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Abstract

Frequentist methods, without the coherence guarantees of fully Bayesian methods,

are known to yield self-contradictory inferences in certain settings. The framework

introduced in this paper provides a simple adjustment to p values and con�dence sets

to ensure the mutual consistency of all inferences without sacri�cing frequentist validity.

Based on a de�nition of the compatibility of a composite hypothesis with the observed

data given any parameter restriction and on the requirement of self-consistency, the

adjustment leads to the possibility and necessity measures of possibility theory rather

than to the posterior probability distributions of Bayesian and �ducial inference.

Keywords: bounded parameter; deductive closure; deductive cogency; empty con�dence

set; possibility theory; p-value function; ranking function; ranking theory; restricted param-

eter space; surprise measure
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1 Introduction

A common criticism of frequentist statistical methods is that they lead to contradictory

conclusions in settings where Bayesian methods cannot. Following Kaplan (1996), a method

of hypothesis testing or set estimation will be called deductively cogent if it cannot make

mutually contradictory rejections of hypotheses. Minimal requirements for a deductively

cogent method of hypothesis testing are the following:

1. It is restriction-respecting in the sense that it cannot reject every hypothesis that is

consistent with the restriction imposed and in that it rejects all hypotheses that are

inconsistent with the restriction.

2. It is coherent in the sense that a hypothesis can only be rejected if every hypothesis

implying it is also rejected (Gabriel, 1969).

Standard con�dence procedures often fail to meet the �rst requirement in the presence of pa-

rameter restrictions, which are often encountered in physics. For example, if the parameter

restriction is a bound on the parameter of interest, then inferences should proceed condi-

tional on that bound. However, con�dence intervals can be partially or entirely outside the

bound (Mandelkern, 2002a; Fraser, 2011); cf. Zhang and Woodroofe (2003); Marchand and

Strawderman (2004); Wang (2007); Marchand and Strawderman (2013). Taking the inter-

section of the parameter restriction set and the con�dence set leads in the former case to

truncating the con�dence set at the bound, and in the latter case to an empty con�dence set.

Since parameter values outside a con�dence set are considered rejected, an empty con�dence

set is equivalent to rejecting the entire set of possible parameter values, contradicting the

condition that the parameter value lies in that set.
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Empty con�dence sets also occur for an epidemiological model, a branching process, and

Brownian motion (Ball et al., 2002). While an empty con�dence set is often interpreted

as an indication of model inadequacy, procedures leading to them also lead to very small

con�dence sets, misleadingly indicating accurate knowledge of the parameter value (Ball

et al., 2002). As a result, such con�dence sets do not give the estimates of uncertainty that

are needed in practice (Mandelkern, 2002a; Wang, 2006).

For an example of violating coherence, one-sided p values are interpreted as attained

con�dence levels of composite hypotheses, including those concerning the value of an un-

bounded parameter. Since such attained con�dence levels can be smaller for a region than

for a subset of that region (Efron and Tibshirani, 1998; Polansky, 2007, pp. 224-227), they

do not correspond to coherent hypothesis tests. The fact that frequentist approaches can

violate coherence has led many to develop methods complying with the strong likelihood

principle, whether using prior distributions (e.g., Schervish (1996); Lavine and Schervish

(1999)) or not (e.g., Royall (1997); Bickel (2012); Zhang and Zhang (2013)).

To render existing frequentist methods deductively cogent, this paper instead presents

an alternative framework of hypothesis testing and con�dence sets. The framework is based

on the concept of the compatibility between a hypothesis and the observed data rather than

on any likelihood principle.

That data-compatibility measure is speci�ed and illustrated in Section 2 using the most

important concepts found in the more theoretical parts of the paper. Additional examples are

provided in Section 3, some of which feature bounded parameter problems. The foundational

motivation is stated in terms of the axioms of Section 4. Section 5 derives properties of the

data compatibility of a hypothesis, including the fact that the data compatibility of a point

null hypothesis is the p value divided by the highest p value corresponding to the point null
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hypotheses in the parameter space or in the parameter restriction, if any. As a result, the

corresponding set estimate is a conservative con�dence set. Section 6 introduces the concept

of the acceptability of a hypothesis in order to indicate when to accept the hypothesis,

when to reject it, and when to take neither of those actions. The restriction-respecting and

coherence aspects of that procedure are also proven in the latter section. Finally, Section 7

remarks on the place of the proposed framework in possibility theory and ranking theory.

2 Methodology of data-hypothesis compatibility

2.1 Hypothesis testing

Let θ denote the parameter of interest restricted to a subset R of the parameter space Θ,

x the observed sample of data, H0 : θ = θ0 the hypothesis that the value of θ is θ0, and

H0 : θ ∈ H0 the hypothesis that the value of θ is in some H0 ⊆ Θ. The observed p value

corresponding to H0 : θ = θ0 is p (θ0;x). Here, x 7→ p (θ0;x) is a function such that the

probability law of p (θ0;X) weakly converges to U (0, 1) as the sample size increases given

that X is distributed in agreement with H0 : θ = θ0, i.e., Pθ0,γ (p (θ0;X) ≤ α) → α as the

sample size tends to in�nity for all α ∈ [0, 1] and γ ∈ Γ, where γ is the nuisance parameter,

Γ is the nuisance parameter space and Pθ0,γ is the probability measure of the data X. For

an extensive discussion on p values, we refer the reader to Cox (1977).

The compatibility of H0 : θ = θ0 with x given that θ ∈ R is the c value

c (θ0;x|R) =


0 if θ0 /∈ R

p(θ0;x)
supθ1∈R p(θ1;x)

if θ0 ∈ R.
(1)
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More generally, the compatibility of H0 : θ ∈ H0 with x given θ ∈ R is the C value

C (H0;x|R) = sup
θ0∈H0

c (θ0;x|R) .

It is easy to verify that the compatibility of a hypothesis with the data is 0 whenever they

are logically inconsistent, close to 0 whenever all observed p values corresponding to the

hypothesis are low, and 1, the highest possible value, for at least one hypothesis that is

logically consistent with the parameter restriction.

The absence of a parameter restriction is represented by R = Θ. Since the degenerate

restriction that θ ∈ Θ is necessarily true according to the model, the marginal compatibilities

C (H0;x|Θ) and c (θ0;x|Θ) are marginal degrees to which their hypotheses are compatible

with x. They are abbreviated by C (H0;x) and c (θ0;x), respectively.

The �rst example compares a simple null hypothesis to a simple alternative hypothesis

(cf. Berger, 2003; Wang, 2004) to demonstrate the use of the proposed framework as simply

as possible.

Example 1. Comparison of two simple hypotheses, X ∼ N (0, 1) and X ∼ N (1, 1), on the

basis of a single observation x. In this example, R = {0, 1}, Θ is any set of real numbers such

that R ⊆ Θ, Pθ0 = N (θ0, 1) for θ0 ∈ {0, 1}, and the two null hypotheses may be restated as

θ = 0 and θ = 1. Thus, the usual two-sided p-value function p (•;x) is given by

p (θ0;x) = 2 (Φ (x− θ0) ∧ (1− Φ (x− θ0))) ,

where ∧ is the minimum and Φ the standard normal distribution function. Figure 1 displays

the following �signi�cance values� of the hypothesis that θ = 1:
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1. The two-sided p value p (1;x) = 2 (Φ (x− 1) ∧ (1− Φ (x− 1))) appears in solid gray.

This does not depend on the hypothesis that θ = 0.

2. The corresponding compatibility of the hypothesis that θ = 1 with x conditional on

θ ∈ {0, 1} appears in solid black. According to equation (1), that compatibility is

c (1;x| {0, 1}) =


p(1;x)
p(0;x)

if p (1;x) < p (0;x)

1 if p (1;x) ≥ p (0;x)

,

where p (0;x) = 2 (Φ (x) ∧ (1− Φ (x))) is the p value of the hypothesis that θ = 0.

3. The posterior probability that θ = 1 on the basis of 50% prior probability of each of

the null hypotheses conditional on θ ∈ {0, 1} appears in dashed black.

From Figure 1, it can be seen that, given any signi�cance level α ∈ [0, 1], the p value would

erroneously lead to the rejection of the better-supported null hypothesis for su�ciently large

x > 1 but that the other two quantities take the other null hypothesis into account. Even

when observing a value as high as x = 3, the c value reasonably indicates no evidence against

the null hypothesis that θ = 1 given the information that θ ∈ {0, 1}, information the p value

ignores.

Further, for all x > 1/2, there is not any α ∈ [0, 1] such that the compatibility conditional

on θ ∈ {0, 1} is less than α, with the result that it is impossible to reject the better-supported

null hypothesis, regardless of how high the signi�cance level is. The posterior probability

does not share that feature: being strictly less than 1, it is less than su�ciently high values

of α.

In agreement with c (1;x| {0, 1}), Chuaqui (1991, p. 97) recommended the ratio of p val-
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Figure 1: The p value p (1;x) in solid gray, the data compatibility c (1;x| {0, 1}) in solid
black, and the posterior probability that θ = 1 in dashed black as functions of x, the value
of the normal observation.

ues for comparing two hypotheses on the basis of the same observation. N

2.2 Interval estimation and other set estimation

As there is ambiguity in how formal notation in an English sentence can be understood, a few

clarifying remarks may be helpful. The phrase �The hypothesis that θ ∈ H0 is compatible�

herein abbreviates �The hypothesis that θ is a member of H0 is compatible� rather than �The

hypothesis that θ, which is a member of H0, is compatible.� More generally, a hypothesis

about a parameter value, not the parameter value itself, may be compatible with the data,

rejected, accepted, etc.

For the purpose of representing hypotheses, 2Θ will denote the set of all subsets of Θ.

For any H0 ∈ 2Θ, the hypothesis that θ ∈ H0 is simple if H0 has one member and composite

if it has multiple members.
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What it means for a hypothesis to be �compatible� with data is de�ned in analogy with

con�dence intervals. For any restriction of θ to a set R ∈ 2Θ\ {∅}, the set

CS (α;x|R) = {θ0 ∈ R : p (θ0;x) ≥ α} (2)

is known as a (1− α) (100%)-con�dence set for any θ0 ∈ R since

lim
n→∞

Pθ0,γ (θ0 ∈ CS (α;X|R)) = 1− α

for all α ∈ ]0, 1] and γ ∈ Γ results from equation (4). It is called exact if its coverage is equal

to 1− α for all n su�ciently large, which requires X to be continuous (�4.1).

De�nition 1. For any H0,R ∈ 2Θ\ {∅}, x ∈ X , and α ∈ ]0, 1], the hypothesis that θ ∈ H0 is

α-compatible with the observation that X = x, conditional on the restriction that θ ∈ R, if

there is a θ0 ∈ H0 such that c (θ0;x|R) ≥ α, where c (θ0;x|R) is the c value of the hypothesis

that θ = θ0 with the observation that X = x conditional on the restriction that θ ∈ R. The

α-compatibility set given X = x and θ ∈ R is

H (α;x|R) = {θ0 ∈ Θ : c (θ0;x|R) ≥ α} (3)

for all R ∈ 2Θ\ {∅}, x ∈ X , and α ∈ ]0, 1].

The de�nition formally explicates the imprecise idea of whether a hypothesis is compatible

with the data given any restrictions. As will be seen in Section 5.2, c (θ0;x|Θ) = p (θ0;x)

often holds when there are no restrictions on θ.

9



3 Additional examples

Like Example 1, the following examples illustrate the c value and support the claim that it

is more suitable than the p value as a measure of the compatibility between a hypothesis and

data. The �rst example is an idealized version of restricted parameter problem encountered,

for example, in physics (�1).

Example 2. Bounded parameter. Fraser (2011) considered a N (θ, 1) observable variable

X ∼ Pθ = N (θ, 1) with observed value x and the parameter restriction θ ≥ 0, and the

left-tailed version of the two-tailed p value

p (θ0;x) = 2 (Φ (x− θ0) ∧ (1− Φ (x− θ0)))

for every θ0 ≥ 0. Thus, if x ≥ 0, then p (θ0;x) = 1 holds for a value of θ0 ≥ 0, namely,

θ0 = x. In that case, Corollary 2 applies (see Section 5.2), and c (θ0;x| [0,∞[) = p (θ0;x)

for all θ0 ≥ 0. On the other hand, if x < 0, then Corollary 1 (see Section 5.2) instead

gives c (θ0;x| [0,∞[) = p (θ0;x) / supθ1≥0 p (θ1;x) for all θ0 ≥ 0. This relationship between

the compatibility and the p value is seen in Figure 2 for the observation x = −1. The exact

(1− α) (100%)-con�dence interval is

CI (α;x| [0,∞[) = {θ0 ≥ 0 : p (θ0;x) ≥ α} =
[
0 ∨

(
x+ Φ−1 (α/2)

)
, 0 ∨

(
x+ Φ−1 (1− α/2)

)]
,

with Φ−1 denoting the quantile function. By contrast, equation (3) and Theorem 1 (see
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Section 5.2) give the α-compatibility interval

H (α;x| [0,∞[) =

{
θ0 ∈ Θ : p (θ0;x) ≥ α sup

θ1∈R
p (θ1;x)

}
=

{
θ0 ∈ Θ : p (θ0;x) ≥ α sup

θ1∈[0,∞[

p (θ1;x)

}

=

[
0 ∨

(
x+ Φ−1

(
αp+ (x)

2

))
, 0 ∨

(
x+ Φ−1

(
1− αp+ (x)

2

))]
,

where p+ (x) = supθ1≥0 p (θ1;x). As required by Theorem 2,H (α;x| [0,∞[) = CI (αp+ (x) ;x| [0,∞[).

For the observation x = −1, the con�dence intervals are compared to their compatibility

counterparts in Figure 3.

If the variance were unknown, the solution would depend on whether the mean is still of

interest or whether the mean-variance pair is the new parameter of interest. In the former

case, the variance would be a nuisance parameter, and the t test could be used to obtain the

p values on which the compatibility values and intervals are based. They would approach the

above results asymptotically. In the latter case, maximization over the mean and variance

rather than only over the mean in equation (1) would lead to very di�erent compatibility

values and intervals. Both cases are discussed in Example 6.N

The next three examples involve discrete observations to illustrate cases in which the p

value is not exactly U (0, 1) under the null hypothesis.

Example 3. Mandelkern (2002b) and Fraser et al. (2004) discussed a restricted parameter

problem for Poisson distributions. In physics, background signal and the event of interest are

typically modeled under an additive structure: the count of background signal plus the count

of the event signal (see van Dyk, 2014, for an application in the Large Hadron Collider). The

observable count is modeled as a sum of two Poisson processes: X = B +E, with the count
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Figure 2: The p value p (θ0;−1) in gray and the data compatibility c (θ0;−1| [0,∞[) in black
as functions of θ0, the parameter value.

Figure 3: The upper bounds of the α-con�dence interval CI (α;−1| [0,∞[) in gray and of the
α-compatibility interval H (α;−1| [0,∞[) in black as functions of α, the threshold applied to
the curves of Figure 2.
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of background signal B ∼ Poisson(b) being independent of the count of the event signal

E ∼ Poisson(µ), where b > 0 is known and µ ≥ 0. Then, X ∼ Poisson(θ) ≡ Pθ, where

θ ≥ b. Let X1, . . . , Xn be an independent and identical distributed random sample of X.

The interest is in testing the null hypothesis H0 : θ = θ0 under the restriction θ ≥ b. The

mid-p value is

p (θ0; x̄) = Pθ0
(
|X̄ − θ0| > x0

)
+

1

2
Pθ0
(
|X̄ − θ0| = x0

)
,

for θ0 ≥ b, where x0 = |x̄ − θ0| and X̄ = 1
n

∑n
i=1 Xi is the sample mean. Under H0,

nX̄ ∼ Poisson(nθ0), then the mid-p value is easily calculated by

p (θ0; x̄) = 1− Pθ0
(
nθ0 − nx0 ≤ nX̄ ≤ nθ0 + nx0

)
+

1

2
Pθ0
(
nX̄ ∈ {nθ0 + nx0, nθ0 − nx0}

)
By equation (1), c (θ0; x̄| [b,∞[) = p (θ0; x̄) / supθ≥b p (θ; x̄) for all θ0 ≥ b. The relationship

between the compatibility and the p value is seen in Figure 4 for n = 1, b = 10 and the

observed sample mean x̄ = 9. The approximate (1− α) (100%)-con�dence interval and the

α-compatibility interval are computed from the equations (2) and (3).N

Example 4. Consider a binomial random variable X ∼ Pθ = Bin(n, θ), where θ ∈]0, 1[,

with observed value x. The mid-p value for testing H0 : θ = θ0 is

p (θ0;x) = Pθ0 (|X − nθ0| > x0) +
1

2
Pθ0 (|X − nθ0| = x0) ,

where x0 = |x− nθ0| which can be written as
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Figure 4: The p value p (θ0; 9) in gray and the data compatibility c (θ0; 9| [10,∞[) in black
as functions of θ0, the parameter value.

p (θ0;x) = 1− Pθ0 (nθ0 − x0 ≤ X ≤ nθ0 + x0) +
1

2
Pθ0 (X ∈ {nθ0 − x0,nθ0 + x0}) ,

By equation (1), c (θ0;x| ]0, 1[) = p (θ0;x) / supθ∈]0,1[ p (θ;x) for all θ0 ∈]0, 1[. The relationship

between the compatibility and the p value is seen in Figure 5 for n = 1 and the observed

value x = 0. The approximate (1− α) (100%)-con�dence interval and the α-compatibility

interval are computed from the equations (2) and (3).N

Example 5. Consider a negative binomial random variable X ∼ Pθ = NBin(n, θ), where

Pθ (X = x) =
(
x+n−1
n−1

)
θn(1 − θ)x, with θ ∈]0, 1[ and x ∈ {0, 1, 2, . . .}. The mid-p value for

testing H0 : θ = θ0 is
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Figure 5: The p value p (θ0; 0) in gray and the data compatibility c (θ0; 0| ]0, 1[) in black as
functions of θ0, the parameter value.

p (θ0;x) = Pθ0 (|X − g(θ0)| > x0) +
1

2
Pθ0 (|X − g(θ0)| = x0) ,

where x0 = |x − g(θ0)| and g(θ0) = nθ−1
0 (1 − θ0) is the expectation of X, under H0. Under

H0, X ∼ Nbin(n, θ0), then the mid-p value can be computed by

p (θ0;x) = 1− Pθ0 (g(θ0)− x0 ≤ X ≤ g(θ0) + x0) +
1

2
Pθ0 (X ∈ {g(θ0)− x0,g(θ0) + x0}) .

By equation (1), c (θ0;x| ]0, 1[) = p (θ0;x) / supθ∈]0,1[ p (θ;x) for all θ0 ∈ ]0, 1[ . The relation-

ship between the compatibility and the p value is seen in Figure 6 for n = 1 and the observed

value x = 1. The approximate (1− α) (100%)-con�dence interval and the α-compatibility

interval are computed from the equations (2) and (3).N

Although Examples 3, 4 and 5 all employ the mid-p value method to compute the c value,
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Figure 6: The p value p(θ0; 1) in gray and the data compatibility c(θ0; 1| ]0, 1[) in black as
functions of θ0, the parameter value

they illustrate that the c values are a�ected qualitatively by the model speci�cation. In the

Poisson case, when n = 1 and x̄ = 9, the c value has many points of discontinuity (Figure

4). In the binomial scenario, when n = 1 and x = 0, there is only one point of discontinuity,

which is at θ = 0.5 (Figure 5); in the negative binomial case, when n = 1 and x = 1, there

is one point of discontinuity greater than 0.5 and many smaller than 0.5 (Figure 6).

Example 6. Let X = (X1, . . . , Xn) be a random sample from a normal distribution with

unknown mean µ and unknown variance σ2 > 0. We consider the two cases discussed in

Example 2 with no restriction on the parameter space, namely, a) µ and σ2 are parameters

of interest, i.e., θ = (µ, σ2) and b) µ is the parameter of interest and σ2 is the nuisance

parameter, i.e., θ = µ and γ = σ2. For case a), the p value for testing simple hypothesis

H00 : (µ, σ2) = (µ0, σ
2
0) is given by

p1

(
(µ0, σ

2
0);x

)
= 2

(
Φ

(√
n
x̄− µ0

σ0

)
∧
(

1− Φ

(√
n
x̄− µ0

σ0

)))
.
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According to equation (1), the c value under no restriction is precisely the above p value,

namely, c1 ((µ0, σ
2
0);x) = p1 ((µ0, σ

2
0);x). The hypothesisH00′ : θ ∈ H00′(µ0), whereH00′(µ0) =

{(µ0, σ
2) : σ2 > 0}, is the hypothesis that µ = µ0. The associated C value is

C1 (H00′(µ0);x) = sup
σ2
0>0

c1

(
(µ0, σ

2
0);x

)
= lim

σ2
0→∞

p1

(
(µ0, σ

2
0);x

)
= 2

(
1

2
∧
(

1− 1

2

))
= 1

for all −∞ < µ0 <∞. That is, based on C1, it is not possible to reject the hypothesis that

θ0 ∈ H00′(µ0) for any �xed signi�cance value α ∈]0, 1[. Despite this fact, C1 is still useful to

test hypotheses that actually concern both µ and σ2, for instance H00′′ : µ ≥ 0, σ² ≤ 1.

For case b), the p value for testing simple hypothesis H01 : µ = µ0 is given by

p2 (µ0;x) = 2

(
FTn−1

(√
n
x̄− µ0

sx

)
∧
(

1− FTn−1

(√
n
x̄− µ0

sx

)))
,

where FTk is the cumulative distribution of a Student-t random variable with k degrees-of-

freedom. According to equation (1), the c value under no restriction is c2 (µ0;x) = p2 (µ0;x).

The hypothesis H01′ : θ ∈ H01′(µ0), where H01′(µ0) = {µ0}, is the hypothesis that µ = µ0.

The associated C value is

C2 (H01′(µ0);x) = c2 (µ0;x) = p2 (µ0;x) .

Figure 7 shows the curves C1 (H00′(µ0);x) in black and C2 (H01′(µ0);x) in gray as func-

tions of µ0, for n = 2, x1 = 1 and x2 = 2. N
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Figure 7: The C values C1 (H00′(µ0);x) in black and C2 (H01′(µ0);x) in gray as functions of
µ0 when n = 2, x1 = 1 and x2 = 2.

4 Axioms of data-hypothesis compatibility

4.1 Preliminary notation

For convenience, we review some notation introduced in Section 2.The unknown values θ and

γ of the parameter of interest and of the nuisance parameter are members of the sets Θ and

Γ, respectively. The observed tuple x is a member of some set X of possible observations.

A function p (•; •) : Θ×X → [0, 1] is a p-value function if

lim
n→∞

Pθ0,γ (p (θ0;X) < α) = α (4)

for all θ0 ∈ Θ, γ ∈ Γ, and 0 ≤ α ≤ 1. Each p (θ0;x) is the p value for testing the hypothesis

that θ = θ0 given the observation that X = x. While usual p-value functions are isomorphic

to con�dence distributions (Bickel and Padilla, 2014; cf. Schweder and Hjort, 2002; Xie and

Singh, 2013; Nadarajah et al., 2015), the concept of the observed con�dence level (Polansky,
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2007), a belief-type probability according to a con�dence distribution, plays no role in the

current paper, in which probability is always of the frequency type (see Hacking, 2001).

4.2 Degrees of data-hypothesis compatibility

4.2.1 Axioms of compatibility

The next de�nition applies the α-compatible concept to composite hypotheses as well as

simple hypotheses. Just as a p value can be de�ned in terms of whether the null hypothesis

is rejected at a �xed signi�cance level α, the degree of compatibility with data is de�ned in

terms of whether the null hypothesis is α-compatible with the data at a �xed value of α.

De�nition 2. The functions C (•; •|•) : 2Θ×X×2Θ\ {∅} → [0, 1] and C (•; •) = C (•; •|Θ) :

2Θ × X → [0, 1] are compatibility set functions, and C (H0;x|R) is the compatibility of the

hypothesis that θ ∈ H0 with the observation that X = x conditional on the restriction that

θ ∈ R if these conditions hold for all x ∈ X , H0 ∈ 2Θ, and R ∈ 2Θ\ {∅}:

� Axiom of minimal compatibility. If H0 ∩R = ∅, then C (H0;x|R) = 0.

� Axiom of maximal compatibility. C (Θ;x|Θ) = 1.

� Axiom of conditional compatibility. If H0 ∩R 6= ∅, then

C (H0;x|R) =
C (H0 ∩R;x)

C (R;x)
. (5)

� Axiom of compatible hypotheses. With �H0
α|R∼ x� denoting the hypothesis that �θ ∈ H0

is α-compatible with the observation that X = x, conditional on the restriction that

19



θ ∈ R,�

C (H0;x|R) = sup
{
α ∈ ]0, 1] : H0

α|R∼ x
}
. (6)

� Axiom of evidential compatibility. For any θ0, θ1 ∈ R,

C ({θ0} ;x|R)

C ({θ1} ;x|R)
=
p (θ0;x)

p (θ1;x)
. (7)

The functions c (•; •|•) : Θ×X × 2Θ\ {∅} → [0, 1] and c (•; •) = c (•; •|Θ) : Θ×X → [0, 1]

are compatibility point functions if c (θ0;x|R) = C ({θ0} ;x|R) for all θ0 ∈ Θ, x ∈ X , and

R ∈ 2Θ\ {∅}.

The compatibility C (H0;x|R) is the degree to which the hypothesis that θ ∈ H0 is

compatible with x under the restriction that θ ∈ R. This de�nition gives De�nition 1 an

axiomatic foundation by connecting the compatibility functions to the p-value function.

4.2.2 Explanations of the axioms

Each axiom has its own motivation. The �rst two are simply what Je�reys (1948) calls

conventions since the 0 and 1 could be replaced by any positive numbers as long as the second

exceeds the �rst. The rationale for the axiom of conditional compatibility will become clear

in light of possibility theory (�7).

The basis of the axiom of compatible hypotheses on De�nition 1 speci�es what is meant

by data-hypothesis compatibility. It makes compatibility similar to a p value in that it is

designed to reject hypotheses of su�ciently low values. Equation (6) says the degree of

compatibility of a hypothesis with data, conditional on the parameter restriction, is the

highest level of α such that the hypothesis remains α-compatible with the data, conditional
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on the restriction.

The axiom of evidential compatibility might be justi�ed by p-value functions of the form

R 3 θ′ 7→ p (θ′;x) = Pθ′,γ (τ (X) ≥ τ (x)) , (8)

where τ is a function transforming a sample to a real statistic that does not depend on θ′

or γ such that the distribution of τ (X) does not depend on γ. This occurs most commonly

in practice when there is no nuisance parameter γ and when τ (X) is a point estimator

of θ, implying that τ (x) is the observed point estimate. Because p (•;x) is a function on

Θ = R according to equation (8), it can be used to compare the hypothesis that θ = θ0

to the hypothesis that θ = θ1 for any θ0, θ1 ∈ R. Comparing the two point hypotheses

suggests a likelihood-ratio approach to measuring evidence (Royall, 1997). The relevant

likelihood ratio involves fθ0 , the probability mass function on {0, 1} that satis�es fθ0 (0) =

Pθ0,γ (τ (X) < τ (x)) and fθ0 (1) = Pθ0,γ (τ (X) ≥ τ (x)). Thus,

p (θ0;x) = Pθ0,γ
(
1[τ(x),∞[ (τ (X)) = 1

)
= fθ0 (1) ,

and the analogous probability mass function fθ1 satis�es p (θ1;x) = fθ1 (1). As a likelihood

ratio based on reduced data, fθ0 (1) /fθ1 (1) is the strength of the statistical evidence in the

observation that 1[τ(x),∞[ (τ (X)) = 1 in favor the hypothesis that θ = θ0 as opposed to the

hypothesis that θ = θ1 (Royall, 1997). Requiring the data-compatibility of a hypothesis to

be proportional to its strength of the statistical evidence results in

C ({θ0} ;x|R)

C ({θ1} ;x|R)
=
fθ0 (1)

fθ1 (1)
, (9)
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which, with p (θ0;x) = fθ0 (1) and p (θ1;x) = fθ1 (1), yields equation (7). Equating fθ0 (1) /fθ1 (1)

with the strength of statistical evidence is in turn justi�ed by noting that fθ0 (1) /fθ1 (1) is

the Bayes factor in

Prob
(
θ = θ0|1[τ(x),∞[ (τ (X)) = 1, θ ∈ {θ0, θ1}

)
Prob

(
θ = θ1|1[τ(x),∞[ (τ (X)) = 1, θ ∈ {θ0, θ1}

) =

(
fθ0 (1)

fθ1 (1)

)(
Prob (θ = θ0|θ ∈ {θ0, θ1})
Prob (θ = θ1|θ ∈ {θ0, θ1})

)
,

the equation relating the posterior odds to the prior odds. This follows the general principle

that a measure of support for a hypothesis should agree with Bayes's theorem when a suitable

prior is available even though the measure is also applicable without a prior (Edwards, 1992;

Bickel, 2013a,b).

This rationale is not entirely convincing, for its equation (9) could only be derived in

the special case of equation (8). Further, why should the likelihood ratio be based on the

reduction of X to 1[τ(x),∞[ (τ (X)) rather than on X directly, as is more usual when measuring

the strength of evidence (Royall, 1997)? That such a data reduction is needed to consider

a ratio of p values as a likelihood ratio may shed light on the cryptic comment that the p

value is �not very defensible save as an approximation� (Fisher, 1973, p. 71; cf. 74-75).

In view of those shortcomings, the axiom of evidential compatibility may be relaxed by

replacing equation (7) with the requirement that C ({θ0} ;x|R) be a function of p (θ0;x)

that is continuous and strictly increasing but not necessarily linear. This de�nes a class of

alternative measures of data-hypothesis compatibility. In our opinion, the main appeal of

the axiom of evidential compatibility is its practical value in uniquely identifying a simple

default. Nonetheless, the justi�cation based on equation (8) may have some theoretical value

in making a connection to likelihood methods of measuring the strength of evidence.
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5 Properties of data-hypothesis compatibility

5.1 Relations between concepts

This lemma connects the concepts of a compatible hypothesis and a compatibility set.

Lemma 1. For any H0 ∈ 2Θ, R ∈ 2Θ\ {∅}, x ∈ X , and α ∈ ]0, 1], the hypothesis that

θ ∈ H0 is α-compatible with the observation that X = x, conditional on the restriction that

θ ∈ R, if and only if H0 ∩H (α;x|R) 6= ∅, where H (α;x|R) is the α-compatibility set given

X = x and θ ∈ R.

Proof. By de�nition, the hypothesis is α-compatible if and only if ∅ 6= {θ0 ∈ H0 : c (θ0;x|R) ≥ α} =

H0 ∩ {θ0 ∈ Θ : c (θ0;x|R) ≥ α} .

The compatibility of a hypothesis is now seen to be proportional to the p value.

Lemma 2. For any θ0 ∈ Θ and x ∈ X , the marginal compatibility of the hypothesis that

θ = θ0 with the observation that X = x is

c (θ0;x) = κp (θ0;x) (10)

for some κ ∈ ]0, 1].

Proof. The axiom of evidential compatibility (7) and c (θ0;x|R) = C ({θ0} ;x|R) give equa-

tion (10).

5.2 Deriving data-hypothesis compatibility

The compatibility is easily derived from the p-value function using the simple equations of

the next two results.
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Theorem 1. The compatibility of the hypothesis that θ ∈ H0 with the observation that X = x

conditional on the restriction that θ ∈ R is

C (H0;x|R) =


0 if H0 ∩R = ∅

supθ0∈H0∩R p(θ0;x)

supθ1∈R p(θ1;x)
if H0 ∩R 6= ∅

for all x ∈ X , H0 ∈ 2Θ, and R ∈ 2Θ\ {∅}.

Proof. In the case that H0∩R = ∅, the axiom of minimal compatibility gives C (H0;x|R) =

0. In the H0 ∩R 6= ∅ case, De�nition 1 and equation (6) yield

C (H0;x|R) = sup {α ∈ ]0, 1] : θ0 ∈ H0, c (θ0;x|R) ≥ α} = sup
θ0∈H0

c (θ0;x|R) . (11)

Thus, the axiom of conditional compatibility (5) gives

C (H0;x|R) = sup
θ0∈H0∩R

c (θ0;x) /C (R;x) =
supθ0∈H0∩R c (θ0;x)

supθ1∈R c (θ1;x)
(12)

Since C (R;x) = C (R;x|Θ), equation (12) entails that C (R;x) = supθ1∈R c (θ1;x) /C (Θ;x).

By the axiom of maximal compatibility, C (R;x) = supθ1∈R c (θ1;x). Thus, with Lemma 2,

equation (12) reduces to C (H0;x|R) = supθ0∈H0∩R p (θ0;x) / supθ1∈R p (θ1;x).

Corollary 1. For any θ0 ∈ Θ, x ∈ X , and R ∈ 2Θ\ {∅}, the compatibility of the hypothesis

that θ = θ0 with the observation that X = x conditional on the restriction that θ ∈ R is

given by equation (1).

Proof. By De�nition 2, c (θ0;x|R) = C ({θ0} ;x|R) for all θ0 ∈ Θ. The desired result follows

from Theorem 1.
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In the usual setting of testing the simple hypothesis that θ = θ0, the parameter is

relatively unrestricted, and the compatibility is the p value. That is formally stated as the

following direct result of Theorem 1 and Corollary 1.

Corollary 2. For any x ∈ X , θ0 ∈ R, and R ∈ 2Θ\ {∅} such that supθ1∈R p (θ1;x) = 1,

the compatibility of the hypothesis that θ = θ0 with the observation that X = x, conditional

on the restriction that θ ∈ R, is c (θ0;x|R) = p (θ0;x). Under the same conditions, the

compatibility of the hypothesis that θ ∈ H0 with the observation that X = x conditional on

the restriction that θ ∈ R is

C (H0;x|R) = sup
θ0∈H0

p (θ0;x) (13)

for all x ∈ X and H0 ∈ 2Θ such that H0 ⊆ R.

Corollary 2 justi�es the practice of maximizing a p value over all the parameter values

of a composite null hypothesis (e.g., Wendell and Schmee, 1996; Silvapulle and Sen, 2011, p.

33; Patriota, 2013).

The next corollary highlights ways conditional compatibility is similar to and di�erent

from conditional probability.

Corollary 3. Given some x ∈ X , H0 ∈ 2Θ, and R ∈ 2Θ\ {∅}, the compatibility C (H0;x|R)

of the hypothesis that θ ∈ H0 with the observation that X = x conditional on the restriction

that θ ∈ R satis�es C (H0;x|R) = 1 if and only if H0 ∩R 6= ∅ and

sup
θ1∈R

p (θ1;x) = sup
θ0∈H0∩R

p (θ0;x) . (14)

Proof. In the H0 ∩ R = ∅ case, Theorem 1 gives C (H0;x|R) = 0 6= 1. On the other hand,
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in the case that H0 ∩ R 6= ∅, Theorem 1 implies that equation (14) holds if and only if

C (H0;x|R) = 1.

5.3 Conservative error rate control and coverage

The following theorem demonstrates that compatibility controls the Type I error rate and

that α-compatibility sets are (1− α) (100%)-con�dence sets that are valid in that their cov-

erage rates are conservative if not exact.

Theorem 2. For every x ∈ X , R ∈ 2Θ\ {∅}, and θ0 ∈ R, let p (θ0;x) denote the p value

testing θ = θ0 as the null hypothesis, and let c (θ0;x|R) denote the compatibility of the

hypothesis that θ = θ0 with the observation that X = x conditional on the restriction that θ ∈

R, let CS (α;x|R) denote the exact con�dence set given by equation (2), and let H (α;x|R)

denote the α-compatibility set given X = x and θ ∈ R for any α ∈ ]0, 1]. For any γ ∈ Γ, it

follows that c (θ0;x|R) ≥ p (θ0;x), CS (α;x|R) ⊆ H (α;x|R), and

H (α;x|R) = CS

(
α sup
θ1∈R

p (θ1;x) ;x|R
)

(15)

lim
n→∞

Pθ0,γ (c (θ0;X|R) < α) ≤ α (16)

lim
n→∞

Pθ0,γ (θ0 ∈ H (α;X|R)) ≥ 1− α, (17)

with the formulas (16) and (17) holding with exact equality if supθ1∈R p (θ1;x) = 1.

Proof. Since θ0 ∈ R, Corollary 1 entails that c (θ0;x|R) ≥ p (θ0;x) for all x ∈ X , from which

Pθ0,γ (c (θ0;X|R) ≥ p (θ0;X)) = 1 follows, providing

Pθ0,γ (c (θ0;X|R) < α) ≤ Pθ0,γ (p (θ0;X) < α) = α + o(1), (18)
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where o(1) converges to zero as n → ∞, and equation (4) yields formula (16). Applying

inequality (18) to equation (3),

CS (α;x|R) = {θ0 ∈ Θ : p (θ0;x) ≥ α} ⊆ H (α;x|R) (19)

for every x ∈ X . Hence, by equation (4),

lim
n→∞

Pθ0,γ (p (θ0;X) ≥ α) = 1− α ≤ lim
n→∞

Pθ0,γ (θ0 ∈ H (α;X|R)) ,

proving formula (17). Corollary 1 and equation (19) imply that CS
(
α supθ1∈R p (θ1;x) ;x|R

)
=

{θ0 ∈ Θ : c (θ0;x|R) ≥ α} and thus that equation (15) holds. Finally, if supθ1∈R p (θ1;x) = 1

for all x ∈ X , then Lemma 1 requires that c (θ0;x) = p (θ0;x) for all θ0 ∈ R and that

CS (α;x|R) = H (α;x|R). In that case, limn→∞ Pθ0,γ (c (θ0;X|R) < α) = α and

lim
n→∞

Pθ0,γ (θ0 ∈ H (α;X|R)) = 1− α

follow from equation (4).

6 Hypothesis acceptance, rejection, or neither

6.1 Warrant for accepting a hypothesis

While the compatibility of a hypothesis with data does not warrant accepting the hypothesis,

a lack of compatibility justi�es rejecting it and accepting its negation under the statistical

model. That idea leads to the following measure of the degree of warrant for accepting a

hypothesis.
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De�nition 3. A function W (•; •|•) : 2Θ × X × 2Θ\ {∅} → [0, 1], called the warrant set

function, is de�ned as follows. For all x ∈ X , H0 ∈ 2Θ, and R ∈ 2Θ\ {∅},

W (H0;x|R) = 1− C (R\H0;x|R)

is the warrant of the hypothesis that θ ∈ H0 given the observation that X = x conditional

on the restriction that θ ∈ R, where C (R\H0;x|R) is the compatibility of the hypothesis

that θ ∈ R but θ /∈ H0 with the observation that X = x conditional on the restriction that

θ ∈ R.

From equation (5),

W (H0;x|R) = 1− C (R\H0;x|R) = 1− C ((R\H0) ∩R;x)

C (R;x)
= 1− C (R\H0;x)

C (R;x)
. (20)

For example, if R = Θ, then W (H0;x|Θ) = 1 − C (H′0;x), where H′0 is the complement of

H0, that is, H′0 = Θ\H0. However, it does not follow that W (H0;x|Θ) = C (H0;x), as it

would if C (•;x) were a probability measure. That is because C (•;x) is a possibility measure

(�7), a special case of an upper probability function, which is not an additive measure.

The warrant for a hypothesis corresponding to a set estimate H (α;x|R) is important as

a lower bound on the coverage rate of the set estimator H (α;X|R), as formally stated in

the next theorem.

Theorem 3. Let x ∈ X , R ∈ 2Θ\ {∅}, and θ0 ∈ R, and let W denote a warrant function

corresponding to H (α;x|R), the α-compatibility set given X = x for every α ∈ ]0, 1]. Assume
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c (θ0;x|R) is continuous as a function of θ0. For any α ∈ ]0, 1] and γ ∈ Γ,

lim
n→∞

Pθ0,γ (θ0 ∈ H (α;X|R)) ≥ W (H (α;x|R) ;x|R) , (21)

which holds with exact equality if supθ1∈R p (θ1;x) = 1, where p (θ0;x) is the p value testing

θ = θ0 as the null hypothesis for all θ0 ∈ R.

Proof. According to the de�nitions of warrant and the α-compatibility set,

W (H (α;x|R) ;x|R) = 1− C (R\H (α;x|R) ;x|R)

= 1− C ({θ0 ∈ R : c (θ0;x|R) < α} ;x|R) ,

Thus, since that C is the relevant compatibility set function,

W (H (α;x|R) ;x|R) = 1− sup {c (θ0;x|R) < α : θ0 ∈ R} = 1− α (22)

by the continuity assumption. Formula (21) then results from Theorem 2. The same theorem

says supθ1∈R p (θ1;x) = 1 implies that limn→∞ Pθ0,γ (θ0 ∈ H (α;X|R)) = 1 − α, leading to

limn→∞ Pθ0,γ (θ0 ∈ H (α;X|R)) = W (H (α;x|R) ;x|R) via equation (22).

Equation (22) interprets the nominal con�dence level 1− α as the degree of warrant for

the hypothesis that the observed con�dence set H (α;x|R) contains the target value of the

parameter.
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6.2 Acceptability of a hypothesis

The information in the data-compatibility and warrant of a hypothesis will be combined into

a single measure of acceptability in this section. Hypotheses of su�ciently high acceptability

are accepted, those with su�ciently negative acceptability are rejected, and the remaining

hypotheses are neither accepted nor rejected. What circumstances require an agent to believe

a rejected hypothesis to be false or to believe an accepted hypothesis to be true is a complex

question (Cohen, 1992) that cannot be entertained here.

For any x ∈ X , H0 ∈ 2Θ, and R ∈ 2Θ\ {∅}, recall that C (H0;x|R) denotes the compat-

ibility of the hypothesis that θ ∈ H0 with the observation that X = x conditional on the

restriction that θ ∈ R.

De�nition 4. The acceptability of the hypothesis that θ ∈ H0 given the observation that

X = x and the restriction that θ ∈ R is the extended real number A (H0;x|R) ∈ {−∞,∞}∪

R such that, for all α ∈ ]0, 1],

(θ1 ∈ H (α;x|R) =⇒ θ1 ∈ H0) ⇐⇒ A (H0;x|R) > log 1/α (23)

(θ2 ∈ H (α;x|R) =⇒ θ2 ∈ H′0) ⇐⇒ A (H0;x|R) < − log 1/α (24)

∃θ1, θ2 ∈ H (α;x|R) ; θ1 ∈ H0; θ2 ∈ H′0 ⇐⇒ |A (H0;x|R)| ≤ log 1/α, (25)

where H (α;x|R) is the α-compatibility set given X = x and θ ∈ R. Here, the base of log

might be 2 for best interpretability but can be any number greater than 1. At level α, the

hypothesis that θ ∈ H0, given the observation that X = x and the restriction that θ ∈ R,

is accepted if and only if A (H0;x|R) > log 1/α and is rejected if and only if A (H0;x|R) <

− log 1/α. In the absence of a restriction (R = Θ), the acceptabilityA (H0;x|Θ) is abbreviated

as A (H0;x).
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In that way, the acceptability of a general hypothesis over its alternative hypothesis is

de�ned in terms of which values of the parameter of interest are compatible with the observed

data and with the given restrictions according to Section 2.2. Formula (23) says a hypothesis

is accepted at level α if it is consistent with all of the α-compatible parameter values.

Likewise, formula (24) says a hypothesis is rejected at level α if it is not consistent with

any of the α-compatible parameter values. Finally, formula (25) means there is insu�cient

evidence to accept or reject the hypothesis at level α if it is consistent with some but not all

of the α-compatible parameter values.

The last case means there is no arbitrary requirement that every hypothesis be either

rejected or accepted. At the same time, the rejection of a null hypothesis for lack of compat-

ibility with other information necessarily implies acceptance of an alternative hypothesis, as

this lemma makes clear.

Lemma 3. These propositions are equivalent for any H0 ∈ 2Θ, R ∈ 2Θ\ {∅}, x ∈ X , and

α ∈ ]0, 1]:

1. A (H0;x|R) < − log 1/α.

2. The hypothesis that θ ∈ H0, given the observation that X = x and the restriction that

θ ∈ R, is rejected at level α.

3. The same hypothesis is not α-compatible with the observation that X = x, conditional

on the restriction that θ ∈ R.

4. A (H′0;x|R) > log 1/α.

5. The hypothesis that θ ∈ H′0, given the observation that X = x and the restriction that

θ ∈ R, is accepted at level α.
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Proof. Propositions 1 and 2 are equivalent by De�nition 4: the hypothesis that θ ∈ H0 is

rejected if and only if A (H0;x|R) < − log 1/α. Similarly, Propositions 4 and 5 are equivalent.

According to formula (24), Proposition 1 is equivalent to

θ2 ∈ H (α;x|R) =⇒ θ2 ∈ H′0, (26)

which, by formula (23), holds if and only if A (H′0;x|R) > log 1/α, the de�nition of accepting

the hypothesis that θ ∈ H′0. That establishes the equivalence of Propositions 1 and 4. Lemma

1 entails that Proposition 3 is equivalent to H0∩H (α;x|R) = ∅, and that equivalence makes

the same assertion as formula (26). Therefore, Propositions 2 and 3 are equivalent.

Thus, whereas the fact that a hypothesis is data-compatible is merely necessary for its

acceptance, the fact that its denial is incompatible is su�cient. Calculating the acceptability

is facilitated by the next theorem.

Theorem 4. For any x ∈ X , H0 ∈ 2Θ, and R ∈ 2Θ\ {∅}, the acceptability of the hypothesis

that θ ∈ H0, given the observation that X = x and the restriction that θ ∈ R, is

A (H0;x|R) = log
C (H0;x|R)

C (H′0;x|R)
; (27)

A (H0;x|R) = −∞ if H0 ∩R = ∅, A (H0;x|R) =∞ if H′0 ∩R = ∅, or

A (H0;x|R) = log
supθ0∈H0∩R p (θ0;x)

supθ0∈H′0∩R p (θ0;x)
(28)

if H0 ∩R 6= ∅ and H′0 ∩R 6= ∅.
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Proof. For any H0 ∈ 2Θ, let

Ã (H0) = log
C (H0;x|R)

C (H′0;x|R)
, (29)

and let A (H0;x|R) denote the acceptability of the hypothesis that θ ∈ H0, given the ob-

servation that X = x and the restriction that θ ∈ R. Assume, contrary to the claim, that

A (H0;x|R) 6= Ã (H0). In the case that relation (14) holds, Ã (H0) = log 1/C(H′0;x|R) by

Corollary 3. From equation (6) and Lemma 3,

Ã (H0) = log
(

1/ sup
{
α ∈ ]0, 1] : H′0

α|R∼ x
})

= log
(

1/ sup
(

]0, 1] \
{
α ∈ ]0, 1] : ¬H′0

α|R∼ x
}))

= log (1/ sup {α ∈ ]0, 1] : A (H′0;x|R) ≥ − log 1/α})

= inf {log 1/α ≥ 0 : log 1/α ≥ −A (H′0;x|R)}

= −A (H′0;x|R) = A (H0;x|R) ,

the last equality following from the equivalence of Propositions 1 and 4 of Lemma 3. In the

case that relation (14) does not hold, supθ1∈R p (θ1;x) > supθ0∈H0∩R p (θ0;x), yielding

sup
θ1∈R

p (θ1;x) = sup
θ0∈H′0∩R

p (θ0;x) .

Thus, Corollary 3 now gives C (H′0;x|R) = 1 and Ã (H0) = logC (H0;x|R) by implication.
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From equation (6) and Lemma 3,

Ã (H0) = log
(

sup
{
α ∈ ]0, 1] : H0

α|R∼ x
})

= log (sup {α ∈ ]0, 1] : A (H0;x|R) ≥ − log 1/α})

= sup {logα ≤ 0 : A (H0;x|R) ≥ logα}

= sup {logα ≤ 0 : logα ≤ A (H0;x|R)}

= A (H0;x|R) .

Therefore, Ã (H0) = A (H0;x|R) in both possible cases, contradicting the assumption and

establishing equation (27). The rest of the claims follow from Theorem 1.

Breaking that into the three major cases sheds light on the interpretation of acceptability.

Corollary 4. For any x ∈ X , H0 ∈ 2Θ, and R ∈ 2Θ\ {∅} such that H0 ∩ R 6= ∅ and

H′0 ∩ R 6= ∅, the acceptability of the hypothesis that θ ∈ H0, given the observation that

X = x and the restriction that θ ∈ R, is

A (H0;x|R) =


− log supθ0∈H′0∩R c (θ0;x|R) if H0 ∩ Ĥ (x|R) 6= ∅,H′0 ∩ Ĥ (x|R) = ∅

log supθ0∈H0∩R c (θ0;x|R) if H0 ∩ Ĥ (x|R) = ∅,H′0 ∩ Ĥ (x|R) 6= ∅

0 if H0 ∩ Ĥ (x|R) 6= ∅,H′0 ∩ Ĥ (x|R) 6= ∅;

Ĥ (x|R) = {θ1 ∈ R : ∀θ0 ∈ R, p (θ0;x) ≤ p (θ1;x)} . (30)

Proof. Corollary 1 implies that Ĥ (x|R) = {θ0 ∈ R : c (θ0;x|R) = 1}. Thus, by equation
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(28),

A (H0;x|R) = log
supθ0∈H0∩R c (θ0;x|R)

supθ0∈H′0∩R c (θ0;x|R)

=


log
(

1/ supθ0∈H′0∩R c (θ0;x|R)
)

if H0 ∩ Ĥ (x|R) 6= ∅

log
(
supθ0∈H0∩R c (θ0;x|R) /1

)
if H′0 ∩ Ĥ (x|R) 6= ∅.

If both H0 ∩ Ĥ (x|R) 6= ∅ and H′0 ∩ Ĥ (x|R) 6= ∅, then − log supθ0∈H′0∩R c (θ0;x|R) =

log supθ0∈H0∩R c (θ0;x|R), which is only possible if supθ0∈H′0∩R c (θ0;x|R) = supθ0∈H0∩R c (θ0;x|R) =

1.

Remark 1. As A ({θ0} ;x|R) = log p (θ0;x)− log supθ1∈R p (θ1;x), the hypothesis that θ = θ0

cannot be accepted when supθ1∈R p (θ1;x) = 1, since, under this condition, A ({θ0} ;x|R) =

log p (θ0;x) ≤ 0. Thus, in the typical case of testing a simple hypothesis (Corollary 2), its

acceptability cannot be positive. That agrees with the idea commonly held by frequentists

that evidence might be against a simple hypothesis but can never support it.

As stated in Section 1, every deductively cogent statistical procedure is both restriction-

respecting and coherent. Those properties will be proven of the acceptability method (De�-

nition 4) in the next two subsections.

6.3 Acceptability is restriction-respecting

Recall that a restriction-respecting statistical method does not permit the rejection of all

hypotheses that are consistent with the restriction but requires the rejection of all hypotheses
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that are inconsistent with the restriction (�1). Conditional acceptability is now seen to be

restriction-respecting.

Theorem 5. For any α ∈ ]0, 1], conditional on the restriction that θ ∈ R for some R ∈

2Θ\ {∅}, the procedure in De�nition 4 rejects the hypothesis that θ ∈ H0 for every H0 ∈ 2Θ

such that H0 ∩R = ∅ and does not reject every hypothesis that θ ∈ H1 for all H1 ∈ 2Θ such

that H1 ∩R 6= ∅.

Proof. Theorem 4 says A (H0;x|R) = −∞ for every H0 ∈ 2Θ such that H0 ∩R = ∅. Thus,

A (H0;x|R) < − log 1/α, which means θ ∈ H0 is rejected, for all α ∈ ]0, 1]. To prove the

other claim, it su�cient to show that for at least one H1 ∈ 2Θ such that H1 ∩ R 6= ∅ that

θ ∈ H1 cannot be rejected. Let Ĥ (x|R) be de�ned according to equation (30), and denote

its complement by Ĥ′ (x|R) = Θ\Ĥ (x|R). If Ĥ (x|R) = R, then Ĥ′ (x|R) ∩ R = ∅ and,

according to Theorem 4, A
(
Ĥ (x|R) ;x|R

)
=∞. On the other hand, if Ĥ (x|R) 6= R, then

Ĥ′ (x|R) ∩R 6= ∅, and Theorem 4, with equation (30), yields

A
(
Ĥ (x|R) ;x|R

)
= log

supθ0∈Ĥ(x|R) p (θ0;x)

supθ0∈Ĥ′(x|R)∩R p (θ0;x)
≥ 0

since for each θ0 ∈ Ĥ (x|R) and θ1 ∈ Ĥ′ (x|R) ∩ R, p(θ0;x) ≥ p(θ1;x). Thus, since

A
(
Ĥ (x|R) ;x|R

)
≥ 0 in both cases, there is no α ∈ ]0, 1] such that A

(
Ĥ (x|R) ;x|R

)
<

− log 1/α, which means θ ∈ Ĥ (x|R) cannot be rejected.

6.4 Acceptability is coherent

In the context of multiple comparisons, Gabriel (1969) called a statistical procedure �coher-

ent� if, for every hypothesis that it rejects, it also rejects all of the hypotheses that imply

the truth of the rejected hypothesis (�1). Thus, for every H0 ∈ 2Θ, any rejection-coherent
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procedure rejects the hypothesis that θ ∈ H1 for every H1 ∈ 2Θ such that H1 ⊆ H0 if it

rejects the hypothesis that θ ∈ H0. Likewise, for every H1 ∈ 2Θ, any acceptance-coherent

procedure accepts the hypothesis that θ ∈ H0 for every H0 ∈ 2Θ such that H1 ⊆ H0 if it

accepts the hypothesis that θ ∈ H1.

The concepts are applied to compatibility and acceptability in the next two results.

Lemma 4. Conditional on the restriction that θ ∈ R for someR ∈ 2Θ\ {∅}, the compatibility

of the hypothesis that θ ∈ H1 with the observation that X = x is at most the compatibility of

any hypothesis that it implies with the same observation, that is,

C (H1;x|R) ≤ C (H0;x|R)

for every H0,H1 ∈ 2Θ such that H1 ⊆ H0.

Proof. According to Theorem 1, either C (H1;x|R) = 0, in which case C (H1;x|R) ≤

C (H0;x|R), or C (H1;x|R) > 0, in which case H1 ∩ R 6= ∅. Thus, since H1 ⊆ H0, it

follows from H1 ∩R 6= ∅ that H0 ∩R 6= ∅ and, by Theorem 1, that

C (H0;x|R)

C (H1;x|R)
=

supθ0∈H0∩R p (θ0;x)

supθ0∈H1∩R p (θ0;x)
.

That ratio satis�es C (H0;x|R) /C (H1;x|R) ≥ 1 given that H1 ∩R ⊆ H0 ∩R.

Theorem 6. Conditional on the restriction that θ ∈ R for some R ∈ 2Θ\ {∅}, the procedure

in De�nition 4 is both rejection-coherent and acceptance-coherent for any α ∈ ]0, 1], and the

acceptability of the hypothesis that θ ∈ H1 is at most the acceptability of any hypothesis that

it implies, that is,

A (H1;x|R) ≤ A (H0;x|R) (31)
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for every H0,H1 ∈ 2Θ such that H1 ⊆ H0.

Proof. The following statements hold for any α ∈ ]0, 1]. According to De�nition 4, the

hypothesis that θ ∈ H0, given the observation that X = x and the restriction that θ ∈ R is

rejected at level α if and only if A (H0;x|R) < − log 1/α. That requires that A (H0;x|R) < 0,

which only obtains when either H0 ∩ R = ∅, in which case A (H0;x|R) = −∞ by Theorem

4, or

A (H0;x|R) = log sup
θ0∈H0∩R

c (θ0;x|R) = − log 1/C(H0;x|R) (32)

by Corollary 4 and Theorem 1. If, on the other hand A (H0;x|R) > 0, as required for

acceptance (A (H0;x|R) > log 1/α) then either H′0 ∩ R = ∅, in which case A (H0;x|R) = ∞

by Theorem 4, or

A (H0;x|R) = − log sup
θ0∈H′0∩R

c (θ0;x|R) = log 1/C(H′0;x|R) (33)

by Corollary 4 and Theorem 1. Whether equation (32) or equation (33) applies, equation (31)

follows from Lemma 4. Both rejection coherence and acceptance coherence are immediate

consequences of equation (31).

7 Connections with possibility theory

In agreement with the classical idea of inference to the best explanation (Peirce, 1998, p.

234), the acceptability A (H0;x|R) may be understood as the degree to which the data would

evoke surprise were the hypothesis that θ ∈ H0 is known to be false. While that should not

be confused with Shackle's degree of potential surprise in the revealed truth of a hypothesis
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(Shackle, 1961), the concepts share many properties at the mathematical level.

Those relationships may be succinctly expressed in terms of possibility theory and ranking

theory, the successors of the the theory of potential surprise:

1. Possibility theory. A function Poss : 2Θ → [0, 1] is a possibility measure on 2Θ if

Poss (∅) = 0, Poss (Θ) = 1, and Poss
(⋃

j∈J H0j

)
= supj∈J Poss (H0j) for any index

set J such that
⋃
j∈J H0j ∈ 2Θ andH0j ∈ 2Θ for all j ∈ J (Wang, 2008, �4.6). Further,

a function π : Θ→ [0, 1] such that Poss (H) = supθ∈Θ π (θ) is called a possibility pro�le,

and a function Nec : 2Θ → [0, 1] is a necessity measure on 2Θ if Nec (H) = 1−Poss (H′)

for all H ∈ 2Θ (Wang, 2008, �4.6). Thus, C (H0;x|R) = supθ0∈H0∩R c (θ0;x|R) as a

function ofH0 is a possibility measure corresponding to the possibility pro�le c (•;x|R).

Similarly, in view of De�nition 3, W (H0;x|R) as a function of H0 is a necessity mea-

sure.

2. Ranking theory. If Poss is a possibility measure, then − log Poss (H0) as a function of

H0 is a negative ranking function (Spohn, 2012, �11.8). It follows that

Rank (H0) = log
Poss (H0)

Poss (H′0)

as a function ofH0 is a two-sided ranking function (Spohn, 2012, �5.2). Both− logC (H0;x|R)

and the potential surprise ofH0 (Shackle, 1961) as functions ofH0 are negative ranking

functions. While − logC (H0;x|R) does not measure the potential surprise of learning

that θ ∈ H0, it might be seen as the level of surprise of observing that X = x were it

known that θ ∈ H0, in accordance with the comments on surprise in Section 7. Since
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C (•;x|R) is a possibility measure and since

A (H0;x|R) = log
C (H0;x|R)

C (H′0;x|R)

by equation (27), A (•;x|R) quali�es mathematically as a conditional two-sided ranking

function. However, the interpretation encoded in De�nition 4 di�ers from that of Spohn

(2012), who developed ranking theory to model degrees of belief.

The de�nition of conditional possibility used in the axiom of conditional compatibility (5) is

not the only notion of conditional possibility, but it has desirable properties when possibility

has quantitative information beyond mere ordering (e.g., Dubois and Prade, 1998; De Baets

et al., 1999; Lapointe and Bobée, 2000; Marchioni, 2006). In that case, it is meaningful to

say that a hypothesis of possibility value 0.9 is in some sense nine times as possible as a

hypothesis of possibility value 0.1. By contrast, when possibility only indicates ordering,

the two possibility values compared to each other indicates nothing more than that the

hypothesis of possibility value 0.9 is more possible than the hypothesis of possibility value

0.1. Thus, the axiom of conditional compatibility enables us to say a hypothesis that has

a data-compatibility value of 0.9 is nine times as compatible with the data observed as

is a hypothesis that has a data-compatibility value of 0.1. That enables the use of data-

hypothesis compatibility thresholds for hypothesis testing and interval estimation. That

lack of quantitative information would render compatibility useless in hypothesis testing and

set estimation. Equation (5) also ensures that conditional compatibility is a conditional

idempotent probability, a powerful tool in the theory of large deviations (Puhalskii, 1997,

2001).

As precursors to this transformation of the compatibility function of a parameter into a
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possibility measure, the p-value function of a parameter and the likelihood function had been

transformed into possibility measures. When supθ1∈Θ p (θ1;x) = 1, possibility theory provides

useful interpretations of p values and con�dence levels. First, Corollary 2 interprets the

p value as the level of compatibility of the null hypothesis with the data or how possible the

null hypothesis is in light of the data. Second, Theorem 3 interprets the con�dence level as the

degree of warrant for the hypothesis or how necessary its logical truth is given the data and

the model. These interpretations in terms of possibility and necessity measures are related

to previous work. Under broad conditions, the con�dence-based methods of Mauris et al.

(2001, �2.2), Dubois et al. (2004), Masson and Den÷ux (2006), and Ghasemi Hamed et al.

(2012) likewise lead to interpreting p values as possibility values. Dubois et al. (1997) and

Giang and Shenoy (2005) instead used the likelihood function in place of the p-value function

p (•;x) for the special case in which Θ is countable. Patriota (2013) de�nes the s value, a

large-sample possibility measure that uses both likelihood and con�dence concepts. For

con�dence regions based on the likelihood ratio statistic, the proposed c value is equivalent

to the s value under no restrictions over the parameter space.
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