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Abstract
The monotone rearrrangement algorithm was introduced by Hardy, Littlewood and Pólya as

a sorting device for functions. Assuming that x is a monotone function and that an estimate xn

of x is given, consider the monotone rearrangement x̂n of xn. This new estimator is shown to be
uniformly consistent as soon as xn is. Under suitable assumptions, pointwise limit distribution
results for x̂n are obtained. The framework is general and allows for weakly dependent and long
range dependent stationary data. Applications in monotone density and regression function
estimation are detailed. Asymptotics for rearrangement estimators with vanishing derivatives
are also obtained in these two contexts.

Keywords: Limit distributions, density estimation, regression function estimation, dependence,
monotone rearrangement.

1. Introduction

Assume that (ti, x(ti))
n
i=1, for some points ti ∈ [0, 1] (e.g. (ti = i/n)), are pairs of data

points. The (decreasing) sorting of the points x(ti) is then an elementary operation and
produces the new sorted sequence of pairs (ti, y(ti)) where y = sort(x) is the sorted
vector. Let # denote the counting measure of a set. Then we can define the sorting y of
x by

z(s) = #{ti : x(ti) ≥ s}
y(t) = z−1(t),

where z−1 denotes the inverse of a function (if the points x(ti) are not unique it denotes
the generalized inverse).

The “sorting” of a function {x(t), t ∈ [0, 1]} can then analogously be defined by the
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monotone rearrangement (cf. Hardy et al. [21]),

z(s) = λ{t ∈ [0, 1] : x(t) ≥ s},
y(t) = z−1(t),

where the counting measure # has been replaced by the Lebesgue measure λ, and z−1

denotes the generalized inverse.
The monotone rearrangement algorithm of a set or a function has mainly been used as

a device in analysis, see e.g. Lieb and Loss [23, Chapter 3] or in optimal transportation
(see Villani [38, Chapter 3]). Fougères [15] was the first to use the algorithm in a statisti-
cal context, for density estimation under order restrictions. Meanwhile, Polonik [29, 30]
also developed tools of a similar kind for density estimation for multivariate data. More
recently, several authors revisited the monotone rearrangement procedure in the estima-
tion context under monotonicity; see Dette et al. [12], Neumeyer [28], Chernozhukov et
al. [9], Birke and Dette [5], Jankowski and Wellner [22], Volgushev and Dette [41], Birke
et al. [6], Volguchev [39]. Some tests of monotonicity have also been recently introduced,
see e.g. Volguchev et al. [40] and Birke et al. [7].

We introduce the following two-step approach for estimating a monotone function.
Assume that x is a monotone function on an interval I ⊂ R. Assume also that we
already have an estimate xn of x, but that this estimate is not necessarily monotone.
The procedure adopted in this paper is to use the monotone rearrangement x̂n of xn as
an estimate of x.

Under the assumption that we have process limit distribution results for (a localized
version of) the stochastic part of xn and that the deterministic part of xn is asymp-
totically differentiable at a fixed point t0, with strictly negative derivative, we obtain
pointwise limit distribution results for x̂n(t0). The framework is general and allows for
weakly dependent as well as long range dependent data. This is the topic for Section 3,
where we also explore in more detail the applications of our general results to monotone
density and regression function estimation. These are the problems of estimating f and
m respectively in

(i) t1, . . . , tn stationary observations with marginal
decreasing density f on R+,

(ii) (ti, yi) observations from yi = m(ti) + εi,

ti = i/n, i = 1, . . . , n,m decreasing on [0, 1],

{εi} stationary sequence with mean zero.

The standard approaches in these two problems have been isotonic regression for the re-
gression problem, first studied by Brunk [8], and (nonparametric) Maximum Likelihood
estimation (NPMLE) for the density estimation problem, first introduced by Grenander
[18]. A wide literature exists for regression and density estimation under order restric-
tions. One can refer e.g. to Mukerjee [27], Ramsay [32], Mammen [24], Hall and Huang
[19], Mammen et al. [25], Gijbels [17], Birke and Dette [4], Dette and Pilz [13], Dette
et al. [12] for the regression context. Besides, see Eggermont and Lariccia [14], Fougères
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The monotone rearrangement algorithm 3

[15], Hall and Kang [20], Meyer and Woodroofe [26], Polonik [29], Van der Vaart and
Van der Laan [36], among others, for a focus on monotone (or unimodal) density estima-
tion. Anevski and Hössjer [1] gave a general approach unifying both contexts. In their
introduction, Birke and Dette [5] provide nice references in which physical or economical
arguments justify the assumption of monotonicity. Our approach is similar in spirit to
the general methods studied in Anevski and Hössjer [1] and first introduced in the regres-
sion estimation setting by Mammen [24]: Start with a preliminary estimator and make
it monotone by projecting it on the space of monotone functions. The present approach
can however at some point be considered preferable: The monotone rearrangement, be-
ing basically a sorting, is a simpler procedure than an L2-projection. Furthermore the
consistency and limit distribution results indicate similar properties to Mammen’s and
Anevski and Hössjer’s estimators. Besides, an important advantage of our estimator is
the finite sample behavior: Mammen’s estimator is monotone but not necessarily smooth;
Mammen actually studied two approaches, one with kernel smoothing followed by mono-
tonization and the other approach the other way around, i.e. monotonization followed
by kernel smoothing. Mammen showed that the two proposals are first-order equivalent.
However, their finite sample size properties are very different: the first resulting estimator
is monotone but not necessarily smooth, while the other is smooth but not necessarily
monotone, so that one needs to choose which property is more important. This is not the
case with our estimator, since if we start with a smooth estimator of the function, e.g.
a kernel estimator, the monotone rearrangement will be smooth as well. This can how-
ever become a disadvantage for instance when the estimand is discontinuous: then the
monotone rearrangement will “oversmooth” since it will give a continuous result, while
Mammen’s estimator will keep more of the discontinuity intact.

Note that our results are geared towards local estimates, i.e. estimates that use only
a subset of the data and that are usually estimators of estimands that can be expressed
as non-differentiable maps of the distribution function such as e.g. density functions,
regression functions, or spectral density functions. This differs from global estimates,
as those considered for example by Chernozhukov et al. [10] for quantile estimation.
Chernozhukov et al. [10] rearrange the empirical quantile function, and use the fact that
the rearrangement map is Hadamard differentiable together with Donsker type results,
to obtain general statements about the final estimator. This approach is however not
applicable in our case. In fact, our preliminary estimators are all local estimators, and
they do not converge weakly as processes. Therefore the Hadamard differentiability of
T has no implication in our estimation problems; we need to make a more detailed
reasoning, assuming local limit process results for the preliminary estimator, together
with properties of the map T. These two features may be seen as replacements for the
Donsker result and the Hadamard differentiability result of T , that are used in [10].

An approach similar to ours for local estimates is given in Dette et al. [12], using a
modified version of the Hardy-Littlewood-Pólya monotone rearrangement: The first step
consists of calculating the upper level set function and is identical to ours. However in
the second step they use a smoothed version of the (generalized) inverse, which avoids
nonregularity problems for the inverse map. The resulting estimator is therefore not rate-
optimal, and the limit distributions are standard Gaussian due to the oversmoothing.
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Using kernel estimators as preliminary estimators of f and m on which the mono-
tone rearrangement is then applied, we are able to derive limit distribution results for
quite general dependence situations, demanding essentially stationarity for the underly-
ing random parts {ti} and {εi} respectively. The results are however stated in a form
that allows for other estimators than the kernel based as starting points, e.g. wavelet or
splines estimators.

The paper is organized as follows: In Section 2 we present the monotone rearrange-
ment algorithm as classically defined, and we derive some simple properties that will be
used in the sequel. Then we define the generic estimator of the monotone function of
interest, and state the consistency for the estimator. In Section 3 the pointwise limit dis-
tribution properties are considered. For this purpose, we need to generalise the monotone
rearrangement map for some specific functions, as will be done in Sections 3.1 and 3.2.
The limit distribution given in Theorem 4 is of the general form

d−1
n [x̂n(t0)− x(t0)]

L→ T (A ·+ṽ(·; t0)) (0) + ∆,

where T is the monotone rearrangement map;

∆ = lim
n→∞

d−1
n [E{xn(t0 + sdn)} − x(t0)]

is the asymptotic local bias of the preliminary estimator; A is the uniform limit, in s over
compact intervals,

d−1
n {xb,n(t0 + sdn)− xb,n(t0)} → A,

(typically with A = x′(t0) in our applications); and

ṽ(s; t0)
L
= lim

n→∞
d−1
n [xn(t0 + sdn)− E{xn(t0 + sdn)}]

is the weak local limit of the process part of the preliminary estimator; here dn ↓ 0 is a
deterministic sequence that is determined by the dependence structure of the data. We
then apply the obtained results to regression function estimation and density estimation
under order restrictions, and derive the limit distributions for the estimators. This gives
rise to some new universal limit random variables, such as e.g. in the regression context
T (s + B(s))(0) with T the monotone rearrangement map and B standard two sided
Brownian motion for independent and weakly dependent data, or T (s+B1,β(s))(0) with
B1,β fractional Brownian motion with self similarity parameter β, when data are long
range dependent. The rate of convergence dn is e.g. for the regression problem the optimal
n−1/3 in the i.i.d. and weakly dependent data context and of a non-polynomial rate in
the long range dependent context, similarly to previously obtained results in isotonic
regression for long range dependent data, cf. Anevski and Hössjer [1].

In Section 4 we derive limit distribution results for the proposed estimator in the case
when the estimand has q vanishing derivatives while its (q + 1)st derivative is strictly
negative. The limit results are given in a general setting, and applied to both the density
function and regression function estimation cases, and in similar dependence settings as
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for the "regular" case, that are derived in Sections 3.3 and 3.4. The limit distribution
results are now of the form

d−1
n [x̂n(t0)− x(t0)]

L→ T (Ax(·) + ṽ(·; t0)) (0),

where T is the monotone rearrangement map, Ax(s) is a function that is given as a
uniform limit over compact intervals,

d−(q+1)
n (xb,n(t0 + sdn)− x(t0)) → Ax(s)

as dn → 0, which (for symmetric kernels) is a convolution of a degree q + 1 monomial
with the kernel, while ṽ is the limit process that turns up in the above. The rate dn is
now different: It is slower than above, and e.g. for independent data, in both the density
estimation and regression function estimation contexts, it is dn = n−1/(3+2q).

In Appendix A we give some proofs for the results of Section 2. In Appendix B we
state a general result on maximal bounds on the rescaled process part. In Supplement
A we prove the statement in Appendix B as well as derive further useful but technical
results on maximal bounds on the rescaled process parts in the density and regression
estimation problems, i.e. for the local partial sum process and empirical processes, for
weakly dependent as well as long range dependent data. Furthermore in Supplement A we
present a simulation study that illustrates the finite sample behaviour of our estimator,
and compare it to other estimators that are considered in the paper of Birke and Dette
[5].

In this context it may be instructive to compare our results with previously obtained
results, for similar procedures. The estimator defined by Dette et al. [12], is a two step
procedure similar to ours for regression estimation problems, consisting of first defining
a smooth estimate of the estimand and next do the monotone rearrangement of that
estimator. We would like to point out that the assumptions in the two approaches are
somewhat different: In our paper we use a fixed design setting, which enables us to use
the Gasser-Müller estimator as the first step estimator, while the results in Dette et al.
[12] are derived in a random design setting. In [12] is used however an extra smoothing
procedure in the second step, and therefore their obtained estimator is not the same as
ours, and in fact their estimator may be seen as a smooth monotone rearrangement of
the preliminary estimator. More interestingly, the two estimators give qualitatively very
different results, with different rates and different limit random variables. Within the
class of continuously differentiable monotone functions, the estimator considered in [12]
is not rate optimal (for the independent data case, which is the only case they consider),
they get a slower rate than the optimal, cf. Theorem 3.2 in [12]. Furthermore their limit
random variable is Gaussian, with the Gaussian distribution turning up due to the over
smoothing in the second extra step, whereas ours converge to the above defined new
universal random variable. We would like to also emphasize that we are able to state our
results for also dependent data, covering both weak and strong dependence. In Neumeyer
[28] the same estimator as ours is treated, for general estimands and thus treating both
regression and density estimation problem; the consistency of the resulting estimator is
derived (see Neumeyer [28, Theorem 3.1]).
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2. The monotone estimation procedure

2.1. Monotone rearrangement: first definitions

Monotone rearrangements were originally defined by Hardy et al. [21, Chapter 10.12]
for non negative and integrable functions on [0, 1]. In Lieb and Loss [23, Chapter 3],
the definition is extended to Borel measurable functions from Rn into C that vanish
at infinity. We use their definition for Borel measurable functions from R into R+ that
vanish at infinity, in the sense that for each positive u

rf (u) := λ{t ∈ R : f(t) > u} < +∞ , (1)

where λ(A) denotes the Lebesgue measure of any Borel set A on R. Note that this
definition holds in particular for integrable functions like densities on R+ as considered
in Fougères [15].

Definition 1. Let f be a positive function defined on R+ satisfying (1). The monotone
rearrangement of f is defined as the (right continuous) generalized inverse of rf , namely

T (f)(t) := inf{u ∈ R+ : rf (u) ≤ t} , (2)

for each positive t.

This rearrangement satisfies several properties that will be listed later in this section, see
Lemmas 2 and 3 and Theorem 1. Note that related results were obtained by Chernozhukov
et al. [10].

A particular class of functions for which (1) is satisfied is the set of bounded functions
defined on a finite interval I ⊂ R. Denote B(I) = {f : f(I) bounded} and D(I) = {f :
f decreasing on I}. Let rf,I be the right continuous map from f(I) to R+, defined for
each u ∈ f(I) by

rf,I(u) := λ{t ∈ I : f(t) > u} = λ{I ∩ f−1(u,∞)}.

as the (right continuous) generalized inverse of rf,I
TI(f)(t) := inf{u ∈ f(I) : rf,I(u) ≤ t− inf I} . (3)

The following lemmas and theorem are listing some simple and useful properties of the
maps u 7→ rf,I(u), f 7→ rf,I and f 7→ TI(f) respectively. The proofs are straightforward
and relegated to Appendix A for more clarity.

Lemma 1. Assume I ⊂ R is a finite interval, and f ∈ B(I). Then

(i) If f has no flat regions on I, i.e. λ{I ∩ f−1({u})} = 0

for all u ∈ f(I), then rf,I is continuous,
(ii) If there is a u0 ∈ f(I) such that λ{I ∩ f−1({u0})} = c > 0 then rf,I

has a discontinuity at u0 of height c,
(iii) If f has a discontinuity at t0 ∈ I and f is decreasing, then rf,I

admits a flat region with level t0.
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Lemma 2. Let I ⊂ R be a finite interval, and assume f ∈ B(I). Then

(i) If c is a constant then rf+c,I(u) = rf,I(u− c), for each u ∈ f(I) + c.

(ii) rcf,I(u) = rf,I(u/c) if c > 0, for each u ∈ cf(I).

(iii) f ≤ g ⇒ rf,I ≤ rg,I .
(iv) Let fc(t) = f(tc). Then c rfc,I = rf,I .

(v) Let fc(t) = f(t+ c). Then rfc,I = rf,I .

Lemma 3. Let I ⊂ R be a finite interval and assume f, g are functions in B(I). The
monotone rearrangement map TI satisfies the following:

(i) TI(f + c) = TI(f) + c, if c is a constant;
(ii) TI(cf) = cTI(f), if c > 0 is a constant;

(iii) f ≤ g ⇒ TI(f) ≤ TI(g);

(iv) Let fc(t) = f(ct); then TI/c(fc)(t) = TI(f)(ct);

(v) Let fc(t) = f(t+ c); then TI−c(fc)(t) = TI(f)(t+ c).

The previous result implies that the map TI is continuous, as stated in the following
theorem.

Theorem 1. Let ||·|| be the supremum norm on B(I). Then the map TI is a contraction,
i.e. ||TI(f) − TI(g)|| ≤ ||f − g||. In particular, TI is a continuous map, i.e. for all
fn, f ∈ B(I),

||fn − f || → 0 ⇒ ||TI(fn)− TI(f)|| → 0,

as n tends to infinity.

Note that Lemma 2 holds (with identical proof) for T as defined in (2), and Lemma 3
follows from that. Thus Theorem 1 also holds in this case for the supremum norm over
R+, with identical proof.

Remark 1. One can also refer to Lieb and Loss [23, Theorem 3.5] for a proof of the
contraction property (the "non expansivity" property of the map TI), for the Lp-norms
for functions f and g vanishing at infinity.

Finally, observe that when the function f is replaced by a stochastic process x de-
fined almost surely, then for almost every realisation of x, one can define rx (resp. rx,I)
and thereafter its generalized inverse. Thus one can define the monotone rearrangement
almost surely for every stochastic process with finite support or satisfying (1) almost
surely. We will make use of this last concept to define new estimators in the next section.
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2.2. The new estimators: definition and first properties

Let x be a function of interest such as a density function, a regression function, or a
spectral density, for example. Assume x is non increasing. Consider an estimator xn of
x constructed from n observations, which is not supposed to be monotone. Typically, xn
can be an estimator based on kernel, wavelets, splines, etc. Let ℵn denote the support
of xn. Assume that xn is such that it is possible to define either T (xn) as in (2) (when
ℵn is infinite) or Tℵn(xn) as in (3) (when ℵn is finite). This will in particular be the case
as soon as xn is a density of B(R+), or xn is a regression function on [0, 1]. For sake of
simplicity, a unique notation T will be used in the following to refer equally to T or Tℵn .

Definition 2. We define as a new estimator of x the monotone rearrangement of xn,
namely T (xn). This is a non increasing estimator of x.

Theorem 2. (i). Assume that {xn}n≥1 is a uniformly consistent estimator of x (in
probability, uniformly on a compact set B ⊂ R). If x is non increasing, then {T (xn)}n≥1

is also a uniformly consistent estimator of x (in probability, uniformly on B).
(ii). Assume that {xn}n≥1 is an estimator that converges in probability in Lp-norm

to x, and that {xn}n≥1 and x are vanishing at infinity. If x is non increasing, then
{T (xn)}n≥1 also converges in probability in Lp-norm to x.

Proof Part (i) follows from the fact that ||x|| = supt∈K |x(t)| is a norm (for every
compact K ⊂ R), that T (x) = x if x is non increasing, and that T is a contraction with
respect to || · ||, by Theorem 1. To get (ii), assume that ||xn − x||Lp

P→ 0, and then note
that

||T (xn)− x||Lp = ||T (xn)− T (x)||Lp ≤ ||xn − x||Lp ,

thanks to Lieb and Loss [23, Theorem 3.5]. 2

Remark 2. The strong convergence in Lp-norm of T (fn) to f , as a consequence of
the corresponding result for fn, was first established in Fougères [15, Theorem 5] in the
case when fn is the kernel estimator of a density function f ; the assumption that the
functions {fn}, f vanish at infinity are then naturally satisfied. Chernozhukov et al. [9]
give a refinement of the non expansivity property, see their Proposition 1, part 2, providing
a bound for the gain done by rearranging fn and examining the multivariate framework
as well.

3. Limit distribution results

Simple monotone estimators have been defined in Section 2.2 that satisfy several desired
consistency properties. The aim of this section is to go further into asymptotic properties,
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focusing on pointwise limit distribution results for these estimators. To this purpose, we
will first provide a more general definition of monotone rearrangement for some specific
functions (and processes), and then state in Section 3.2 the main result of the paper in a
general setting. The particular results obtained for density regression function estimations
will next be developed.

3.1. Extension of monotone rearrangement algorithm

If ϕ is a function for which rϕ(u) is possibly infinite for some positive u, a definition of
T (ϕ) can be given locally around a fixed point x ∈ I0, where I0 is a finite interval, as
soon as the function ϕ satisfies the following property:

Let I0 and the function ϕ be given. Assume there exists a constant
M = M(ϕ, I0) <∞ and a finite interval I1 = I1(ϕ, I0) ⊃ I0 such
that

inf
t∈(inf I1,sup I0)

ϕ(t) > −M and sup
t∈(sup I1,∞)

ϕ(t) < −M, (4)

inf
t∈(−∞,inf I1)

ϕ(t) > +M and sup
t∈(inf I0,sup I1)

ϕ(t) < +M. (5)

Theorem 3. Let I0 be a finite and fixed interval, and let ϕ be a continuous function R
such that (4) and (5) are satisfied. Then for any finite interval J containing I1, one has
TJ(ϕ) ≡ TI1(ϕ) on I0.

Proof The proof consists of the following three steps: (i) We construct a point y∗
on which TJ and TI1 agree, i.e. such that TJ(ϕ)(y∗) = TI1(ϕ)(y∗). (ii) We show that
inf I1 ≤ y∗ ≤ inf I0. (iii) We show that if TJ(ϕ) and TI1(ϕ) agree at y∗, they will coincide
on [y∗, sup Io] =: Ĩ.

(i) Define y1 := inf{y ∈ I1 : ϕ(y) < ϕ ([inf J, y))}. Then by (5) we have that ϕ(y1) ≥
+M , which by the definition of y1 implies that also inf ϕ([inf J, y1)) ≥ +M . Furthermore,
from the left part of (4) and the right part of (5) it follows that ϕ(I0) ⊂ (−M,+M).
This implies that

y1 < inf{y ∈ J : ϕ(y) ∈ (−M,M)}
≤ inf{y ∈ J : ϕ(y) ∈ ϕ(I0)}
=: z0,

where the first inequality follows from continuity of ϕ, the definition of y1 and the theorem
of intermediate values. Thus y1 ∈ I1, z0 ≤ inf I0 and y1 < z0 and so also z0 ∈ I1.

As a consequence, one has

rϕ,J{ϕ(y1)} = λ{t ∈ J : ϕ(t) > ϕ(y1)}
= λ{t ∈ J ∩ (−∞, y1) : ϕ(t) > ϕ(y1)}

+λ{t ∈ J ∩ (y1,∞) : ϕ(t) > ϕ(y1)}
= y1 − inf J + λ{t ∈ I1 ∩ (y1,∞) : ϕ(t) > ϕ(y1)},
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where the first two terms in the last equality follow since from the definition of y1,
ϕ(t) > ϕ(y) for all t ∈ J ∩ (y1,∞), while the last term in the last equality follows from
y1 ∈ I1. Similarly, one has

rϕ,I1{ϕ(y1)} = λ{t ∈ I1 ∩ (−∞, y1) : ϕ(t) > ϕ(y1)}
+λ{t ∈ I1 ∩ (y1,∞) : ϕ(t) > ϕ(y1)}

= y1 − inf I1 + λ{t ∈ I1 ∩ (y1,∞) : ϕ(t) > ϕ(y1)},

Thus the following equality holds

rϕ,J{ϕ(y1)}+ inf J = rϕ,I1{ϕ(y1)}+ inf I1 := y? (6)

Then TJ(ϕ)(y?) = inf{u ∈ ϕ(J) : rϕ,J(u) ≤ rϕ,J(ϕ(y1))}, which since rϕ,J is a
decreasing function, is equal to ϕ(y1). Similarly, ϕ(y1) = TI1(ϕ)(y?), and we have shown
that TJ(ϕ)(y?) = ϕ(y1) = TI1(ϕ)(y?), and thus the two maps agree at y?.

(ii): From the right hand parts of (4) and (5) follow that

TJ(ϕ)(inf I0) ≤ M. (7)

Furthermore

TJ(ϕ)(y∗) = ϕ(y1) ≥M. (8)

Since TJ(ϕ) is a decreasing function (7) and (8) imply that y∗ ≤ inf I0, and (6) implies
that y∗ ≤ inf I1.

(iii): Finally we prove that if TJ(ϕ) and TI1(ϕ) coincide at y?, they will coincide on
Ĩ = [y∗, sup I0]. Let u ∈ [−M,ϕ(y1)] =: Ỹ be arbitrary, and write on one hand

rϕ,J(u) = λ{t ∈ J : ϕ(t) > u}
= λ{t ∈ J : ϕ(t) > ϕ(y1)}+ λ{t ∈ J : ϕ(y1) ≥ ϕ(t) > u}
= rϕ,J{ϕ(y1)}+ λ{t ∈ J ∩ (y1,∞) : ϕ(y1) ≥ ϕ(t) > u}
= rϕ,I1{ϕ(y1)}+ inf I1 − inf J

+λ{t ∈ I1 ∩ (y1,∞) : ϕ(y1) ≥ ϕ(t) > u},

where the next to last equality follows since by the definition of y1, ϕ(t) ≤ ϕ(y1) only
for t > y1, and the last equality follows from (6) and since y1 ∈ I1. On the other hand,

rϕ,I1(u) = rϕ,I1{ϕ(y1)}+ λ{t ∈ I1 : ϕ(y1) ≥ ϕ(t) > u}
= rϕ,I1{ϕ(y1)}+ λ{t ∈ I1 ∩ (y1,∞) : ϕ(y1) ≥ ϕ(t) > u},

so that

rϕ,J(u) + inf J = rϕ,I1(u) + inf I1. (9)
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Next, since TJ(ϕ) and TI1(ϕ) are decreasing, TJ(ϕ)(y∗) = TI1(ϕ)(y∗) = ϕ(y1), inf I1 ≤
y∗ ≤ inf I0, and inf ϕ([y?, sup I0]) > −M , we obtain

TJ(ϕ)(Ĩ) ⊂ Ỹ ,

TI1(ϕ)(Ĩ) ⊂ Ỹ . (10)

Therefore, for t ∈ Ĩ,

TJ(ϕ)(t) = inf{u ∈ ϕ(J) : rϕ,J(u) ≤ t− inf J}
= inf{u ∈ Ỹ : rϕ,J(u) ≤ t− inf J}
= inf{u ∈ Ỹ : rϕ,I1(u) ≤ t− inf I1}
= inf{u ∈ ϕ(I1) : rϕ,I1(u) ≤ t− inf I1}
= TI1(ϕ)(t) .

The second equality above holds since TJ(ϕ)(y∗) = ϕ(y1) = sup Ỹ , inf Ĩ = y∗, TJ(ϕ) is
decreasing and because of the first part of (10), the third equality follows from (9), and
the next to last equality is similar to the second (with TI1 replacing TJ and using the
second part of (10)). 2

Note also that the interval I1 can without loss of generality be taken to be symmetric
around 0 e.g. as I1 = [−k, k]: In fact assuming that (4) and (5) hold with some I1 and
M we can replace I1 with [−k, k], with k = max(| inf I1|, | sup I1|), then (4) and (5) will
hold for I1 = [−k, k] and with the same M .

Corollary 1. Let I0 ⊂ R be a finite and fixed interval. Assume ϕ is continuous and
satisfies (4) and (5). Then for each t ∈ I0, one can define

T (ϕ)(t) := lim
k→+∞

T[−k,k](ϕ)(t). (11)

Remark 3. Even if this definition seems to be dependent on I1 = I1(ϕ, I0), it is not,
because of Theorem 3 and since we define T (ϕ) locally, namely only on I0. So in particular
one has T (ϕ)(t) = TI1(t) for each t ∈ I0.

We next state a simple condition that ensures (4) and (5).

Lemma 4. Let ϕ be a locally bounded function on R, such that

lim
x→−∞

ϕ(x) = − lim
x→+∞

ϕ(x) = +∞.

Then for any interval I0 there exists a finite interval I1 ⊃ I0 and a finite constant M
such that (4) and (5) hold.
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Proof Let I0 = [a, b] and put M = supx≥a ϕ(x). Since ϕ is locally bounded and
limx→+∞ ϕ(x) = −∞ it follows that M < ∞. Since
limx→−∞ ϕ(x) = +∞ there is a c < a such that ϕ(x) > M for all x ≤ c. Let cM :=
sup{x < a : ϕ(t) > M ∀ t ≤ x}. Define then m = infx∈[cM ,b] ϕ(x). Since limx→∞ ϕ(x) =
−∞, there exists a d > b such that for all x ≥ d, ϕ(x) < min(m,−M). Let dm,M :=
inf{x > b : ϕ(t) < min(m,−M) ∀ t > x}. Then (4) and (5) hold with I1 = [cM , dm,M ]. 2

Note that T as defined in (2) is a continuous map with the metric generated by the
supnorm on compact intervals, while T defined as a extension via the local definition in
(11) is not. The first statement follows from the fact that T as defined in (2) is easily
seen to satisfy the properties in Theorem 1, with the supnorm over I replaced by the the
supnorm metric on compact intervals. The lack of continuity with the respect of uniform
convergence on compact intervals is however of no importance for us, in our use of con-
tinuity for deriving consistency and limit distributions: We will derive limit distribution
results only via local versions T[−c,c], for which we have established continuity in The-
orem 1. The consistency is derived using the global map only in the density estimation
problem, for which we use definition (2) for T . For the regression problem we apply our
results to functions defined on [0, 1] and thus there is no need for a global definition then.

3.2. Asymptotic distribution in a general framework

Let J ⊂ R be a finite or infinite interval, and C(J) the set of continuous functions
on J . Let {xn}n≥1 be a sequence of stochastic processes in C(J) and let t0 be a fixed
interior point in J . Assume that either J is finite or that xn satisfies (1) almost surely, so
that T (xn) the monotone rearrangement of xn can be defined almost surely, as seen in
Section 2.1. In this section, limit distribution results for the random variable T (xn)(t0)
will be derived, where T is the monotone rearrangement map defined as TJ if J is finite or
T if J is infinite. The proof of these results are along the lines of Anevski and Hössjer [1],
and their notation will be used for clarity. Decompose in particular xn into a deterministic
part and a stochastic part

xn(t) = xb,n(t) + vn(t),

for t ∈ J . Given a sequence dn ↓ 0 and an interior point t0 in J define Jn,t0 = d−1
n (J−t0).

Then, for s ∈ Jn,t0 , it is possible to rescale respectively the stochastic and deterministic
parts of xn as

w̃n(s; t0) = d−1
n {vn(t0 + sdn)− vn(t0)},

g̃n(s) = d−1
n {xb,n(t0 + sdn)− xb,n(t0)}.

This decomposes the rescaling of xn as

d−1
n {xn(t0 + sdn)− xn(t0)} = g̃n(s) + w̃n(s; t0).
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The monotone rearrangement algorithm 13

However, due to the fact that the final estimator needs to be centered at the estimand
x(t0) and not at the preliminary estimator xn(t0), it is more convenient to introduce the
following rescaling

ṽn(s; t0) = d−1
n vn(t0 + sdn)

= w̃n(s; t0) + d−1
n vn(t0),

gn(s) = d−1
n {xb,n(t0 + sdn)− x(t0)}

= g̃n(s) + d−1
n {xb,n(t0)− x(t0)},

so that

yn(s) := gn(s) + ṽn(s; t0) = d−1
n {xn(t0 + sdn)− x(t0)}. (12)

This definition of the rescaled deterministic and stochastic parts is slightly different from
the one in Anevski and Hössjer [1], and is due to the fact that we only treat the case where
the preliminary estimator and the final estimator have the same rates of convergence, in
which case our definition is more convenient, whereas in Anevski and Hössjer [1] other
possibilities occur.

The limit distribution results will be derived using a classical two-step procedure, cf.
e.g. Prakasa Rao [31]: A local limit distribution is first obtained, under Assumption 1,
stating that the estimator T (xn) converges weakly in a local and shrinking neighbourhood
around a fixed point. Then it is shown, under Assumption 2, that the limit distribution
of T (xn) is entirely determined by its behaviour in this shrinking neighbourhood.

Assumption 1. There exists a stochastic process ṽ(·; t0) 6= 0 such that

ṽn(·; t0)
L→ ṽ(·; t0),

on C(−∞,∞) as n→∞. The functions {xb,n}n≥1 are monotone and there are constants
A < 0 and ∆ ∈ R such that for each c > 0,

sup
|s|≤c

|gn(s)− (As+ ∆)| → 0,

as n→∞.

In the applications typically

A = lim
n→∞

g̃n(s)

s
= x′(t0),

∆ = lim
n→∞

d−1
n {xb,n(t0)− x(t0)},

so that A is the local asymptotic linear term and ∆ is the local asymptotic bias, both
properly normalized, of the preliminary estimator xn. Define the (limit) function

y(s) = As+ ∆ + ṽ(s; t0). (13)

We next give a condition that enables a definition of the monotone rearrangement for
processes. Let {zn} be an arbitrary sequence of stochastic processes.
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Assumption 2. Let I0 be a given compact interval and δ > 0. There exists a positive
constant c = c(δ) such that [−c, c] ⊃ I0 and a finite positive M = M(δ) such that

lim inf
n→∞

P

{
inf

s∈(−c,sup I0)
zn(s) > −M, sup

s∈(c,∞)

zn(s) < −M

}
> 1− δ, (14)

and

lim inf
n→∞

P

{
inf

s∈(−∞,−c)
zn(s) > +M, sup

s∈(inf I0,c)

zn(s) < +M

}
> 1− δ. (15)

Note that in the applications typically both c(δ)→∞ and M(δ)→∞ as δ ↓ 0. There
is no restriction in assuming this, so in the sequel we assume that limδ→0 c(δ) =∞ and
limc→∞ δ(c) = 0. Denote Tc = T[−c,c]. Consider Dn(δ) = Dn(δ(c)) as the set of ω such
that it is possible to define the monotone rearrangement T (zn)|I0 of zn on I0.

Lemma 5. Let I0 be a finite and fixed interval in R, and {zn} be a sequence of contin-
uous stochastic processes on R such that Assumption 2 holds. Then

lim
c→∞

lim inf
n→∞

P [Dn(δ(c))] = 1

lim
c→∞

lim inf
n→∞

P (sup
I0

|Tc(zn)(·)− T (zn)(·)| = 0) = 1.

Proof Let δ > 0 be arbitrary. Let An(δ, c,M) and Bn(δ, c,M) be the sets for which
the probabilities are bounded in (14) and (15), respectively, for some finite c = c(δ).
Then, using Theorem 3 with I1 = [−c, c] and I0 = I, it follows that An ∩ Bn ⊂
{supI |Tc(zn)−TJ(zn)| = 0 for each compact interval J ⊃ [−c, c]} := Cn(δ, c,M). There-
fore lim infn→∞ P (Cn(δ, c,M)) ≥ 1 − 2δ. Note that Cn(δ, c,M) is included in the set
Dn(δ) on which it is possible to define T (zn)|I0 , namely as limk→∞ Tk(zn)|I0 , and which
is further included in the set En(δ, c) := {supI |Tc(zn) − T (zn)| = 0}. A priori the defi-
nition of T depends on δ, so that T (zn)|I0 = T δ(zn)|I0 . We will show, however, that the
definition is independent of δ. In fact, consider δ1 < δ2, so that c1 = c(δ1) > c2 = c(δ2)
and M1 = M(δ1) > M2 = M(δ2). Then by the triangle inequality

sup
I0

|T δ1(zn)− T δ2(zn)| ≤ sup
I0

|T δ1(zn)− Tc1(zn)|+ sup
I0

|TJ̃(zn)− T δ2(zn)|,

with J̃ := [−c1, c1].
Then the first term on the right hand side is zero on Cn(δ1, c1,M1), since Cn(δ1, c1,M1) ⊂

En(δ1), and the second term on the right hand side is zero on Cn(δ2, c2,M2) since J̃ is a
compact set containing [−c2, c2]. Therefore on the set Cn(δ1, c1,M1)∩Cn(δ2, c2,M2) the
left hand side is zero, and thus T δ1 |I0 = T δ2 |I0 on that set. Note also that P (Dn(δ1) ∩
Dn(δ2)) ≥ P (Cn(δ1, c1,M1)∩Cn(δ2, c2,M2)) ≥ 1−2δ1−2δ2. Thus T δ1 |I0 = T δ2 |I0 when
both definitions exist, and they do with an as high probability as desired. This shows
that the definition of T does not depend on δ.
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Now, since δ > 0 is arbitrary, letting δ ↓ 0 and noting that this implies that c → ∞,
and using

P (En(δ, c)) ≥ P (Cn(δ, c,M)) ≥ 1− 2δ

proves the second statement of the lemma. Noting that Dn ⊃ Cn(δ, c,M) proves the first
statement of the lemma. 2

The next result is the main limit distribution result, stating that the rescaled estimator
converges in distribution to a “universal” limit random variable T (y)(0). The existence of
the limit r.v. is made explicit in the proof of the theorem, we can for now define it (when
it exists, and the proof of the following theorem shows that the limit exists as soon as y
satisfies Assumption 2) as a limit in probability

T (y)(0)
P
= lim

c→∞
Tc(y)(0).

In the following theorem J ⊂ R will be a (finite or infinite) interval, in our applications
J = [0, 1] or J = R+.

Theorem 4. Let J ⊂ R be an interval, and t0 be a fixed point belonging to the interior
of J . Suppose Assumption 1 holds. Assume moreover that {yn}n≥1 and y are continuous
processes and that Assumption 2 holds for both {yn}n≥1 and y respectively defined by
(12) and (13). Then

d−1
n [TJ(xn)(t0)− x(t0)]

L→ T [A ·+ṽ( · ; t0)](0) + ∆, (16)

as n→∞.

Proof Let c be a positive and finite constant and denote Tc,n = T[t0−cdn,t0+cdn]. We
can decompose

d−1
n {TJ(xn)(t0)− x(t0)} = d−1

n {TJ(xn)(t0)− Tc,n(xn)(t0)}
+d−1

n {Tc,n(xn)(t0)− x(t0)}. (17)

Let us first consider the second term of the right hand side of (17) and introduce

χn(s) := xn(t0 + sdn) = x(t0) + dnyn(s). (18)

Applying Lemma 3 leads to

Tc,n(xn)(t0 + sdn) = Tc(χn)(s) = dnTc(yn)(s) + x(t0),

which gives

d−1
n {Tc,n(xn)(t0)− x(t0)} = Tc(yn)(0).
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Assumption 1 implies that yn
L→ y on C[−c, c], with y defined in (13). Applying the

continuous mapping theorem on Tc, cf. Theorem 1, proves

d−1
n {Tc,n(xn)(t0)− x(t0)} L→ Tc(y)(0) (19)

as n → ∞. Lemma 5 via Assumption 2 with zn = y shows that we can define the limit
random variable T (y)(0) as a limit in probability so that, as c→∞,

Tc(y)(0)
P→ T (y)(0). (20)

Next we consider the first term of the right hand side of (17). Let ∇ be a positive
and finite constant and denote An,∇ = [t0 −∇dn, t0 +∇dn]. From (18) and Lemma 3 it
follows that

sup
An,∇

d−1
n |Tc,n(xn)(·)− TJ(xn)(·)| = sup

[−∇,∇]

|Tc(yn)(·)− TJn,t0
(yn)(·)|,

with yn as defined in (12). Using Lemma 5 with I = [−∇,∇] shows that

d−1
n {Tc,n(xn)(t0)− TJ(xn)(t0)} P→ 0 (21)

when n→∞.
Let first n tend to infinity in (17), and apply Slutsky’s theorem with the use of

(19), (21). Note that when c→∞, (20) gives the result. 2

Remark 4. The approach for deriving the limit distributions is similar to the general
approach in Anevski and Hössjer [1] with a preliminary estimator that is made mono-
tone via the L2-projection on the space of monotone functions. There are however a few
differences:
− Anevski and Hössjer look at rescaling of an integrated preliminary estimator of the
monotone functions, whereas we rescale the estimator directly. Our approach puts a
stronger assumption on the asymptotic properties of the preliminary estimator, which
is however traded off against weaker conditions on the map T , since we only have to
assume that the map T is continuous; had we dealt with rescaling as in Anevski and
Hössjer we would have had to prove that the composition d

dt (T̃ ) (with T̃ defined by
T̃ (F )(t) =

∫ t
0
T (F ′)(u) du) is a continuous map, which is generally not true for T equal

to the monotone rearrangement map; it is however true, under certain conditions, for T̃
equal to the least concave minorant map (when T becomes the L2-projection on the space
of monotone functions), cf. Proposition 2 in Anevski and Hössjer [1].
− We are able to do rescaling for the preliminary estimator directly since it is a smooth
function. On the contrary, for some of the cases treated in Anevski and Hössjer this
is not possible, e.g. for the isotonic regression and the NPMLE of a monotone density
the rescaled stochastic part is asymptotically white noise. As a consequence our rescaled
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deterministic function is assumed to be approximated by a linear function, whereas the
rescaled deterministic function in Anevski and Hössjer [1] is assumed to be approximated
by a convex or concave function.
− The rescaling is here centered at x(t0), and not at xn(t0), which makes it more conve-
nient to apply the limit distribution result we get. 2

The rest of this section is to apply the previous result to two nonparametric inference
problems: next subsection deals with the estimation of a monotone density function,
and the last one with estimating a monotone regression function. Limit distributions for
estimators of a marginal decreasing density f for stationary weakly dependent data with
marginal density f as well as of a monotone regression function m with stationary errors,
that are weakly or strongly dependent, will be derived.

All limit distribution results stated will be for processes in C(−∞,∞) with the uniform
metric on compact intervals and the Borel σ-algebra.

3.3. Application to monotone density estimation

For the density estimation problem let {ti}∞i=1 denote a stationary process with marginal
density function f . Define the empirical distribution function Fn(t) = 1

n

∑n
i=1 1{ti≤t} and

the centered empirical process F 0
n(t) = 1

n

∑n
i=1(1{ti≤t} − F (t)). Consider a sequence δn

such that δn ↓ 0, nδn ↑ ∞ as n → ∞, and define the centered empirical process locally
around t0 on scale δn as

wn,δn(s; t0) = σ−1
n,δn

n{F 0
n(t0 + sδn)− F 0

n(t0)}

= σ−1
n,δn

n∑
i=1

(1{ti≤t0+sδn} − 1{ti≤t0}

−F (t0 + sδn) + F (t0)),

where

σ2
n,δn = Var

[
n
{
F 0
n(t0 + δn)− F 0

n(t0)
}]

= Var

[
n∑
i=1

{
1{t0<ti≤t0+δn} − F (t0 + δn) + F (t0)

}]
.

In this section we introduce a (monotone) estimator of a monotone density function
for stationary data, for which we derive consistency and limit distributions.

Let t1, t2, . . . denote a stationary process with marginal density function f lying in
the class of decreasing density functions on R+, and define the following estimator of the
marginal decreasing density for the sequence {ti}i≥1: Let xn(t) = (nh)−1

∑n
i=1 k{(t− ti)/h}

be the kernel estimator of the density f , with k a bounded density function supported
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on [−1, 1] such that
∫
k′(u)du = 0, and h > 0 the bandwidth (cf. e.g. Wand and Jones

[42]), and define the (monotone) density estimate

f̂n(t) = T (xn)(t), (22)

where T is the monotone rearrangement map on R+ as defined in (2). Note that f̂n is
monotone and positive, and integrates to one, cf. equation (4) of Section 3.3. in Lieb and
Loss [23].

A straightforward consequence of Theorem 2 and standard convergence results for the
kernel density estimate is the following consistency result:

Proposition 1. The random function f̂n defined by (22) is a uniformly consistent
estimator of f in probability uniformly on compact sets, and in probability in Lp-norm.

In the following, the limit distributions for f̂n in the independent and weakly dependent
cases are derived. We will in particular make use of recent results on the weak convergence
wn,δn

L→ w, on D(−∞,∞), as n→∞, for independent and weakly dependent data {ti},
derived in Anevski and Hössjer [1].

The kernel estimator can be written xn = xb,n + vn with

xn(t) = h−1

∫
k′(u)Fn(t− hu) du,

xb,n(t) = h−1

∫
k′(u)F (t− hu) du, (23)

vn(t) = h−1

∫
k′(u)F 0

n(t− hu) du.

Rescaling is done on a scale dn that is of the same asymptotic order as h, so that we put
dn = h. The rescaled process is

ṽn(s; t0) = cn

∫
k′(u)wn,dn(s− u; t0) du,

with cn = d−1
n (nh)−1σn,dn .

Theorem 5. Let {ti}i≥1 be a stationary sequence with a monotone marginal density
function f such that supt∈It0 f

′(t) < 0 and f ∈ C1(It0) for an open interval It0 3 t0

where t0 > 0. Assume that Et4i <∞. Let xn be the kernel density function defined above,
with k a bounded and compactly supported density such that k′ is bounded. Suppose that
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one of the following conditions holds:

[a] {ti}i≥1 is an i.i.d. sequence,
[b] 1) {ti}i≥1 is a stationary φ-mixing sequence with

∑∞
i=1 φ

1/2(i) <∞ ;

2) f(t0) = F ′(t0) exists, as well as the joint density fk(s1, s2) of
(t1, t1+k) on [t0 − δ, t0 + δ]2 for some δ > 0, and k ≥ 1 ;

3)

∞∑
k=1

Mk <∞ holds, for Mk = sup
t0−δ≤s1,s2≤t0+δ

|fk(s1, s2)− f(s1)f(s2)|.

Then choosing h = an−1/3 and a > 0 an arbitrary constant, we obtain

n1/3{f̂n(t0)− f(t0)} L→ aT [f ′(t0) ·+ṽ(·; t0)](0) + f ′(t0) a

∫
uk(u) du,

as n → ∞, where ṽ(s; t) is as in (42), with c = a−3/2f(t0)1/2, and w a standard two
sided Brownian motion.

Proof If k′ is bounded and k has compact support, the continuity of the map

C(−∞,∞) 3 z(s) 7→
∫
z(s− u)k′(u) du ∈ C(−∞,∞)

implies that, choosing dn such that cn → c as n→∞ for some constant c, one gets:

ṽn(s; t0)
L→ c

∫
k′(u)w(s− u; t0) du =: ṽ(s; t0), (24)

on C(−∞,∞), as n→∞, thanks to the continuous mapping theorem. Here w is the weak
limit of {wn}. Theorems 7 and 8 of Anevski and Hössjer [1] state that wn,δn(s, t0)

L→ B(s)
on D(−∞,∞) under the respective assumptions in [a] and [b], where B(s) is a two sided
standard Brownian motion. This establishes the first part of Assumption 1 for both
cases [a] and [b]. Next notice that xb,n(t) = h−1

∫
k( t−uh )f(u) du is monotone. A change

of variable and a Taylor expansion in xb,n prove the second part of Assumption 1 with
A = f ′(t0) and

d−1
n {xb,n(t0)− f(t0)} → f ′(t0)

∫
uk(u) du = ∆.

The statement of Assumption 2 is relegated to the appendix, see Corollary 2 in Supple-
ment A. Theorem 5 therefore holds as an application of Theorem 4.

Let us finally check that the scale dn can be chosen so that cn → c, as assumed at the
beginning of the proof:

- Independent data case [a]: We have σ2
n,dn
∼ ndnf(t0), so that

d−1
n (nh)−1σn,dn ∼ d−3/2

n n−1/2f(t0)1/2.

Choosing dn = an−1/3 we get c = a−3/2f(t0)1/2.
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- Mixing data case [b]: Similar to the proof of case [a]. 2

Remark 5. The present estimator was first proposed for independent data by Fougères
[15], who stated the strong consistency uniformly over R+ for T (fn) and derived some
partial results for the limit distribution. The results for the monotone density function
estimator are similar to the results for the Grenander estimator (the NPMLE) of a mono-
tone density, in that we have cube root asymptotics and a limit random variable that is a
nonlinear functional of a Gaussian process, for independent and weak dependent data; see
Prakasa Rao [31] and Wright [43] for the independent data cases, and Anevski and Höss-
jer [1] for the weak dependent data cases. In our case however we obtain one extra term
that arises from the bias in the kernel estimator. Our estimator is really closer in spirit
to the estimator obtained by projecting the kernel estimator on the space of monotone
functions (i.e. kernel estimation followed by isotonic regression) first proposed by Anevski
and Hössjer [1]; note that we obtain the same bias term as in Anevski and Hössjer [1].

Remark 6. The results for the long range dependence case is similar to the result for
the isotonic regression of a kernel estimator, cf. Anevski and Hössjer [1]. In this situation
ṽn(s; t0) is asymptotically a linear function of s with a random slope, implying that the
monotone rearrangement of gn + ṽn is just gn + ṽn which evaluated at zero is zero. This
is due to the fact that for long range dependent data the limit process of the empirical
process is a deterministic function multiplied by a random variable, cf. the remark after
Theorem 12 in Anevski and Hössjer [1]. Thus the limit distribution for the final estimator
for long range dependent data is the same as the limit distribution for the kernel estimator
itself, i.e. nd/2{f̂n(t) − f(t)} and nd/2{fn(t) − f(t)} have the same distributional limit.
See Csörgö and Mielniczuk [11] for a derivation of this limit distribution.

3.4. Application to monotone regression function estimation

For the regression function estimation problem let {εi}∞i=−∞ be a stationary sequence of
random variables with E(εi) = 0 and Var(εi) = σ2 <∞. Let σ2

n =Var(
∑n
i=1 εi). The two

sided partial sum process wn is defined by

wn(ti +
1

2n
) =

{
1
σn

( ε02 +
∑i
j=1 εj), i = 0, 1, 2, . . . ,

1
σn

(− ε02 −
∑−1
j=i+1 εj), i = −1,−2, . . . ,

and linearly interpolated between these points. Note that wn ∈ C(R).
Let Cov(k) = E(ξ1ξ1+k) denote the covariance function of a generic stationary se-

quence {ξi}, and distinguish between three cases (of which [a] is a special case of [b].)

[a] Independence: the εi are independent.
[b] Weak dependence:

∑
k |Cov(k)| <∞.

[c] Strong (long range) dependence:
∑
k |Cov(k)| =∞.
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Weak dependence can be further formalized using mixing conditions as follows: Define
two σ-algebras of a sequence {ξi} as Fk = σ{ξi : i ≤ k} and F̄k = σ{ξi : i ≥ k}, where
σ{ξi : i ∈ I} denotes the σ−algebra generated by {ξi : i ∈ I}. The stationary sequence
{ξi} is said to be "ϕ-mixing" or "α-mixing" respectively if there is a function ϕ(n) or
α(n)→ 0 as n→∞, such that

sup
A∈F̄n

|P (A|F0)− P (A)| ≤ ϕ(n),

sup
A∈F0,B∈F̄n

|P (AB)− P (A)P (B)| ≤ α(n), (25)

respectively. Finally, long range dependence is usually formalized using subordination or
assuming the processes are linear; we will treat only (Gaussian) subordination.

In this section we introduce an estimator of a monotone regression function. We derive
consistency and limit distributions, under general dependence assumptions.

Assume m is a C1-function on a compact interval J ⊂ R, say J = [0, 1] for simplicity;
let (yi, ti), i = 1, · · · , n be pairs of data satisfying

yi = m(ti) + εi,

where ti = i/n. Define ȳn : [1/n, 1] 7→ R by linear interpolation of the points {(ti, yi)}ni=1,
and let

xn(t) = h−1

∫
k((t− u)/h)ȳn(u) du , (26)

be the Gasser-Müller kernel estimate of m(t), cf. Gasser and Müller [16], where k is a
density in L2(R) with compact support, for simplicity take supp(k) = [−1, 1]. Let h be
the bandwidth, for which we assume that h→ 0, nh→∞.

To define a monotone estimator of m, we put

m̃(t) = T[0,1](xn)(t), t ∈ J, (27)

where T[0,1] is the monotone rearrangement map on [0, 1]. A straightforward application
of Theorem 2 and standard consistency results for regression function estimators imply
the following consistency result:

Proposition 2. The random function m̃ defined by (27) is a uniformly consistent es-
timator of m in probability uniformly on compact sets, and in probability in Lp norm.

Clearly xn(t) = xb,n(t) + vn(t), with

xb,n(t) = h−1

∫
k(
t− u
h

)m̄n(u) du, (28)

vn(t) = h−1

∫
k(
t− u
h

)ε̄n(u) du,
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where the functions m̄n and ε̄n are obtained by linear interpolation of
{(ti,m(ti))}ni=1 and {(ti, εi)}ni=1 respectively. For the deterministic term
xb,n(t) → xb(t) = m(t), as n → ∞. Note that m̄n, and thus also xb,n, is monotone.
Put

w̄n(t) =
n

σn

∫ t

0

ε̄n(u) du.

Since supp(k) = [−1, 1] and if t ∈ (1/n+ h, 1− h), from a partial integration and change
of variable we obtain

vn(t) =
σn
nh

∫
k′(u)w̄n(t− uh) du.

It can be shown that w̄n and wn are asymptotically equivalent for all dependence struc-
tures treated in this paper. Let us now recall how the two sided partial sum process
behaves in the different cases of dependence we consider:

[a] When the εi are independent, we have the classical Donsker theorem, cf.Billingsley
[3], implying that

wn
L→ B, (29)

as n→∞, with B a two sided standard Brownian motion on C(R).
[b] Define

κ2 = Cov(0) + 2

∞∑
k=1

Cov(k). (30)

Assumption 3. [φ−mixing] Assume {εi}i∈Z is a stationary φ-mixing sequence with
Eεi = 0 and Eε2i <∞. Assume further

∑∞
k=1 φ(k)1/2 <∞ and κ2 > 0 in (30).

Assumption 4. [α−mixing] Assume {εi}i∈Z is a stationary α-mixing sequence with
Eεi = 0 and Eε4i <∞, κ2 > 0 in (30) and

∑∞
k=1 α(k)1/2−ε <∞, for some ε > 0.

Assumption 3 or 4 imply that σ2
n → κ2 and that Donsker’s result (29) is valid, cf.

Anevski and Hössjer [1] and references therein.
[c] We model long range dependent data {εi}i≥1 using Gaussian subordination: More

precisely, we write εi = g(ξi) with {ξi}i∈Z a stationary Gaussian process with mean
zero and covariance function Cov(k) = E(ξiξi+k) such that Cov(0) = 1 and Cov(k) =
k−dl0(k), with l0 a slowly varying function at infinity1 and 0 < d < 1 fixed. Furthermore
g : R 7→ R is a measurable function with E{g(ξ1)2} <∞. An expansion g(ξi) in Hermite
polynomials is available

g(ξi) =

∞∑
k=r

1

k!
ηkhk(ξi),

1i.e. l0(tk)/l0(t) → 1 as t → ∞ for each positive k.
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where equality holds as a limit in L2(ϕ), with ϕ the standard Gaussian density function.
The functions hk(t) = t−k(d/dt)k(tke−t

2

) are the Hermite polynomials of order k, the
functions

ηk = E {g(ξ1)hk(ξ1)} =

∫
g(u)hk(u)φ(u) du,

are the L2(ϕ)-projections on hk, and r is the index of the first non-zero coefficient in the
expansion. Assuming that 0 < dr < 1, the subordinated sequence {εi}i≥1 exhibits long
range dependence (see e.g. Taqqu [34, 35]), and Taqqu [34] also shows that

σ−1
n

∑
i≤nt

g(ξi)
L→ zr,β(t),

in D[0, 1] equipped with the Skorokhod topology, with variance σ2
n = Var

{
∑n
i=1 g(ξi)} = η2

rn
2−rdl1(n)(1 + o(1)), where

l1(k) =
2

r!(1− rd)(2− rd)
l0(k)r. (31)

The limit process zr,β is in C[0, 1] a.s., and is self similar with parameter

β = 1− rd/2. (32)

The process z1,β(t) is fractional Brownian motion, z2,β(t) is the Rosenblatt process, and
the processes zr,β(t) are all non-Gaussian for r ≥ 2, cf. Taqqu [34]. From these results
follows a two sided version of Taqqu’s result stating the behavior of the two sided partial
sum process:

wn
L→ Br,β ,

in D(−∞,∞), as n→∞, where Br,β are the two sided versions of the processes zr,β .
In the sequel, rescaling is done at the bandwidth rate, so that dn = h. For s > 0, let

consider the following rescaled process:

ṽn(s; t) = d−1
n (nh)−1σn̂

∫
w̄n̂(h−1t+ s− u)k′(u) du

L
= d−1

n (nh)−1σn̂

∫
w̄n̂(s− u)k′(u) du, (33)

with n̂ = [nh] the integer part of nh, where the last equality holds due to the stationarity
(exactly only for t = ti and asymptotically otherwise). Note that the right hand side
holds also for s < 0.

With the bandwidth choice dn = h we obtain a non-trivial limit process ṽ; choosing dn
such that dn/h→ 0 leads to a limit “process” equal to a random variable and dn/h→∞
to white noise. In the first case the limit distribution of T (xn) on the scale dn will be the
constant 0, while in the second case it will (formally) be T (m′(t0) ·+ṽ(·))(0) which is not
defined (T can not be defined for generalized functions, in the sense of L. Schwartz [33]).
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Theorem 6. Assume m is monotone on [0, 1] and for some open interval It0 3 t0,
m ∈ C1(It0) and supt∈It0 m

′(t) < 0 with t0 ∈ (0, 1). Let xn be the kernel estimate
of m defined in (26), with a non-negative and compactly supported kernel k such that
k′ is bounded, and with bandwidth h specified below. Suppose that one of the following
conditions holds.

[a] {εi} are independent and identically distributed, Eεi = 0;
σ2 =Var(εi) <∞, and h = an−1/3, for an arbitrary a > 0,

[b] Assumption 3 or 4 holds, σ2
n = Var(

∑n
i=1 εi), κ

2 is defined in (30),

and h = an−1/3, with a > 0 an arbitrary constant,
[c] εi = g(ξi) is a long range dependent subordinated Gaussian sequence

with parameters d and r, h = l2(n; a)n−rd/(2+rd) with a > 0 and
n 7→ l2(n; a) is a slowly varying function defined in the proof below.

Then, correspondingly, we obtain

h−1{m̃(t0)−m(t0)} L→ T [m′(t0) ·+ṽ(·; t0)](0) +m′(t0)

∫
uk(u) du,

as n→∞, where m̃ is defined in (27),

ṽ(s; t) = c

∫
w(s− u)k′(u) du, (34)

and respectively

[a] w = B ; c = σa−3/2,

[b] w = B ; c = κa−3/2,

[c] w = Br,β ; c = |ηr|a (where β defined in (32)).

Proof The conclusions of the theorem follow by an application of Theorem 4 in the
context of monotone regression function. Assume first that dn = h is such that

d−1
n (nh)−1σn̂ = d−2

n n−1σn̂ → c > 0. (35)

Then wn
L→ w in D(−∞,∞), using the supnorm over compact intervals metric, under

the respective assumptions in [a], [b] and [c]. Besides, note that if k′ is bounded and k
has compact support, the map

C(−∞,∞) 3 z(s) 7→
∫
z(s− u)k′(u) du ∈ C(−∞,∞)

is continuous, in the supnorm over compact intervals metric. Thus, under the assumptions
that k′ is bounded and k has compact support, the continuous mapping theorem implies
that

ṽn(s; t)
L→ ṽ(s; t), (36)
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where ṽ(s; t) is defined in (43). This yields the first part of Assumption 1. Furthermore

g̃n(s) = h−1

∫
`(u)m̄n(t0 − hu) du

= h−1

∫
`(u)m(t0 − hu) du+ rn(s),

with `(v) = k(v + s)− k(v) and rn a remainder term. Since∫
vλ`(v) dv =

{
0, if λ = 0,
−s, if λ = 1,

it follows by a Taylor expansion of m around t0 that the first term converges towards
As, with A = m′(t0). The remainder term is bounded for any c > 0 as

sup
|s|≤c

|rn(s)| ≤ h−1 sup
|s|≤c

∫
|`(u)| du sup

|u−t0|≤(c+1)h

|m̄n(u)−m(u)|

= O(n−1h−1) = o(1).

Furthermore

d−1
n {xb,n(t0)−m(t0)} → m′(t0)

∫
uk(u) du =: ∆,

as n→∞, which proves Assumption 1.
Proof that Assumption 2 holds is relegated to the appendix, see Corollary 1 in Sup-

plement A. An application of Theorem 4 then finishes the proof of Theorem 6. It only
remains to check whether d−1

n (nh)−1σn̂ → c > 0 for the three types of dependence.

- Independent case [a]: We have σ2
n̂ = σ2ndn. Thus d−1

n (nh)−1σn̂ = σn−1/2h−3/2,
and (45) is satisfied with c = σa−3/2 if dn = h = an−1/3.

- Mixing case [b]: The proof is similar to the proof of [a], replacing σ by κ.
- Long range data case [c]: Since σ2

n̂ = η2
r(ndn)2−rdl1(ndn), if we choose dn = h we

will have

d−2
n n−1σn̂ = d−2

n n−1|ηr|(ndn)1−rd/2l1(ndn)1/2 → |ηr|a (37)

if and only if

dn = n−rd/(2+rd)l2(n; a), (38)

where l2 is another function slowly varying at infinity, implicitly defined in (37).
Thus (45) follows with c = |ηr|a and h = dn given in (47). 2
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Remark 7. The present estimator is similar to the estimator first presented by Mam-
men [24]: Mammen proposed to do isotonic regression of a kernel estimator of a regression
function (using bandwidth h = n−1/5), whereas we do monotone rearrangement of a ker-
nel estimator. Mammen’s estimator was extended to dependent data and other bandwidth
choices by Anevski and Hössjer [1] who derived limit distributions for weak dependent
and long range dependent data that are analogous to our results; for the independent
data case and bandwidth choice h = n−1/3 the limit distributions are similar with rate of
convergence n1/3 and nonlinear maps of Gaussian processes.

4. Limit results for density and regression function
estimators with q vanishing derivatives

The results we have established in the previous section can in fact be extended to the
case when the estimand x is monotone and has q vanishing moments at the point of
interest t0, so when x(t0) 6= 0, x(i)(t0) = 0 for j = 1, . . . , q and x(q+1)(t0) < 0. We present
these results here. We will make an analogous derivation to the case when x′(t0) < 0,
and we will highlight when there is a difference to the case already treated.

We give proofs for the independent data, the weak dependent and the long range
dependent cases. Our results give other rates of convergence and other (new) limit random
variables. For instance the limit results that we obtain for the independent data case will
be with the (slower rate of convergence) n−1/(q+3), and the limit r.v. will be of the form

T (A(s) + ṽ(s))(0),

where A is (when k is a symmetric kernel) a convolution of the monomial sq+1, of order
q+ 1, with the kernel function k(s) and ṽ is the same process as the one already treated,
while T is the monotone rearrangement map.

Thus let x be a function satisfying the above assumption that it has q vanishing
derivatives at a point t0 that is in the interior of its support, while xq+1(t0) < 0. Suppose
that xn is a preliminary estimator of x that we partition as

x(t) = xb,n(t) + vn(t).

Let dn ↓ 0 as n→∞, be a deterministic sequence. Define the rescaled deterministic and
stochastic parts, respectively, by

gn(s) = d−(q+1)
n (xb,n(t0 + sdn)− x(t0)),

ṽn(s; t0) = d−(q+1)
n vn(t0 + sdn),

as in Section 3.2 and also

yn(s) = gn(s) + ṽn(s; t0) (39)
= d−(q+1)

n (xn(t0 + sdn)− x(t0)). (40)

Then Assumption 1 is replaced by
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Assumption 5. There exists a stochastic process ṽ(·; t0) 6= 0 such that

ṽn(·; t0)
L→ ṽ(·; t0),

on C(−∞,∞) as n → ∞. The functions {xb,n}n≥1 are monotone and there exists a
function A(s) such that for each c > 0

sup
|s|≤c

|gn(s)−A(s)|

as n→∞.

Let us also define the limit process

y(s) = A(s) + ṽ(s; t0). (41)

Then we have the following general theorem.

Theorem 7. Let J ⊂ R be an interval, and t0 a fixed point in the interior of J .
Suppose that Assumption 5 holds. Assume furthermore that {yn}n≥1 and y are continuous
processes and that Assumption 2 holds for both {yn}n≥1 and y, defined in (40) and (41)
respectively. Then

d−(q+1)
n [TJ(xn(t0))− x(t0)]

L→ T [A(·) + ṽ(·; t0)](0),

as n→∞.

Proof The proof is completely analogous to the proof of Theorem 4: At appropriate
places simply replace the factor dn with dq+1

n and d−1
n with d−(q+1)

n . 2

4.1. Monotone density function estimation

We now apply the above general result to the estimation of a monotone density f function
such that f (j)(t0) = 0 for j = 1, . . . , q and f (q+1)(t0) < 0.

Recall the definition of the empirical distribution function Fn and centered empirical
distribution function F 0

n in Section 3.3. Let δn be a sequence such that δn ↓ 0, nδn ↑ ∞
as n → ∞, and define the centered empirical process wn,δn locally around t0 on the
scale δn, exactly as in Section 3.3, with the same definition of normalising factor σ2

n,δn
.

Furthermore, define the kernel function xn as the preliminary estimator of f as in Section
3.3, and note that we can write the kernel estimator as xn = xb,n + vn, with xn, xb,n, vn
given in Equation (23) in Section 3.3. Again we will choose the bandwidth and the local
scale to be the same dn = h.
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We now however obtain the rescaled process

ṽn(s; t0) = cn

∫
k′(u)wn,dn(s− u; t0) du,

with a (different) scale factor cn = d
−(q+1)
n (nh)−1σn,dn .

Theorem 8. Let {ti}i≥1 be a stationary sequence with a monotone marginal density
function f such that

(i) f (j)(t0) = 0 for j = 1, . . . , q,
(ii) supt∈It0 f

(q+1)(t) < 0,
(iii) f ∈ Cq+1(It0),

for an open interval It0 3 t0 where t0 > 0. Assume that Et4i < ∞. Let xn be the kernel
density function defined above, with k a bounded and compactly supported density such
that k′ is bounded. Suppose that one of the following conditions holds:

[a] {ti}i≥1 is an i.i.d. sequence,
[b] 1) {ti}i≥1 is a stationary φ-mixing sequence with

∑∞
i=1 φ

1/2(i) <∞ ;

2) f(t0) = F ′(t0) exists, as well as the joint density fk(s1, s2) of
(t1, t1+k) on [t0 − δ, t0 + δ]2 for some δ > 0, and k ≥ 1 ;

3)

∞∑
k=1

Mk <∞ holds, for Mk = sup
t0−δ≤s1,s2≤t0+δ

|fk(s1, s2)− f(s1)f(s2)|.

Then choosing h = an−1/(3+2q) and a > 0 an arbitrary constant, we obtain

n1/(3+2q){f̂n(t0)− f(t0)} L→ T (Af (·) + ṽn(·; t0))(0),

as n → ∞, where ṽ(s; t) is as in (42), with c = a−(q+3/2)f(t0)1/2, the function Af (s) is
defined as

Af (s) =
1

(q + 1)!
f (q+1)(t0)

∫
k(u)(s+ u)q+1 du

and w a standard two sided Brownian motion.

Proof The first part of Assumption 1 is established as in the proof of Theorem 5,
with

ṽ(s; t0) = c

∫
k′(u)w(s− u; t0) du (42)

and w a two sided standard Brownian motion, under the respective assumptions in [a]
and [b].
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Again we notice that xb,n(t) = h−1
∫
k( t−uh )f(u) du is monotone. A change of variable

and a Taylor expansion in the expression for xb,n proves the second part of Assumption
1 with limit function

A(s) =
1

(q + 1)!
f (q+1)(t0)

∫
k(u)(s+ u)q+1 du .

To check Assumption 2 for the case q ≥ 1 is much easier than for the case q = 0, which
is the case treated in Section 3. This can be seen in the statement of Lemma 1 in the
supplemental part: the rescaled processes ṽn are the same for this new case q ≥ 1 as for
the already treated case q = 0. However, the rescaled limit deterministic part A(s) is, for
q ≥ 1, a smoothed out higher order monomial (s+ u)q+1, which of course has not linear
increase/decrease (as when r = 0) but polynomial increase. That means that one should
compare ṽn in A and B of Lemma 1 not with e.g. in A of Lemma 1 the linear function
τ(s− c) but instead with τ(s− c)q+1. But bounds of this form are easier to establish for
polynomial increase than for linear increase, and in fact if we have established bounds
for linear increase then we automatically get (at least) the same bounds for polynomial
increase.

Finally in order to check that we can choose the scale dn so that cn → c, we make the
following calculations.

(1) Independent data case [a]: We have σ2
n,dn
∼ ndnf(t0), so that

cn = d−(q+1)
n (nh)−1σn,dn

∼ d−(q+3/2)
n n−1/2f(t0)1/2.

This tells us that we should choose dn = an−1/(3+2q) we get c = a−3/2f(t0)1/2.
(2) Mixing data case [b]: Similar to the proof of case [a]. 2

4.2. Monotone regression function estimation

Next we treat the regression estimation problem for a regression function m such that
m(j)(t0) = for j = 1, . . . , q and m(q)(t0) < 0 for t0 the point of interest. We have the same
setting for the regression problem as in Section 3.4, so m is a function defined on [0, 1],
equidistant design ti = i/n, and data (ti, yi) from the model yi = m(ti)+ εi where {εi} is
a stationary sequence of independent, weakly dependent or long range dependent data.
Define the two-sided partial sum process wn and the function ȳn exactly as in Section 3.4,
and the Gasser-Müller kernel estimate as in Equation (26). The monotone estimator of
m is defined as m̃(t) = T[0,1](xn)(t). Again we can write xn = xb,n + vn, with xb,n and
vn given in Equation (28). We note that since the process wn is defined exactly the same
way as in Section 3.4, we have that wn

L→ a limit process which is Brownian motion or
Fractional Brownian motion, or something else, depending on the dependence structure
for the data {εi}, as in Section 3.4.
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We choose bandwidth equal to the local scale factor h = dn, and rescale the process
part as

ṽn = d−(q+1)
n (nh)−1σn̂

∫
w̄n̂(s− u)k′(u) du,

while the deterministic part is rescaled as

gn(s) = d−(q+1)
n (xb,n(t0 + sdn)− x(t0)).

Theorem 9. Assume m is monotone on [0, 1] and

(i) m(j)(t0) = 0 for j = 1, . . . , q,
(ii) supt∈It0 m

(q+1)(t) < 0,
(iii) m ∈ Cq+1(It0),

for an open interval It0 3 t0, with t0 ∈ (0, 1). Let xn be the kernel estimate of m defined
above, with a non-negative and compactly supported kernel k such that k′ is bounded, and
with bandwidth h specified below. Suppose that one of the following conditions holds.

[a] {εi} are independent and identically distributed, Eεi = 0;
σ2 =Var(εi) <∞, and h = an−1/(3+2q), for an arbitrary a > 0,

[b] Assumption 3 or 4 holds, σ2
n = Var(

∑n
i=1 εi), κ

2 is defined in (30),

h = an−1/(3+2q), with a > 0 an arbitrary constant,
[c] εi = g(ξi) is a long range dependent subordinated Gaussian sequence

with parameters d and r, h = l2(n; a)n−rd/(2+q+rd) with a > 0 and
n 7→ l2(n; a) is a slowly varying function defined in the proof below.

Then, correspondingly, we obtain

d−1
n {m̃(t0)−m(t0)} L→ T [Am(·) + ṽ(·; t0)](0),

as n→∞, where

ṽ(s; t) = c

∫
w(s− u)k′(u) du, (43)

Am(s) =
m(q+1)(t0)

(q + 1)!

∫
(u+ s)q+1k(u) du. (44)

and respectively

[a] w = B ; c = σa−(q+3/2),

[b] w = B ; c = κa−(q+3/2),

[c] w = Br,β ; c = |ηr|a (where β defined in (32)).

imsart-bj ver. 2014/10/16 file: anevski-fougeres-171018.tex date: October 18, 2017



The monotone rearrangement algorithm 31

Proof If we choose dn = h in such a way so that

d−(q+1)
n (nh)−1σn̂ → c > 0, (45)

then we obtain the first part of Assumption 1

ṽn(s; t)
L→ ṽ(s; t),

as in the proof of Theorem 6.
For the rescaling of the deterministic part gn, similarly to as in the proofs of Theorem 6

and Theorem 8, one can show that the second part of Assumption 1 holds, with

Am(s) =
m(q+1)(t0)

(q + 1)!

∫
(u+ s)q+1k(u) du.

The proof that Assumption 2 holds is similar to the reasoning in the proof of Theo-
rem 8.

It only remains to check whether d−1
n (nh)−1σn̂ → c > 0 for the three types of depen-

dence.

1. Independent case [a]: We have σ2
n̂ = σ2ndn. Thus d

−(q+1)
n (nh)−1σn̂ = σn−1/2d

−(q+3/2)
n ,

and (45) is satisfied with c = σa−(q+3/2) if dn = h = an−1/(3+2q).
2. Mixing case [b]: The proof is similar to the proof of [a], replacing σ by κ.
3. Long range data case [c]: Since σ2

n̂ = η2
r(ndn)2−rdl1(ndn), if we choose dn = h we

will have

d−(q+1)
n (nh)−1σn̂ = d−(q+1)

n (nh)−1|ηr|(ndn)1−rd/2l1(ndn)1/2

→ |ηr|a (46)

if and only if

dn = n−rd/(q+2+rd)l2(n; a), (47)

where l2 is another function slowly varying at infinity, implicitly defined in (46).
Thus (45) follows with c = |ηr|a and h = dn given in (47). 2

5. Conclusions

We considered the feature of estimating an arbitrary monotone function x, via a mono-
tone rearrangement of a “preliminary” estimator xn of the unknown x. We derived con-
sistency and limit distribution results for the monotonized estimator that hold under
rather general dependence assumptions.

The work done here has been with the use of kernel based methods for the preliminary
estimator xn of x. Other methods, such as wavelet based ones, are possible. We would
like to emphasise that the only assumptions required are given in Assumptions 1 and 2.
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The small simulation study that has been performed in Supplement A deals with
independent data, as also done in Dette et al. [12] and Birke and Dette [5]. This indepen-
dence framework is the only one considered in the density context too. A larger panel of
dependence situations in the comparisons would clearly be of interest.

We have studied applications to density and regression function estimation. Other
estimation problems that are potentially possible to treat with our methods are e.g.
spectral density estimation, considered by Anevski and Soulier [2], and deconvolution,
previously studied by van Es et al. [37].
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Supplementary Material

Supplement A: Maximal bounds for the rescaled version partial sum and em-
pirical process
(). The supplementary material gives further conditions under which Assumption 2 holds,
with application to the density and regression function estimation cases, stated in Ap-
pendix B, as well as all proofs. Furthermore it contains a simulation study that illustrates
the finite sample behaviour of our estimator, and compare it to other estimators that are
considered in the paper of Birke and Dette [5].
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Appendix A: Proofs of Section 2

Proof of Lemma 1: Assertions (i) and (ii) both follow from the fact that

lim
u→u0

|rf,I(u)− rf,I(u0)| = lim
u→u0

λ{t ∈ I : max(u, u0) ≥ f(t) > min(u, u0)}

= λ{I ∩ f−1({u0})},

which is equal to 0 in (i), and to c in (ii). Finally, assertion (iii) arises from writing that
rf,I(u) = rf,I(f(t−0 )) = t0 for each u ∈ (f(t+0 ), f(t−0 )). 2

Proof of Lemma 2: (i)-(iii) follow from the definition; indeed, for each u ∈ f(I) + c,
rf+c,I(u) = λ{t ∈ I : f(t)+c > u} = rf,I(u−c), and for each u ∈ cf(I), rcf,I(u) = λ{t ∈
I : cf(t) > u} = rf,I(u/c) if c > 0. As for (iii), {t ∈ I : f(t) > u} ⊂ {t ∈ I : g(t) > u}, for
each fixed u, if f ≤ g. Statement (iv) follows from rfc,I(u) = λ{t ∈ I/c : f(ct) > u} =
λ{s/c ∈ I/c : f(s) > u} = rf,I(u)/c, for each u ∈ f(I). Statement (v) is a consequence of
rfc,I(u) = λ{t ∈ I − c : f(t+ c) > u} = λ{s− c ∈ I − c : f(s) > u} = λ{t ∈ I : f(t) > u},
for each u ∈ f(I). 2

Proof of Lemma 3: Let I = [a, b]; each assertion is a consequence of its counter-
part in Lemma 2. Let t ∈ I; statement (i) follows from TI(f + c)(t) = inf{u ∈ f(I) + c :
rf,I(u − c) ≤ t − a} = TI(f)(t) + c, whereas (ii) comes from TI(cf)(t) = inf{u ∈
cf(I) : rf,I(u/c) ≤ t − a} = cTI(f)(t). To show (iii), note that f ≤ g ⇒ rf,I ≤
rg,I ⇒ TI(f) ≤ TI(g). Assertion (iv) follows from the fact that for each t ∈ I/c,
TI/c(fc)(t) = inf{u ∈ f(I) : rf,I(u) ≤ ct− a} = TI(f)(ct). Finally, statement (v) follows
since for each t ∈ I − c, TI−c(fc)(t) = inf{u ∈ f(I) : rf,I(u) ≤ t+ c− a} = TI(f)(t+ c).
2

Proof of Theorem 1: Let f, g be functions in B(I). Clearly g(u) − ||f − g|| ≤ f(u) ≤
g(u) + ||f − g||, which by Lemma 3 (i) and (iii) implies that TI(g)(u) − ||f − g|| ≤
TI(f)(u) ≤ TI(g)(u) + ||f − g||, so that |TI(f) − TI(g)|(u) ≤ ||f − g||, for each u. Since
the right hand side is independent of u, the absolute value on the left hand side can be
replaced by the supremum norm, which implies the statement of the theorem. 2

Appendix B: Maximal bounds for rescaled partial sum
and empirical processes

In this section we state conditions under which Assumption 2 holds. Further special-
isations of these conditions to density and regression function estimation are give in
Supplement A.
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Recall that

g̃n(s) = d−1
n {xb,n(t0 + sdn)− xb,n(t0)}, (48)

ṽn(s) = d−1
n vn(t0 + sdn).

Since under Assumption 1

yn(s)− {g̃n(s) + ṽn(s)} = d−1
n {xb,n(t0)− x(t0)}

→ ∆,

as n→∞, and |∆| <∞, establishing Assumption 2 for the process g̃n + ṽn implies that
it holds also for the process yn = gn+ ṽn. Therefore it is enough to establish Assumption
2 for yn replaced by g̃n + ṽn.

Recall that for the cases that we cover the rescaled processes are of the form

ṽn(s; t0) = cn

∫
k′(u)zn(s− u; t0) du,

with zn = wn,dn the local rescaled empirical process in the density estimation case and
zn = wn the partial sum process in the regression case. This implies that for the density
estimation case the support of ṽn is stochastic, since it depends on max1≤i≤n ti, while
for the regression estimation case it does not depend on the data {εi} and is as a matter
of fact compact and deterministic.

The proof of the following Lemma is given in Supplement A.

Lemma 6. Let supp(k) ⊂ [−1, 1]. Suppose that Assumption 1 holds. Assume that t0
has a neighbourhood I = [t0 − ε, t0 + ε] such that τ := supt∈I x

′(t) < 0. Suppose also that

x′b,n(t+ sdn) → x′(t), (49)

as n→∞, for all t ∈ I.
Then (14) and (15) written for zn = g̃n + ṽn are implied by the two results:

(A). For every δ > 0 and 0 < c <∞ there is a finite M > 0

lim inf
n→∞

P

[
∩s∈(c,d−1

n ε){ṽn(s) <
M

2
− τ(s− c)}

]
> 1− δ.

(B). For every δ > 0 and finite M > 0 there is a finite C, not depending on δ, such that
for each c > C

lim sup
n→∞

P

{
sup

s∈d−1
n (0,`(n))

ṽn(s) >
M

2
− τ(d−1

n ε− c)

}
< δ, (50)

where `(n) is a deterministic function which satisfies either of

(i) lim inf
n→∞

P{ max
1≤i≤n

ti < `(n)} = 1,

or

(ii) `(n) ≡ max supp(xn) if lim sup
n→∞

max supp(xn) ≤ K <∞.
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