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Abstract. Let Lt be the longest gap before time t in an inhomogeneous Poisson
process with rate function λt proportional to tα−1 for some α ∈ (0, 1). It is
shown that λtLt − bt has a limiting Gumbel distribution for suitable constants
bt and that the distance of this longest gap from t is asymptotically of the form
(t/ log t)E for an exponential random variable E. The analysis is performed
via weak convergence of related point processes. Subject to a weak technical
condition, the results are extended to include a slowly varying term in λt.

1. Introduction and main results

Let (Nt)t>0 be an inhomogeneous Poisson process with rate λt such that Λ(t) =∫ t
0
λs ds < ∞ for all t > 0. The epochs of N , in increasing order, are denoted by

Ti, i = 1, 2, . . ., so that the gaps are given by Ri = Ti − Ti−1 with T0 = 0. The
objects of study of the present paper are the longest gap, Lt, before time t and its
right-end position, σt:

Lt = max
i>1
{Ri : Ti 6 t},(1.1)

σt = min
i>1
{Ti : Ri = Lt}.(1.2)

Note that the definition does not include the gap straddling time t, but this is in
fact unimportant for our asymptotic results, see Remark 1.3.

In the homogeneous case, the discrete time analogue of the longest gap is the
longest run, Ln, of ones before time n in a Bernoulli(p) sequence. The study of
the longest run has a long history going back to, among others, [9, 21]; a recent
survey is in [5]. A main result is that Ln is of order log1/p n. In the homogeneous
Poisson case, λt ≡ λ, there is a neat analogue of this:

(1.3) λLt − log(λt)
D−→ G as t→∞ ,

where G is Gumbel with cumulative distribution function (cdf) P(G 6 x) =
exp(−e−x). The proof is equally neat: with M±

t = maxi6λt(1±ε)Ri for ε > 0
one has M−

t 6 Lt 6 M+
t for large t with high probability. Further, by standard

extreme value theory, the random variables λM±
t − log{λt(1 ± ε)} have Gumbel

Date: August 24, 2017.
2010 Mathematics Subject Classification. Primary 60G70, 60G55.
Key words and phrases. Gumbel distribution, inhomogeneous Poisson process, point processes,

records, regular variation, weak convergence.
1



2 S. ASMUSSEN, J. IVANOVS, AND J. SEGERS

limits as t → ∞, so one can just let first t tend to infinity and next ε tend to 0.
We provide some further comments and references in Remark 1.5 below.

As mentioned above, our interest is in time inhomogeneity. This may occur in at
least two ways. Firstly, one may consider fluctuations around a long-term average
which is conveniently modelled in a hidden Markov setting, see [1, 4, 10]. Secondly,
the rates λt may exhibit a systematic deterministic trend. The only reference here
seems to be [3] (though cf. also [19]), continuing a study of [2] related to problems
from computer reliability. The results in [3] are of large deviations type, giving
asymptotic estimates of P(Lt < `) in the rare-event setting where t → ∞ with `
fixed. Our concern here is the typical behaviour, that is, analogues of (1.3).

As in [3], the quantitative form of λt is crucial both for the form of the results and
the difficulty of the analysis. First, we concentrate on what is maybe the simplest
form, a power function λt = λ1t

α−1, and then provide extensions to regularly
varying functions. The power function is a rather natural choice with which to
start the analysis, and already this case presents substantial challenges. The case
α = 1 is settled by (1.3) and the behaviour when α > 1 or α 6 0 is easily resolved,
see Remark 1.6 below. Thus what is left for analysis is the case 0 < α < 1, and
here our result is the following:

Theorem 1.1. Let (Nt)t>0 be an inhomogeneous Poisson process with rate λt =
λ1t

α−1 with λ1 > 0 and α ∈ (0, 1). For Lt and σt as in (1.1) and (1.2), we have(
λtLt − bt,

t− σt
t

log t

)
D−→
(
G,Eα(1−α)

)
as t→∞,

where bt = α log t − log log t − log(α(1 − α)/λ1) and G,Eα(1−α) are independent
random variables: G is Gumbel and Eα(1−α) is exponential with rate α(1− α).

In fact, we prove a much more general result establishing weak convergence of a
sequence of point processes, from which Theorem 1.1 easily follows. Here and as
usual, convergence in distribution of point processes is with respect to the vague
topology in the space of Radon measures on (−∞,∞]2.

Theorem 1.2. Under the assumptions of Theorem 1.1 consider the point process ξt
on (−∞,∞]2 consisting of the points(

λtRi − bt,
t− Ti
t

log t

)
i = 1, 2, . . .

Then ξt
D−→ ξ as t→∞, where ξ is a Poisson point process with intensity measure

µ(dx, dz) = e−xdx× α(1− α)e−α(1−α)zdz .

Importantly, in Theorem 1.1 we consider the compactified Euclidean plane
(−∞,∞]2 so that the set [x,∞] × [−z,∞] is compact. The points of ξt in this
set are affine transformations of couples (Ri, Ti) such that Ri > (x + bt)/λt and
Ti 6 t(1 + z/ log t). Hence our result concerns all large enough gaps of N up to
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the time t + O(t/ log t). Furthermore, since vague convergence of point measures
implies convergence of the respective points in any compact set [23, Prop. 3.13],
we conclude that the map∑

i

δ(xi,zi) 7→ (x, z), x = max{xi : zi > 0}, z = max{zi : xi = x}

is continuous apart from possible discontinuities at point measures with xi =
xj or zi = 0 for some i 6= j. Since ξ is not of such form a.s., the continuous
mapping theorem gives that (λtLt − bt, (1 − σt/t) log t)

D−→ (X,Z), where (X,Z)
has the distribution arising from the application of the above map to ξ. A standard
calculation reveals that for z > 0 we have

P(X ∈ dx, Z ∈ dz) = P(ξ(dx× dz) = 1, ξ((x,∞)× (0,∞)) = 0)(1.4)

= µ(dx, dz) exp{−µ((x,∞)× (0,∞))}
= µ(dx, dz) exp(−e−x),

proving Theorem 1.1; see also the light-gray region in Figure 1.

Remark 1.3. In order to give a feeling for some further results we consider the
first gap exceeding Lt and its time of occurrence: (L+

t , σ
+
t ) = (Ri+t

, Ti+t ), where

i+t = min{i > 1 : Ri > Lt} is the corresponding index. From Theorem 1.2 and the
continuous mapping theorem applied to the appropriate map, we find that(

λtLt − bt, λtL+
t − bt,

t− σt
t

log t,
σ+
t − t
t

log t

)
D−→
(
X,X+, Z, Z+

)
,

where the conditional distribution of X+, Z+ is easily identified to be

P(X+ ∈ dx+, Z+ ∈ dz+ | X = x, Z = z)(1.5)

= P(ξ(dx+ × (−dz+)) = 1, ξ((x,∞)× (−z+, 0)) = 0)

= µ(dx+,−dz+) exp(−e−x(eα(1−α)z
+ − 1))

for x+ > x and z+ > 0; see the dark-grey region in Figure 1. In particular, we
find after some computation that Z+ D

= Eα(1−α)
D
= Z. One may proceed even

further and obtain convergence of extremal processes (on the Skorokhod space of
two-sided paths) identifying the record gaps and their times, see [23, Prop. 4.20]
for the classical setting.

Finally, note that L+
t = op(t/ log t) and so P(σ+

t − L+
t > t) → 1, showing that

the corresponding gap does not straddle time t in the limit.

When trying to adapt the above proof of (1.3), with scale constant λ1 = α
say, one quite easily gets Nt ≈ tα, which gives a rough estimate of Lt in terms
of maxi<tα Ri. The difficulty is that these interarrival times Ri are no longer
independent nor exponentially distributed. Nevertheless, the Ri are not too far
from exponential random variables with rates λTi ≈ α i(α−1)/α, because Ti ≈ i1/α

for large i. Hence our first step is to consider extreme value theory for sequences
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Figure 1. The points (x, z) and (x+,−z+) and the associated
empty regions (x,∞) × (0,∞) in (1.4) (light-gray) and (x,∞) ×
(−z+, 0) in (1.5) (dark-gray), respectively.

of i.i.d. random variables equipped with weights. Some references in that direction
are [7, 11, 13, 24] and, of particular relevance for us, [26, Thm. 4.1], from which
the following result can be extracted:

Proposition 1.4. Let X1, X2, . . . be independent unit exponential random vari-
ables and let γ ∈ (0,∞). Then with Mn = maxi=1,...,n{iγXi} we have

Mn

nγ
− βn

D−→ G, as n→∞,

where βn = log(n/γ)− log log n and G is a Gumbel random variable.

Our analysis supplements this result by identifying the location of the maximum
and providing the analogue of Theorem 1.2. This location is trivially uniform for
i.i.d. sequences or homogeneous Poisson processes, but has an interesting limiting
distribution in the nonhomogeneous case. We also give an extension to weights in
Proposition 1.4 and rates in Theorem 1.1 which are regularly varying rather than
of simple power form. Such an extension is of course expected, but the proof is
surprisingly complicated, and in fact, we need some regularity conditions on the
slowly varying function.

Remark 1.5. Despite its simplicity, (1.3) does not seem to have been formulated
in the longest run/gap literature. Note that its analogue fails in the Bernoulli
setting, because the extreme value behaviour of geometric random variables is
more complicated than the one of exponential random variables, cf. [20, pp. 24–
25].

However, as pointed out by an associate editor and a referee, there are a num-
ber of related results in the stochastic geometry literature. Most of these are more
general and go deeper, but (1.3) can be deduced after some reformulation. For ex-
ample, consider the probability of full coverage of the interval [0, 1] in the Boolean
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model [15] on R with deterministic segments of length r(t) = (x + log(λt))/(λt)
arriving at the rate λ(t) = λt. By rescaling time we find that

P(λLt − log(λt) 6 x) = P(Lt/t 6 r(t))

= P(t)(full coverage of [0, 1]) + o(1) as t→∞,

which converges to exp(−e−x) according to [15, Thm. 2.5]. For related results in
the nonuniform setting see [14, 16] and [22] for more recent work. Furthermore,
(1.3) also follows from [8, (2c)] specifying the limit behaviour of the maximal
circumscribed radius of a Poisson–Voronoi tessellation.

Remark 1.6. When α > 1, [3] gives that the increasing process Lt has a proper
limiting distribution, of L∞, say. That is, from (7) in [3] it follows that P(L∞ >
`)→ 0 as `→∞. The case α < 0 is trivial since then

∫∞
1
λt dt <∞, so that the

number of epochs in [1,∞) is finite with probability 1. The boundary case α = 0
is also easy: if λt = λ1/t for some scale constant λ1 > 0, then

(1.6)

(
Lt
t
,
σt
t

)
D
= (L1, σ1).

Indeed, fix t > 0 and define the time-changed process N ′ by N ′x = Ntx for x > 0.
Its intensity measure, Λ′, satisfies Λ′(x, y) = Λ(tx, ty) = λ1 log((ty)/(tx)) = Λ(x, y)
for any 0 < x < y. It follows that N ′ has the same distribution as N , and it is
then clear that (Lt/t, σt/t) has the same distribution as (L1, σ1).

Finally, observe that t − σt is of order t when α = 0 or 1, the two boundary
cases in Theorem 1.1. In contrast, Theorem 1.1 gives the smaller order t/ log t when
α ∈ (0, 1). Therefore, it is intuitive that the limiting random variable Eα(1−α) must
increase to ∞ as α approaches 0 or 1. This is indeed the case.

2. Weighted exponentials

As in Proposition 1.4, we consider a sequence X1, X2, . . . of independent, unit
exponential random variables. We fix γ > 0 and let

(2.1) Mn = max
i=1,...,n

{iγXi} and τn = min{i = 1, . . . , n : iγXi = Mn},

denote the partial maximum of the weighted sequence (iγXi)i>1 and the location
of that maximum, respectively. In the i.i.d. case, γ = 0, the random variable τn is
uniformly distributed on {1, . . . , n}. Since the weights iγ increase to infinity, one
would expect that τn/n → 1 as n → ∞. The following proposition makes this
precise.

Proposition 2.1. For Mn and τn as in (2.1), we have(
Mn

nγ
− βn,

n− τn
n

log n

)
D−→ (G,Eγ) as n→∞,
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where βn = log(n/γ) − log log(n) and where G,Eγ are independent random vari-
ables: G is Gumbel and Eγ is exponential with rate γ.

We start by proving a lemma which is basic for the proof of Proposition 2.1 and
the associated point process result given in Proposition 2.3.

Lemma 2.2. For every z ∈ R, we have

Mbn(1−z/ logn)c
nγ

− βn
D−→ G− γz, as n→∞,

where G is a Gumbel random variable.

Proof. Letting Mn(z) = Mbn(1−z/ logn)c we find from Proposition 1.4 that

Gn =
Mn(z)

bn− nz/ log ncγ
− βbn−nz/ lognc

D−→ G, as n→∞.

Further,

Mn(z)

nγ
− βn =

(
Gn + βbn−nz/ lognc

) bn− nz/ log ncγ

nγ
− βn.

An elementary calculation yields

(2.2) βbn−nz/ lognc
bn− nz/ log ncγ

nγ
− βn → −γz, as n→∞.

The result follows by Slutsky’s lemma and the fact that bn − nz/ log ncγ ∼ nγ,
where an ∼ bn means that an/bn → 1 as n→∞. �

The following result establishing convergence of the underlying point processes
is close in spirit to, e.g., [25, Thm. 1], and it serves as the basis for Theorem 1.2.

Proposition 2.3. The point process ξ̂n on (−∞,∞]2 consisting of the points(
iγXi

nγ
− βn,

n− i
n

log n

)
i = 1, 2, . . .

converges in distribution as n → ∞ to the Poisson point process ξ̂ with mean
measure

µ̂(dx, dz) = e−xdx× γe−γzdz.

Proof. Let Yn,i = iγXi/n
γ−βn. According to the result of Grigelionis, see e.g. [18,

Thm. 16.18], applied to a null array of single points, it is only required to show
that

sup
i>1

P{(Yn,i, (1− i/n) log n) ∈ B} → 0,∑
i>1

P{(Yn,i, (1− i/n) log n) ∈ B} → µ̂(B),
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for any finite union B of rectangles in (∞,∞]2. In our setting it is sufficient to
check the above limits for B = [x,∞]× [z,∞]. The first limit result follows from
the monotonicity of (i/n)γ and

P(Yn,bn(1−z/ logn)c > x) = exp{−(x+ βn)(1 + o(1))} → 0.

Using this and Lemma 2.2 we also find that∑
i>1

(1−i/n) logn>z

P(Yn,i > x) = −(1 + o(1)) log
∏
i>1

(1−i/n) logn>z

P(Yn,i < x)

= −(1 + o(1)) logP(Mbn−nz/ lognc/n
γ − βn < x)→ − logP(G− γz < x)

= e−x−γz = µ̂([x,∞]× [z,∞]),

as required. �

Proof of Proposition 2.1. It follows by the continuous mapping theorem applied to
Proposition 2.3 in the same way as Theorem 1.1 follows from Theorem 1.2.

Alternatively, one may proceed directly by identifying the limit distribution:

max{iγXi : i ∈ N, n(1− z/ log n) < i 6 n}/nγ − βn
D−→ G+ log(1− e−γz),

and then expressing the distribution of interest using Mbn−nz/ lognc/n
γ − βn and

the above quantity. �

3. Gaps of an inhomogeneous Poisson process

Let 0 < T1 < T2 < . . . be the points of a Poisson process N = (Nt)t>0 with
rate λt = α tα−1 for some 0 < α < 1 and with cumulative rate function Λ(t) =∫ t
0
λs ds = tα. Note that we assume that λ1 = α; the case λt = λ1t

α−1 for general
λ1 > 0 follows by the time change argument, but see also Section 4. Recall that
Ri = Ti − Ti−1 for integer i > 1, where T0 = 0.

Define T ′i = Tαi for integer i > 0, so that 0 < T ′1 < T ′2 < . . . are the points of a
unit-rate homogeneous Poisson process (N ′t )t>0. Let Xi = T ′i − T ′i−1 be its inter-
arrival times, for integer i > 1. The random variables X1, X2, . . . are independent
unit exponentials. Put

γ = (1− α)/α ∈ (0,∞).

The following result provides the basic approximation.

Lemma 3.1. We have as i→∞ that

(3.1)

∣∣∣∣ Tii1/α
− 1

∣∣∣∣ ∨ ∣∣∣∣ αRi

iγXi

− 1

∣∣∣∣ = o(1/ log i) a.s.

Proof. Since (T ′i )i is the partial sum process of a sequence of independent unit
exponentials, the law of the iterated logarithm states that

lim sup
i→∞

T ′i/i− 1√
i−1 log log i

=
√

2 a.s.,
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which further implies

(3.2) |T ′i/i− 1| log i→ 0 a.s.

But then

Ti/i
1/α − 1 = (T ′i/i)

1/α − 1 = (T ′i/i− 1)(1 + o(1))/α a.s.

and so |Ti/i1/α − 1| log i→ 0 a.s. as required.
Concerning the second part, we write using the mean-value theorem

Ri = Ti − Ti−1 = (T ′i )
1/α − (T ′i−1)

1/α = (T ′i )
1/α − (T ′i −Xi)

1/α = α−1θγiXi(3.3)

with T ′i−1 < θi < T ′i . Hence it is left to show that |(θi/i)γ − 1| log i→ 0 a.s., which
again follows from (3.2). �

In the following we relate the points of the point process ξt in Theorem 1.2 to the
corresponding points of the process ξ̂dtαe in Proposition 2.3 with rescaled second
component.

Lemma 3.2. Let B = [x1, x2]× [z1, z2] and put

ui(t) = (λtRi − bt, (1− Ti/t) log t),

vi(t) = (iγXi/n
γ − βn, (1− i/n) log(n)/α2)

with n = n(t) = dtαe. Then

sup
i
{‖ui(t)− vi(t)‖1 : vi(t) ∈ B or ui(t) ∈ B} → 0 a.s.

as t→∞ with the convention that sup∅ = 0.

Proof. Letting Iv(t) = {i > 1 : vi(t) ∈ B} we see that i/n → 1 and hence also
i/tα → 1 uniformly in i ∈ Iv(t) as t → ∞. Now according to Lemma 3.1, for all
i ∈ Iv(t), we have

(3.4) αRi = iγXi(1 + η′i), Ti = i1/α(1 + η′′i )

where |η′i| ∨ |η′′i | = o(1/ log t) as t→∞ a.s. So we have a.s.

λtRi − bt 6 iγXi/t
αγ(1 + o(1/ log t))− bt(3.5)

= (iγXi/n
γ − βn)(1 + o(1/ log t)) + o(1),

where in the last line we used the facts: dtαeγ/tαγ = 1 + o(1/ log t) and bt =
βtα + o(1) = βn + o(1). This and the analogous lower bound imply that

sup
i∈Iv(t)

|(λtRi − bt)− (iγXi/n
γ − βn)| → 0
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as t→∞ a.s., because |iγXi/n
γ −βn| is bounded for the indices of interest. Upon

recalling that i/tα − 1→ 0 uniformly in i ∈ Iv(t), for all such i we find that

α2(1− Ti/t) log t 6 α2(1− i1/α(1 + o(1/ log t))/t) log t(3.6)

= α(1− (i/tα)1/α) log(tα) + o(1)

= (1− i/tα) log(tα)(1 + o(1)) + o(1)

= (1− i/n) log(n)(1 + o(1)) + o(1).

This and the analogous lower bound yield

sup
i∈Iv(t)

|α2(1− Ti/t) log t− (1− i/n) log n| → 0

as t→∞ a.s., because now |1− i/n| log n is bounded for the indices of interest.
Next, consider the set of indices Iu(t) = {i > 1 : ui(t) ∈ B}. In this case we

use the fact that Ti/t→ 1 uniformly in i ∈ Iu(t). Furthermore, with probability 1
as t → ∞ the corresponding indices i converge to ∞ too, and since Ti ∼ i1/α we
must have that i/tα → 1 uniformly in i ∈ Iu(t). Thus (3.5) holds true and hence
also

(3.7) iγXi/n
γ − βn > (λtRi − bt)(1 + o(1/ log t)) + o(1).

The corresponding upper bound, as well as the bounds on (1 − i/n) log(n)/α2

stemming from (3.6), complete the proof, because |λtRi − bt| and |(1− Ti/t) log t|
are bounded for all i ∈ Iu(t). �

Remark 3.3. The point process
∑

i δvi(n) with vi(n) defined in Lemma 3.2 is a

rescaled version of ξ̂n in Proposition 2.3, and the proof of the latter easily yields
that

∑
i δvi(n) converges in distribution to a Poisson point process with intensity

measure for the set [x,∞]× [z,∞] given by

µ̂([x,∞]× [α2z,∞]) = e−x−α(1−α)z = µ([x,∞]× [z,∞]).

That is, the corresponding limit is ξ.

The following lemma shows that compact sets of the form [x,∞] × [z,∞] can
be truncated to finite rectangles.

Lemma 3.4. For any ε > 0 and z, x <∞ there exist z′ > z and x′ > x such that

lim sup
t→∞

P(ξt(([x,∞]× [z,∞]) \ ([x, x′]× [z, z′])) > 0) < ε.

Proof. Put n = dtαe and observe using (3.3) that

max
i6n/2

αRi 6 max
i6n/2

(T ′i )
γXi 6 (T ′dn/2e)

γ max
i6n/2

Xi = (n/2)γ log n(1 + op(1)),

where in the last equality we used the law of large numbers applied to T ′i and the
fact that maxi=1,...,kXi − log(k) is asymptotically Gumbel. But then

λt max
i6n/2

Ri − bt 6 2−γα log(t)(1 + op(1))− bt → −∞
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in probability. Thus it is sufficient to restrict our attention to the indices i > n/2,
in which case we have (3.4) for all such i a.s.

Observe that for i > n/2 the bound (3.7) is still true. Letting I(t, z) be the set
of indices i such that (1− Ti/t) log t ∈ [z, z + 1] or (1− i/n) log(n)/α2 ∈ [z, z + 1],
we see from the proof of Lemma 3.2 that i/tα−1→ 0 uniformly in i ∈ I(t, z), and
also that

sup
i∈I(t,z)

|(1− Ti/t) log t− (1− i/n) log(n)/α2| → 0 as t→∞ a.s.

Hence for any fixed δ > 0 with arbitrarily high probability the following is true for
large enough t: if for some i > n/2 it is true that

λtRi − bt > x and (1− Ti/t) log t > z

then
iγXi/n

γ − βn > x− δ and (1− i/n) log(n)/α2 > z − δ,
because for i /∈ I(t, z) the monotonicity of Ti implies (1− i/n) log(n)/α2 > z + 1.
Thus it is left to apply Proposition 2.3 and to note that µ̂(B1), µ̂(B2)→ 0 with

B1 = [x− δ,∞]× [α2(z′ − δ),∞], B2 = [x′ − δ,∞]× [α2(z − δ),∞]

as x′, z′ →∞, which implies that P(ξ̂(Bi) > 0)→ 0. �

Proof of Theorem 1.2. According to [17, Thm. 1] it is sufficient to show that

lim
t→∞

P(ξt(B) = 0) = P(ξ(B) = 0),(3.8)

lim sup
t→∞

P(ξt(K) > 1) 6 P(ξ(K) > 1),(3.9)

where K is a compact rectangle in (−∞,∞]2 and B is a finite union of such
rectangles. According to Lemma 3.4 we may choose x1 < x2, z1 < z2 such that

0 6 P(ξt(B
′) = 0)− P(ξt(B) = 0) 6 P

(
ξt(B \ ([x1, x2]× [z1, z2])) > 0

)
< ε

for B′ = B ∩ ([x1, x2] × [z1, z2]) and all t large enough. Furthermore, we may
additionally ensure that 0 6 P(ξ(B′) = 0)−P(ξ(B) = 0) 6 ε. A similar observation
holds true with respect to P(ξt(B) > 1) − P(ξt(B

′) > 1) and the corresponding
difference for the process ξ. Hence it is sufficient to prove (3.8) and (3.9) for any
finite rectangle K and a finite union B of such rectangles.

Fix δ > 0 and define the δ-enlarged set Bδ+ = {v : d(v,B) < δ} and δ-narrowed
set Bδ− = {v : d(v,Bc) > δ}, where d is the Euclidean distance. According to
Lemma 3.2 with the respective rectangle chosen to cover B, we have

P(#{i : vi(t) /∈ Bδ+} = 0)− ε 6 P(ξt(B) = 0)

6 P(#{i : vi(t) /∈ Bδ−} = 0) + ε

for all t large. Noting that µ(∂B) = 0 we obtain (3.8) from Remark 3.3 based on
Proposition 2.3. In a similar way we also find that P(ξt(K) > 1)→ P(ξ(K) > 1).
The proof is complete. �
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4. Extensions to regular variation

Let RVρ denote the set of measurable functions f : R+ → R+ which are regularly
varying at ∞ with index ρ ∈ R, i.e., satisfying f(ut)/f(t) → uρ as t → ∞ for all
u > 0. Any such f can be represented as f(t) = tρ`(t) with ` ∈ RV0 a slowly
varying function. Regularly varying functions are thus a generalization of the
power functions considered above. Let us also recall the basic theorem concerning
regularly varying functions f ∈ RVρ, the Uniform Convergence Theorem [6, Thm.
1.5.2]:

(UCT) f(ut)/f(t)→ uρ, uniformly in u

on intervals [a, b] with 0 < a 6 b < ∞ for ρ 6 0, and on intervals (0, b] for ρ > 0
if f is locally bounded.

Assume that the rate function t 7→ λt is in RVα−1 for some α ∈ (0, 1), so that
Λ ∈ RVα. Let V (t) = Λ−1(t) be the inverse function of Λ and let v(t) = dV (t)/dt
be its derivative. Then V ∈ RV1/α and v = 1/(λ ◦ V ) ∈ RVγ with γ = (1− α)/α.
The point process N ′t = NV (t) is a unit-rate homogenous Poisson process with
epochs T ′i = Λ(Ti).

We generalize our main results imposing just one condition on the slowly varying
function ` associated with v, i.e., v(t) = tγ`(t); see Condition 4.2 below. The basis
of our analysis will be the approximation Ri = V (T ′i )− V (T ′i−1) ≈ v(i)Xi inspired
by the mean-value theorem applied to V and the strong law of large numbers
applied to the partial sum sequence T ′i . Therefore, we first study the behaviour of
the maximum of the weighted exponentials v(i)Xi.

4.1. Weighted exponentials. Let X1, X2, . . . be a sequence of i.i.d. unit expo-
nentials and let v ∈ RVγ with γ > 0. Write v(t) = tγ`(t) with ` ∈ RV0. We
consider the maximum of the weighted exponentials v(i)Xi and the location of
that maximum:

M∗
n = max

i=1,...,n
{v(i)Xi} and τ ∗n = min{i = 1, . . . , n : v(i)Xi = M∗

n}.

Lemma 4.1. We have
M∗

n

v(n)

/Mn

nγ
= 1 + op(1),

τ ∗n
n

= 1 + op(1)

as n→∞.

Proof. Let 0 < h < 1. First, we prove that P(τ ∗n/n > h) → 1 as n → ∞, or
equivalently, that

(4.1) lim
n→∞

P(M∗
bnhc < M∗

n) = 1.

On the one hand, we have

M∗
bnhc

v(n)
= max

i=1,...,bnhc

v(i)

v(n)
Xi 6 max

i=1,...,bnhc

v(i)

v(n)
max

i=1,...,bnhc
Xi.
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But v ∈ RVγ can be assumed to be locally bounded [otherwise redefine v by
v(t) = v(btc)], and so by (UCT) it follows that

lim
n→∞

max
i=1,...,bnhc

v(i)

v(n)
= max

u∈[0,h]
uγ = hγ.

Since X1, X2, . . . are i.i.d. unit exponentials, we have maxi=1,...,bnhcXi = logbnhc+
Op(1) = log(n){1 + op(1)} and thus

M∗
bnhc

v(n)
6 hγ log(n){1 + op(1)} as n→∞.

On the other hand, let g ∈ (h, 1). By a similar argument as in the previous
paragraph, we find

M∗
n

v(n)
> max

i=bngc,...,n

v(i)

v(n)
Xi > min

i=bngc,...,n

v(i)

v(n)
max

i=bngc,...,n
Xi

= gγ log(n){1 + op(1)} as n→∞.
Since hγ < gγ, we obtain (4.1), as required.

Concerning the first statement, observe from above and Proposition 2.1 that
with arbitrarily high probability

M∗
n = max

i=bngc,...,n
`(i)iγXi, Mn = max

i=bngc,...,n
iγXi

for large enough n. Hence it is sufficient to show that

(4.2) max
i=bngc,...,n

`(i)/`(n)− 1→ 0 as n→∞

and the same for min, which again follows from (UCT). �

In order to generalize Proposition 1.4 we need a stronger statement than the
readily available (4.2), and so we assume the following additional condition on the
slowly varying function `.

Condition 4.2. Whenever 0 < ε(t)→ 0 as t→∞, we have

log(t)

(
`([1 + ε(t)]t)

`(t)
− 1

)
→ 0.

In Section 4.3 we provide a simple sufficient criterion under which Condition 4.2
holds. It is important to realize that Condition 4.2 is equivalent to a seemingly
stronger condition stated in the following lemma.

Lemma 4.3. Condition 4.2 is equivalent to

(4.3) log(t) sup
−ε(t)6x6ε(t)

∣∣∣∣`((1 + x)t)

`(t)
− 1

∣∣∣∣→ 0

for any 0 < ε(t)→ 0.

Proof. Given in Appendix A. �
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Recall βn = log(n/γ)− log log(n).

Lemma 4.4. Assuming Condition 4.2 we have M∗
n/v(n)− βn

D−→ G.

Proof. Since (τ ∗n ∧ τn)/n = 1+op(1) as n→∞ by Lemma 4.1 and Proposition 2.1,
we can find εn > 0 such that εn → 0 and P[τ ∗n ∧ τn > n(1 − εn)] → 1 as n → ∞.
Hence with arbitrarily high probability we have∣∣∣∣ M∗

n

v(n)
− Mn

nγ

∣∣∣∣ =

∣∣∣∣ max
n(1−εn)<i6n

{
iγ`(i)

nγ`(n)
Xi

}
− max

n(1−εn)<i6n

{
iγ

nγ
Xi

}∣∣∣∣
6 max

n(1−εn)<i6n

{∣∣∣∣ `(i)`(n)
− 1

∣∣∣∣ iγnγXi

}
6
Mn

nγ
sup

−εn<x60

∣∣∣∣`(n(1 + x))

`(n)
− 1

∣∣∣∣ .
Lemma 4.3 and Lemma 2.2 show that M∗

n/v(n) = Mn/n
γ + op(1) completing the

proof. �

Proposition 4.5. Let v ∈ RVγ for some γ > 0 and put `(t) = t−γv(t). If ` satisfies
Condition 4.2 then Proposition 2.1 and Proposition 2.3 hold with M∗

n, τ
∗
n, v(i), v(n)

in place of Mn, τn, i
γ, nγ.

Proof. One may follow the same steps as in the original proofs. In addition, for
the analogue of (2.2) we use Lemma A.1, whereas the extension of Proposition 2.3
requires showing that

sup
16i6n(1−z/ logn)

exp(−(x+ βn)v(n)/v(i))→ 0,

which follows from (UCT) applied to the function v(btc). �

4.2. Gaps of a Poisson process. Let (Nt)t>0 be an inhomogenous Poisson pro-
cess as in the beginning of this section. As a consequence of Lemma 4.3, we have
that

(4.4) 0 < δ(t) = o (1/ log t) as t→∞ implies

lim
t→∞

log(t) sup
−δ(t)6x6δ(t)

∣∣∣∣v((1 + x)t)

v(t)
− 1

∣∣∣∣ = 0,

because (1± δ(t))γ − 1 = o(1/ log t).
Let us now provide a generalization of Lemma 3.1.

Lemma 4.6. If ` satisfies Condition 4.2, then∣∣∣∣ TiV (i)
− 1

∣∣∣∣ ∨ ∣∣∣∣ Ri

v(i)Xi

− 1

∣∣∣∣ = o(1/ log i) a.s.

as i→∞.

Proof. From the monotonicity of V and from (3.2), we find that a.s.

Ti/V (i)− 1 = V (T ′i )/V (i)− 1 6 V (i(1 + o(1/ log i)))/V (i)− 1,
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which is o(1/ log i) by Lemma A.1. A similar bound from below completes the
proof of the first part.

For the second part we write

(4.5) Ri = Ti − Ti−1 = V (T ′i )− V (T ′i−1) =

∫ T ′i

T ′i−1

v(t) dt,

so that

Ri − v(i)Xi =

∫ T ′i

T ′i−1

{v(t)− v(i)} dt.

But then∣∣∣∣ Ri

v(i)Xi

− 1

∣∣∣∣ 6 1

Xi

∫ T ′i

T ′i−1

∣∣∣∣v(t)

v(i)
− 1

∣∣∣∣ dt 6 sup
T ′i−1/i−16x6T ′i/i−1

∣∣∣∣v(i(1 + x))

v(i)
− 1

∣∣∣∣ .
From (3.2) and (4.4) we find that the last term is o(1/ log i) a.s. as required. �

Theorem 4.7. If the rate function λ ∈ RVα−1, where α ∈ (0, 1), is such that `
satisfies Condition 4.2, then Theorem 1.1 and Theorem 1.2 hold with such λt and

bt = log Λ(t)− log log t− log(1− α).

Proof. In this more general setting we use n = dΛ(t)e and so log n ∼ α log t.
Concerning the generalization of Lemma 3.2 we only need to show that (3.5)
and (3.6) hold when adapted according to Lemma 4.6. That is,

λtv(i)Xi(1 + o(1/ log t))− bt = (v(i)Xi/v(n)− βn)(1 + o(1/ log t)) + o(1),

α2 log(t)(1− V (i)/t) = log(n)(1− i/n)(1 + o(1)) + o(1).

This hinges on the following: (i) λtv(n) = 1 + o(1/ log t), (ii) bt = βn + o(1), and
(iii) α(1−V (i)/t) = (1− i/n)(1+o(1))+o(1/ log t) uniformly in i ∈ Iv(t). Identity
(i) holds, because by (4.4)

(4.6) λt v(dΛ(t)e) =
v(dΛ(t)e)
v(Λ(t))

= 1 + o(1/ log t), as t→∞,

where, indeed, |dΛ(t)e/Λ(t)− 1| < 1/Λ(t) = o(1/ log t). Identity (ii) is rather
obvious, whereas concerning (iii) we have

α(1− V (i)/t) = α(1− V (i)/V (Λ(t))) = α(1− V (i)/V (n))(1 + o(1)) + o(1/ log t),

but 1− V (n(1 + i/n− 1))/V (n) = (1− i/n)(1 + o(1))/α by a slight extension of
Lemma A.1 upon noting that i/n− 1 = o(1) uniformly in i concerned.

It is left to show that Lemma 3.4 still holds, and the only non-trivial step is to
show that

(4.7) λt max
i6n/2

Ri − bt → −∞
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in probability and hence a.s., which we obtain in the following. Observe from (4.5)
that

max
i6n/2

Ri 6 max
i6n/2

Xi sup
T ′i−16t6T

′
i

v(t) 6 max
i6n/2

Xi sup
t6T ′dn/2e

v(t),

where maxi6n/2Xi = log n(1 + Op(1)) and concerning the latter term we have

sup
t6T ′dn/2e

v(t)/v(n) = sup
t6n/2(1+o(1))

v(t)

v(n)
→ 2−γ a.s.

by (UCT), provided that v is locally bounded. This shows that maxi6n/2Ri/v(n) 6
2−γ log n(1 + Op(1)) and hence (4.7) holds in view of (4.6). In general, however,
we only have that v is bounded on [a, b] for some a and all b. With arbitrarily high
probability we may choose an index j such that T ′j > a, and then the above steps
can be repeated for maxj<i6n/2Ri, whereas obviously Tj/v(n)→ 0 a.s. �

4.3. Comments on the assumed condition. Let us note that virtually all
standard examples of slowly varying functions, e.g. logu t, u ∈ R and log log t,
satisfy Condition 4.2. This can be easily checked using the following result.

Lemma 4.8. Condition (4.2) holds true if ` ∈ RV0 is eventually differentiable and

(4.8)
t `′(t)

`(t)
= O(1/ log t), as t→∞.

Proof. Using the mean value theorem we have

|`([1 + ε(t)]t)− `(t)| 6 tε(t) sup
t6s6[1+ε(t)]t

|`′(s)|.

Moreover,

sup
t6s6[1+ε(t)]t

|`′(s)| 6 sup
t6s6[1+ε(t)]t

∣∣∣∣s `′(s) log s

`(s)

∣∣∣∣ sup
t6s6[1+ε(t)]t

∣∣∣∣ `(s)s log s

∣∣∣∣ ,
where the first term on the right hand side is O(1) according to (4.8). Hence
Condition (4.2) holds if

sup
t6s6[1+ε(t)]t

t log(t)`(s)

s log(s)`(t)

is bounded for large t, but this term tends to 1 by (UCT) applied to the regularly
varying function (t log(t))−1`(t). �

Concerning Theorem 4.7 it is more useful to express the sufficient condition of
Lemma 4.8 using the slowly varying function associated with the rate function λt
instead of that associated with v(t), which is the content of the next result.
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Proposition 4.9. Let λt = tα−1`λ(t) with α ∈ (0, 1) and `λ ∈ RV0. If `λ is
eventually continuously differentiable and if

t `′λ(t)

`λ(t)
= O(1/ log t), as t→∞,

then Condition 4.2 is satisfied and the result of Theorem 4.7 holds true.

Proof. First, we show that (4.8) is equivalent to

(4.9)
Λ(t)λ′t
λ2t

= −γ + O(1/ log t).

Since v(t) = tγ`(t) and v(t) = 1/λV (t) we find that

t `′(t)

`(t)
= −γ − t λ′V (t)/λ

2
V (t).

Plugging in t = Λ(t) and noting that log Λ(t) ∼ α log t we confirm the equivalence.
Thus it is sufficient to establish that

λ′t t

λt
= α− 1 + O(1/ log t),

Λ(t)

λtt
= 1/α + O(1/ log t).

The left statement is a result of a simple calculation, and so we concentrate on the
right statement. Using integration by parts we find

Λ(t) =

∫ t

c

xα−1`λ(x) dx =
1

α
tα `λ(t) + O(1)− 1

α

∫ t

c

xα `′λ(x) dx

for all t > c and some level c (to be fixed high enough). Hence it is left to show
that

(4.10)

∫ t
c
xα `′λ(x) dx

tα `λ(t)
log t = O(1).

From our assumption we see that |`′λ(x)| 6 C`λ(x)/(x log x) for large enough x.
Finally, by Karamata’s theorem [6, Prop. 1.5.8] we have∫ t

c
xαC `λ(x)/(x log x) dx

tα `λ(t)/ log t
→ Cα,

because `λ(t)/ log t ∈ RV0, and so (4.10) follows. �

As mentioned above, virtually all standard examples of slowly varying functions
satisfy the assumption of Proposition 4.9. In particular, so do `λ(t) = a logu t and
`λ(t) = a log log t for a > 0, u ∈ R. Hence λt = atα−1 logu t and λt = atα−1 log log t
are examples of rate functions to which the asymptotic results in this work apply.
For a simple example that does not satisfy the assumption of Proposition 4.9,
consider `λ(t) = e(log log t)

2
= (log t)log log t. Indeed, this is a slowly varying function

for which log(t) t `′λ(t)/`λ(t) = 2 log log t is unbounded.
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Appendix A.

Proof of Lemma 4.3. It is clearly sufficient to show that Condition 4.2 implies (4.3).
Firstly, from Condition 4.2 we have that

log t

(
`([1− ε(t)]t)

`(t)
− 1

)
= − log t

(
`([1 + ε̂(t̂)]t̂)

`(t̂)
− 1

)
`([1− ε(t)]t)

`(t)
→ 0,

where t̂ = (1− ε(t))t and ε̂(t̂) = ε(t)/(1 + ε(t)). Next, for any ε > 0 and any large t
we can choose x(t) ∈ [−ε(t), ε(t)] such that∣∣∣∣`([1 + x(t)]t)

`(t)
− 1

∣∣∣∣+ ε/ log t > sup
−ε(t)6x6ε(t)

∣∣∣∣`([1 + x]t)

`(t)
− 1

∣∣∣∣ .
But the term on the left when multiplied by log t must converge to ε, because
x(t)→ 0. The limit result in (4.3) follows since ε > 0 is arbitrary. �

The following technical result concerning regularly varying functions may well
exist in the literature.

Lemma A.1. Let f be a positive, increasing, and absolutely continuous function
such that its Radon–Nikodym derivative f ′ is in RVτ−1 for some τ > 0. If xt → 0
as t→∞, then

f(t(1 + xt))

f(t)
− 1 = τ xt{1 + o(1)}, as t→∞.

Proof. We have

f(t(1 + xt))− f(t)

t f ′(t)
− xt =

∫ 1+xt

1

(
f ′(zt)

f ′(t)
− 1

)
dz

and thus ∣∣∣∣f(t(1 + xt))− f(t)

t f ′(t)
− xt

∣∣∣∣ 6 |xt| sup
|z−1|6|xt|

∣∣∣∣f ′(zt)f ′(t)
− 1

∣∣∣∣ .
But then ∣∣∣∣f(t(1 + xt))

f(t)
− 1− τ xt

∣∣∣∣ =

∣∣∣∣t f ′(t)f(t)

f(t(1 + xt))− f(t)

t f ′(t)
− τ xt

∣∣∣∣
6
t f ′(t)

f(t)

∣∣∣∣f(t(1 + xt))− f(t)

t f ′(t)
− xt

∣∣∣∣+

∣∣∣∣t f ′(t)f(t)
− τ
∣∣∣∣ |xt|

6

{
t f ′(t)

f(t)
sup

|z−1|6|xt|

∣∣∣∣f ′(zt)f ′(t)
− 1

∣∣∣∣+

∣∣∣∣t f ′(t)f(t)
− τ
∣∣∣∣
}
|xt|.

The term in curly brackets converges to zero by (UCT) applied to f ′, the fact that
limt→∞ xt = 0, and the direct half of Karamata’s theorem, see e.g. Theorem 1.5.11
in [6]. �
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