example 1 (Adaptive Lasso type weights). We need an initial estimator denoted by $\chi = (\chi_{11}, \chi_{-11}, \ldots, \chi_{1p}, \chi_{-1p})^T$ from the group Lasso as in [29] and [18]. Note that
\(L^{-1/2}|\gamma_{1j}|\) and \(L^{-1/2}|\gamma_{-1j}|\) from [29] and [18] are consistent estimates of \(|g_{cj}|\) and \(\|g_{vj}\|\), respectively. Actually they have the convergence rates smaller than \(CL^{1/2}\lambda\) for some sufficiently large \(C\) and \(\lambda\) in Theorem 1. Hence

\[
w_{1j} = (L^{-1/2}|\gamma_{1j}|)^{-\eta} \quad \text{and} \quad w_{-1j} = (L^{-1/2}|\gamma_{-1j}|)^{-\eta}
\]

(12) satisfy the conditions (8) and (9) for any positive fixed \(\eta\) if we have for some positive \(C\) that \(\min_{j \in S_0^0} |g_{cj}| \wedge \min_{j \in S_0^0} \|g_{vj}\| > C\). On the other hand, if \(\min_{j \in S_0^0} |g_{cj}| \wedge \min_{j \in S_0^0} \|g_{vj}\| \to 0\) slowly as in Assumption A2 in Section 5, we can cope with this situation theoretically by making a suitable adjustment to the order of \(\lambda\). Note that \(\lambda w_{1j} = (\xi_n \lambda)(\xi_n^{-1} w_{1j})\) and \(\lambda w_{-1j} = (\xi_n \lambda)(\xi_n^{-1} w_{-1j})\) for a suitable \(\xi_n\) and that \(\xi_n \lambda, \xi_n^{-1} w_{1j}, \text{and } \xi_n^{-1} w_{-1j}\) have only to meet the assumptions in Theorem 1. However, we usually have no knowledge of the order of \(\min_{j \in S_0^0} |g_{cj}| \wedge \min_{j \in S_0^0} \|g_{vj}\|\) in advance and this kind of adjustment to \(\lambda\) may be practically difficult. Or then we should try a very wide range of \(\lambda\).

Example 2 (SCAD-based weights). With the initial estimator \(\overline{\gamma}\) obtained from the Lasso penalty estimators such as in [29] and [18], we apply one-step LLA (local linear approximation) to the SCAD penalty as in [12] to obtain \(\{w_{1j}, w_{-1j}\}\). More specifically, we set

\[
\lambda w_{1j}|\gamma_{1j}| = p_{\lambda L^{1/2}}(L^{-1/2}|\gamma_{1j}|)(L^{-1/2}|\gamma_{1j}|) \quad \text{and} \quad \lambda w_{-1j}|\gamma_{-1j}| = p_{\lambda L^{1/2}}(L^{-1/2}|\gamma_{-1j}|)(L^{-1/2}|\gamma_{-1j}|),
\]

(13) (14)

where \(p_\lambda(\cdot)\) is the SCAD penalty function. Some authors as [28] applied this kind of AGW-Lasso iteratively to calculate their SCAD estimates.

Because of the properties of the SCAD penalty function, there are positive constants \(C_1, C_2, \text{and } C_3\) such that if with probability tending to 1,

\[
\frac{\min_{j \in S_0^0} L^{-1/2}|\gamma_{1j}| \wedge \min_{j \in S_0^0} L^{-1/2}|\gamma_{-1j}|}{L^{1/2}} > C_1 \quad \text{and}
\]

(15)

\[
\frac{\max_{j \in S_0^0} L^{-1/2}|\gamma_{1j}| \vee \max_{j \in S_0^0} L^{-1/2}|\gamma_{-1j}|}{L^{1/2}} < C_2,
\]

(16)

then we have with probability tending to 1,

\[
w_{1j} = 0(j \in S_0^0) \text{ and } w_{-1j} = 0(j \in S_0^0) \quad \text{and} \quad w_{1j} > C_3(j \notin S_0^0) \text{ and } w_{-1j} > C_3(j \notin S_0^0).
\]

Thus the weights given in (13) and (14) obey (8) and (9). If necessary, we multiply \(\lambda\) and the weights by \(1/C_4\) and \(C_4\), respectively, where \(C_4\) is a sufficiently large constant.
and this adjustment does not essentially affect the condition (10). If

\[
\min_{j \in \mathcal{S}_0^g} |g_{cj}| \wedge \min_{j \in \mathcal{S}_0^v} \|g_{vj}\| \lambda L^{1/2} \to \infty,
\]

we will have (15) and (16). Note that these weights don’t meet (11).

3.2 Consistency of AWG-Lasso+HDIC

To state the main result of this subsection, we need to introduce Assumption A1, which assumes that \(|\mathcal{S}_0^c| \leq C_c\) and \(|\mathcal{S}_0^v| \leq C_v\) for some fixed \(C_c\) and \(C_v\). Let \(M_c\) and \(M_v\) be known positive integers fixed with \(n\) such that \(C_c < M_c\) and \(C_v < M_v\). Define

\[
\hat{S} = \arg\min_{|\mathcal{S}_c| \leq M_c \text{ and } |\mathcal{S}_v| \leq M_v} \text{HDIC}(\mathcal{S}).
\]

Under certain regularity conditions, the next theorem and corollary show that both \(\hat{S}\) and \(\hat{S}^\lambda\) are consistent estimates of \(\mathcal{S}_0^0\). We need to replace Assumptions A2–5 and B1–4 with Assumptions A2’–A5’ and B1’–B4’ to carry out subtle evaluations of \(R_V(\gamma_S)\) in the proof since we deal with high-dimensional semiparametric models. All the technical assumptions of Theorem 2 are also given in Section 5.

Theorem 2 Assume that Assumptions A1, A2’–A5’, B1’–B4’ and B5 in Section 5 hold. Then,

\[
\lim_{n \to \infty} P(\hat{S} = \mathcal{S}_0^0) = 1.
\]

Corollary 1 We assume the same assumptions as in Theorem 2 and that (8) and (9) hold true. Then for \(\Lambda\) satisfying \(\Lambda \subset [c_n^{-1} \sqrt{\log p_n / n}, c_n \sqrt{\log p_n / n}]\) and \(\{c_n \sqrt{\log p_n / n}\} \in \Lambda\), where \(c_n \to \infty\) and \(c_n / (\log n)^\kappa \to 0\) for some \(\kappa > 0\), we have

\[
\lim_{n \to \infty} P(\hat{S}^\lambda = \mathcal{S}_0^0) = 1.
\]

Some comments are in order. While \(\hat{S}\) can achieve selection consistency without the help of AWG-Lasso, it seems difficult to obtain \(\hat{S}\) directly when \(p\) is large and \(M_c\) and \(M_v\) are not very small. On the other hand, \(\hat{S}^\lambda\) is applicable in most practical situations. We also note that Theorem 2 extends the result in [21] and can be viewed as a generalization of the BIC result in [38] to the semiparametric setup, which is of fundamental interest from both theoretical and practical perspectives. Like [38], [19] also confines its attention to linear quantile models. Moreover, it seems difficult to
extend the proof in [19] to situations where the dimension of the true model tends to infinity. Finally, we mention that there is another version of HDIC,

\[
\text{HDIC}_\Pi(\mathcal{S}) = R_V(\tilde{\gamma}_\mathcal{S}) + (|\mathcal{S}_c| + (L - 1)|\mathcal{S}_v|) \frac{q_n \log p_n}{2n},
\]

which becomes

\[
\text{HDIC}_\Pi(\mathcal{S}) = R_V(\tilde{\gamma}_\mathcal{S}) + (|\mathcal{S}_l| + (L - 2)|\mathcal{S}_a|) \frac{q_n \log p_n}{2n}
\]

in the case of additive models. It can be shown that HDIC_\Pi and HDIC share the same asymptotic properties and their finite sample performance will be compared in the next section.

4 Numerical studies

In this section, we evaluate the performance of AWG-Lasso+HDIC and AWG-Lasso+HDIC_\Pi using one varying coefficient model and two additive models in the case of \(pL > n \). We set \(q_n = 1 \) in these numerical studies since the optimal choice of \(q_n \) in finite sample remains unsettled and is worth further investigation. Moreover, \(\{(w_{1j}, w_{-1j})\} \) in (5) are assigned according to (13) and (14), and \(\{(w_{2j}, w_{-2j})\} \) in (S.3) are determined in a similar fashion.

In our simulation study, we consider one varying coefficient model (Example 1) and two additive models (Examples 2 and 3). In these examples, we set \((n, p) = (500, 400) \), \(L = 6 \), \(\tau = 0.5 \), \(M_c = M_v = M_l = M_a = 20 \) and

\[
\Lambda = \left\{ c_n^{-1} \sqrt{\log p/n + kd_n}, k = 1, \ldots, 50 \right\},
\]

where \(c_n = 2 \log n \) and \(d_n = \{(c_n - c_n^{-1}) \sqrt{\log p/n}\}/50 \).

Based on a \(\lambda \in \Lambda \) and the weights described above, we employ the alternating direction method of multipliers (ADMM) to minimize (5) ((S.3)) over \(\gamma (\gamma_{-1}) \), and then choose the \(\lambda \) minimizing \(\text{HDIC}(\hat{S}^{\lambda}) \) defined in (7) ((S.5)) over \(\lambda \in \Lambda \), and the \(\lambda \) minimizing \(\text{HDIC}_\Pi (\hat{S}^{\lambda}) \) defined in (17) ((18)) over the same set. We conduct 50 simulations and the performance of AWG-Lasso+HDIC and AWG-Lasso+HDIC_\Pi in Examples 1–3 is documented in Tables 1–3, respectively. For the purpose of comparison, we also use the Rqpen package in R (see cv.rq.group.pen) to implement the group Lasso method in Example 1–3. In addition, the adaptive group Lasso method introduced in [29] for varying coefficient models (referred to as the T-method), and the group Lasso
method introduced in [18] for additive models (referred to as the K-method) are included. Note that since our goal is to identify structures in addition to selecting variables, these three methods are conducted based on the orthonormal basis functions proposed in this paper, which enable one to distinguish between constant and non-constant components for varying coefficient models (or linear and non-linear components for additive models). On the other hand, we use their original penalties, not the divided ones like ours. The performance of these three methods is also presented in Tables 1–3. In the Rqpen package, the L_1 norm is used instead of the L_2 norm inside the penalty functions. See the document for the details. This may be the cause of different performances from the other methods.

Example 1. We generate the output variables Y_1, \ldots, Y_n using the varying coefficient model,

$$Y_i = \sum_{j=1}^{p} X_{ij} g_j(Z_i) + \epsilon_i,$$

where ϵ_i, Z_i and $\{X_{ij}\}_{j=1}^{p}$ are independently generated from $N(0, 0.5^2)$, $U(0, 1)$ and $U(0, 100)$ distributions, respectively. Following [16], the coefficient functions $g_j(z)$ are set to

$$g_1(z) = g_2(z) = 1, g_3(z) = 4z, g_4(z) = 4z^2, g_j(z) = 0, \quad 5 \leq j \leq p.$$

Therefore, X_{i1} and X_{i2} are relevant covariates with constant coefficients, X_{i3} and X_{i4} are relevant covariates with non-constant coefficients, whereas $X_{i,5}, \ldots, X_{i,p}$, are irrelevant variables. Since our goal is to identify both relevant variables and the structures of relevant coefficients, define

$$C_{sj} = I\{g_j(\cdot) \text{ is identified as a constant function at the } s\text{th replication}\},$$

$$NC_{sj} = I\{g_j(\cdot) \text{ is identified as a non-constant function at the } s\text{th replication}\},$$

$$NS_{sj} = I\{g_j(\cdot) \text{ is identified as a zero function at the } s\text{th replication}\}.$$

It is clear that $C_{sj} + NC_{sj} + NS_{sj} = 1$ for each $1 \leq j \leq p$. We further define the true negative rate (TNR) and the strictly true positive rate (STPR),

$$\text{TNR}_s = \frac{\sum_{j=5}^{p} I\{NS_{sj} = 1\}}{p - 4} \quad \text{and} \quad \text{STPR}_s = \frac{\sum_{j=1}^{2} I\{C_{sj} = 1\} + \sum_{j=3}^{4} I\{NC_{sj} = 1\}}{4},$$

noting that $\text{STPR}_s = 1$ if at the sth replication, X_{i1} and X_{i2} are identified as relevant variables with constant coefficients and X_{i3} and X_{i4} are identified as relevant variables.
with non-constant coefficients. Therefore, STPR$_s$ can be viewed as a stringent version of the conventional true positive rate, which treats constant and non-constant coefficient functions indifferently. Now, the performance measures of a selection method are specified as follows:

\[
C_j = \frac{1}{50} \sum_{s=1}^{50} C_{sj}, \quad NC_j = \frac{1}{50} \sum_{s=1}^{50} NC_{sj}, \quad NS_j = \frac{1}{50} \sum_{s=1}^{50} NS_{sj},
\]

\[
TNR = \frac{1}{50} \sum_{s=1}^{50} TNR_s, \quad STPR = \frac{1}{50} \sum_{s=1}^{50} STPR_s.
\]

The performance of AWG-Lasso+HDIC, AWG-Lasso+HDIC$_{II}$, Rqpen, and T-method on \((C_j, NC_j, NS_j), j = 1, \ldots, 4\), STPR and TNR is demonstrated in Table 1. Table 1 shows that AWG-Lasso+HDIC and AWG-Lasso+HDIC$_{II}$ have high capability in identifying the true variables and true structures in the sense that \(C_1 = C_2 = NC_3 = NC_4 = STPR = 1\) hold for the two methods. Table 1 also reveals that both methods perform satisfactorily in identifying irrelevant variables since their TNR values are quite close to 1. Because Rqpen encounters singularity problems in many replications, its performance measures are set to missing in Table 1. The T-method performs quite well in identifying irrelevant variables and non-constant functions because its TNR, NC$_3$, and NC$_4$ are equal to 1. The method, however, erroneously treats constant functions as non-constant ones, leading to a low STPR value of 0.5.

Example 2. We generate \(Y_1, \ldots, Y_n\) from the following additive model,

\[
Y_i = \mu + \sum_{j=1}^{p} g_j(X_{ij}) + \epsilon_i, \quad (19)
\]

where \(\mu = 0\), \(\epsilon_i\) and \(\{X_{ij}\}_{j=1}^{p}\) follow \(N(0, 0.5^2)\) and \(U(0, 1)\), respectively. Following [16] again, we set

\[
g_1(x) = g_2(x) = 2^{1/2}(x - 1/2), \quad g_3(x) = 2^{-1/2}\cos(2\pi x) + (x - 1/2),
\]

\[
g_4(x) = \sin(2\pi x), \quad g_5(x) = 0, \quad 5 \leq i \leq p, \quad (20)
\]

noting that \(X_{i1}\) and \(X_{i2}\) are relevant through the linear functions \(g_1(\cdot)\) and \(g_2(\cdot)\), whereas \(X_{i3}\) and \(X_{i4}\) are relevant through the nonlinear functions \(g_3(\cdot)\) and \(g_4(\cdot)\). Let NS$_{sj}$ and TNR$_s$ be defined as in Example 1, and define

\[
L_{sj} = I_{\{g_j(\cdot) \text{ is identified as a linear function at the } s\text{th replication}\}},
\]

\[
NL_{sj} = I_{\{g_j(\cdot) \text{ is identified as a non-linear function at the } s\text{th replication}\}},
\]

\[
STPR_s = \frac{\sum_{j=1}^{2} I_{\{L_{sj}=1\}} + \sum_{j=3}^{4} I_{\{NL_{sj}=1\}}}{4}.
\]

13
Then, the performance measures of AWG-Lasso+HDIC, AWG-Lasso+HDIC II, Rqpen, and K-method are given by

\[
L_j = \frac{1}{50} \sum_{s=1}^{50} L_{sj}, \quad NL_j = \frac{1}{50} \sum_{s=1}^{50} NL_{sj}, \quad NS_j = \frac{1}{50} \sum_{s=1}^{50} NS_{sj},
\]

\[
TNR = \frac{1}{50} \sum_{s=1}^{50} TNR_s, \quad STPR = \frac{1}{50} \sum_{s=1}^{50} STPR_s,
\]

and summarized in Tables 2. Table 2 shows that \(L_1 = L_2 = 1\) hold for AWG-Lasso+HDIC, AWG-Lasso+HDIC II, and Rqpen, implying that these three methods can easily identify relevant linear functions. In addition, the \(NL_3\) and \(NL_4\) of these three methods are equal (or close) to 1, leading to very high STRP values. While the TNR values of AWG-Lasso+HDIC and AWG-Lasso+HDIC II are still very close to 1, Rqpen has a low TNR value of 0.67, revealing that the method may suffer from overfitting. On the other hand, the K-method can avoid overfitting and has the highest possible TNR value of 1. Moreover, its \(NL_3\) and \(NL_4\) are equal to 1, showing a good ability to identify non-linear functions. Unfortunately, the method fails to identify linear functions, resulting a low STPR value of 0.5.

Example 3. Suppose that \(Y_1, \ldots, Y_n\) are still generated from model (19), but with (20) replaced by

\[
g_1(x) = \frac{3 \sin(2\pi x)}{(2 - \sin(2\pi x))} - 0.4641016, \quad g_2(x) = 6x(1 - x) - 1, \quad g_3(x) = 2x - 1, \quad g_4(x) = x - 0.5, \quad g_5(x) = -x + 0.5, \quad g_i(x) = 0, \quad 6 \leq i \leq p,
\]

which are suggested in [22]. As observed in (21), \(X_{i1}\) and \(X_{i2}\) are relevant through the nonlinear functions \(g_1(.)\) and \(g_2(.)\), and \(X_{i3} \sim X_{i5}\) are relevant through the linear functions \(g_3(.) \sim g_5(.)\). With

\[
TNR_s = \frac{\sum_{j=6}^{p} I\{NS_{sj}=1\}}{p - 5} \quad \text{and} \quad STPR_s = \frac{\sum_{j=1}^{2} I\{NL_{sj}=1\} + \sum_{j=3}^{5} I\{L_{sj}=1\}}{5},
\]

the performance measures of the methods considered in Example 2 are given by

\[
L_j = \frac{1}{50} \sum_{s=1}^{50} L_{sj}, \quad NL_j = \frac{1}{50} \sum_{s=1}^{50} NL_{sj}, \quad NS_j = \frac{1}{50} \sum_{s=1}^{50} NS_{sj},
\]

\[
TNR = \frac{1}{50} \sum_{s=1}^{50} TNR_s, \quad STPR = \frac{1}{50} \sum_{s=1}^{50} STPR_s,
\]
and summarized in Table 3. Table 3 shows that \(NL_1 = NL_2 = L_3 = L_4 = L_5 = STPR = 1 \) hold for AWG-Lasso+HDIC and AWG-Lasso+HDIC\(_H\), suggesting that the two methods can perfectly identify the relevant variables as well as the corresponding functional structures. The two methods are also good at identifying irrelevant variables in terms of TNR values. The performance of the K-method in this example resembles that in Example 2. Rqpen still encounters overfitting as in Example 2. Moreover, it has a limited ability to identify linear functions although it can perfectly identify non-linear ones.

In conclusion, we note that the results of this section, together with those obtained in the previous sections, demonstrate that AWG-Lasso+HDIC and AWG-Lasso+HDIC\(_H\) have a strong ability to simultaneously identify the relevant (or irrelevant) variables and their corresponding structures in the high-dimensional quantile regression setup, a feature rarely reported in the literature. While the T- and K-methods also perform well in identifying relevant (or irrelevant) variables, they are not very successful in structure identification. This is mainly because the two methods don’t penalize constant/linear and non-constant/non-linear terms separately. Rqpen can encounter numerical difficulties in high-dimensional varying coefficient models as demonstrated in Example 1. The performance of Rqpen in structure identification is as good as our method in Example 2, and slightly better than the K-method in Example 3. The method, however, often suffers from overfitting.

Table 1: \((C_i, NC_i, NS_i), i = 1, \ldots, 4, STPR, \text{ and TNR in Example 1}\)

<table>
<thead>
<tr>
<th>((n, p) = (500, 400))</th>
<th>((C_1, NC_1, NS_1))</th>
<th>((C_2, NC_2, NS_2))</th>
<th>((C_3, NC_3, NS_3))</th>
<th>((C_4, NC_4, NS_4))</th>
<th>STPR</th>
<th>TNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWG-Lasso+HDIC</td>
<td>(1.0, 0.0, 0.0)</td>
<td>(1.0, 0.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>1.0</td>
<td>0.963</td>
</tr>
<tr>
<td>AWG-Lasso+HDIC(_H)</td>
<td>(1.0, 0.0, 0.0)</td>
<td>(1.0, 0.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>1.0</td>
<td>0.963</td>
</tr>
<tr>
<td>Rqpen</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>T-method</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 2: \((L_i, NL_i, NS_i), i = 1, \ldots, 4, STPR, \text{ and TNR in Example 2}\)

<table>
<thead>
<tr>
<th>((n, p) = (500, 400))</th>
<th>((L_1, NL_1, NS_1))</th>
<th>((L_2, NL_2, NS_2))</th>
<th>((L_3, NL_3, NS_3))</th>
<th>((L_4, NL_4, NS_4))</th>
<th>STPR</th>
<th>TNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWG-Lasso+HDIC</td>
<td>(1.0, 0.0, 0.0)</td>
<td>(1.0, 0.0, 0.0)</td>
<td>(0.0, 0.96, 0.04)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>1.0</td>
<td>0.997</td>
</tr>
<tr>
<td>AWG-Lasso+HDIC(_H)</td>
<td>(1.0, 0.0, 0.0)</td>
<td>(1.0, 0.0, 0.0)</td>
<td>(0.0, 0.98, 0.02)</td>
<td>(0.02, 0.98, 0.0)</td>
<td>0.99</td>
<td>0.998</td>
</tr>
<tr>
<td>Rqpen</td>
<td>(1.0, 0.0, 0.0)</td>
<td>(1.0, 0.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>1.0</td>
<td>0.674</td>
</tr>
<tr>
<td>K-method</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

15
Table 3: \((L_i, NL_i, NS_i), i = 1, \ldots, 5,\) STPR, and TNR in Example 3

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>((L_1, NL_1, NS_1))</th>
<th>((L_2, NL_2, NS_2))</th>
<th>((L_3, NL_3, NS_3))</th>
<th>((L_4, NL_4, NS_4))</th>
<th>((L_5, NL_5, NS_5))</th>
<th>STPR</th>
<th>TNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWG-Lasso+HDIC</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(1.0, 0.0, 0.0)</td>
<td>(1.0, 0.0, 0.0)</td>
<td>(1.0, 0.0, 0.0)</td>
<td>1.0</td>
<td>0.997</td>
</tr>
<tr>
<td>AWG-Lasso+HDIC II</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(1.0, 0.0, 0.0)</td>
<td>(1.0, 0.0, 0.0)</td>
<td>(1.0, 0.0, 0.0)</td>
<td>1.0</td>
<td>0.997</td>
</tr>
<tr>
<td>Rqpen</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.0, 1.0, 0.0)</td>
<td>(0.48, 0.52, 0.0)</td>
<td>(0.40, 0.60, 0.0)</td>
<td>(0.42, 0.58, 0.0)</td>
<td>0.66</td>
<td>0.406</td>
</tr>
<tr>
<td>K-method</td>
<td>(0.0, 1.0, 0.0)</td>
<td>0.6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

5 Proofs of the main theorems

First we introduce notation and assumptions. Then we prove Theorems 1 and 2. All the technical proofs are given in the supplement. We denote the conditional probability and expectation on \(\{(X_i, Z_i)\}_{i=1}^n\) by \(P(\cdot)\) and \(E(\cdot)\), respectively.

Assumption A1: There are bounded constants \(C_c\) and \(C_v\) such that \(|S_0^c| \leq C_c < M_c\) and \(|S_0^v| \leq C_v < M_v\). Besides, we know \(M_c\) and \(M_v\) in advance.

This assumption looks restrictive and we may be able to relax this assumption slightly. However, there are still many assumptions and parameters and we decided not to introduce more complications to relax Assumption A1. Note that we can easily relax the conditions on \(C_c\) only for Theorem 1 if \(\sum_{j \in S_0^c} w_{1j}^2 = O_p(1)\).

Assumptions A2 and A2’ are about the relevant non-zero coefficients and coefficient functions. We need to assume that they are large enough to be detected for our consistency results. Recall that \(L\) is the dimension of the spline basis and referred to in Assumption A3 and that \(q_n\) appeared in (7).

Assumption A2: We have in probability
\[
\frac{\min_{j \in S_0^c} \|g_{cj}\| \wedge \min_{j \in S_0^v} \|g_{vj}\|}{L^{1/2} \{(n^{-1} \log p_n)^{1/2} + \lambda |w_{S_0^n}|\}} \to \infty.
\]

Assumption A2’: We have
\[
\frac{\min_{j \in S_0^c} \|g_{cj}\| \wedge \min_{j \in S_0^v} \|g_{vj}\|}{q_n^{1/2} \{(n^{-1} L \log p_n)^{1/2}\}} \to \infty.
\]

Next we consider the smoothness of relevant non-zero coefficient functions and spline approximation.

Assumption A3: We take \(L = c Ln^{1/5}\) and use linear or smoother splines. Besides, we have for some positive \(C_g\),
\[
\sum_{j \in S_0^c \cup S_0^v} (\|g_j\|_\infty + \|g_j'\|_\infty + \|g_j''\|_\infty) \leq C_g.
\]
When Assumption A3 holds, there exists $\gamma_j^* = (\gamma_{1j}^*, \gamma_{-1j}^*)^T \in R^L$ for every $j \in S_0^c \cup S_0^v$ such that
\[
\sum_{j \in S_0^c \cup S_0^v} \|g_j - \gamma_j^{*T} B\|_\infty \leq C_1 L^{-2}, \quad \gamma_{1j}^* = L^{1/2} g_{c,j}, \quad \text{and} \quad \sum_{j \in S_0^c} \|g_{vj} - \gamma_{-1j}^{*T} B_{-1}\|_\infty \leq C_2 L^{-2},
\]
where C_1 and C_2 depend only on C_g and the order of the spline basis. Let γ_{S_0} consist of γ_{1j}^*, $j \in S_0^c$, and γ_{-1j}^*, $j \in S_0^v$. For S including the true S_0, γ_S means a vector of coefficients for our spline basis to approximate g_j up to the order of L^{-2}. When $j \in S_c \cap S_0^c$ or $j \in S_v \cap S_0^v$, the corresponding elements are put to 0. The other elements are γ_{1j}^*, $j \in S_0^c$, and γ_{-1j}^*, $j \in S_0^v$. See Section S.3 in the supplement for more details on the above approximations.

We define some notation related to spline approximation, δ_i, δ_{ij}, ϵ'_{ij}, and τ_i, by $\delta_{ij} = g_j(Z_j) - \gamma_j^{*T} B(Z_i)$,
\[
\delta_i = \sum_{j \in S_0^c \cup S_0^v} X_{ij} (g_j(Z_i) - \gamma_j^{*T} B(Z_i)) = \sum_{j \in S_0^c \cup S_0^v} X_{ij} \delta_{ij},
\]
\[
\epsilon'_{ij} = \epsilon_{ij} + \delta_{ij}, \quad \text{and} \quad \tau_i = \sigma_{ij} (\epsilon'_{ij} \leq 0).
\]
Under Assumptions A3 and A4 below, we have uniformly in i and j,
\[
|\delta_{ij}| = O(L^{-2}) \quad \text{and} \quad |\delta_{ij}| \leq C_1 X_M L^{-2} \to 0
\]
for some positive C_1, where let X_M be a constant satisfying $\max_{i,j} |X_{ij}| \leq X_M$. We allow X_M to diverge as in Assumptions A4 and A4’. Note that
\[
\frac{1}{n} \sum_{i=1}^n \delta_i^2 \leq \left\{ n^{-1} \sum_{i=1}^n \left(\sum_{j \in S_0^c \cup S_0^v} X_{ij}^2 \right) \right\}^{1/2} \left\{ n^{-1} \sum_{i=1}^n \left(\sum_{j \in S_0^c \cup S_0^v} \delta_{ij}^2 \right) \right\}^{1/2}. \quad (23)
\]

When we examine the properties of our BIC type criteria, we need more smoothness of the coefficient functions to evaluate the approximation bias. We replace Assumption A3 with Assumption A3’ for simplicity of presentation. In fact, the Hölder continuity of g_j'' with exponent $\alpha \geq 1/2$ is sufficient if $X_M^2 L^{-2\alpha} = O(L^{-1})$. If X_M is bounces, the proof of Theorem 2 will work for $\alpha = 1/2$. See Lemma 4 in Subsection S.2.2 of the supplement. When we assume Assumption A3’, we can replace L^{-2} with L^{-3} in the above approximations.

Assumption A3’: We take $L = c_L n^{1/5}$ and use quadratic or smoother splines. Besides, we have for some positive C_g,
\[
\sum_{j \in S_0^c \cup S_0^v} (\|g_j\|_\infty + \|g_j'\|_\infty + \|g_j''\|_\infty + \|g_j^{(3)}\|_\infty) \leq C_g.
\]
Next we state assumptions on X_M, p, and q_n. When we consider additive models, we can take $X_M = 1$. Assumptions A4 and A4’ imply that ν in $p = O(\exp(n^{1/5}))$ is less than $1/5$.

Assumption A4: For any positive k,

$$X_M (\log p_n)^{1/2} n^{-1/10} (\log n)^k \to 0. \quad (24)$$

Besides, $E\{B_{0l}(Z_1)X_{1j}\} = O(L^{-1})$ and $E\{B_{0l}(Z_1)X_{1j}\} = O(L^{-1})$ uniformly in l and j.

Recall that $B_{0l}(z)$ is the l-th element of the B-spline basis.

Assumption A4’: In Assumption A4, (24) is replaced with

$$X_M (\log p_n)^{1/2} q_n^{3/2} n^{-1/10} (\log n)^k \to 0.$$

Next we state assumptions on the conditional distribution of ϵ_i on (X_i, Z_i). We denote the conditional distribution function by $F_i(\epsilon)$ and the conditional density function by $f_i(\epsilon)$.

Assumption A5: There exist positive C_{f1}, C_{f2}, and C_{f3} such that uniformly in i,

$$|F_i(u + \delta) - F_i(\delta) - uf_i(\delta)| \leq C_{f1}u^2 \text{ and } f_i(\delta) \leq C_{f2} \text{ when } |\delta| + |u| \leq C_{f3}.$$

Assumption A5’: In addition to Assumption A5, $E\{|\epsilon_i|\} < \infty$ and when $|a| \to 0$, we have uniformly in i,

$$E_\epsilon[(a - \epsilon_i - \delta_i)I\{0 < \epsilon_i + \delta_i \leq a\}] = \frac{a^2}{2} f_i(-\delta_i) + O(|a|^3) \quad \text{ for } a > 0,$$

and

$$E_\epsilon[(\epsilon_i + \delta_i - a)I\{a < \epsilon_i + \delta_i \leq 0\}] = \frac{a^2}{2} f_i(-\delta_i) + O(|a|^3) \quad \text{ for } a < 0.$$

Actually, when $a > 0$ and $a \to 0$, we have under some regularity conditions that

$$\int_{-\delta_i}^{a-\delta_i} (a - \epsilon_i - \delta_i)f_i(\epsilon)d\epsilon = \frac{a^2}{2} f_i(-\delta_i) + O(a^3).$$

We introduce some more notation and another kind of assumptions to describe properties of the adaptively weighted Lasso estimators.

We define two index sets S_M and S_{C+M}. These index sets are defined for Theorem 2 and they are related to Assumption A1.
\[S_M = \{ S \mid S^0 \subset S, |S_c| \leq M_c, \text{ and } |S_v| \leq M_v \} \quad \text{and} \]
\[S_{C+M} = \{ S \mid S^0 \subset S, |S_c| \leq C_c + M_c, \text{ and } |S_v| \leq C_v + M_v \} \]

We define some random variables related to \(W_{iS} \) and describe assumptions on those random variables. The assumptions on those random variables follow from similar assumptions on their population versions and standard technical arguments. We omit the assumptions on the population versions and standard technical arguments here since they are just standard ones in the literature.

We define \(\Theta_1(S) \) by
\[
\Theta_1(S) = \frac{1}{n} \sum_{i=1}^{n} |W_{iS}|^2 = \frac{1}{n} \sum_{i=1}^{n} L^{-1} \sum_{j \in S_c} |X_{ij}|^2 + \frac{1}{n} \sum_{i=1}^{n} |B^{-1}(Z_i)|^2 \sum_{j \in S_v} |X_{ij}|^2.
\]

For technical and notational convenience, we redefine \(\Theta_1(S) \) by \(\Theta_1(S) \lor 1 \).

Assumption B1: For some positive \(C_{B1} \), we have \(\Theta_1(S^0) \leq C_{B1} \) with probability tending to 1.

Assumption B1 follows from some mild moment conditions under Assumption A1.

We define \(\Theta_2(S) \) and \(\Theta_3(S) \) by
\[
\Theta_2(S) = L\lambda_{\min}(\hat{\Sigma}_S) \quad \text{and} \quad \Theta_3(S) = L\lambda_{\max}(\hat{\Sigma}_S),
\]

where \(\hat{\Sigma}_S = n^{-1} \sum_{i=1}^{n} f_i(-\delta_i) W_{iS} W_{iS}^T \). The following assumptions are about their eigenvalues. Recall that our normalization factor of the basis is \(L^{-1} \).

Assumption B2: For some positive \(C_{B2} \), we have \(\Theta_2(S^0) \geq C_{B2} \) with probability tending to 1.

Assumption B2’: For some positive \(C'_{B2} \), we have \(\Theta_2(S) \geq C'_{B2} \) uniformly in \(S \in S_{C+M} \) with probability tending to 1.

Assumption B3: For some positive \(C_{B3} \), we have with probability tending to 1
\[
\Theta_3(S^0 \cup \{j\}, \phi) \leq C_{B3} \quad \text{uniformly in } j \in \overline{S_c}^0 \quad \text{and}
\]
\[
\Theta_3(S^0 \cup \phi, \{j\}) \leq C_{B3} \quad \text{uniformly in } j \in \overline{S_v}^0.
\]

Assumption B3’: For some positive \(C'_{B3} \), we have with probability tending to 1
\[
\Theta_3(S) \leq C'_{B3} \quad \text{uniformly in } S \in S_{C+M}.
\]
We define Θ_4 by $\Theta_4 = n^{-1} \sum_{i=1}^{n} \sum_{j \in S^c_i} X_{ij}^2$.

Assumption B4: For some positive C_{B4}', we have $\Theta_4 \leq C_{B4}'$ with probability tending to 1.

Assumption B4': In addition to Assumption B4, we have for some positive C'_{B4},

$$n^{-1} \sum_{i=1}^{n} \left(\sum_{j \in S^c_i \cup S_v} X_{ij}^2 \right)^2 \leq C'_{B4} \quad \text{with probability tending to 1}.$$

Assumption B4' is used to control (23). Assumptions B4 and B4' follow from mild moment conditions under Assumption A1.

We define $\Theta_5(S)$ by $\Theta_5(S) = \max_{1 \leq i \leq n} |W_{iS}|^2$. Notice that there are positive constants C_1 and C_2 such that

$$|W_{iS}|^2 = L^{-1} \sum_{j \in S_c} X_{ij}^2 + |B_{-1}(Z_i)|^2 \sum_{j \in S_v} X_{ij}^2 \leq C_1 X_M^2 (L^{-1} |S_c| + |S_v|) \leq C_2 X_M^2$$

for any $S \in S_{C+M}$ under Assumption A1.

We define $\hat{\Omega}_S$ by $\hat{\Omega}_S = n^{-1} \sum_{i=1}^{n} \tau_i (1 - \tau_i) W_{iS} W_{iS}^T$. The last assumption is about its eigenvalues. Recall that τ_i is defined in (22).

Assumption B5: There is a positive constant C_{B5} such that uniformly in $S \in S_{C+M}$,

$$1 \leq \frac{C_{B5}}{\lambda_{\min}(\hat{\Omega}_S)} \leq L \lambda_{\max}(\hat{\Omega}_S) \leq C_{B5} \quad \text{with probability tending to 1}.$$

We state Proposition 1 before we prove Theorem 1. The proposition gives the convergence rate of the AWG-Lasso estimator. We prove this proposition by following that of Theorem 1 in [7] in the supplement.

We use the proposition with $S = S^0$ or with $S \in S_{C+M}$ and $\lambda = 0$. Let w_S be a vector consisting of $\{w_{1j} | j \in S_c\}$ and $\{w_{-1j} | j \in S_v\}$. Then we define $|w_S|$ and K_n by

$$|w_S|^2 = \sum_{j \in S_c} w_{1j}^2 + \sum_{j \in S_v} w_{-1j}^2 \quad \text{and} \quad K_n(S) = \sqrt{n^{-1} \Theta_1(S) \log p_n + \lambda |w_S|}.$$

Tentatively we assume the weights are constants, not random variables.

Proposition 1 Suppose that $S^0 \subset S$ and Assumptions A1 and A3-5 hold. Besides we assume

$$\left(\frac{\Theta_5(S)}{\Theta_2(S)} \right)^{1/2} (\Theta_2^{-1/2}(S) \lor \Theta_4^{1/2}) K_n(S) L \to 0$$

and we define η_n by $\eta_n = C_M K_n(S)$, where C_M satisfies

$$C_M \geq b_1 \left\{ \frac{1}{\Theta_2(S)} \lor \left(\frac{\Theta_4}{\Theta_2(S)} \right)^{1/2} \right\}$$

(29)
for sufficiently large b_1 depending on b_2 in (30). Then we have for any fixed positive b_2 that
\[P(\epsilon(|\hat{\gamma}^\lambda_S - \gamma_0^*| \geq \eta_n) \leq \exp(-b_2 \log p_n). \] (30)

Later we use Assumptions B1-4 to control random variables in (28) and (29) in Proposition 1. Here some remarks on Proposition 1 are in order.

Remark 1 When w_S is a random vector and $\lambda > 0$, “$\rightarrow 0$” in (28) should be replaced with “$p \rightarrow 0$.” Besides, when for some positive C_1, C_2, and C_3,
\[P(C_1 \leq \Theta_2(S), \Theta_1(S) \leq C_2, \Theta_4 \leq C_3) \rightarrow 1, \]
the RHS of (29) is bounded from above in probability and $\Theta_1(S)$ in $K_n(S)$ can be replaced with a constant. Thus we have $P(|\hat{\gamma}^\lambda_S - \gamma_0^*| \geq \eta_n) \rightarrow 0$ under (28) in probability with a fixed C_M. Especially when $S = S^0$,
\[\eta_n \sim L\{(n^{-1} \log p_n)^{1/2} + \lambda|w_{S^0}|\}. \]

Remark 2 Since $\Theta_5(S^0) \leq C_4 X_M^2$ for some positive C_4 under Assumption A1, (28) reduces to $X_M L\{(n^{-1} \log p_n)^{1/2} + \lambda|w_{S^0}|\} \overset{p}{\rightarrow} 0$ in the setup of Remark 1 with $S = S^0$ and this is not a restrictive condition.

Remark 3 When $\lambda = 0$ and the assumptions in Theorem 2 hold, we have for $\hat{\gamma}^\lambda_S = \tilde{\gamma}_S$ that
\[|\hat{\gamma}^\lambda_S - \gamma_0^*| = |\tilde{\gamma}_S - \gamma_0^*| \leq C_5 L(n^{-1} \log p_n)^{1/2} \]
uniformly in $S \in S_{C+M}$ with probability tending to 1 for some positive C_5. We use this result in the proof of Theorem 2.

We provide the proof of Theorem 1. We define $\Gamma_S(M)$ by
\[\Gamma_S(M) = \{\gamma_S \in R^{d_Y(S)} \mid |\gamma_S - \gamma_0^*| \leq M\} \] (31)

Proof of Theorem 1 First we prove $(\hat{\gamma}^\lambda_{S^0}, 0^T)^T \in R^{pL}$ is a global minimizer of (5) by checking the following conditions (32) and (33). These conditions follow from the standard optimization theory as in [38] and [28]. In addition to (32) as in [38] and [28], we should deal with (33) since we are employing group penalties. Hereafter in this proof, we omit the superscript λ and write $\hat{\gamma}_{S^0}$ for $\hat{\gamma}^\lambda_{S^0}$.

21
With probability tending to 1, we have
\[
\left| {\frac{1}{n} \sum_{i=1}^{n} L^{-1/2} X_{ij} \rho'_t (Y_i - W_{i \gamma_0}^T \gamma_0) } \right| \leq \lambda w_{ij} \text{ for any } j \in \overline{S}_c^0 \quad \text{and} \\
\left| {\frac{1}{n} \sum_{i=1}^{n} B_{-1}(Z_i) X_{ij} \rho'_t (Y_i - W_{i \gamma_0}^T \gamma_0^*) } \right| \leq \lambda w_{-j} \text{ for any } j \in \overline{S}_v^0.
\] (32)
(33)

We verify only (33) since (32) is easier.

Proposition 1, Remark 1, and the conditions of this theorem imply that
\[
|\gamma_{\gamma_0} - \gamma_{\hat{\gamma}_0}| \leq C_1 \mathbb{L} \{(n^{-1} \log p_n)^{1/2} + \lambda |w_{\gamma_0}| \} \leq C_2 \mathbb{L} (n^{-1} \log p_n)^{1/2}(\log n)^{k_\lambda} \] (34)
with probability tending to 1 for some positive C_1 and C_2. We define $V_j(\gamma_{\gamma_0})$ by
\[
V_j(\gamma_{\gamma_0}) = n^{-1} \sum_{i=1}^{n} B_{-1}(Z_i) X_{ij} \left\{ \rho'_t (Y_i - W_{i \gamma_0}^T \gamma_0) - \rho'_t (Y_i - W_{i \gamma_0}^T \gamma_{\hat{\gamma}_0}) \right\} \\
- E_t \left[n^{-1} \sum_{i=1}^{n} B_{-1}(Z_i) X_{ij} \left\{ \rho'_t (Y_i - W_{i \gamma_0}^T \gamma_0) - \rho'_t (Y_i - W_{i \gamma_0}^T \gamma_{\hat{\gamma}_0}) \right\} \right]_{\gamma_{\gamma_0} = \hat{\gamma}_0}
\]

By considering the upper bounds given in (34), we can take a positive constant C_{ξ} for any small positive ξ such that with probability larger than $1 - \xi$,
\[
\left| {\frac{1}{n} \sum_{i=1}^{n} B_{-1}(Z_i) X_{ij} \rho'_t (Y_i - W_{i \gamma_0}^T \gamma_0) } \right| \leq \left| E_t \left[n^{-1} \sum_{i=1}^{n} B_{-1}(Z_i) X_{ij} \left\{ \rho'_t (Y_i - W_{i \gamma_0}^T \gamma_0) - \rho'_t (Y_i - W_{i \gamma_0}^T \gamma_{\hat{\gamma}_0}) \right\} \right]_{\gamma_{\gamma_0} = \hat{\gamma}_0} \right| \\
+ \left| n^{-1} \sum_{i=1}^{n} B_{-1}(Z_i) X_{ij} \rho'_t (Y_i - W_{i \gamma_0}^T \gamma_{\hat{\gamma}_0}) \right| + \max_{\gamma_{\gamma_0} \in \Gamma_{\gamma_0} (C_{\xi} L (n^{-1} \log p_n)^{1/2} (\log n)^{k_\lambda})} |V_j(\gamma_{\gamma_0})|.
\] (35)

We use the following two lemmas to evaluate (35). These lemmas are to be proved in the supplement.

Lemma 1 For some positive C_1, we have
\[
\left| {\frac{1}{n} \sum_{i=1}^{n} B_{-1}(Z_i) X_{ij} \rho'_t (Y_i - W_{i \gamma_0}^T \gamma_{\hat{\gamma}_0}) } \right| \leq C_1 (n^{-1} \log p_n)^{1/2}
\]
uniformly in $j \in \overline{S}_v^0$ with probability tending to 1.

Lemma 2 Take any fixed positive C and k and fix them. Then we have
\[
\max_{\gamma_{\gamma_0} \in \Gamma_{\gamma_0} (C L (n^{-1} \log p_n)^{1/2} (\log n)^{k})} |V_j(\gamma_{\gamma_0})| = o_p(\lambda)
\]
uniformly in $j \in \overline{S}_v^0$. 22
Finally we evaluate
\[
E_{\epsilon} \left[\frac{1}{n} \sum_{i=1}^{n} B_{-1}(Z_i) X_{ij} \{ \rho'_\tau(Y_i - W_{iS^0}^T \gamma_{S^0} - \rho'_\tau(Y_i - W_{iS^0}^T \gamma_{S^0}^*) \} \right]_{\gamma_{S^0} = \gamma_{S^0}^*} \tag{36}
\]
\[
= \frac{1}{n} \sum_{i=1}^{n} B_{-1}(Z_i) X_{ij} \left\{ F_i(-\delta_i) - F_i(-\delta_i + W_{iS^0}^T (\hat{\gamma}_{S^0} - \gamma_{S^0}^*)) \right\}.
\]

Setting \(\hat{\Delta}^0 = \hat{\gamma}_{S^0} - \gamma_{S^0}^*\) and recalling Assumption A5, we find that (36) is rewritten as
\[
-\frac{1}{n} \sum_{i=1}^{n} B_{-1}(Z_i) X_{ij} \left\{ F_i(-\delta_i) - F_i(-\delta_i + W_{iS^0}^T \hat{\gamma}_{S^0}) \right\} + o_p\left(\left(\frac{n-1}{p_n}\right)^{1/2}\right) = -D_j \hat{\Delta}^0 + o_p\left(\left(\frac{n-1}{p_n}\right)^{1/2}\right)
\]
uniformly in \(j \in \overline{S^0}\), where \(D_j\) is clearly defined in the above equation.

Assumption B3 implies that for some positive \(C_1\),
\[
\lambda_{\text{max}}(D_j^T D_j) \leq C_1 L^{-2}
\]
(38) uniformly in \(j \in \overline{S^0}\) with probability tending to 1. This is because \(D_j\) is part of \(\hat{\Sigma}_{S^0, \cup \{j\}}\). Thus (34) and (38) yield that for some positive \(C_2\),
\[
|D_j \hat{\Delta}^0| \leq C_2 \left\{ \left(\frac{n-1}{p_n}\right)^{1/2} + \lambda |w_{S^0}| \right\}
\]
(39) uniformly in \(j \in \overline{S^0}\) with probability tending to 1.

By combining (35), Lemmas 1 and 2, (37), and (39), we obtain
\[
\left| \frac{1}{n} \sum_{i=1}^{n} B_{-1}(Z_i) X_{ij} \rho'_\tau(Y_i - W_{iS^0}^T \hat{\gamma}_{S^0}) \right| \leq \lambda w_{1j}
\]
uniformly in \(j \in \overline{S^0}\) with probability tending to 1. Hence (33) is established.

As for the latter part of the theorem, Assumption A2 implies that \(\gamma_{S_0}^*\), \(j \in S_0\), and \(\gamma_{S_0}^*\), \(j \in S_0^c\), are large enough to be detected due to Proposition 1 with \(S = S_0\).

Hence the proof of the theorem is complete.

Now we state the proof of Theorem 2

Proof of Theorem 2 We give the details of the overfitting case here. We can deal with the underfitting case by following the standard arguments and we give the proof of the underfitting case in the supplement.

Let \(S\) satisfy \(S \in S_M\) and \(S \neq S_0\). See (25) for the definition of \(S_M\). “Uniformly in \(S\)” means “uniformly in \(S\) satisfying \(S \in S_M\) and \(S \neq S_0\)”. We have replaced Assumption A3 with Assumption A3’. We use Assumption A3’ only once in the proof.
(Lemma 4) and we use Assumption A3 in the other part. Assumption A3’ can be relaxed in some cases. See Lemma 4 in Subsection S.2.2 of the supplement for more details.

If we have established
\begin{equation}
R_V(\gamma_0^*) = \frac{1}{n} \sum_{i=1}^{n} \rho_{\tau}(\epsilon_i) + O(X_M L^{-2}) = \frac{1}{n} \sum_{i=1}^{n} E\{\rho_{\tau}(\epsilon_i)\} + o_p(1),
\end{equation}
\begin{equation}
R_V(\gamma_{S_0}) = R_V(\gamma_0^*) + O_p(1), \quad \text{and uniformly in } S,
\end{equation}
\begin{equation}
R_V(\gamma_{S_0}) - R_V(\gamma_S) = (d_V(S) - d_V(S^0))O_p(n^{-1}\{(\log p_n) \lor (q_n \log p_n)^{1/2}\}),
\end{equation}
then we have for some positive C_1,
\begin{equation}
0 \leq \log R_V(\gamma_{S_0}) - \log R_V(\gamma_S) = -\log \left\{ 1 + \frac{R_V(\gamma_S) - R_V(\gamma_{S_0})}{R_V(\gamma_{S_0})} \right\} \leq \frac{1}{C_1} \{ R_V(\gamma_{S_0}) - R_V(\gamma_S) \}
\end{equation}
uniformly in S with probability tending to 1. By (42) and (43), we obtain
\begin{align*}
\log R_V(\gamma_{S_0}) - \log R_V(\gamma_S) &= (d_V(S) - d_V(S^0))O_p(n^{-1}\{(\log p_n) \lor (q_n \log p_n)^{1/2}\}) \\
&< (d_V(S) - d_V(S^0))\frac{\log p_n}{2n} q_n
\end{align*}
uniformly in S with probability tending to 1. Hence the proof for the overfitting case is complete.

Thus we have only to prove (40)-(42). We prove only (42) since (40) and (41) are easy to deal with.

(49), (50), and (53), which will be defined later, are important when we prove (42).

To verify (49), first we will prove in the supplement that
\begin{align*}
R_V(\gamma_S) - R_V(\gamma_0^*) &= -(\gamma_S - \gamma_0^*)^T \frac{1}{n} \sum_{i=1}^{n} W_{iS}(\tau_i - I\{\epsilon_i' \leq 0\}) + \frac{1}{2}(\gamma_S - \gamma_0^*)^T \Sigma_S(\gamma_S - \gamma_0^*) \\
&\quad + (\gamma_S - \gamma_0^*)^T \frac{1}{n} \sum_{i=1}^{n} W_{iS}(\tau_i - \tau) + O_p\left(\frac{\log p_n}{n(\log n)^2} \right)
\end{align*}
uniformly in $\gamma_S \in \Gamma_S(M_1 L(q_n n^{-1} \log p_n)^{1/2})$ and S for any fixed M_1.

We use (44) to derive a useful expression of $R_V(\tilde{\gamma}_S)$. Put
\begin{equation}
a_S = \frac{1}{n} \sum_{i=1}^{n} W_{iS}(\tau_i - I\{\epsilon_i' \leq 0\}), \quad b_S = \frac{1}{n} \sum_{i=1}^{n} W_{iS}(\tau_i - \tau), \quad \text{and } \gamma_S - \gamma_0^* = \hat{\Sigma}_S^{-1} a_S. \tag{45}
\end{equation}

According to (S.19) in Lemma 4 in Subsection S.2.2 of the supplement,
\begin{equation}
(\gamma_S - \gamma_0^*)^T \frac{1}{n} \sum_{i=1}^{n} W_{iS}(\tau_i - \tau) = (\gamma_S - \gamma_0^*)^T b_S = O_p\left(\frac{(q_n \log p_n)^{1/2}}{n} \right) \tag{46}
\end{equation}
and this term in (44) is negligible uniformly in \(\gamma_S \in \Gamma_S(M_1L(q_nn^{-1}\log p_n)^{1/2}) \) and \(S \) for any fixed \(M_1 \).

By applying Bernstein’s inequality conditionally on \(\{(X_i, Z_i)\}_{i=1}^n \) first and using Assumption B5, we have

\[
|a_S|^2 = O_p\left(\frac{\log p_n}{n}\right)
\]

uniformly in \(S \). Thus we have from Assumption B2’ that uniformly in \(S \),

\[
\bar{\gamma}_S - \gamma^*_S = O_p(L(n^{-1}\log p_n)^{1/2}).
\]

We take some \(\delta_S \in R^{d_V(S)} \). If \(\bar{\gamma}_S + \delta_S \in \Gamma_S(M_1L(q_nn^{-1}\log p_n)^{1/2}) \), we have from (44) and (6) that uniformly in \(\delta_S \) and \(S \),

\[
R_V(\bar{\gamma}_S + \delta_S) - R_V(\gamma^*_S) = -\frac{1}{2}a_S^T\Sigma^{-1}_S a_S + \frac{1}{2} \delta_S^T \Sigma S \delta_S + O_p\left(\frac{(q_n \log p_n)^{1/2}}{n}\right) + O_p\left(\frac{\log p_n}{n(\log n)^2}\right),
\]

(49)

Because of the optimality of \(R_V(\bar{\gamma}_S) \) and (49), we should have

\[
R_V(\bar{\gamma}_S) - R_V(\gamma^*_S) = -\frac{1}{2}a_S^T\Sigma^{-1}_S a_S + O_p\left(\frac{(q_n \log p_n)^{1/2}}{n}\right) + O_p\left(\frac{\log p_n}{n(\log n)^2}\right)
\]

(50)

uniformly in \(S \). The above arguments show that this expression also holds for \(S_0 \). By combining (49) and (50) and setting \(\delta_S = \bar{\gamma}_S - \gamma^*_S \), we also obtain

\[
|\bar{\gamma}_S - \gamma^*_S|^2 = O_p\left(\frac{L(q_n \log p_n)^{1/2}}{n}\right) + O_p\left(\frac{L \log p_n}{n(\log n)^2}\right)
\]

(51)

uniformly in \(S \). Note again that these expressions also hold for \(S_0 \). This equation is used later in the underfitting case.

We evaluate the difference between \(R_V(\bar{\gamma}_S) \) and \(R_V(\gamma^*_S) \). Now write

\[
\hat{\Sigma}_S = \begin{pmatrix} \hat{\Sigma}_{S_0} & \hat{\Sigma}_{S12} \\ \hat{\Sigma}_{S21} & \hat{\Sigma}_{S22} \end{pmatrix} \quad \text{and} \quad a_S = \begin{pmatrix} a_{S_0} \\ a_{S2} \end{pmatrix}
\]

(52)

and notice that \(R_V(\gamma^*_S) = R_V(\gamma^*_S) \). Thus due to (50), we have only to consider the difference

\[
a_S^T\hat{\Sigma}^{-1}_S a_S - a_{S0}^T\hat{\Sigma}^{-1}_{S_0} a_{S0} = a_S^T\hat{\Sigma}^{-1}_{S_0}\hat{\Sigma}_{S12}\hat{F}_{S2}\hat{\Sigma}_{S21}\hat{\Sigma}^{-1}_{S_0} a_{S0}
\]

\[
-2a_{S0}^T\hat{\Sigma}^{-1}_{S0}\hat{\Sigma}_{S12}\hat{F}_{S2}a_{S2} + a_{S2}^T\hat{F}_{S2}a_{S2},
\]

(53)

where \(\hat{F}_{S2} = (\hat{\Sigma}_{S22} - \hat{\Sigma}_{S21}\hat{\Sigma}^{-1}_{S0}\hat{\Sigma}_{S12})^{-1} \), when we evaluate \(R_V(\bar{\gamma}_S) - R_V(\gamma^*_S) \).
We will demonstrate that the RHS of (53) has the stochastic order of \((d_V(S) - d_V(S^0))O_p(n^{-1} \log p_n)\) uniformly in \(S\).

From Assumptions B2' and B3', we have for some positive \(C_1, C_2, \) and \(C_3,\)
\[
C_1 L \leq \lambda_{\min}(\hat{F}_{S2}) \leq \lambda_{\max}(\hat{F}_{S2}) \leq C_2 L \quad \text{and} \quad \lambda_{\max}(\hat{\Sigma}_{S21}^{-1}\hat{\Sigma}_{S12}) \leq C_3 L^{-2} \quad (54)
\]
uniformly in \(S\) with probability tending to 1.

By applying Bernstein’s inequality conditionally on \(\{(X_i, Z_i)\}_{i=1}^n\) first and using Assumption B5, we have that uniformly in \(S,\)
\[
|a_{S2}|^2 = (d_V(S) - d_V(S^0))O_p\left(\frac{\log p_n}{nL}\right). \quad (55)
\]
Hence (54) and (55) imply that the third term on the RHS of (53) satisfies
\[
a_{S2}^T\hat{F}_{S2}a_{S2} = (d_V(S) - d_V(S^0))O_p(n^{-1} \log p_n) \quad \text{uniformly in } S. \quad (56)
\]

To evaluate the first and second terms on the RHS of (53),
\[
(a_{S0}^T\hat{\Sigma}_{S0}^{-1}\hat{\Sigma}_{S12})\hat{F}_{S2}(\hat{\Sigma}_{S21}^{-1}\hat{\Sigma}_{S0} a_{S0}) \quad \text{and} \quad (a_{S0}^T\hat{\Sigma}_{S0}^{-1}\hat{\Sigma}_{S12})\hat{F}_{S2}a_{S2}, \quad (57)
\]
we consider
\[
\hat{\Sigma}_{S21}^{-1}\hat{\Sigma}_{S0} a_{S0} = \hat{\Sigma}_{S21}^{-1}\hat{\Sigma}_{S0} \frac{1}{n} \sum_{i=1}^n W_i S_0 (\tau_i - I\{\epsilon_i' \leq 0\}) \quad (58)
\]
to obtain (62) below. And write
\[
\hat{\Sigma}_{S12} = (s_1, \ldots, s_{d_V(S) - d_V(S^0)})
\]
and note that (54) implies
\[
s_j^T s_j = O_p(L^{-2}) \quad \text{and} \quad \lambda_{\max}(\hat{\Sigma}_{S2}^{-1}\hat{\Sigma}_{S0}^{-1}I\hat{\Sigma}_{S0}^{-1}\hat{\Sigma}_{S12}) = O_p(L^{-1}) \quad (59)
\]
uniformly in \(j\) and \(S\) with probability tending to 1. Besides, we have for some positive \(C_4\) and \(C_5,\)
\[
\max_j |s_j^T \hat{\Sigma}_{S0}^{-1} W_i S_0| \leq C_4 L |s_j| ||W_i S_0|| \leq C_5 L |s_j| X_M = O_p(X_M) \quad (60)
\]
uniformly in \(i\) and \(S\) with probability tending to 1.

Hence by applying Bernstein’s inequality conditionally together with (59) and (60), we obtain
\[
\frac{1}{n} \sum_{i=1}^n s_j^T \hat{\Sigma}_{S0}^{-1} W_i S_0 (\tau_i - I\{\epsilon_i' \leq 0\}) = O_p((nL)^{-1} \log p_n)^{1/2} \quad (61)
\]
uniformly in j and S. Therefore (61) yields that uniformly in S,

$$\| \hat{\Sigma}_{S21} \hat{\Sigma}_{S0}^{-1} a_{S0} \|^2 = (d_V(S) - d_V(S^0)) O_p((nL)^{-1} \log p_n).$$

(62)

Thus (54), (55), (57), and (62) imply that the first and second terms on the RHS of (53) have the stochastic order of $(d_V(S) - d_V(S^0)) O_p(n^{-1} \log p_n)$ uniformly in S as in (56). We have demonstrated that the RHS of (53) has the stochastic order of $(d_V(S) - d_V(S^0)) O_p(n^{-1} \log p_n)$ uniformly in S.

Hence (42) follows from (50) and this evaluation of (53) and the proof of the overfitting case is complete. The proof of the underfitting case is given in the supplement. Hence the proof is complete.

Acknowledgements

We would like to thank the Editor, the associate editor, and the reviewer for their constructive comments, which greatly improve the presentation of this paper. We also thank Professors Kengo Kato and Yanlin Tang for providing us with their codes to implement K-method and T-method, and Dr. Wen-Ting Wang for his assistance in code development.

References

