DEEP LEARNING FOR THE PARTIALLY LINEAR COX MODEL

BY QIXIAN ZHONG\(^1\), JONAS MUELLER\(^2\) AND JANE-LING WANG\(^3\)

\(^1\)Department of Mathematical Science, Tsinghua University, zqx15@mails.tsinghua.edu.cn

\(^2\)Amazon Web Services, jonasmue@amazon.com

\(^3\)Department of Statistics, University of California, Davis, janelwang@ucdavis.edu

While deep learning approaches to survival data have demonstrated empirical success in applications, most of these methods are difficult to interpret and mathematical understanding of them is lacking. This paper studies the partially linear Cox model, where the nonlinear component of the model is implemented using a deep neural network. The proposed approach is flexible and able to circumvent the curse of dimensionality, yet it facilitates interpretability of the effects of treatment covariates on survival. We establish asymptotic theories of maximum partial likelihood estimators and show that our nonparametric deep neural network estimator achieves the minimax optimal rate of convergence (up to a poly-logarithmic factor). Moreover, we prove that the corresponding finite-dimensional estimator for treatment covariate effects is \(\sqrt{n}\)-consistent, asymptotically normal, and attains semiparametric efficiency. Extensive simulation studies and analyses of two real survival datasets show the proposed estimator produces confidence intervals with superior coverage as well as survival time predictions with superior concordance to actual survival times.

1. Introduction. Over the past decade, deep learning has begun substantially outperforming other statistical learning methods in many domains such as image analysis (Krizhevsky, Sutskever and Hinton, 2012; Farabet et al., 2012; Szegedy et al., 2015), speech recognition (Hinton et al., 2012; Graves, Mohamed and Hinton, 2013) and natural language processing (Collobert et al., 2011; Sarikaya, Hinton and Deoras, 2014). More recently, a new class of deep learning models have been introduced for survival analysis (Faraggi and Simon, 1995; Chapfuwa et al., 2018; Katzman et al., 2018; Ren et al., 2019), leading to sizeable performance improvements in this area. To shed light on the success of these methods, this paper provides theoretical analysis of deep neural networks (DNNs) applied to right censored data. For an in-depth overview on DNN and their applications, we refer the reader to the review paper by LeCun, Bengio and Hinton (2015) and the recent monograph by Goodfellow, Bengio and Courville (2016).

A neural network is a parameterized composition of simple functions that can accurately model complex relationships when stacked in multiple layers. Typically, the operation at each layer is simply a linear transformation followed by a simple elementwise nonlinear transformation (which is called the activation function and might for example be the rectifier function: \(\max\{x, 0\}\)). In the last decades, the neural network has been theoretically established as a powerful tool for function approximation. For instance, Cybenko (1989); Hornik, Stinchcombe and White (1989); Leshno et al. (1993) established that shallow neural networks with single hidden layer can approximate any continuous function to any degree of accuracy. This is often referred to as universal approximation in the machine learning literature.
Given a known degree of accuracy, Barron (1993, 1994); Mhaskar (1996); Pinkus (1999) further investigated the number of parameters required in a shallow neural network to approximate a certain smoothness class of functions. Compared to shallow networks, deep neural networks with many layers can achieve similar approximation error using exponentially fewer number of parameters (Telgarsky, 2015; Mhaskar, Liao and Poggio, 2017). In order to approximate certain \(r \)-dimensional functions at a specified error level \(\epsilon \), DNNs only need \(O(1/\epsilon) \) parameters while similar shallow networks require at least \(O(1/\epsilon^r) \) parameters. This underscores one major advantage of deep over shallow neural networks. More extensive approximation theory for DNNs has been developed to study how certain architectures can model some specific classes of underlying functions, such as non-smooth functions (Imaizumi and Fukumizu, 2019), Sobolev spaces (Yarotsky, 2017; Gühring, Kutyniok and Petersen, 2020) and composite functions (Schmidt-Hieber, 2017, 2020; Bauer and Kohler, 2019). The latter group of papers establish that DNNs are able to learn the parsimony structure of a composite function.

Extending this function approximation theory (which only quantifies the underlying bias), Schmidt-Hieber (2017, 2020) and Bauer and Kohler (2019) investigated the asymptotic properties of deep-learned statistical estimators for nonparametric regression. For \(n \) i.i.d. observations \((X_i, Y_i) \in [0, 1]^r \times \mathbb{R}\), they considered the regression model

\[
Y_i = g_0(X_i) + \epsilon_i,
\]

where \(g_0 \) is an unknown function and \(\epsilon_i \) are i.i.d. noise variables. It is well known that attempts to estimate \(g_0 \) generally suffer from a \textit{curse of dimensionality} if the dimension \(r \) of \(X \) is large. Schmidt-Hieber (2017, 2020) and Bauer and Kohler (2019) showed that: under mild smoothness/structure assumptions for \(g_0 \), DNN estimators can not only circumvent the curse of dimensionality, but also achieve \textit{optimal minimax rate of convergence} (up to some logarithmic factors). In contrast, estimators based on wavelet series are merely able to obtain suboptimal convergence rates for some classes of \(g_0 \), which illuminates clear theoretical advantages of DNN models (Schmidt-Hieber, 2017, 2020).

Although the nonparametric regression model (1) is highly flexible (thanks to the function approximation property of DNN), it does not facilitate interpretability of the underlying relationship between \(X \) and \(Y \), particularly if we wish to understand the effect of particular treatment covariates \(Z \in \mathbb{R}^p \) that comprise a subset of the variables in \(X \). Furthermore, it is nontrivial to fit this model (1) when data have been \textit{right censored}, which often occurs in survival analysis when a patient drops out of the study before the event of interest occurs. Here right censored data refer to situation when the actual event time \(U \) is subject to right censoring by a censoring variable \(C \), so the actual observations are \((T, \Delta)\), where \(T = \min\{U, C\} \) is the observed event time and \(\Delta = 1(U \leq C) \) is an indicator variable with \(\Delta = 1 \) if \(T \) equals to an actual survival time \(U \) and \(\Delta = 0 \) otherwise.

For example, it is of principal interest to determine whether chemotherapy or hormonal treatment has an effect on breast cancer survival in the Rotterdam Breast Cancer Study (Foekens et al., 2000), where the event time for 57.35% of patients were right censored. Nonparametric regression models like (1) are not applicable for right censored data, and also cannot provide interpretation or statistical inference for the effects of particular covariates. This paper addresses these issues by introducing an interpretable model that can fit right censored survival data, while still leveraging the powerful representation-learning capabilities of deep learning.

We consider the use of DNNs to augment the partially linear Cox model (PLCM) first introduced by Sasieni (1992a). In PLCM, the hazard function of the survival time \(U \) conditional on a vector covariate \((Z, X) \in \mathbb{R}^p \times \mathbb{R}^r\) is represented as:

\[
\lambda(u|X, Z) = \lambda_0(u) \exp\{\theta_0^\top Z + g_0(X)\}.
\]
Here λ_0 is an unknown baseline hazard function, $\theta_0 \in \mathbb{R}^p$ is an unspecified parameter and $g_0 : \mathbb{R}^r \rightarrow \mathbb{R}$ is an unknown function. Here we leverage DNN to represent the function g_0 and distinguish our method as the deep partially linear Cox model (DPLCM). This model is quite flexible: it includes both the popular Cox proportional hazards model \cite{Cox72, Cox75} in the absence of non-treatment covariates X, as well as the nonparametric Cox models \cite{Hastie90, Sleeper90, OSullivan93, Kooperberg95, Chen07, Chen10} in the absence of treatments Z. Thus, our model not only inherits the simple interpretation of the finite-dimensional parameter θ_0 in the Cox proportional hazards model, but also models more complex nonlinear effects of the covariate X and thus can more accurately capture properties of real survival data.

Previous work has studied the general DPLCM model in (2) but has difficulties to handle multivariate X. For example, Therneau, Grambsch and Fleming \cite{Therneau90} and Fleming and Harrington \cite{Fleming91} used martingale residuals to investigate the case of univariate X. Sasieni \cite{Sasieni92a, Sasieni92b} focused on calculating information bounds and asymptotic efficiency of θ_0 estimates, and suggested a spline estimate of function g_0 without details about its asymptotics. Dabrowska \cite{Dabrowska97} established asymptotic properties of PLCM estimators obtained by maximizing a smoothed profile likelihood, but the required multivariate numerical integration will be intractable in practice when there are many auxiliary covariates. With an additional additive assumption of g_0, Huang \cite{Huang99} showed that the partial likelihood estimates of θ_0 achieves the information bound and the estimates of g_0 converges to g_0 at the standard one-dimensional nonparametric convergence rate. Later on, Du, Ma and Liang \cite{Du10} studied variable selection of PLCM with high-dimensional covariates Z.

Although deep learning has received increasing attention in survival analysis, to date there is little theoretical understanding of model (2) when g_0 is approximated using a DNN. Merely considering non-treatment covariates X, Faraggi and Simon \cite{Faraggi95} employed an one hidden-layer neural network to estimate $g_0(X)$. However, their model did not produce significant improvements \cite{Xiang00} in terms of concordance index \cite{Harrell82}, a version of the receiver operating characteristic curve that measures the predictive power of survival models on censored survival data. Later, with the same replacement, Katzman et al. \cite{Katzman18} considered multi-layer neural network to approach the same model and obtained remarkable results in applications. Similar variants of the CPH model using more complex neural network architectures have been developed for particular applications, such as genomic data \cite{Yousefi17, Ching18}, clinical research \cite{Matsuo19, Polesler19} and medical imaging data \cite{Haarburger19, Li19}. Additional deep learning methods to study survival data has also emerged recently including the hierarchical generative approach \cite{Ranganath16}, the generative adversarial network approach \cite{Chapfuwa18}, and the recurrent neural network approach \cite{Giunchiglia18, Ren19}. Despite their success in prediction, the aforementioned neural network approaches are black-box models that lack interpretability for treatment effects, since the treatment covariate is lumped with all other covariates in a non-linear/non-convex neural network. It is thus difficult to provide trustworthy estimates of the treatment effects and uncertainty quantification for estimated effects.

In addition to being ill-suited for treatment effect estimation, current approaches to deep learning for survival analysis elude our current mathematical understanding \cite{Katzman18, Ranganath16, Lee18, Hao19}. In this work, we maximize a partial likelihood function to estimate the nonparametric function g_0 in (2) using a deep neural network, and establish theoretical properties of the resulting estimator. Analysis of neural networks for nonlinear function approximation is the subject of a vast literature \cite{Anthony99, Farrell18, Bauer19, Unser19, Dou20}.
One advantage of the deep neural network approach is that it can accommodate a rich class of \(g_0 \) to avoid the curse of dimensionality and yields faster convergence rates than nonparametric smoothing methods. Here we postulate an intrinsic dimension assumption on \(g_0 \) and show that its DNN-estimator is consistent and converges at a rate that depends only on the intrinsic dimension and smoothness of this function. This intrinsic dimension, introduced in Section 2, essentially represents the complexity of function \(g_0 \) and contains a large number of previously-studied function classes, such as, single (multiple) index functions (Ichimura, 1993; Härdle, Hall and Ichimura, 1993), (generalized) additive functions (Stone, 1985; Horowitz and Mammen, 2007) and (generalized) hierarchical interaction functions (Bauer and Kohler, 2019).

Under mild regularity conditions, and using a DNN whose complexity grows with the data (as would be used in practical applications), we establish consistency and convergence rate of the nonparametric function estimator and asymptotic normality for the parametric component of the DPLCM model. The convergence rate of the function estimator is minimax optimal (up to a poly-logarithmic factor) and the parametric estimator is semiparametric efficient (Bickel et al., 1993; van der Vaart, 2000; Kosorok, 2008).

To summarize, this paper provides a flexible-yet-interpretable partially linear Cox model that performs well for multivariate covariates by leveraging a powerful DNN model to represent nonlinear effects. Optimal asymptotic theory is established for both the parametric (linear) and nonparametric (DNN) components of our model. To the best of our knowledge, this is the first paper that contains theoretical support for proportional hazards models that utilize deep learning. Our work is inspired by the recent theoretical developments in deep learning for nonparametric regression (Schmidt-Hieber, 2017, 2020; Bauer and Kohler, 2019). However, our analysis contains major differences, in part due to complications from random censoring in survival data. First, DPLCM is comprised of two nonparametric components as well as a parametric component, while nonparametric regression models only involve a single nonparametric component. DPLCM’s parametric component facilitates interpretabiltiy of treatment effects but its analysis requires different theoretical tools than nonparametric regression. For instance, to establish semiparametric efficiency, we require martingale theory to derive the efficient score and information bound for \(\theta_0 \). Second, the theory of DNN nonparametric regression is built on the framework of least squares loss, while our approach maximizes a log partial likelihood. Third, establishing a minimax lower bound for the nonparametric target requires restrictions on the error distributions in the nonparametric regression setting, and Schmidt-Hieber (2017, 2020) restrictively assume errors are normally distributed. In contrast, our proportional hazards assumption itself allows a minimax bound to be established without any such additional assumptions.

We present our proposed estimation procedure in Section 2 and the main theoretical properties of the estimators in Section 3. In Section 4, we apply the proposed method to simulated and real data and compare it with CPH (Cox, 1972) and the partially linear additive Cox model (Huang, 1999), two popular methods for estimating treatment effects on survival. Section 5 concludes the discussion and the proofs are relegated to Section 6. Many auxiliary results are provided in the Supplementary Material.

2. Methodology.

2.1. Deep neural networks. We briefly review the use of DNNs as function approximators; for further details c.f. Goodfellow, Bengio and Courville (2016). Let \(K \) be a positive integer and \(p = (p_0, \ldots, p_K, p_{K+1}) \) be some positive integer sequence. A \((K+1)\)-layer DNN with layer-width \(p \) is a composite function \(g: \mathbb{R}^{p_0} \to \mathbb{R}^{p_{K+1}} \) recursively defined as
\(g(x) = W_K g_K(x) + v_K, \)
\(g_K(x) = \sigma(W_{K-1} g_{K-1}(x) + v_{K-1}), \ldots, g_1(x) = \sigma(W_0 x + v_0). \)

Here the matrices \(W_k \in \mathbb{R}^{p_{k+1} \times p_k} \) and vectors \(v_k \in \mathbb{R}^{p_{k+1}} \) (for \(k = 0, \ldots, K \)) are the parameters of this DNN \(g \). Chosen a priori, the activation functions \(\sigma \) are simple nonlinear transformations that operate component-wise, i.e. \(\sigma((x_1, \ldots, x_{p_k})^\top) = (\sigma(x_1), \ldots, \sigma(x_{p_k}))^\top \), which thus gives \(g_k = (g_{k1}, \ldots, g_{kp_k})^\top : \mathbb{R}^{p_{k+1}} \to \mathbb{R}^{p_k} \) for \(k = 1, \ldots, K \). While many choices of activation function are considered in deep learning, the most popular one is the rectified linear unit (ReLU) in Nair and Hinton (2010):
\[
\sigma(x) = \max\{x, 0\}.
\]

Throughout this paper, we focus on ReLU activation for its widespread use (LeCun, Bengio and Hinton, 2015; Ramachandran, Zoph and Le, 2017), empirical success (Krizhevsky, Sutskever and Hinton, 2012) and theoretical support (Liang and Srikant, 2016; Yarotsky, 2017; Schmidt-Hieber, 2020). For the DNN in (3), \(K \) denotes the depth of the network and vector \(p \) lists the width of each layer (\(p_0 \) is the dimension of the input variable, \(p_1, \ldots, p_K \) are the dimensions of the \(K \) hidden layers, and \(p_{K+1} \) is the dimension of the output layer). The matrix entries \((W_k)_{i,j} \) are the weight linking the \(j \)-th neuron in layer \(k \) to the \(i \)-th neuron in layer \(k + 1 \), and the vector entries \((v_k)_i \) represent a shift term associated with the \(i \)-th neuron in layer \(k + 1 \). For example, Figure 1 depicts a 4-layer DNN with \(p = (5, 4, 3, 1) \).

Let \(\mathbb{N}_+ \) be the set of all positive natural numbers. Given \(K \in \mathbb{N}_+ \) and \(p \in \mathbb{N}_+^{K+2} \), we consider a class of DNN
\[
\mathcal{G}(K, p) = \{g : g \text{ is a DNN with } (K + 1) \text{ layers and width vector } p \text{ such that (4)}\}
\]
\[
\max\{\|W_k\|_{\infty}, \|v_k\|_{\infty}\} \leq 1, \text{ for all } k = 0, \ldots, K\},
\]
where \(\| \cdot \|_{\infty} \) denotes the sup-norm of matrix or vector. Empirically the size of the learned matrices \(W_k \) and vectors \(v_k \) are rarely large when the size of initial matrices and vectors used to initialize stochastic gradient training are relatively small (as is typically the case). Thus we just consider the DNNs whose matrices and vectors are bounded by one. In practice, a deep feedforward network with fully-connected layers contains a huge number of parameters, which can lead to overfitting. This issue can be mitigated by pruning weights, which reduces the total number of nonzero parameters such that the network’s layers are only sparsely connected (Han et al., 2015; Srinivas, Subramanya and Venkatesh Babu, 2017; Schmidt-Hieber, 2017, 2020). Following similar methodology, we consider, for \(s \in \mathbb{N}_+ \) and \(D > 0 \), a class of sparse neural networks
\[
\mathcal{G}(K, s, p, D) := \{g \in \mathcal{G}(K, p) : \sum_{k=1}^K \|W_k\|_0 + \|v_k\|_0 \leq s, \|g\|_{\infty} \leq D\},
\]
where \(\| \cdot \|_0 \) is the number of non-zero entries of matrix or vector, and \(\| g \|_\infty \) is the sup-norm of function \(g \).

2.2. Estimation. Consider a survival study with right-censored data, where \(U \) and \(C \) denote survival and censored time, respectively, and \((Z, X) \in \mathbb{R}^p \times \mathbb{R}^r \) form a \((p + r)\)-dimensional vector of covariates (\(Z \) contains the treatment indicator). Due to censoring, we only observe \(n \) i.i.d. copies \((T_1, \Delta_1, Z_1, X_1), \ldots, (T_n, \Delta_n, Z_n, X_n) \) from \((T, \Delta, Z, X)\), where \(T = \min\{U, C\} \) is the observed event time and \(\Delta = 1(U \leq C) \) is an indicator variable with \(\Delta = 1 \) if \(T \) equals to an actual survival time \(U \) and \(\Delta = 0 \) otherwise. As is standard in survival analysis (Cox and Oakes, 1984; Fleming and Harrington, 1991), we assume that the survival time \(U \) and censored time \(C \) are independent conditional on the covariates \((Z, X)\).

In the DPLCM (2), the parameter \(\theta_0 \), nonparametric function \(g_0 \), and baseline function \(\lambda_0 \) are all unknown.

We approximate \(g_0 \) using a DNN \(g \in \mathcal{G} \), whose input is the \(r \)-dimensional vector \(X \) and output is a scalar-value. Here we employ the shorthand \(\mathcal{G} = \mathcal{G}(K, s, p, \infty) \). More precisely, we first estimate \((\hat{\theta}_0, \hat{g}_0)\) by maximizing the log partial likelihood (Cox, 1972, 1975):

\[
(\hat{\theta}, \hat{g}) = \arg \max_{(\theta, g) \in \mathbb{R}^p \times \mathcal{G}} L_n(\theta, g),
\]

where \(L_n(\theta, g) = \frac{1}{n} \sum_{i=1}^n \Delta_i \left[\theta^\top Z_i + g(X_i) - \log \sum_{j: T_j \geq T_i} \exp \{ \theta^\top Z_j + g(X_j) \} \right] \).

3. Theoretical results. In this section we study the asymptotic properties of the log partial likelihood estimators in (6). Some restrictions on the nonparametric function \(g_0 \) are needed and we assume that it belongs to a Hölder class of smooth functions, which is fairly broad and also adopted by Schmidt-Hieber (2017, 2020). Specifically, a Hölder class of smooth functions with parameters \(\alpha, M > 0 \) and domain \(\mathbb{D} \subset \mathbb{R}^r \) is:

\[
\mathcal{H}_\alpha^M(\mathbb{D}, M) = \{ g : \mathbb{D} \to \mathbb{R} : \sum_{|\beta| |\beta| < |\alpha|} \| \partial^\beta g \|_\infty + \sum_{|\beta| |\beta| = |\alpha|} \sup_{x, y \in \mathbb{D}, x \neq y} \frac{|\partial^\beta g(x) - \partial^\beta g(y)|}{\|x - y\|_\infty^{\alpha - |\alpha|}} \leq M \},
\]

where \(|\alpha| \) is the largest integer strictly smaller than \(\alpha \), \(\partial^\beta : = \partial^{\beta_1} \cdots \partial^{\beta_r} \), with \(\beta = (\beta_1, \ldots, \beta_r) \), and \(|\beta| = \sum_{k=1}^r \beta_k \). Let \(q \in \mathbb{N} \), \(M > 0 \), \(\alpha = (\alpha_0, \ldots, \alpha_q) \in \mathbb{N}_+^{q+1} \), and \(d = (d_0, \ldots, d_{q+1}) \in \mathbb{N}_+^{q+2} \), \(\tilde{d} = (\tilde{d}_0, \ldots, \tilde{d}_q) \in \mathbb{N}_+^{q+1} \) with \(\tilde{d}_j \leq d_j, j = 0, \ldots, q \), where \(\mathbb{N}_+ \) is the set of all positive real numbers. We further assume that \(g_0 \) belongs to a composite smoothness function class:

\[
\mathcal{H}(q, \alpha, d, \tilde{d}, M) := \{ g = g_q \circ \cdots \circ g_0 : g_i = (g_{i1}, \ldots, g_{i\tilde{d}_i})^\top \text{ and } g_{ij} \in \mathcal{H}^\alpha_{\tilde{d}_i}([a_i, b_i][\tilde{d}_i], M) \}, \text{ for some } |a_i|, |b_i| \leq M.
\]

Functions in this class are characterized by two kind of dimensions, \(d \) and \(\tilde{d} \), where the latter represents the intrinsic dimension of the function. For example, if

\[
g(x) = g_{21}(g_{11}(g_{01}(x_1, x_2), g_{02}(x_3, x_4)), g_{12}(g_{03}(x_5, x_6), g_{04}(x_7, x_8))), \quad x \in [0, 1]^8.
\]

and \(g_{ij} \) are twice continuously differentiable, then smoothness \(\alpha = (2, 2, 2), \) dimensions \(d = (8, 4, 2, 1) \) and \(\tilde{d} = (2, 2, 2) \).

The composite smoothness class \(\mathcal{H}(q, \alpha, d, \tilde{d}, M) \) subsumes a rich set of classical smoothness classes. For instance, Stone (1985) considered nonparametric regression with generalized additive functions

\[
g(x) = \sum_{i=1}^{I_1} \sum_{j=1}^{r} a_{ij} x_j,
\]

where the number of non-zero entries of matrix or vector, and \(\| g \|_\infty \) is the sup-norm of function \(g \).
where the $g_i, i = 1, \ldots, I$, are univariate Hölder smoothness functions and some $I_1 \in \mathbb{N}_+$. Horowitz and Mammen (2007) analyzed a more complex nonparametric regression model

$$g(x) = g_{0\alpha} \left(\sum_{i_1=1}^{I_1} g_{i_1} \left(\sum_{i_2=1}^{I_2} g_{i_1,i_2} \left(\cdots \sum_{i_k=1}^{I_k} g_{i_1,\ldots,i_k} (x_{i_1,\ldots,i_k}) \right) \right) \right),$$

where $g_{0\alpha}, g_{i_1}, \ldots, g_{i_1,\ldots,i_k}$ are univariate Hölder smoothness functions, x_{i_1,\ldots,i_k} are one-dimensional elements of a vector $x \in \mathbb{R}^r$ and $I_1, \ldots, I_k \in \mathbb{N}_+$.

Furthermore, we denote $\tilde{\alpha} = \alpha, \prod_{i=1}^{j} (\alpha_k \wedge 1)$ and $\gamma_n = \max_{i=0,\ldots,p} n^{-\tilde{\alpha}_i/(2\tilde{\alpha}_i+d_i)}$ with notation $a \wedge b := \min\{a, b\}$. Recalling the DNN definition in (3), we first assume the following about the structure of the DNN model and the covariate:

(A1) $K = O(\log n)$, $s = O(n\gamma_n^2 \log n)$ and $n\gamma_n^2 \lesssim \min(p_k)_{k=1,\ldots,K} \leq \max(p_k)_{k=1,\ldots,K} \lesssim n$.

(A2) The covariate (Z, X) takes value in a bounded subset of \mathbb{R}^{p+r} with joint probability density function bounded away from zero, and there exists a norm bound for the parameter $\theta_0 \in \mathbb{R}^p := \{\theta \in \mathbb{R}^p : ||\theta|| \leq M \}$. Without loss of generality, we assume that the domain of X is taken to be $[0,1]^r$.

Assumption (A1) determines the structure of the neural network family $\mathcal{G}(K, s, p, D)$ in (5). According to Anthony and Bartlett (1999) and Schmidt-Hieber (2017, 2020), more flexible neural networks (with more parameters) can achieve smaller approximation error. The latter is defined as the distance between true function g_0 and \hat{g}, the projection of g_0 onto the space of functions that can be implemented by a neural network from $\mathcal{G}(K, s, p, \infty)$. However, a larger neural network often leads to larger estimation error, the distance between \hat{g} and \hat{g}. Assumption (A1) thus provides a trade-off between the approximation error and estimation error, while (A2) is a standard assumption for semi/nonparametric regression (Horowitz, 2009).

Because of the presence of two nonparametric components, the baseline hazard function λ_0 and g_0, model (2) is not identifiable. But this can be corrected by a constraint $\mathbb{E}\{g_0(X)\} = 0$ along with additional identifiability assumptions below on the covariate (Z, X).

(B1) The nonparametric function g_0 is an element of $\mathcal{H}_0 = \{g \in \mathcal{H}(q, \alpha, d, \tilde{d}, M) : \mathbb{E}\{g(X)\} = 0 \}$ and the matrix $\mathbb{E}\{Z - \mathbb{E}(Z|X)\} \otimes 2$ is nonsingular, where $v \otimes 2 = vv^\top$ for a column vector v.

Our theoretical analysis also adopts the following standard assumptions on Cox model:

(B2) The study ends at time τ and there exists a small constant $\delta > 0$ such that $\mathbb{P}(\Delta = 1|X, Z) \geq \delta$ and $\mathbb{P}(U \geq \tau|X, Z) \geq \delta$ almost surely with respect to the probability measure of (X, Z).

(B3) There exist constants $0 < c_1 < c_2 < \infty$ such that the sub-density $p(t, x, \Delta = 1)$ of $(T, X, \Delta = 1)$ satisfies $c_1 < p(t, x, \Delta = 1) < c_2$ for all $(t, x) \in [0, \tau] \times [0, 1]^r$.

(B4) For some $k > 1$, the kth partial derivative of the sub-density $p(t, x, z, \Delta = 1)$ of $(T, X, Z, \Delta = 1)$ with respect to $(t, x) \in (0, \tau) \times (0, 1)^r$ exists and is bounded.

The space \mathcal{H}_0 in (B1) is a rich class, since for any $g \in \mathcal{H}(q, \alpha, d, \tilde{d}, M)$, $g/2 - \mathbb{E}\{g(X)/2\} \in \mathcal{H}_0$. The first part of Assumption (B2), $\mathbb{P}(\Delta = 1|Z, X) \geq \delta$, is a minimal assumption that guarantees a non-null probability of observing non-censored data. The second part, $\mathbb{P}(U \geq \tau|Z, X) \geq \delta$, is needed to ensure that the baseline cumulative hazard function $\Lambda_0(t) = \int_0^t \lambda_0(s)\,ds$ is bounded at the end of the study time τ, and this is often satisfied in practice when some subjects are still alive at the end of the study. In Assumption (B3), the
sub-density \(p(t, x, \Delta = 1) \) is defined as

\[
p(t, x, \Delta = 1) = \frac{\partial^2 \mathbb{P}(t \leq t, X \leq x, \Delta = 1)}{\partial t \partial x}.
\]

Likewise, the sub-density \(p(t, x, z, \Delta = 1) \) in Assumption (B4) has a similar definition. Assumption (B3) ensures that the information bound for \(\theta \) exists, and Assumption (B4) is used to establish the asymptotic normality of \(\hat{\theta} \). These assumptions are not particularly stringent, especially compared with existing survival analysis theory (Huang, 1999; Jiang and Jiang, 2011). We also provide one simple example that simultaneously satisfies all of these assumptions in the Supplementary Material, noting there are many more such examples.

Theorem 3.1. Under assumptions (A1), (A2), (B1) and (B2), there exists an estimator \(\hat{g} \) in (6) satisfying \(\mathbb{E}\{\hat{g}(X)\} = 0 \), such that

\[
\|\hat{g} - g_0\|_{L^2([0,1]^r)} = O_p(\gamma_n \log^2 n).
\]

It is well known that DPLCM (2) suffers from a severe “curse-of-dimensionality” when nonparametric smoothing methods (e.g. kernels or splines) are employed to estimate \(g_0 \). Under these classical models, accurate estimation is thus challenging even for a covariate \(X \) of moderately high dimensionality. Under our DNN-based DPLCM model, the curse-of-dimensionality is alleviated by projecting the data onto a much lower-dimensional representational space (Anthony and Bartlett, 1999), where the DNN is able to accurately approximate this representational space. This is a key advantage of utilizing a DNN estimator rather than traditional smoothing methods.

Under the assumption of the representational space \(\mathcal{H}(q, \alpha, d, \tilde{d}, M) \) in (7), Theorem 3.1 reveals that the convergence rates are jointly determined by the smoothness \(\alpha \) and intrinsic dimension \(\tilde{d} \) of the function \(g_0 \), rather than the dimension \(d \). Thus, the proposed DPLCM can circumvent the curse of dimensionality and enjoys faster convergence rate when the intrinsic dimension \(\tilde{d} \) is relative low. For example, if the true function \(g_0 \) has a form in (8), then the traditional smoothing methods lead to slow convergence rate of order \(n^{-1/6} \), in contrast, the proposed method yields convergence rate of order \(n^{-1/3} \log^2 n \). Moreover, the convergence rate of the DPLCM estimator for \(g_0 \) enjoys the one-dimensional nonparametric convergence rate, up to a poly-logarithmic factor (as the estimator in Huang (1999) when the true model is PLACM).

Below, we show the minimax lower bound for estimating \(g_0 \).

Theorem 3.2. Let \(\Omega_0 = \{\lambda : \int_0^1 \lambda(s)ds < \infty \text{ and } \lambda \geq 0\} \). Under assumptions (A2), (B1) and (B2), there exists a constant \(0 < c < \infty \), such that

\[
\inf_{\hat{g}} \sup_{(\theta_0, \lambda_0, g_0) \in \mathbb{R}^n_+ \times \Omega_0 \times \mathcal{H}_0} \mathbb{E}\{\hat{g}(X) - g_0(X)\}^2 \geq c\gamma_n^2,
\]

where the infimum is taken over all possible estimators \(\hat{g} \) based on the observed data.

Therefore, the partial likelihood estimate in Theorem 3.1 is rate optimal because it attains the minimax lower bound (up to a poly-logarithm factor).

Next we establish the efficient score and information bound for estimating \(\theta_0 \) (Bickel et al., 1993; van der Vaart, 2000; Kosorok, 2008). Let \(\Omega_{\lambda_0} \) be the collection of all subfamilies \(\{\log \lambda : a \in (-1,1)\} \subset \{\log \lambda : \lambda \in \Omega_0\} \) such that \(\lim_{a \to 0} \|a^{-1}(\log \lambda_a - \log \lambda_0) - h\|_{L^2([0,\tau])} = 0 \) where \(h \in L^2([0,\tau]) \), and let

\[
\mathcal{T}_{\lambda_0} = \{h \in L^2([0,\tau]) : \lim_{a \to 0} \|a^{-1}(\log \lambda_a - \log \lambda_0) - h\|_{L^2([0,\tau])} = 0 \text{ for some subfamily} \}
\]

\[
\{\log \lambda : a \in (-1,1)\} \in \Omega_{\lambda_0}, \text{ and } \mathbb{E}\{\Delta h(T)\} = 0\}.
\]
Likewise, let H_{g_0} denote the collection of all subfamilies $\{g_b \in L^2([0,1]^r) : b \in (-1,1)\} \subset H_0$ such that $\lim_{b \to 0} \|b^{-1}(g_b - g_0) - g\|_{L^2([0,1]^{1-r})} \to 0$, and let

$$\mathbb{T}_{g_0} = \{g \in L^2([0,1]^r) : \lim_{b \to 0} \|b^{-1}(g_b - g_0) - g\|_{L^2([0,1]^{1-r})} = 0 \text{ for some subfamily} \}$$

$$\{g_b : b \in (-1,1)\} \in H_{g_0}, \text{ and } \mathbb{E}\{\Delta g(X)\} = 0\}.$$

Set \mathbb{T}_{λ_0} and \mathbb{T}_{g_0} be the closed linear span (the closure under linear combinations) of \mathbb{T}_{λ_0} and \mathbb{T}_{g_0}, respectively.

Let $M(t) = \Delta 1(T \leq t) - \int_0^t 1(T \geq s) \exp\{\theta_0^\top V + g_0(X)\}\lambda_0(s)ds$ be the counting process martingale associated with the model (Andersen and Gill, 1982).

Theorem 3.3. Under assumptions (A2) and (B1)-(B3), the efficient score for θ_0 is

$$\ell^*_0(V, \Delta, T) = \int_0^T \{Z - h_*(t) - g_*(X)\} \, dM(t).$$

Here the vector function $(h^*_0, g^*_0) \in (\mathbb{T}_{\lambda_0})^p \times (\mathbb{T}_{g_0})^p$ is the minimizer of $\mathbb{E}\{\Delta \|Z - h(T) - g(X)\|_2^2\}$, where the notation $\|v\|_2^2 = (v_1^2, \ldots, v_p^2)^\top$ for vector $v = (v_1, \ldots, v_p)^\top$ and the minimization operates component-wise on the vector.

Moreover, the information bound for θ_0 is

$$I(\theta_0) = \mathbb{E}\{\ell^*_0(V, \Delta, T)\} \otimes 2 = \mathbb{E}\{\Delta \{Z - h_*(T) - g_*(X)\}\} \otimes 2\}.$$

The next theorem establishes the asymptotic normality of $\hat{\theta}$ with \sqrt{n}-consistency.

Theorem 3.4. Under assumptions (A1), (A2) and (B1)-(B4). If the information matrix $I(\theta_0)$ is nonsingular and $n\gamma_n^4 \to 0$ as $n \to \infty$. Then, we have

$$\sqrt{n}(\hat{\theta} - \theta_0) = n^{-1/2} I(\theta_0)^{-1} \sum_{i=1}^n \ell^*_0(V_i, \Delta_i, T_i) + o_p(1) \xrightarrow{d} N(0, \Sigma).$$

where $\Sigma = I(\theta_0)^{-1}$.

Although the nonparametric estimator \hat{g} in Theorem 3.1 converges slower than \sqrt{n}, the maximum partial likelihood estimator for parameter θ_0 can still attain \sqrt{n}-consistency and asymptotic normality. Most impressive is that the information bound in Theorem 3.3 is attained by our estimator $\hat{\theta}$, so it is semiparametrically efficient. We provide an estimate of the asymptotic variance Σ in Section 4.1 and additional discussion about it in the Supplementary Material.

4. Numerical Implementation and Results.

4.1. Computational Details. The maximization of the log partial likelihood function in (6), was implemented using Pytorch (Paszke et al., 2019). Since the log partial likelihood function is non-convex with respect to the parameters θ, W_0, and v_k, it is challenging to compute the estimator $(\hat{\theta}, \hat{g})$ via classical optimization techniques. In this work, we employ the Adam optimizer, which has become extremely popular in deep learning as it is practically performant and reliable across models/datasets (Kingma and Ba, 2014).

Initialization. We initialize the stochastic optimization algorithm by choosing an initial value for θ through the solution of the conventional CPH model (Cox, 1972, 1975) when
treating $g(X)$ as a linear predictor. This solution is obtained from the Python package lifelines (Davidson-Pilon, 2019). As it is less clear how to select good initial values for matrices W_k and vectors v_k of the function g (Glorot and Bengio, 2010; Martens, 2010; Saxe, McClelland and Ganguli, 2013), we simply use Pytorch’s default random initialization.

Choice of hyperparameters. Implementing g_0 and θ_0 in practice requires the specification of the number of hidden layers K, number of neurons p_k in all K hidden layers, dropout rate (Srivastava et al., 2014), and the learning rate (Goodfellow, Bengio and Courville, 2016). These tuning parameters are referred to as the “hyperparameters” in the deep learning community. For simplicity we use the same number of neurons in every hidden layer (i.e., $p_k = p_j$ for $1 \leq k, j \leq K$). The dropout is the rate of randomly ignored neurons during training, so it only involves g and not θ.

The learning rate is defined as the step size for the gradient descent in the Adam algorithm (Kingma and Ba, 2014). We treat these decisions as hyper-parameters and tune them via a grid search where the log partial likelihood is evaluated over a held-out validation set after each training trial. Detailed configurations of these hyperparameters are displayed in the Supplementary Material for the simulations and data analysis. To mitigate overfitting, in each run we hold out 20% of training set as validation set, where training of the neural network is early stopped once the log partial likelihoods on the validation set stop reliably improving (Goodfellow, Bengio and Courville, 2016).

Calculation of the information bound. To perform inference for the parametric θ_0, we need to estimate the asymptotic covariance matrix $\Sigma = I(\theta_0)^{-1}$ in Theorem 3.4. Recall that the information bound $I(\theta_0) = \mathbb{E}\{\Delta \{Z - h_*(T) - g_*(X)\} \otimes 2\}$ with minimizer h_* and g_* defined in Theorem 3.3. In practice, we estimate (h_*, g_*) via minimizing empirical objective function

$$
(h_*, g_*) = \arg\min_{(h, g)} \frac{1}{n} \sum_{i=1}^{n} \Delta_i \|Z_i - h_*(T_i) - g_*(X_i)\|_2^2.
$$

However, it is difficult to get the convincing solution by using the classical nonparametric methods (e.g. kernel regression and spline regression) due to the high dimensionality of function g_*. Hence, we employ a DNN to approach (h_*, g_*). The inputs and outputs of this DNN are (T, X) and $h_*(T) + g_*(X)$, respectively. The implementation details of these networks are similar to the network we use to maximize log partial likelihoods (6) described above. Subsequently, with the resulting estimate (\hat{h}_*, \hat{g}_*), we can estimate the information bound via

$$
\hat{I}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \Delta_i \{Z_i - \hat{h}_*(T_i) - \hat{g}_*(X_i)\} \otimes 2.
$$

4.2. Simulation Study

We carry out simulation studies to illustrate the finite sample performance of the proposed DLCM method. Here we also provide numerical comparisons with the Cox proportional hazards model [CPH, Cox (1972, 1975)] and partially linear additive Cox model [PLACM, Huang (1999)].

For all simulations, covariates X with dimension $d = 5$ are generated from a Gaussian copula on $[0, 2]$ with correlation parameter 0.5. Each coordinate of X is marginally distributed according to the continuous uniform distribution on $[0, 2]$. The covariate Z is set to be Bernoulli ($p = 0.5$) distributed or normally distributed as $N(0.5, 0.5)$. The treatment effect is fixed at $\theta = 1.0$. Given the covariates (Z, X), the survival time U is generated based on the hazard function:

$$
\lambda(t) = \lambda_0(t) \exp\{\theta_0 Z + g_0(X)\},
$$

where $\lambda_0(t)$ represents the baseline hazard function.
where the baseline λ_0 is chosen to be a linear function $0.1t$, under which the event times follow a Weibull distribution. We consider four different cases for the underlying function $g_0(x)$, where $x \in [0, 2]^5$ for each case:

Case 1 (Linear): $g_0(x) = x_1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 - 15.5$,

Case 2 (Additive): $g_0(x) = x_1^2 + 2x_2^2 + x_3^3 + \sqrt{x_4} + 1 + \log(x_5 + 1) - 8.6$,

Case 3 (Deep 1): $g_0(x) = x_1^2 x_2^3 + \log(x_3 + 1) + \sqrt{x_4 x_5 + 1} + \exp(x_5/2) - 8.2$,

Case 4 (Deep 2): $g_0(x) = \{x_1^2 x_2 x_3^3 + \log(x_3 + 1) + \sqrt{x_4 x_5 + 1} + \exp(x_5/2)\}^2/20 - 6.0$.

We add various intercept terms 15.5, 8.6, 8.2 and 6.0 to g_0 to ensure all four cases satisfy $\mathbb{E}_{g_0}(X) = 0$. The first two cases, where g_0 is linear or additive, are designed to evaluate the performance in simple settings. Note that Case 1 and Case 2 satisfy the settings of the CPH model and PLACM model, respectively. To study the performance in more complex general DPLCM settings, we consider: Case 3, which represents a compositional highly-nonlinear underlying function, and Case 4, which further increases the underlying function’s compositionality by composing the g_0 from Case 3 inside of an extra squared function. Specifically, g_0 in Case 3 can be expressed as

$$g_0(x) = h_{11}(h_{01}(x_1, x_2), h_{02}(x_3), h_{03}(x_4, x_5), h_{04}(x_5)),$$

where $h_{01}(x, y) = x^2 y^3$, $h_{02}(x) = \log(x + 1)$, $h_{03}(x, y) = \sqrt{xy} + 1$, $h_{04}(x) = \exp(x/2)$, and $h_{11}(x, y, z, w) = x + y + z + w - 8.2$. And g_0 in Case 4 is

$$g_0(x) = h_{21}(h_{11}(h_{01}(x_1, x_2), h_{02}(x_3), h_{03}(x_4, x_5), h_{04}(x_5))),$$

where $h_{01}, h_{02}, h_{03}, h_{04}, h_{11}$ are the same as in (10) but $h_{21}(x) = (x^2 + 16.4x + 8.2^2)/20 - 6.0$. To simulate right censoring, censoring times C are independently generated from an exponential distribution with parameter μ. We choose μ to control the overall censoring rate, using two different values in each simulation case, which roughly produce 40% or 60% censoring (for Case 1: $\mu = 18$ or 2.5, for Case 2: $\mu = 18$ or 5, for Case 3: $\mu = 28$ or 10, for Case 4: $\mu = 45$ or 18).

In each simulation case, we perform $Q = 200$ simulation runs with sample sizes $n = 500, 1000,$ or 2000. With $T_i = \min\{U_i, C_i\}$ and $\Delta_i = 1(U_i \leq C_i)$, our models are fit to observations of the form: $\{(Z_i, X_i, T_i, \Delta_i) : i = 1, \ldots, n\}$. We use 64% of the simulated data in each simulation run to compute our estimates under a particular hyper-parameter configuration (e.g. number of layers/neurons, dropout and learning rates) and 16% of the simulated data is reserved as validation data used to tune these hyper-parameters. The remaining 20% of the simulated data are held out as test data to evaluate the resulting estimates.

We evaluate the performance of estimates \hat{g} using the relative error

$$\text{RE}(\hat{g}) = \left[\frac{1}{n_1} \sum_{i=1}^{n_1} \left\{ (\hat{g}(X_i) - \bar{g}) - g_0(X_i) \right\}^2 \right]^{1/2},$$

where \hat{g} and g_0 are evaluated on the covariates of the test set $\{X_i : i = 1, \ldots, n_1\}$ and $\bar{g} = \sum_{i=1}^{n_1} \hat{g}(X_i)/n_1$. We subtract the mean of \hat{g} on the test set, because the solution of maximizing the log partial likelihood is only unique up to a constant.

Table 1 reports the biases and standard deviations of the estimated $\hat{\theta}$ over 200 simulation runs from each case. Results of the proposed DPLCM method under each simulation setting suggest that θ_0 can be estimated almost unbiasedly and the mean square errors decrease steadily as the sample size increases from 500 to 2,000. As expected, low censoring rates lead to more precise estimates of θ_0 for both binary and continuous covariates. DPLCM greatly outperforms the CPH and PLACM methods in complex settings of Case 3 and Case 4, where the overly restrictive CPH and PLACM methods result in large biases. Under the simpler
Case 1 (which meets CPH assumptions) or Case 2 (which meets PLACM assumptions), the DPLCM method remains strongly competitive with little loss of efficiency.

For each simulation run, we also estimated the information bound $J(\theta_0)$, whose inverse can be used to calculate the asymptotic variance of $\hat{\theta}$ (Theorem 3.4). We use the estimated asymptotic variance to build a 95% confidence interval for θ_0. Table 2 displays the observed coverage of these confidence intervals. Generally, the coverage rate is near 95% for our proposed DPLCM method, especially when the sample size n is large. Under Case 3 or Case 4, the poor coverage of CPH and PLACM confidence intervals indicates the uncertainty quantification produced by these methods may be unreliable in practice.

Table 3 compares the performance of all three methods in estimating the nonparametric function \hat{g}. Here we report the relative error (RE) on the test data from each simulation run. When the underlying function stems from Case 1 or Case 2, the DPLCM method fares only slightly worse than the perfectly specified CPH or PLACM model. However, when the underlying function belongs to Case 3 or Case 4, DPLCM is substantially more accurate than the other methods. Note that perfect specification of CPH or PLACM is unlikely for real-world data. As the sample size n increases, the RE of the DPLCM estimator decreases substantially as guaranteed by Theorem 3.1. As expected, each method produces better estimates of $\hat{\theta}_0$ and g_0 with larger n in correctly specified settings. Between Case 3 and Case 4, all methods perform worse under the more complicated Case 4 setting, yet the performance gaps between the two cases become narrower for DPLCM as n increases while this gap remains large for CPH and PLACM.

In the Supplementary Material, we also evaluate the predictive performance of all three methods using the concordance index (Harrell et al., 1982). We find that DPLCM produces superior concordance between the ranks of the predicted survival times and the ranks of actual survival times when compared to CPH and PLACM models. In conclusion, these simulations demonstrate the appealing performance of our DPLCM method for estimation and prediction with and without model misspecification. The empirical results qualitatively agree with our theoretical analysis from the previous section.

4.3. Rotterdam Breast Cancer Data. To demonstrate our proposed DPLCM method on real data, we consider the Rotterdam Breast Cancer Data (publicly available at the R package survival). Foekens et al. (2000) used these data to study potential factors that affect the survival time of cancer patients, defined as the days from primary surgery to the earlier of disease recurrence or death. The data consist of 2982 subjects with 57.35% censoring rate and nine baseline covariates (i.e. age, progesterone receptors, estrogen receptors, number of positive lymph nodes, menopausal status, tumor size, tumor grade, chemotherapy, and hormonal treatment), among which the first four variables are continuous and the last five are discrete. Using this data, we investigate the efficacy of chemotherapy or hormonal treatments.

As in Section 4.2, we model the data with three approaches: the proposed deep partially linear Cox model (DPLCM), Cox proportional hazards (CPH), and the partially linear additive Cox model (PLACM). We report results from five-fold cross-validation, where in each fold: we hold out 20% of training data as a validation set to choose hyper-parameters and subsequently compute concordance index on a separate set of test data. For this data, we entered the chemotherapy, the hormonal treatment along with the other three discrete covariates as linear predictor Z and model the remaining four continuous covariates nonparametrically (as X) for DPLCM and PLACM.

Figures 2(a) and 2(b) display the estimated $\hat{\theta}_1$ and $\hat{\theta}_2$ of the chemotherapy and hormonal treatment, respectively, as well as corresponding 95% confidence intervals across all five folds. Note that the intervals derived from DPLCM do not cover zero while all intervals derived from CPH cover zero. This shows that the proposed method is able to identify the
effect of the two treatments consistent with the medical consensus that both chemotherapy and hormone treatments are effective for breast cancer (https://www.cancer.org/cancer/breast-cancer/treatment). In contrast, CPH did not detect any treatment effects and PLACM produced inconsistent results on the five-fold cross-validated datasets with three folds resulting in no treatment effects but the other two folds resulting in significant treatment effects for both treatments. Such incongruity suggests PLACM estimates are unstable which does not help practitioners decide how to guide patient treatment. In the Supplementary Material, we also evaluate how well each model is able to predict patients’ survival in terms of concordance index, and we repeat this comparison on another real-world dataset from the Worcester Heart Attack Study (Hosmer Jr, Lemeshow and May, 2008). On both datasets (and many train/test folds), DPLCM produces substantially better survival predictions than CPH and PLACM, showing our model better fits real-world data.

<table>
<thead>
<tr>
<th>Case</th>
<th>40% censoring rate</th>
<th>60% censoring rate</th>
<th>40% censoring rate</th>
<th>60% censoring rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DPLCM</td>
<td>CPH</td>
<td>PLACM</td>
<td>DPLCM</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1

The bias and standard deviation (in parentheses) of \(\theta \) for the DPLCM, CPH, and PLACM methods. We report the results over 200 simulated datasets for each of the four cases. In each simulation run, only 64% of the data were used to obtain the estimates, so the actual sample sizes are 320, 640, 1280 for \(n = 500, 1000, 2000 \).

<table>
<thead>
<tr>
<th>Case</th>
<th>40% censoring rate</th>
<th>60% censoring rate</th>
<th>40% censoring rate</th>
<th>60% censoring rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DPLCM</td>
<td>CPH</td>
<td>PLACM</td>
<td>DPLCM</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

Empirical coverage probability of 95% confidence intervals for \(\theta \) for the DPLCM, CPH, and PLACM methods. We report coverage observed over 200 simulated datasets for each of the four cases. In each simulation run, only 64% of the data were used to fit models, so the actual sample sizes are 320, 640, 1280 for \(n = 500, 1000, 2000 \).
5. Discussion. With its ability to flexibly model complex characteristics of real-world data, deep learning for survival analysis has garnered considerable attention. This paper studied a DNN approach to DPLCM, which not only provides a powerful tool to remedy the curse of dimensionality with many covariates, but also allows us to easily interpret treatment effects while still providing a flexible/accurate model. Estimators of treatment effect coefficients obtained by maximizing the log partial likelihood are shown to achieve asymptotic rate-optimality.

This paper has only investigated the common setting where covariates X are Euclidean vectors. Yet there are many other complex data types of interest for future work. For example, deep learning has shown great promise for image and text classification (Krizhevsky,
Sutskever and Hinton, 2012; Szegedy et al., 2015; Lee and Dernoncourt, 2016), yet a comprehensive study for survival data with treatment and image/text covariates still be remains to be conducted. Image (or text) data are often represented by a convolutional (or transformer) neural networks, which compose convolutional layers with fully connected layers. These neural architectures are different than simpler fully-connected architectures we studied in (5) and their theoretical analysis remains an important challenge. Medical images and clinician notes may provide valuable information for better modeling patient survival.

Another idea for future work is to extend the methodology to high-dimensional Z if one is interested in identifying a small number of key treatments for clinical decision making. Our DPLCM methodology could be applied to high-dimensional partially linear Cox models by appropriately regularizing \(\theta \) via LASSO-type penalties or smoothly clipped absolute deviation (Du, Ma and Liang, 2010; Liu et al., 2016; Wu et al., 2020).

6. Proofs of Theorems.

6.1. Notation. For any vector \(v = (v_1, \ldots, v_p)^\top \in \mathbb{R}^p \), \(\|v\| = (\sum_{i=1}^p v_i^2)^{1/2} \) and \(\|v\|_\infty = \max_i |v_i| \), and for any matrix \(W = (w_{ij}) \in \mathbb{R}^{m \times n} \), \(\|W\|_\infty = \max_{i,j} |w_{ij}| \). For any function \(h \), \(\|h\|_\infty \) and \(\|h\|_{L^2} \) are the sup-norm and \(L^2 \)-norm of \(h \) respectively, and for any vector function \(h = (h_1, \ldots, h_p)^\top \), \(\|h\|_\infty = \max_i \|h_i\|_\infty \). Denote \(a_n \lesssim b_n \) as \(a_n \leq cb_n \) for some \(c > 0 \) and any \(n \). And \(a_n \asymp b_n \) means \(a_n \lesssim b_n \) and \(b_n \lesssim a_n \).

With \(\eta = (\theta, g) \) and \(V = (Z, X) \), write \(\xi_\eta(V) = \theta^\top Z + g(X) \). We denote the true parameter by \(\eta_0 = (\theta_0, g_0) \). For any \(\eta_1 = (\theta_1, g_1) \) and \(\eta_2 = (\theta_2, g_2) \), define \(d(\eta_1, \eta_2) = \mathbb{E}\{\xi_{\eta_1}(V) - \xi_{\eta_2}(V)\}^2 \). With \(Y(t) = 1(\tau \geq t), \) define

\[
R_{0n}(t, \eta) = \frac{1}{n} \sum_{i=1}^n Y_i(t) \exp\{\xi_\eta(V_i)\}, \quad R_0(t, \eta) = \mathbb{E}[Y(t) \exp\{\xi_\eta(V)\}],
\]

and for any vector function \(h \) of \(V = (Z, X) \),

\[
R_{1n}(t, \eta, h) = \frac{1}{n} \sum_{i=1}^n Y_i(t) h(V_i) \exp\{\xi_\eta(V_i)\}, \quad R_1(t, \eta, h) = \mathbb{E}[Y(t) h(V) \exp\{\xi_\eta(V)\}].
\]

Then define

\[
l_n(t, V, \eta) = \{\xi_\eta(V) - \log R_{0n}(t, \eta)\} 1(0 \leq t \leq \tau), \quad l_0(t, V, \eta) = \{\xi_\eta(V) - \log R_0(t, \eta)\} 1(0 \leq t \leq \tau).
\]

Since the log partial likelihood \(L_n(\eta) \) in (6) is

\[
L_n(\eta) = \frac{1}{n} \sum_{i=1}^n \{\Delta_i l_n(T_i, V_i, \eta) - \Delta_i \log n\},
\]

and

\[
\arg\max_{\eta \in \mathbb{R}^p \times \mathcal{G}} L_n(\eta) = \arg\max_{\eta \in \mathbb{R}^p \times \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \Delta_i l_n(T_i, V_i, \eta),
\]

with an abuse of notations, we replace below the log partial likelihood \(L_n(\eta) \) by \(\frac{1}{n} \sum_{i=1}^n \{\Delta_i \times l_n(T_i, V_i, \eta)\} \).

Furthermore, we denote \(\mathbb{P}_n \) and \(\mathbb{P} \) as the empirical and probability measure of \((V_i, \Delta_i, T_i)\) and \((V, \Delta, T)\), i.e. for any function \(h \) of \((V, \Delta, T)\),

\[
\mathbb{P}_n h(V, \Delta, T) = \frac{1}{n} \sum_{i=1}^n h(V_i, \Delta_i, T_i) \quad \text{and} \quad \mathbb{P} h(V, \Delta, T) = \mathbb{E} h(V, \Delta, T).
\]

Therefore, we have \(L_n(\eta) = \mathbb{P}_n \{\Delta l_n(T, V, \eta)\} \) and further define \(L_0(\eta) = \mathbb{P} \{\Delta l_0(T, V, \eta)\} \).
6.2. Proof of Theorem 3.1. We first only consider the estimator \(\hat{\eta}^* = (\hat{\theta}^*, \hat{g}^*) \) with \(\mathbb{E}\{\xi_{\eta}(V)\} = \mathbb{E}\{\xi_{\eta_0}(V)\} \) in (6). In fact, for any estimator \(\hat{\eta} = (\hat{\theta}, \hat{g}) \) in (6), its transformation \(\tilde{\eta}^* = (\hat{\theta}, \hat{g} - \mathbb{E}\{\xi_{\eta}(V) - \xi_{\eta_0}(V)\} \) is also an estimator in (6), because \(L_n(\hat{\eta}) = L_n(\tilde{\eta}) \) and one can check that this transformation satisfies \(\mathbb{E}\{\xi_{\tilde{\eta}^*}(V)\} = \mathbb{E}\{\xi_{\eta_0}(V)\} \).

We now show that \(d(\hat{\eta}^*, \eta_0) \xrightarrow{p} 0 \) as \(n \to \infty \), and

\[
d(\hat{\eta}^*, \eta_0) = O_p(\gamma_n \log^2 n).
\]

For some \(D > 0 \), let \(\mathbb{P}_D = \{ \theta \in \mathbb{P} : \| \theta \|_\infty < D \} \) and \(\mathcal{G}_D := \mathcal{G}(K, s, p, D) \) set in (5). Define

\[
\tilde{\eta}_D^* = (\hat{\theta}_D^*, \hat{g}_D^*) = \arg \max_{\eta \in \mathbb{P}_D \times \mathcal{G}_D} \{ L_n(\theta, g) \},
\]

\[
\mathbb{E}\{\xi_{\eta}(V)\} = \mathbb{E}\{\xi_{\eta_0}(V)\}
\]

Note that \(\mathbb{P}(d(\hat{\eta}^*, \eta_0) < \infty) = 1 \). If it is not true, there exist a constant \(\epsilon_1 > 0 \), such that \(\mathbb{P}(d(\hat{\eta}^*, \eta_0) \geq \epsilon) \geq \epsilon_1 \) for any \(\epsilon > 0 \). However, this contradicts the fact that the \(\tilde{\eta}^* \) is the maximizer of \(L_n(\eta) \) and \(\mathbb{P}(L_n(\eta) \to -\infty \) as \(d(\eta, \eta_0) \to \infty \) with \(\mathbb{E}\{\xi_{\eta}(V)\} = \mathbb{E}\{\xi_{\eta_0}(V)\} \) = 1. Thus, it suffices to show that \(d(\tilde{\eta}_D^*, \eta_0) \xrightarrow{p} 0 \) as \(n \to \infty \) for some large enough \(D \).

Observe that

\[
|L_n(\eta) - L_0(\eta)| \\
\leq |\mathbb{P}_n(\Delta_l^n(T, V, \eta)) - \mathbb{P}_n(\Delta_l^n(T, V, \eta))| + |\mathbb{P}_n(\Delta_l^n(T, V, \eta)) - \mathbb{P}_n(\Delta_l^n(T, V, \eta))| \\
\leq \mathbb{P}_n(\Delta|\log R_{0n}(T, \eta) - \log R_0(T, \eta)|) + |(\mathbb{P}_n - \mathbb{P})\{\Delta_l^n(T, V, \eta)\}| \\
\leq \sup_{0 \leq t \leq \tau} \| R_{0n}(t, \eta) - R_0(t, \eta) \| + \|(\mathbb{P}_n - \mathbb{P})\{\Delta_l^n(T, V, \eta)\}\| \\
= \sup_{0 \leq t \leq \tau} \|\mathbb{P}_n - \mathbb{P}\|\{Y(t)e^{\xi_{\eta_0}(V)}\} + \|(\mathbb{P}_n - \mathbb{P})\{\Delta_l^n(T, V, \eta)\}\|.
\]

By Lemma 1, we know that \(\mathcal{F}_1 = \{Y(t)e^{\xi_{\eta_0}(V)} : 0 \leq t \leq \tau, \eta \in \mathbb{P}_D \times \mathcal{G}_D\} \) and \(\mathcal{F}_2 = \{\Delta_l^n(T, V, \eta) : \eta \in \mathbb{P}_D \times \mathcal{G}_D\} \) are P-Givenenko-Cantelli, then it follows

\[
\sup_{\eta \in \mathbb{P}_D \times \mathcal{G}_D} \|L_n(\eta) - L_0(\eta)\| \xrightarrow{p} 0.
\]

Define

\[
\tilde{g}_1 = \arg \min_{g \in \mathcal{G}(K, s, p, D/2)} \|g - g_0\|_{L^2}.
\]

By the proof of Theorem 1 in Schmidt-Hieber (2020), we know \(\|\tilde{g}_1 - g_0\|_{L^2} = O(\gamma_n \log^2 n) \). Let \(g = g_1 - \mathbb{E}\{\tilde{g}_1(X)\} \). Then \(\tilde{g} \in \mathcal{G}_D \) and

\[
\|\tilde{g} - g_0\|_{L^2} = \|\tilde{g}_1 - g_0 - \mathbb{E}\{\tilde{g}_1(X) - g_0(X)\}\|_{L^2} \\
\leq \|\tilde{g}_1 - g_0\|_{L^2} = O(\gamma_n \log^2 n).
\]

Then, by (14), Lemma 2 and the law of large numbers, we have

\[
|L_n(\theta_0, \tilde{g}) - L_n(\theta_0, g_0)| \leq |L_n(\theta_0, \tilde{g}) - L_0(\theta_0, \tilde{g})| + |L_0(\theta_0, \tilde{g}) - L_0(\theta_0, g_0)| \\
+ |L_0(\theta_0, g_0) - L_n(\theta_0, g_0)| \\
= o_p(1).
\]

Since \(\tilde{\eta}_D^* \) is the maximizer of (13), we have \(L_n(\tilde{\eta}_D^*, \tilde{\eta}_D^*) \geq L_n(\theta_0, \tilde{g}) = L_n(\theta_0, g_0) - o_p(1) \), which gives

\[
L_n(\tilde{\eta}_D^*) \geq L_n(\eta_0) - o_p(1).
\]
Moreover, Lemma 2 implies that, for any small \(\epsilon > 0 \),
\[
\sup_{d(\eta, \eta_0) \geq \epsilon} L_0(\eta) < L_0(\eta_0).
\]
(19)

Therefore, the conditions in Theorem 5.7 of van der Vaart (2000) follows from (14), (18) and (19), and this implies that \(d(\hat{\eta}_D, \eta_0) \rightarrow 0 \) as \(n \rightarrow \infty \).

Next, we show the convergence rates \(d(\hat{\eta}_D, \eta_0) = O_p(\gamma_n \log^2 n) \). Let \(A_\delta = \{ \eta = (\theta, g) \in \mathbb{R}_D^p \times G_D : \delta/2 \leq d(\eta, \eta_0) \leq \delta \} \). We first need to show that
\[
\mathbb{E}^* \sup_{\eta \in A_\delta} \sqrt{n} |(L_n - L_0)(\eta) - (L_n - L_0)(\eta_0)| \lesssim \phi_n(\delta), \tag{20}
\]
where \(\mathbb{E}^* \) is the outer measure and\(\phi_n(\delta) = \delta \sqrt{s \log \frac{L}{\delta}} + \frac{\delta}{\sqrt{n}} \log \frac{L}{\delta} \) with \(U = K \prod_{k=0}^{K} (p_k + 1) \sum_{k=0}^{K} p_k p_{k+1} \).

By calculation,
\[
(L_n - L_0)(\eta) - (L_n - L_0)(\eta_0) = (\mathbb{P}_n - \mathbb{P}) \{ \Delta l_0(T, V, \eta) - \Delta l_0(T, V, \eta_0) \} + \mathbb{P}_n \{ \Delta \log \frac{R_0(T, \eta)}{R_0(T, \eta_0)} - \Delta \log \frac{R_0n(T, \eta)}{R_0n(T, \eta_0)} \} = I + II.
\]

By Lemma 3, we obtain
\[
\sup_{\eta \in A_\delta} |I| = O(n^{-1/2} \phi_n(\delta)). \tag{21}
\]

For the second term \(II \), we have
\[
\sup_{\eta \in A_\delta} |II| \leq \sup_{\eta \in A_\delta, t \in [0, \tau]} \left| \log \frac{R_0(t, \eta)}{R_0(t, \eta_0)} - \log \frac{R_0n(t, \eta)}{R_0n(t, \eta_0)} \right| \lesssim \sup_{\eta \in A_\delta, t \in [0, \tau]} \left| \frac{R_0(t, \eta)}{R_0(t, \eta_0)} - \frac{R_0n(t, \eta)}{R_0n(t, \eta_0)} \right| = \sup_{\eta \in A_\delta, t \in [0, \tau]} \left| \frac{R_0(t, \eta)R_0n(t, \eta_0) - R_0(t, \eta_0)R_0n(t, \eta)}{R_0(t, \eta_0)R_0n(t, \eta)} \right|.
\]

The denominator \(R_0(t, \eta_0)R_0n(t, \eta_0) \) is bounded away from zero with probability tending to one. And the numerator has
\[
R_0(t, \eta)R_0n(t, \eta_0) - R_0(t, \eta_0)R_0n(t, \eta) = \{ R_0n(t, \eta_0) - R_0(t, \eta_0) \} \{ R_0(t, \eta) - R_0(t, \eta_0) \} - R_0(t, \eta_0) \{ R_0n(t, \eta) - R_0(t, \eta_0) \} - R_0(t, \eta_0). \tag{22}
\]

For the first term of the right hand side in (22), it follows from the central limit theorem that \(R_0n(t, \eta_0) - R_0(t, \eta_0) = O_p(n^{-1/2}) \), and
\[
|R_0(t, \eta) - R_0(t, \eta_0)| \leq \mathbb{E}[e^{\xi_\theta(V)} - e^{\xi_{\theta_0}(V)}] \lesssim [\mathbb{E}\{\xi_\theta(V) - \xi_{\theta_0}(V)\}^2]^{1/2} = d(\eta, \eta_0).
\]

For the second term, \(R_0(t, \eta_0) = O(1) \) and
\[
R_0n(t, \eta) - R_0n(t, \eta_0) - R_0(t, \eta) + R_0(t, \eta_0) = (\mathbb{P}_n - \mathbb{P}) \{ Y(t) \{ e^{\xi_\eta(V)} - e^{\xi_{\eta_0}(V)} \} \}
\]
\(\Delta III. \)
Lemma 3 implies that
\[
\sup_{\eta \in A_0} |III| = O(n^{-1/2} \phi_n(\delta)).
\]

Then,
\[
(23) \quad \sup_{\eta \in A_0} |II| \leq O(n^{-1/2} \delta) + O(n^{-1/2} \phi_n(\delta)) = O(n^{-1/2} \phi_n(\delta)).
\]

Thus, the result (20) follows from (21) and (23).

Furthermore, Lemma 2 shows that
\[
(24) \quad \sup_{\eta \in A_0} \mathbb{P}\{\Delta l_0(T, V, \eta) - \Delta l_0(T, V, \eta_0)\} \lesssim -\delta^2.
\]

Denote \(\tau_n = \gamma_n \log^2 n \). By assumption (A1), it is clear that
\[
\tau_n^{-2} \varphi_n(\tau_n) \leq \sqrt{n}.
\]

On the other hand, by analogy to (20) and \(\tilde{g} \) in (16), we have
\[
|L_n(\theta_0, \tilde{g}) - L_n(\theta_0, g_0)| \lesssim O_p(n^{-1/2} \phi_n(\tau_n)) + n^{-1/2}|L_0(\theta_0, \tilde{g}) - L_0(\theta_0, g_0)|
\]
\[
\lesssim O_p(n^{-1/2} \phi_n(\tau_n)) + n^{-1/2}\|\tilde{g} - g_0\|_{L^2}^2
\]
\[
\leq O_p(\tau_n^2).
\]

Thus, by the definition of \(\hat{n}_D = (\hat{\theta}_D, \hat{g}_D) \) in (13),
\[
L_n(\hat{\theta}_D, \hat{g}_D) \geq L_n(\theta_0, \tilde{g}) \geq L_n(\theta_0, g_0) - O_p(\tau_n^2).
\]

By Theorem 3.4.1 in van der Vaart and Wellner (1996), we have
\[
d(\hat{n}_D, \eta_0) = O_p(\tau_n).
\]

This gives \(d(\hat{n}_D, \eta_0) = O_p(\tau_n) \).

Furthermore, we have
\[
d^2(\hat{n}_D, \eta_0) = \mathbb{E}[(\hat{\theta} - \theta_0)^\top \{Z - \mathbb{E}(Z|X)\} + (\hat{\theta} - \theta_0)^\top \mathbb{E}(Z|X) + \{\hat{g}(X) - g_0(X)\})^2
\]
\[
= \mathbb{E}[(\hat{\theta} - \theta_0)^\top \{Z - \mathbb{E}(Z|X)\}]^2 + \mathbb{E}[\{\hat{g}(X) - g_0(X)\} + (\hat{\theta} - \theta_0)^\top \mathbb{E}(Z|X)]^2.
\]

Thus, by assumptions (A2), (B1) and (B2), it follows \(\|\hat{\theta} - \theta_0\| = O_p(\tau_n) \) and
\[
(25) \quad \|\hat{g} - g_0\|_{L^2} = O_p(\tau_n).
\]

Let \(\tilde{g} = \hat{g} - \mathbb{E}\{\hat{g}(X)\} \), then \(\mathbb{E}\{\hat{g}(X)\} = 0 \) and
\[
O(\tau_n^2) = \mathbb{E}\{\hat{g}(X) - g_0(X)\}^2 = \mathbb{E}\{\hat{g}(X) - g_0(X)\}^2 + [\mathbb{E}\{\hat{g}(X)\}]^2 \geq \mathbb{E}\{\hat{g}(X) - g_0(X)\}^2.
\]

This implies the result.

6.3. Proof of Theorem 3.2. Let \(P(\theta_0, \lambda_0, g_0) \) be the probability distribution with respect to the parameter \(\theta_0 \), baseline hazard function \(\lambda_0 \) and nonparametric function \(g_0 \). Denote \(\mathcal{P}_0 = \{P(\theta_0, \lambda_0, g_0) : \theta_0 \in \mathbb{R}_M^p, \lambda_0 \in \Omega_0 \text{ and } g_0 \in \mathcal{H}_0\} \) and \(\mathcal{P}_1 = \{P(\theta_0, \lambda_0, g_0) : \theta_0 \in \mathbb{R}_M^p, \lambda_0 \in \Omega_1 \text{ and } g_0 \in \mathcal{H}_1\} \), where \(\Omega_1 = \{\lambda : \int_0^\lambda \lambda(s)ds = 1 \text{ and } \lambda \geq 0\} \) and \(\mathcal{H}_1 = \mathcal{H}(q, \alpha, d, \bar{d}, M/2) \).

For any \((\theta, \lambda_1, g_1) \in \mathbb{R}_M^p \times \Omega_1 \times \mathcal{H}_1\), we know that \(P(\theta_0, \lambda_1, g_1) \equiv P(\theta, \lambda_1, \exp(c), g_1, -c) \) and \(P(\theta, \lambda_1, \exp(c), g_1, -c) \in \mathcal{P}_0 \), where \(c = \mathbb{E}\{g_1(X)\} \) and \(P \equiv Q \) means \(P \) and \(Q \) have the same
probability measure. That is, \(\mathcal{P}_1 \) is a subset of \(\mathcal{P}_0 \). Furthermore, if \(\hat{g}_1 \) is an estimator of \(g_1 \in \mathcal{H}_1 \) based on the observed data \(\{(T_i, \Delta_i, V_i), i = 1, \ldots, n\} \) under some model \(P(\theta, \lambda, g_1) \in \mathcal{P}_1 \), then \(\hat{g}_0 := \hat{g}_1 - c \) with \(c = \mathbb{E}\{g_1(X)\} \) is also an estimator of \(g_0 := g_1 - c \) based on same copies of the observed data \(\{(T_i, \Delta_i, V_i), i = 1, \ldots, n\} \) under \(P(\theta, \lambda, \exp(c), g_0) \weq P(\theta, \lambda, g_1) \in \mathcal{P}_0 \). It is easy to see that \(\hat{g}_1 - g_1 = \hat{g}_0 - g_0 \), hence
\[
\inf g \sup_{(\theta, \lambda, g_0) \in \mathcal{P}_M \times \Omega_1 \times \Omega_1, \lambda, g_0} \mathbb{E}_{P(\theta, \lambda, g_0)} \{\hat{g}_0(X) - g_0(X)\}^2 \geq \inf g \sup_{(\theta, \lambda, g_1) \in \mathcal{P}_M \times \Omega_1 \times \Omega_1, \lambda, g_1} \mathbb{E}_{P(\theta, \lambda, g_1)} \{\hat{g}_1(X) - g_1(X)\}^2,
\]
where \(\mathbb{E}_P \) is the expectation under the distribution \(P \) and the infimum is taken over all possible estimators \(\hat{g} \) and \(\hat{g}_1 \) based on the observed data under the probabilities in \(\mathcal{P}_0 \) and \(\mathcal{P}_1 \), respectively.

Next we find a lower bound for the right hand side of (26), which is also a lower bound for the left hand side of (26).

For \((\theta_0, \lambda_0) \in \mathbb{R}_M^p \times \Omega_1 \) and \(g(0), g(1) \in \mathcal{H}_1 \), let \(P_0 \) and \(P_1 \) be the joint probability distribution of the observed data \(\{(T_i, \Delta_i, V_i), i = 1, \ldots, n\} \) under \(P(\theta_0, \lambda_0, g(0)) \) and \(P(\theta_0, \lambda_0, g(1)) \), respectively. By Lemma 4, there exist a constant \(c > 0 \), such that
\[
KL(P_1, P_0) \leq cn\|g(1) - g(0)\|_{L^2}^2,
\]
where \(KL(\cdot, \cdot) \) is the Kullback-Leibler distance between \(P_1 \) and \(P_0 \).

By the proof of Theorem 3 of Schmidt-Hieber (2017), there exist \(g(0), \ldots, g(N) \in \mathcal{H}_1 \) and constant \(c_1, c_2 > 0 \), such that
\[
\|g(j) - g(k)\|_{L^2} \geq 2c_1\gamma_n > 0 \quad \text{and} \quad \frac{c_1}{N} \sum_{j=1}^N \|g(j) - g(0)\|_{L^2}^2 \leq c_2 \log N.
\]
Then with (27) and (28), Theorem 2.5 in Tsybakov (2009) implies that
\[
\inf g \sup_{\hat{g}_1 \in \mathcal{H}_1} \mathbb{P}(\|\hat{g}_1 - g_1\|_{L^2} \geq c_1\gamma_n) \geq \frac{\sqrt{N}}{1 + \sqrt{N}} \left(1 - 2c_2 - \sqrt{\frac{2c_2}{\log N}}\right).
\]
This shows that
\[
\inf g \sup_{(\theta, \lambda, g_1) \in \mathcal{P}_M \times \Omega_1 \times \Omega_1} \mathbb{E}_{P(\theta, \lambda, g_1)} \{\hat{g}_1(X) - g_1(X)\}^2 \geq c_3\gamma_n^2,
\]
for some constant \(0 < c_3 < \infty \).

Therefore, the proof is completed.

6.4. Proof of Theorem 3.3. For any \(\theta \in \mathbb{R}^p \), the subfamily \(\{\log \lambda_s : s \in (-1, 1)\} \in \Omega_{\lambda_0} \) and the subfamily \(\{g_s : s \in (-1, 1)\} \in \mathcal{H}_{g_0} \), we consider a one dimensional submodel \(\{P(\theta_0 + s\theta, \lambda_s, g_s) : s \in (-1, 1)\} \). By definition of the subfamilies \(\{\log \lambda_s : s \in (-1, 1)\} \) and \(\{g_s : s \in (-1, 1)\} \), there exist \(h \in \mathbb{T}_{\lambda_0} \) and \(g \in \mathbb{T}_{g_0} \), such that
\[
\left. \frac{\partial \log \lambda_s}{\partial s} \right|_{s=0} = h \quad \text{and} \quad \left. \frac{\partial g_s}{\partial s} \right|_{s=0} = g.
\]
Note that the log-likelihood for a single observation \((Z, X, \Delta, T) \) is
\[
\ell(\theta, \lambda, g) = \Delta \{\log \lambda(T) + Z^\top \theta + g(X)\} - \Lambda(T) \exp\{Z^\top \theta + g(X)\},
\]
where \(\Lambda(t) = \int_0^t \lambda(u) \, du \). Then taking derivative of the likelihood \(\ell(\theta_0 + s\theta, \lambda_s, g_s) \) with respect to \(s \) at \(s = 0 \), we have
\[
\left. \frac{d\ell(\theta_0 + s\theta, \lambda_s, g_s)}{ds} \right|_{s=0} = \theta^\top \dot{\ell}_{\theta_0} + \dot{\ell}_{\lambda_0} h + \dot{\ell}_{g_0} g,
\]
where

\[
\hat{\theta}_0 = \Delta Z - \int_0^\infty ZY(t)\lambda_0(t)e^{E_0(V)}dt = \int_0^\infty ZdM(t),
\]

\[
\hat{\lambda}_{0,h} = \Delta h(T) - \int_0^\infty h(t)Y(t)\lambda_0(t)e^{E_0(V)}dt = \int_0^\infty h(t)dM(t),
\]

\[
\hat{g}_{0,g} = \Delta g(X) - \int_0^\infty g(X)Y(t)\lambda_0(t)e^{E_0(V)}dt = \int_0^\infty g(X)dM(t)
\]

are the score vector and functions corresponding to \(\theta_0, \lambda_0 \) and \(g_0 \), respectively. The efficient score function [see Chapter 3 of Kosorok (2008)] for \(\theta_0 \) is

\[
\ell_{\theta_0}^*(V, \Delta, T) := \hat{\theta}_0 - \Pi_{\lambda_0,g_0}(\hat{\theta}_0|\hat{P}_1 + \hat{P}_2),
\]

where \(\Pi_{\lambda_0,g_0}(\hat{\theta}_0|\hat{P}_1 + \hat{P}_2) \) is the projection of \(\hat{\theta}_0 \) onto the sumspace \(\hat{P}_1 + \hat{P}_2 \) with \(\hat{P}_1 := \{\hat{\lambda}_{0,h} : h \in \mathbb{T}_{\lambda_0}\} \) and \(\hat{P}_2 := \{\hat{g}_{0,g} : g \in \mathbb{T}_{g_0}\} \). Finding \(\Pi_{\lambda_0,g_0}(\hat{\theta}_0|\hat{P}_1 + \hat{P}_2) \) is equivalent to finding the vector function \((h^*, g^*)^T \in (\mathbb{T}_{\lambda_0})^p \times (\mathbb{T}_{g_0})^r \) such that

\[
E\{\{\hat{\theta}_0 - \hat{\lambda}_{0,h} - g_{0,g}\}\hat{\lambda}_{0,h}\} = 0, \quad \text{for all } h \in \mathbb{T}_{\lambda_0},
\]

\[
E\{\{\hat{\theta}_0 - \hat{\lambda}_{0,h} - g_{0,g}\}\hat{g}_{0,g}\} = 0, \quad \text{for all } g \in \mathbb{T}_{g_0}.
\]

Then \(\Pi_{\lambda_0,g_0}(\hat{\theta}_0|\hat{P}_1 + \hat{P}_2) = \hat{\lambda}_{0,h} + \hat{g}_{0,g} \). By Lemma 1 of Sasieni (1992a), (30) is equivalent to

\[
E\{\Delta(Z - h_* - g_*)h\} = 0, \quad \text{for all } h \in \mathbb{T}_{\lambda_0},
\]

\[
E\{\Delta(Z - h_* - g_*)g\} = 0, \quad \text{for all } g \in \mathbb{T}_{g_0}.
\]

This implies that \((h^*, g^*)^T \in (\mathbb{T}_{\lambda_0})^p \times (\mathbb{T}_{g_0})^r \) minimizes

\[
E\{\Delta ||Z - h(T) - g(X)||^2\}.
\]

By assumptions (A2), (B2) and (B3), Lemma 1 of Stone (1985), and Appendix A.4 in Bickel et al. (1993), we know that the minimizer \((h^*, g^*)^T \) is well defined. Therefore, the efficient score is

\[
\ell_{\theta_0}^*(V, \Delta, T) := \hat{\theta}_0 - \hat{\lambda}_{0,h} - \hat{g}_{0,g} = \int_0^T \{Z - h_*(t) - g_*(X)\}dM(t),
\]

and the information matrix is

\[
I(\theta_0) = E\{\ell_{\theta_0}^*(V, \Delta, T)\}^\otimes 2 = E\{\Delta(Z - h_*(T) - g_*(X))\}^\otimes 2\}.
\]

6.5. Proof of Theorem 3.4. For vector function \(h \) of \(v = (z, x) \), define

\[
r_n(t, \eta, h) = h - \frac{R_{1n}(t, \eta, h)}{R_{0n}(t, \eta)}, \quad r(t, \eta, h) = h - \frac{R_1(t, \eta, h)}{R_0(t, \eta)}.
\]

Taking the derivative of the partial likelihood (i.e. the partial score functions) with respect to the parameters, the partial score functions for \(\theta \) and for \(g \) in some direction \(g_1 \) are

\[
\hat{e}_{n,\theta}(\theta, g) = P_n\{\Delta r_n(T, \eta, I)\} \quad \text{and} \quad \hat{e}_{n,g}(\theta, g_1) = P_n\{\Delta r_n(T, \eta, g_1)\},
\]

respectively, where \(I \) is the identity map of \(z \), i.e. \(I(z) = z \). By the definition of \((\hat{\theta}_n, \hat{g}) \), we have \(\hat{e}_{n,\theta}(\hat{\theta}, \hat{g}) = 0 \) and \(\hat{e}_{n,g}(\hat{\theta}, \hat{g}, g) = 0 \), for all \(g \in (\mathbb{T}_{g_0})^p \). Combining this with Lemma 5 and the definition of \(g_* \) in Theorem 3.3, we have

\[
\sqrt{n}P_n\{\Delta r(T, \eta_0, I - g_*)\}^\otimes 2\} = \sqrt{n}P_n\{\Delta r_n(T, \eta_0, I - g_*)\} + o_p(1).
\]
Denote
\[M_i(t) = \Delta_i 1(T_i \leq t) - \int_0^t Y_i(s) \exp\{\xi_{\eta_0}(V_i)\} \lambda_0(s) \, ds, \]
then
\[\sqrt{n} \ln \{\Delta r_n(T, \eta_0, I - g_*)\} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \int_0^\tau \left\{ Z_i - g_*(X_i) - \frac{R_{1n}(t, \eta_0, I - g_*)}{R_{0n}(t, \xi_{\eta_0})} \right\} dM_i(t). \]

It follows that
\[\sqrt{n} \ln \{\Delta r_n(T, \eta_0, I - g_*)\} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \int_0^\tau \left\{ Z_i - g_*(X_i) - \frac{R_{1n}(t, \eta_0, I - g_*)}{R_{0n}(t, \eta_0)} \right\} dM_i(t) \]
\[= -\frac{1}{\sqrt{n}} \sum_{i=1}^n \int_0^\tau \left\{ \frac{R_{1n}(t, \eta_0, I - g_*)}{R_{0n}(t, \eta_0)} - \frac{R_{1n}(t, \eta_0, I - g_*)}{R_{0n}(t, \eta_0)} \right\} dM_i(t). \]

Lenglart’s inequality (Lenglart, 1977) and
\[\frac{1}{\sqrt{n}} \sum_{i=1}^n \int_0^\tau \left\{ \frac{R_{1n}(t, \eta_0, I - g_*)}{R_{0n}(t, \eta_0)} - \frac{R_{1n}(t, \eta_0, I - g_*)}{R_{0n}(t, \eta_0)} \right\}^2 Y_i(t) \exp\{\xi_{\eta_0}(V_i)\} \lambda_0(t) \, dt \to^p 0 \]
together imply
\[\sqrt{n} \ln \{\Delta r_n(T, \eta_0, I - g_*)\} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \int_0^\tau \left\{ Z_i - g_*(X_i) - \frac{R_{1n}(t, \eta_0, I - g_*)}{R_{0n}(t, \eta_0)} \right\} dM_i(t) \]
\[+ o_p(1). \]

By Lemma 2 in Sasiendi (1992b) and the definition of \(g_* \) and \(h_* \) in Theorem 3.3, we obtain that
\[\frac{R_{1n}(t, \eta_0, I - g_*)}{R_{0n}(t, \eta_0)} = \mathbb{E}\{Z - g_*(X) | T = t, \Delta = 1\} = h_*(t). \]

Hence, by the definition of the efficient score function \(\ell^*_0 \), we have
\[\sqrt{n} \ln \{\Delta r(T, \eta_0, I - g_*)\} = \frac{1}{\sqrt{n}} \sum_{i=1}^n \ell^*_0(V_i, \Delta_i, T_i) + o_p(1) \xrightarrow{d} \mathcal{N}(0, I(\theta_0)). \]

This and (32) complete the proof.

APPENDIX A: KEY LEMMAS

The following lemmas are used to establish Theorem 3.1 – 3.4 and their proofs are given in the Supplementary Material.

Lemma 1. Define \(\mathcal{F}_1 = \{Y(t)e^{\xi_\eta(V)}: \eta \in \mathbb{R}_D^p \times \mathcal{G}(K, s, p, D), t \in [0, \tau]\} \) and \(\mathcal{F}_2 = \{\Delta l_0(T, V, \eta): \eta \in \mathbb{R}_D^p \times \mathcal{G}(K, s, p, D)\} \). Then for any \(D > 0, \mathcal{F}_1 \) and \(\mathcal{F}_2 \) are P-Glivenko-Cantelli.

Lemma 2. Under assumptions (A2) and (B1) - (B4), we have
\[L_0(\eta) - L_0(\eta_0) \asymp -d^2(\eta, \eta_0), \]
for all \(\eta \in \{\eta: d(\eta, \eta_0) \leq c, \mathbb{E}\{\xi_\eta(V)\} = \mathbb{E}\{\xi_{\eta_0}(V)\}\} \) with some small \(c > 0 \).
Lemma 3. Let $\mathcal{B}_\delta = \{\eta = (\theta, g) \in \mathbb{R}^p \times \mathcal{G}(K, s, p, D) : \|\theta - \theta_0\| \leq \delta, \|g - g_0\|_{L^2} \leq \delta\}$. Define $\mathcal{G}_n = \sqrt{n}(\mathbb{P} - \mathbb{P})$ and

\[
I = \mathcal{G}_n\{\Delta l_{0}(T, V, \eta) - \Delta l_{0}(T, V, \eta_0)\}, \quad II = \mathcal{G}_n[Y(t) \exp\{\xi_\eta(V)\} - Y(t) \exp\{\xi_{\eta_0}(V)\}],
\]

then

\[
\mathbb{E}^* \sup_{\eta \in \mathcal{B}_\delta} |I| = O(\delta \sqrt{s \log \frac{U}{\delta}} + \frac{s}{\sqrt{n}} \log \frac{U}{\delta}),
\]

\[
\mathbb{E}^* \sup_{\eta \in \mathcal{B}_\delta} |II| = O(\delta \sqrt{s \log \frac{U}{\delta}} + \frac{s}{\sqrt{n}} \log \frac{U}{\delta}), \text{ for any } t \in [0, \tau],
\]

where \mathbb{E}^* is the outer measure and $U = K \prod_{k=0}^K (p_k + 1) \sum_{k=0}^K p_k p_{k+1}$.

Lemma 4. For fixed baseline hazard function λ_0 and parameter θ, let P_1 and P_2 be the joint probability distribution of the observed data $\{(T_i, \Delta_i, V_i), i = 1, \ldots, n\}$ from nonparametric function $g^{(0)}$ and $g^{(1)}$, respectively. Then under assumptions (A2), (B1) and (B2), we have

\[
KL(P_1, P_0) \leq cn\|g^{(1)} - g^{(0)}\|^2_{L^2},
\]

where $KL(P_1, P_0) := \mathbb{E}_{P_1} \log \frac{P_1}{P_0}$ is the Kullback-Leibler distance between P_1 and P_0 and c is a constant independent to n.

Lemma 5.

\[
P_n[\Delta (r_n(T, \hat{\eta}, I - g_\hat{\theta}) - r_n(T, \eta_0, I - g_\theta))] = -\mathbb{P}[^2]\{r(T, \eta_0, I - g_\theta)\}((\hat{\theta} - \theta_0) + o_P(n^{-1/2}).
\]

Acknowledgments. The first author was supported in part by National Science Foundation of China grant NSFC-11931001. The third author was supported in part by NSF grant DMS-1914917.

Supplementary Material

Supplement to “Deep learning for the partially linear Cox model”. The supplement contains mathematical proofs and examples to complete the main text, additional simulation results, and empirical analysis of another real dataset.

References

P ARTIALLY LINEAR COX MODEL

