HYPOTHESIS TESTING ON LINEAR STRUCTURES OF HIGH DIMENSIONAL COVARIANCE MATRIX

BY SHURONG ZHENG*, ZHAO CHEN†, HENGJIAN CUI‡ AND RUNZE LI§

Northeast Normal University, Fudan University
Pennsylvania State University and Capital Normal University

This paper is concerned with test of significance on high dimensional covariance structures, and aims to develop a unified framework for testing commonly-used linear covariance structures. We first construct a consistent estimator for parameters involved in the linear covariance structure, and then develop two tests for the linear covariance structures based on entropy loss and quadratic loss used for covariance matrix estimation. To study the asymptotic properties of the proposed tests, we study related high dimensional random matrix theory, and establish several highly useful asymptotic results. With the aid of these asymptotic results, we derive the limiting distributions of these two tests under the null and alternative hypotheses. We further show that the quadratic loss based test is asymptotically unbiased. We conduct Monte Carlo simulation study to examine the finite sample performance of the two tests. Our simulation results show that the limiting null distributions approximate their null distributions quite well, and the corresponding asymptotic critical values keep Type I error rate very well. Our numerical comparison implies that the proposed tests outperform existing ones in terms of controlling Type I error rate and power. Our simulation indicates that the test based on quadratic loss seems to have better power than the test based on entropy loss.

1. Introduction. High dimensional data analysis has become increasingly important in various research fields. Fan and Li (2006) gave a brief review of regularization methods to deal with several challenges in high dimensional data analysis. Bai and Saranadasa (1996) demonstrated the

*Supported by National Natural Science Foundation of China (NNSFC) grant 11522105 and Fundamental Research Funds for the Central Universities.
†Supported by NNSFC grants 11690014 and 11690015.
‡Supported by NNSFC grants 11471223, 11071022 and 11231010.
§Supported by NSF grants DMS 1512422 and DMS 1820702, and NIH grants P50 DA039838 and U19AI089672.

Keywords and phrases: Covariance matrix structure, random matrix theory, test of compound symmetric structure, test of banded structure, test of sphericity.
impact of dimensionality for test of two-sample high dimensional normal means. This paper aims to develop powerful tests for high-dimensional covariance structure without the normality assumption.

Test of covariance structure is of great importance in multivariate data analysis. Under normality assumption, various tests for covariance matrix have been developed in the classical multivariate analysis (see, e.g., Anderson (2003)). However, these tests become invalid when the dimension p of data is large relative to the sample size n (see Ledoit and Wolf (2002)). Alternatives to the classical tests of covariance structure have been developed in the literature (see Srivastava (2005); Birke and Dette (2005); Srivastava and Reid (2012)). Several authors have studied testing whether a covariance matrix equals the identity matrix. Johnstone (2001) derived the Tracy-Wisdom law of the largest eigenvalue of the sample covariance matrix for normal distribution with covariance matrix being the identity matrix and $p/n \rightarrow y \in (0, 1)$. Without normality assumption, Bai, Jiang, Yao and Zheng (2009) proposed correcting the LRT for testing whether the covariance matrix equals a known one (or equivalently testing whether the covariance matrix equals the identity matrix), and derived the limiting null distribution when $p/n \rightarrow y \in (0, 1)$ by using results from modern random matrix theory (RMT) (see Bai and Silverstein (2004); Zheng (2012)). Wang, Yang, Miao and Cao (2013) redefined the LRT when $y \in (0, 1)$. Wang (2014) further investigated the asymptotic power of the LRT. Jiang, Jiang and Yang (2012) studied a corrected LRT when $y \in (0, 1]$. They discussed the LRT for the case $y = 1$ and showed that the performance of the corrected LRT when $y = 1$ is quite different from that when $y \in (0, 1)$. Cai and Ma (2013) tested the covariance matrix being a given matrix from a minimax point of view and allowed $p/n \rightarrow \infty$.

Sphericity testing is another important problem under high-dimensional settings. When $p, n \rightarrow \infty$, Chen, Zhang and Zhong (2010) studied testing sphericity for high dimensional covariance matrices. Wang and Yao (2013) also studied testing sphericity for large dimensional data. Under the normality assumption, Jiang and Yang (2013) obtained the limiting null distributions of LRTs for test of sphericity, test of independence, the equality test of covariance matrices, and the identity test of covariance matrix using moment generating function technique, under the assumption that $p < n$ and $p/n \rightarrow y \in (0, 1]$. Jiang and Qi (2015) further obtained the limiting null distributions of test statistics studied in Jiang and Yang (2013) under the normality assumption and $p < n - c$ for some $0 \leq c \leq 4$. As an extension of test of sphericity, testing banded structure of covariance matrices has been considered. Cai and Jiang (2011) tested banded structure of covariance ma-
trices by limiting law of coherence of random matrices. This test enjoys high power for sparse alternatives if \(\log p = o(n^{1/3}) \). Qiu and Chen (2012) studied testing banded structures based on U-statistics under the assumption \(p/n \to y \in (0, \infty) \).

This paper intends to develop a unified framework for testing linear covariance structures when \(p/n \to y \in (0, \infty) \) and without the normality assumption. Not only several commonly-used structures such as test of sphericity, compound symmetric structure and banded structure are included, but also many more structures can be covered by selecting the proper basis matrices. To begin with, we propose estimating the parameters involved in the linear covariance structure by the squared loss; then develop two tests for these covariance structures based on the entropy loss and quadratic loss used for covariance matrix estimation in the classical multivariate analysis (see Muirhead (1982)). We demonstrate that many existing tests for specific covariance structures are special cases of the newly proposed tests. Furthermore, to establish the asymptotic theory of the proposed tests, we first study asymptotic properties of some useful functionals of high-dimensional sample covariance matrix. We further prove that these functionals converge in probability, and their joint distribution weakly converges to a bivariate normal distribution. These asymptotic results are of their own significance in spectral analysis of RMT. Finally, using these asymptotic results, we derive the limiting distributions of the two proposed tests under both null and alternative hypotheses, and the power functions of these two tests. We further show that the test based on quadratic loss is asymptotically unbiased in the sense that the power under the alternative hypothesis is always greater than the significance level.

We conduct Monte Carlo simulation study to examine the finite sample performance of the two tests. Our simulation results show that the limiting null distributions of the proposed tests approximate their null distributions quite well, and the corresponding asymptotic critical values keep Type I error rate very well. Our numerical comparison implies that the proposed tests outperform existing ones in terms of controlling Type I error rate and power. Our simulation indicates that the test based on quadratic loss seems to have higher power than the test based on entropy loss.

The rest of this paper is organized as follows. In Section 2, we propose an estimation procedure for parameters involved in the linear covariance matrix structure, and develop two tests for linear structure. We further derive the asymptotic distributions of these two tests under the null and alternative hypotheses. In Section 3, we conduct Monte Carlo simulation to compare the finite sample performance of the proposed tests with existing
ones. Theoretical proofs and technical lemmas are given in the Appendix.

2. Tests on linear structures of covariance matrices. Suppose that \(\{ x_1, x_2, \ldots, x_n \} \) is an independent and identically distributed random sample from a \(p \)-dimensional population \(x \) with mean \(E(x) = \mu \), and covariance matrix \(\text{Cov}(x) = \Sigma \). Following the commonly-adopted assumptions in the literature of RMT (see Bai and Silverstein (2004)), we impose the following two assumptions.

Assumption A. Assume that the \(p \)-dimensional population \(x \) satisfies the independent component structure that can be represented as
\[
 x = \mu + \Sigma^{1/2} w,
\]
where \(w = (w_1, \ldots, w_p)^T \), and \(w_1, \ldots, w_p \) are independent and identically distributed and \(E(w_j) = 0 \), \(E(w_j^2) = 1 \) and \(E(w_j^4) = \kappa < \infty \), for \(1 \leq j \leq p \).

Assumption B. Denote by \(y_{n-1} = p/(n-1) \). Assume that \(y_{n-1} \to y \in (0, \infty) \).

Assumption A relaxes the normality assumption by imposing the moment conditions. This assumption is often used in random matrix theories. Regarding to the representation in Assumption A, it is natural to assume that \(w_j \) is standardized so that \(E(w_j) = 0 \) and \(E(w_j^2) = 1 \). If \(w_j \) is with finite kurtosis, then Assumption A is satisfied. Of course, multivariate normal distribution satisfies Assumption A. Many other distributions may also satisfy Assumption A.

Assumption B allows that \(p \) diverges as \(n \) grows to infinity. This assumption implies that we are interested in studying the asymptotic behaviors of test procedures under the statistical settings in which both the dimension \(p \) and the sample size \(n \) are allowed to tend to infinity. Assumption B allows that \(p \) may be less than or greater than the sample size. Hereafter we omit the subscript \(n \) in \(p_n \) for simplicity. Denote by \(\overline{x} \) and \(S_n \) the sample mean and sample covariance matrix, respectively. That is,
\[
(2.1) \quad \overline{x} = n^{-1} \sum_{i=1}^{n} x_i, \quad S_n = (n-1)^{-1} \sum_{i=1}^{n} (x_i - \overline{x})(x_i - \overline{x})^T.
\]

2.1. Estimation. Linear structure for covariance matrix \(\Sigma \) means that \(\Sigma \) can be represented as a linear combination of pre-specified symmetric \(p \times p \) matrices \((A_1, \ldots, A_K) \) with fixed and finite \(K \). That is,
\[
(2.2) \quad \Sigma = \theta_1 A_1 + \theta_2 A_2 + \ldots + \theta_K A_K,
\]
where \(\{ \theta_j, j = 1, \ldots, K \} \) are unknown parameters. Here \(A_1, \ldots, A_K \) are a set of basis matrices, and they are assumed to be linearly independent.
For example, Anderson (1973) provided various covariance matrices with different linear structures. In particular, the author showed that the covariance for $\mathbf{X} = \sum_{k=1}^{K} \mathbf{U}_k \mathbf{G}_k + \mathbf{E}$ satisfies the linear covariance structure, where $\mathbf{G}_k \sim N(0, \theta_0 \mathbf{I}_p)$, $\mathbf{E} \sim N(0, \mathbf{I}_p)$, $\mathbf{G}_1, \ldots, \mathbf{G}_K, \mathbf{E}$ are independent and \mathbf{I}_p is the identity matrix. Several other useful linear covariance structures are given in Section 2.4.

Under normality assumption, the parameter $\theta = (\theta_1, \ldots, \theta_K)^T$ can be estimated by the maximum likelihood estimate. The theoretical property and related computational issue have been studied in Anderson (1973) and Zwiernik, Whaler and Richards (2014) when p is fixed and finite. Without assuming a specific distribution on \mathbf{W} such as the normality of \mathbf{W}, we propose estimating θ by minimizing the following squared loss function

$$\min_{\theta} \text{tr}(\mathbf{S}_n - \theta_1 \mathbf{A}_1 - \cdots - \theta_K \mathbf{A}_K)^2.$$ \hspace{1cm} (2.3)

Let \mathbf{C} be a $K \times K$ matrix with (i, j)-element being $\text{tr} \mathbf{A}_i \mathbf{A}_j$ and \mathbf{a} be a $K \times 1$ vector with j-th element being $\text{tr} \mathbf{S}_n \mathbf{A}_j$. Further define $\mathbf{D} = \mathbf{C}^{-1}$. Minimizing (2.3) yields a least squares type estimator for θ:

$$\hat{\theta} = \mathbf{D} \mathbf{a}.$$ \hspace{1cm} (2.4)

It can be shown that under Assumptions A and B, $\hat{\theta}_k = \theta_k + O_p(n^{-1}), k = 1, \ldots, K$, by using (2.10) in Theorem 2.1 below.

2.2. Tests. In this section, we develop two tests for the linear structures of covariance matrices:

$$H_0 : \mathbf{S} = \theta_1 \mathbf{A}_1 + \theta_2 \mathbf{A}_2 + \cdots + \theta_K \mathbf{A}_K.$$ \hspace{1cm} (2.5)

For simplicity, denote $\mathbf{S}_0 = \theta_1 \mathbf{A}_1 + \theta_2 \mathbf{A}_2 + \cdots + \theta_K \mathbf{A}_K$. A natural estimator of \mathbf{S} is the sample covariance matrix $\hat{\mathbf{S}}_n$. With the linear structure assumption, we may estimate θ by $\hat{\theta}$ given in (2.4), and then under H_0, a natural estimator of \mathbf{S} is $\hat{\mathbf{S}}_0 = \hat{\theta}_1 \mathbf{A}_1 + \cdots + \hat{\theta}_K \mathbf{A}_K$. Let $L(\cdot, \cdot)$ be a loss function to measure the deviation between $\hat{\mathbf{S}}_0$ and \mathbf{S}_n. Intuitively, we reject the null hypothesis if $L(\hat{\mathbf{S}}_0, \mathbf{S}_n) > \delta_0$ for a given critical value δ_0. Motivated by the entropy loss (EL) $L(\hat{\mathbf{S}}_0, \mathbf{S}_n) = \text{tr} \mathbf{S}_n \hat{\mathbf{S}}_0^{-1} - \log(|\mathbf{S}_n|) - p$ (James and Stein (1961); Muirhead (1982)), we propose our first test for H_0. For $p < n - 1$,

$$T_{n1} = \text{tr} \mathbf{S}_n \hat{\mathbf{S}}_0^{-1} - \log(|\mathbf{S}_n|) - p,$$

where $|\cdot|$ stands for the determinant of a matrix. Denote by $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p$ the eigenvalues of $\mathbf{S}_n^{-1/2} \hat{\mathbf{S}}_0^{-1} \mathbf{S}_n^{-1/2}$. Then we can write T_{n1} as

$$T_{n1} = p \left(p^{-1} \sum_{j=1}^{p} \lambda_j - p^{-1} \sum_{j=1}^{p} \log \lambda_j \right) - p.$$
This motivates us to further extend the test to the situation that $p > n - 1$ by defining

$$
T_{n1} = (n - 1) \left(p^{-1} \sum_{j=1}^{n-1} \lambda_j - (n - 1)^{-1} \sum_{j=1}^{n-1} \log \lambda_j \right) - (n - 1).
$$

Define $q = \min\{p, n - 1\}$. T_{n1} can be written in a unified form for $p < n - 1$ and $p \geq n - 1$:

$$
T_{n1} = q \left(p^{-1} \sum_{j=1}^{q} \lambda_j - q^{-1} \sum_{j=1}^{q} \log \lambda_j \right) - q.
$$

Since this test is motivated by the entropy loss, we refer this test as **EL-test**. Motivated by the quadratic loss (QL), another popular loss function in covariance matrix estimation (see Olkin and Selliah (1977); Haff (1980); Muirhead (1982)), we propose our second test statistic

$$
T_{n2} = \text{tr}(S_n \hat{\Sigma}_0^{-1} - I_p)^2,
$$

and refer the corresponding test as **QL-test**.

2.3. New results on random matrix and limiting distributions of tests.

In order to derive the limiting distributions of T_{n1} and T_{n2}, we develop new theory on large dimensional random matrix. In this section, we first present some useful theoretical results which are necessary to prove our main theorems.

Let $\{w_{ki}, k, i = 1, 2, \cdots\}$ be a double array of independent and identically distributed random variables with mean 0 and variance 1. Let $w_i = (w_{1i}, w_{2i}, \cdots, w_{pi})^T$, and w_1, \cdots, w_n be independent and identically distributed random samples from a p-dimensional distribution with mean 0 and covariance matrix I_p. To derive the limiting distributions of T_{n1} and T_{n2}, we investigate the limiting distributions of the functionals of the eigenvalues of sample covariance matrix

$$
F = (n - 1)^{-1} \sum_{i=1}^{n} (w_i - \bar{w})(w_i - \bar{w})^T,
$$

where $\bar{w} = n^{-1} \sum_{i=1}^{n} w_i$. Throughout this paper, denote $\Gamma = \Sigma^{1/2}$. Thus, it follows by Assumption A that

$$
F = \Gamma^{-1} S_n (\Gamma^T)^{-1} \quad \text{and} \quad S_n = \Gamma \Gamma^T.
$$
To study the asymptotic behaviors of T_{n1} and T_{n2} under H_0 and H_1, we establish the asymptotic properties of F. Theorems 2.1 and 2.2 will be repeatedly used in the proofs in (c) of Theorems 2.3 and 2.4. Suppose that λ_j's, $j = 1, \cdots, p$ are the real eigenvalues of F. The empirical spectral distribution (ESD) of F is defined by $G_p(\lambda) = p^{-1} \sum_{j=1}^{p} I(\lambda_j \leq \lambda)$, where $I(\cdot)$ is the indicator function. Note that the definition of ESD is suitable for both random and nonrandom matrices. Denote the spectral norm of a matrix (the maximum eigenvalue) by $\| \cdot \|$ hereafter.

Theorem 2.1. Let C_k, $k = 0, 1$, and 2, be $p \times p$ deterministic symmetric matrices. Under Assumptions A and B, the following statements are valid.

(a) If $\|C_0\| = O(p)$, $\text{tr} C_0 = O(p)$ and $\text{tr} C_0^2 = O(p^2)$, then

$$p^{-1} \text{tr} F C_0 - p^{-1} \text{tr} C_0 = o_p(1).$$

(b) If $\|C_1\| = O(p)$, $\|C_2\| = O(p)$, $\text{tr}(C_1^q) = O(p^q)$, $\text{tr}(C_2^q) = O(p^q)$, and $\text{tr}(C_1 C_2^q) = O(p^q)$ for $q = 1, 2$, then

$$p^{-1} \text{tr} F C_1 C_2 - p^{-1} \text{tr} C_1 C_2 - y_n - (p^{-1} \text{tr} C_1)(p^{-1} \text{tr} C_2) = o_p(1).$$

If we take $C_1 = I_p$, the identity matrix, in (b), then under the condition of (b), it follows that

$$p^{-1} \text{tr} F^2 C_2 - (1 + y_n - 1)p^{-1} \text{tr} C_2 = o_p(1).$$

Let C_1 and C_2 be $p \times p$ deterministic symmetric matrices. Define

$$u_1 = \begin{cases} 0, & \text{if } \|C_1\| \text{ is bounded} \\ 3/2, & \text{if } \|C_1\| = O(p), \text{tr}(C_1^q) = O(p^q) \text{ for } q = 1, 2, 3, 4. \end{cases}$$

and

$$u_2 = \begin{cases} 0, & \text{if } \|C_2\| \text{ is bounded} \\ 1/2, & \text{if } \|C_2\| = O(p), \text{tr}(C_2^q) = O(p^q) \text{ for } q = 1, 2. \end{cases}$$

Define $\mu_n^{(1)} = (p^{-u_1} \mu_{n1}^{(1)}, p^{-u_2} \mu_{n2}^{(1)})^T$ with

$$\mu_{n1}^{(1)} = [\text{tr} C_1^2 + y_n - 1 \text{tr}(C_1^2)] + y_n - 1 \text{tr} C_1^2 + y_n - 1 (\kappa - 3)p^{-1} \sum_{i=1}^{p} (e_i^T C_1 e_i)^2,$$

where we call $\kappa = E(w_j^2)$, and $\mu_{n2}^{(1)} = \text{tr} C_2$ with e_i being the ith column of the $p \times p$ dimensional identity matrix. Further define 2×2 symmetric matrix $\Sigma_n^{(1)}$ with (i, j)-th element being $\sigma_{nij}^{(1)}$ as follows:
\[\sigma_{n11}^{(1)} = p^{-2u_1} \left\{ 8n^{-1}\text{tr}C_1^4 + 4(\kappa - 3)n^{-1} \sum_{i=1}^{p} (e_i^T C_1^2 e_i)^2 + 4(n^{-1}\text{tr}C_1^2)^2 \right. \\
\left. + 8(n^{-1}\text{tr}C_1)^2(n^{-1}\text{tr}C_1^2) + 4(\kappa - 3)(n^{-1}\text{tr}C_1)^2n^{-1} \sum_{i=1}^{p} (e_i^T C_1 e_i)^2 \right. \\
\left. + 8(n^{-1}\text{tr}C_1)n^{-1} \left[2\text{tr}(C_1^3) + (\kappa - 3) \sum_{i=1}^{p} (e_i^T C_1 e_i)(e_i^T C_1^2 e_i) \right] \right\}, \]

\[\sigma_{n22}^{(1)} = p^{-2u_2} \left[2n^{-1}\text{tr}C_2^2 + (\kappa - 3)n^{-1} \sum_{i=1}^{p} (e_i^T C_2 e_i)^2 \right], \]

\[\sigma_{n12}^{(1)} = p^{-(u_1+u_2)} \left\{ 4n^{-1}\text{tr}(C_2^2 C_1) + 2(\kappa - 3)n^{-1} \sum_{i=1}^{p} (e_i^T C_1^2 e_i)(e_i^T C_2 e_i) \right. \\
\left. + 2(n^{-1}\text{tr}C_1)n^{-1} \left[2\text{tr}(C_1 C_2) + (\kappa - 3) \sum_{i=1}^{p} (e_i^T C_1 e_i)(e_i^T C_2 e_i) \right] \right\}. \]

These expressions come from the proof of the following theorem.

Theorem 2.2. Let \(C_1 \) and \(C_2 \) be \(p \times p \) deterministic symmetric matrices and let \(\Sigma^{(1)} = \lim_{n \to \infty} \Sigma_n^{(1)} > 0 \) with either \(\|C_1\| \) being bounded or \(\|C_1\| = O(p) \), \(\text{tr}(C_1^q) = O(p^q) \) for \(q = 1, 2, 3, 4 \), and either \(\|C_2\| \) being bounded or \(\|C_2\| = O(p) \), \(\text{tr}(C_2^q) = O(p^q) \) for \(q = 1, 2 \). Under Assumptions A and B, it follows that

\[\left(\begin{array}{c} p^{-u_1}\text{tr}FC_1FC_1 \\ p^{-u_2}\text{tr}FC_2 \end{array} \right) - \mu_n^{(1)} \xrightarrow{d} N(0, \Sigma^{(1)}). \]

Hereafter ‘\(d \rightarrow \)’ stands for convergence in distribution as \(n \to \infty \).

Remark 2.1. Theorems 2.1 and 2.2 are established by using related techniques of RMT. The major goals in RMT are to investigate the asymptotic behaviors of the eigenvalues and the convergence of the sequence of ESDs. However, the limiting spectral distribution (LSD) is possibly defective. That is, total mass is less than one when some eigenvalues tend to \(\infty \) (see Bai and Silverstein (2010)). Under the RMT framework, the existence of well-defined LSD is a common and necessary assumption. To apply the RMT, we need to impose the restrictive assumptions on the target matrices \(C_k, k = 0, 1 \) and 2 in Theorems 2.1 and 2.2. The intuitive explanation is that the difference between the largest and the smallest eigenvalue is not too
much and does not increase too fast as \(p \to \infty \). Note that the \(C_k \), \(k = 0, 1 \) and 2 in these two theorems are not \(\Sigma \). Thus, Theorems 2.1 and 2.2 are applicable for a wide range of covariance structures.

We next study the asymptotic properties of the proposed test statistics. We first establish the limiting null distributions of EL-test and QL-test by RMT. Before presenting the main results, we provide an useful lemma about the spectral distributions of random matrices that will be used to establish the limiting distribution of \(T_{n1} \). The technical details and proofs are given in the supplementary (Zheng, Chen, Cui and Li, 2018). Define

\[
\alpha_1(y) = (1 - y^{-1}) \log(1 - y) - 1, \quad y < 1,
\]

\[
\alpha_2(y) = y^{-1} \alpha_1(y^{-1}) - y^{-1} \log(y^{-1}), \quad y > 1;
\]

the mean functions

\[
m_{12}(y) = 0.5 \log(1 - y) - 0.5(\kappa - 3)y, \quad y < 1,
\]

\[
m_{22}(y) = m_{12}(y^{-1}), \quad y > 1;
\]

and the covariance functions

\[
\nu_{11}(y) = \nu_{12}(y) = \nu_{21}(y) = (\kappa - 1)y, \quad y < 1,
\]

\[
\nu_{22}(y) = -2 \log(1 - y) + (\kappa - 3)y, \quad y < 1;
\]

\[
v_{11}(y) = (\kappa - 1)y, \quad y > 1,
\]

\[
v_{12}(y) = v_{21}(y) = \kappa - 1, \quad y > 1,
\]

\[
v_{22}(y) = -2 \log(1 - y^{-1}) + (\kappa - 3)y^{-1}, \quad y > 1.
\]

Lemma 2.1. Suppose that Assumptions A and B hold. Let \(\lambda_1, \cdots, \lambda_p \) be the eigenvalues of \(F \) in (2.8) and \(V_{n1} = \{\nu_{ij}(y_{n-1})\}_{i,j} \) and \(V_{n2} = \{v_{ij}(y_{n-1})\}_{i,j} \) be \(2 \times 2 \) matrices whose entries are defined in (2.14), respectively. Then it follows the asymptotic normality, (a) if \(p < n - 1 \),

\[
V_{n1}^{-1/2} \left[\left(\sum_{j=1}^{p} \frac{\lambda_j - p}{\log \lambda_j - p \alpha_1(y_{n-1})} \right) - \begin{pmatrix} 0 \\ m_{12}(y_{n-1}) \end{pmatrix} \right] \xrightarrow{d} N(0, I_2);
\]

and (b) if \(p > n - 1 \),

\[
V_{n2}^{-1/2} \left[\left(\sum_{j=1}^{n-1} \frac{\lambda_j - p}{\log \lambda_j - p \alpha_2(y_{n-1})} \right) - \begin{pmatrix} 0 \\ m_{22}(y_{n-1}) \end{pmatrix} \right] \xrightarrow{d} N(0, I_2);
\]

and (c) if \(p = n - 1 \), then (2.15) still holds by replacing \(\alpha_1(y_{n-1}), \nu_{ij}(y_{n-1}) \) and \(m_{12}(y_{n-1}) \) by \(-1, \nu_{ij}(y_{n}) \) and \(m_{12}(y_{n}) \).
Remark 2.2. Lemma 2.1 establishes the central limit theorem for the functional of eigenvalues of random matrix. It shows that the asymptotic behaviors of eigenvalues are quite different between the cases $p < n - 1$ and $p > n - 1$. When $y_{n-1} \to 0$ as $n \to \infty$, $\alpha_1(y_{n-1}) \to 0, m_{12}(y_{n-1}) \to 0$; When $y_{n-1} \to 1$, $\alpha_1(y_{n-1}) \to -1, m_{12}(y_{n-1}) = -\infty$; When $y_{n-1} \to 1^+, \alpha_2(y_{n-1}) \to -1, m_{22}(y_{n-1}) = -\infty$; When $y_{n-1} \to \infty$, $\alpha_2(y_{n-1}) \to 0, m_{22}(y_{n-1}) \to 0$.

We next present the limiting null distributions of the proposed tests.

Theorem 2.3. Suppose that Assumption A and B hold. Denote by $\sigma_n^2(y) = -2y - 2\log(1 - y)$, $y < 1$. Using the same notations in Lemma 2.1, we have the following results under H_0 in (2.5)

(a) For $p < n - 1$,

\[\frac{T_{n1} + p \alpha_1(y_{n-1}) + m_{12}(y_{n-1})}{\sigma_n(y_{n-1})} \xrightarrow{d} N(0, 1). \]

Moreover, for $p = n - 1$, $\sigma_n^{-1}(y_n)\{T_{n1} - p + m_{12}(y_n)\} \xrightarrow{d} N(0, 1)$.

(b) For $p > n - 1$,

\[\frac{T_{n1} + p \alpha_2(y_{n-1}) + m_{22}(y_{n-1})}{\sigma_n(y_{n-1})} \xrightarrow{d} N(0, 1). \]

(c) Let $B = \sum_{k=1}^K d_k A_k$, where $d = (d_1, \cdots, d_K)^T = Dc$ and c be a K-dimensional vector with the k-th entry being $\text{tr}A_k \Sigma_0^{-1}$. Assume that $\sigma_n^2(y) = y_{n-1}^2 - (\kappa - 1)y_{n-1}^3 + 2y_{n-1} \to -1 \text{tr}(\Sigma_0 B)^2 + (\kappa - 3)y_{n-1}^3 \to -1 \sum_{i=1}^p (e_i^T \Gamma B e_i)^2$ has finite limit. It follows that

\[\frac{T_{n2} - (p + \kappa - 2)y_{n-1}}{2\sigma_n(y)} \xrightarrow{d} N(0, 1). \]

Remark 2.3. When the population is Gaussian, then $\kappa = 3$ and the limiting distributions can be simplified as follows

\[\frac{T_{n1} + p \alpha_1(y_{n-1}) + m_{12}(y_{n-1})}{\sigma_n(y_{n-1})} \xrightarrow{d} N(0, 1), \quad p < n - 1 \]

\[\frac{T_{n1} - p + m_{12}(y_n)}{\sigma_n(y_n)} \xrightarrow{d} N(0, 1), \quad p = n - 1 \]

\[\frac{T_{n1} + p \alpha_2(y_{n-1}) + m_{22}(y_{n-1})}{\sigma_n(y_{n-1})} \xrightarrow{d} N(0, 1), \quad p > n - 1 \]

\[\frac{T_{n2} - (p + 1)y_{n-1}}{2\sqrt{y_{n-1}^2 - 2y_{n-1}^3 + 2y_{n-1}^3 \text{tr}((\Sigma_0 B)^2)}} \xrightarrow{d} N(0, 1) \]
where
\[
\begin{align*}
\alpha_1(y_{n-1}) &= [1 - (y_{n-1})^{-1}] \log(1 - y_{n-1}) - 1; \\
\alpha_2(y_{n-1}) &= y_{n-1}^{-1} \left([1 - (y_{n-1})^{-1}] \log(1 - y_{n-1}^{-1}) - 1 \right) + y_{n-1}^{-1} \log y_{n-1}; \\
m_{12}(y_{n-1}) &= 0.5 \log(1 - y_{n-1}); \\
m_{22}(y_{n-1}) &= 0.5 \log[1 - (y_{n-1})^{-1}].
\end{align*}
\]

Moreover, especially for test of sphericity in Gaussian population, we have \([T_{n2} - (p+1)y_{n-1}]/(2y_{n-1}) \xrightarrow{d} N(0,1)\). The statistic \(T_{n1}\) is just from the original form of James and Stein’s loss function.

Remark 2.4. The EL-test \(T_{n1}\) is just equivalent to the corrected LRT and the QL test \(T_{n2}\) is just equivalent to the corrected John’s test for test of sphericity (see Theorems 2.1 and 2.2 in Wang and Yao (2013)). Moreover, as we mentioned in the introduction, the performance of the EL-test between \(p < n - 1\) and \(p > n - 1\) are quite different. This is the reason why the limiting null distribution of EL-test statistic is presented in part (a) and (b) of Theorem 2.3 separately.

The limiting null distributions can be used to construct the rejection regions of \(T_{n1}\) and \(T_{n2}\). We next establish the asymptotic power functions.

Suppose that under \(H_1 : \Sigma = \Sigma_1\), where \(\Sigma_1\) cannot be represented as a linear combination of the selected matrices. Using the estimation procedure proposed in Section 2.3, there still exists the linear approximation for \(\Sigma_1\). Denoted by \(a_i^* = (\text{tr}\Sigma_1A_1, \cdots, \text{tr}\Sigma_1A_K)^T\), \(\theta_i^* = (\theta_{i1}^*, \ldots, \theta_{Ki}^*)^T = Da_i^*\), and \(\Sigma_1^* = \theta_{i1}^*A_1 + \cdots + \theta_{Ki}^*A_K\) can be viewed as the best linear approximation to \(\Sigma_1\) under \(H_1\). Recall that \(\tilde{\theta}_1\) defined in (2.4) is the estimator of \(\theta^*\) based on observations and \(\tilde{\theta}_{k1} = \theta_{k1}^* + O_p(1/n), \ k = 1, \ldots, K\). Naturally, \(I_p - \Sigma_1\Sigma_1^{-1}\) measures the approximation error between the alternative \(\Sigma_1\) and the null hypothesis. \(\Sigma_1\Sigma_1^{-1}\) is the core of the entropy loss and the quadratic loss. After symmetrization, we obtain the error denoted by \(E = \Sigma_1^{-1}(I_p - \Sigma_1\Sigma_1^{-1})\). Notice that \(E = 0\) under \(H_0\).

Let \((h_1, \cdots, h_K)^T = D(\text{tr}EA_1, \ldots, \text{tr}EA_K)^T\) and \(G_p(t)\) be the ESD of \(\Gamma^T(\Sigma_1^{-1} + \sum_{k=1}^{K} h_kA_k)\Gamma\), where recall \(\Gamma = \Sigma_1^{1/2}\) under \(H_1\). Let \(b_0 = y_{n-1}p^{-1}\text{tr}\Sigma_1\Sigma_1^{-1}, E_0 = -(b_0I_p - \Sigma_1\Sigma_1^{-1})E + b_0\Sigma_1^{-1}\) and \((h_1^*, \ldots, h_K^*)^T = D(\text{tr}E_0A_1, \ldots, \text{tr}E_0A_K)^T\). Let \(B_* = \Sigma_1^{-1} + \sum_{k=1}^{K} h_kA_k\) and \(B_1* = \Sigma_1^{-1} + \sum_{k=1}^{K} h_k^*A_k\). Assume that \(\|\Gamma^T\Sigma_1^{-1}\Gamma\| = O(p), \text{tr}[\Gamma^T\Sigma_1^{-1}\Gamma]^q = O(p^q)\) for \(q = 1, 2, 3, 4\), \(\text{tr}[\Gamma^TB_1\Gamma]^q = O(p^q)\) for \(q = 2, 3, 4\) and \(G_p(t)\) has the non-degenerated LSD \(G(t)\). Under such alternative hypothesis, we obtain the following limiting distributions in Theorem 2.4.
Theorem 2.4. Suppose that Assumption A and B hold, and the limits of $\sigma_{nj}^{(1)}$, $j = 1, 2, 3$, exist. Then under $H_1 : \Sigma = \Sigma_1$ that can not be represented as the linear combination of given matrices, it follows that

(a) for $p < n - 1$, satisfying $G_p(t) \to G(t)$,

$$
\frac{T_{n1} - pF_{1}^{y_{n-1}, G} - \mu_1^{(1)}}{\sigma_{n1}^{(1)}} \xrightarrow{d} N(0, 1),
$$

(b) for $p > n - 1$, satisfying $G_p(t) \to G(t)$,

$$
\frac{T_{n1} - pF_{2}^{y_{n-1}, G} - \mu_2^{(1)}}{\sigma_{n2}^{(1)}} \xrightarrow{d} N(0, 1),
$$

(c)

$$
\frac{T_{n2} - \mu_3^{(1)}}{\sigma_{n3}^{(1)}} \xrightarrow{d} N(0, 1),
$$

where $\mu_j^{(1)}$, $j = 1, 2, 3$, $F_{nj}^{y_{n-1}, G}$, $j = 1, 2$ and $\sigma_{nj}^{(1)}$, $j = 1, 2, 3$, are given in the proof of Theorem 2.4.

For fixed significance level α, the corresponding power of the test based on the statistic T_{n2} is $\beta_{T_{n2}}(\Sigma_1) = 1 - \Phi((\mu_0 - \mu_3^{(1)})/\sigma_3^{(1)} - 2q_{\alpha}/\sigma_3^{(1)}) + \Phi((\mu_0 - \mu_3^{(1)})/\sigma_3^{(1)} + 2q_{\alpha}/\sigma_3^{(1)})$, where q_{α}/σ_3 is the $\alpha/2$ quantile of $N(0, 1)$, $\mu_0 = (p + \kappa - 2)y_{n-1}$ and $\sigma_3 = \sigma_{n3}$ defined in Theorem 2.3. The following theorem shows that QL-test is asymptotically unbiased in the sense that $\beta_{T_{n2}}(\Sigma_1) \geq \alpha \geq \beta_{T_{n2}}(\Sigma_0)$, for any Σ_1 belongs to certain alternative. Let $I_{\{\cdot\}}$ be an indicator function.

Theorem 2.5. Suppose that Assumptions A and B are satisfied and the limit of $\sigma_{nj}^{(1)}$ exists. Under $H_1 : \Sigma = \Sigma_1$, and Σ_1 satisfies that the empirical spectral distribution $p^{-1}\sum_{j=1}^{p} I_{\{\lambda_j \leq t\}}$ weakly converges to some distribution function with λ_j being the eigenvalues of $\Gamma^T \Sigma_1^{-1} \Gamma = I_p + A$, $A \geq 0$ and $\text{tr}A^2 > \delta > 0$, then for the prefixed significance level α,

$$
\beta_{T_{n2}}(\Sigma_1) > \alpha,
$$

when n is sufficiently large and δ is any given small constant. Furthermore, if $p^{-1}\text{tr}A \to c_1 \neq 0$, then $\beta_{T_{n2}} \to 1$ as $n \to \infty$.

Remark 2.5. Note that $\mu_0 = (p + \kappa - 2)y_{n-1}$. The the proof of Theorem 2.5 reveals a nice property that for large p, $\mu_3^{(1)} - \mu_0 \geq p\{(1 + y)c_1^2 + 2yc_1\}$, which tends to ∞ at rate p. This implies that the power of QL-test increases to one quickly. This is consistent with our numerical studies in Section 3.
2.4. **Examples.** In this section, we demonstrate how the proposed tests of linear structures of covariance matrices provide a unified framework for many existing tests on covariance matrix by several examples, some of which are new to literature.

Example 2.1. Test of sphericity has been well studied since the sphericity structure is the simplest linear structure of covariance matrix. Let $A_1 = I_p$.

The test of sphericity is to test the null hypothesis

$$H_{10} : \Sigma = \theta_1 A_1$$

for an unknown positive constant θ_1 versus $H_{11} : \Sigma \neq \theta_1 A_1$ for any positive constant θ_1.

Under H_{10}, θ_1 can be estimated by $\hat{\theta}_1 = p^{-1} \text{tr} S_n = \theta_1 + O_p(n^{-1})$ under Assumptions A and B. When $\kappa = 3$ (e.g., under normality assumption), by Theorem 2.3, we have the following limiting null distribution of T_{n1}. For $p < n - 1$,

$$T_{n1} + \frac{(p - n + 1.5) \log(1 - y_{n-1}) - p}{\sqrt{-2y_{n-1} - 2 \log(1 - y_{n-1})}} \to N(0, 1),$$

and for $p > n - 1$,

$$T_{n1} + \frac{(n - 0.5 - p) \log(1 - y_{n-1}) - (n - 1) + (n - 1) \log(y_{n-1})}{\sqrt{-2y_{n-1}^{-1} - 2 \log(1 - y_{n-1}^{-1})}} \to N(0, 1).$$

It can be easily verified that T_{n1} equals $(2/n)$ times the logarithm of the LRT under normality assumption when $p < n - 1$. The LRT has been well studied for fixed and finite dimension p under normality assumption (Section 10.7 of Anderson (2003)). Recently Jiang and Yang (2013) derived the asymptotic distribution of the LRT with $y \in (0, 1]$ for normal data. Chen, Zhang and Zhong (2010) demonstrated that the classical LRT may become invalid for high-dimensional data and proposed a test based on U-statistics with $p, n \to \infty$. Wang and Yao (2013) proposed the corrected LRT with $p/n \to (0, 1)$. Both Jiang and Yang (2013) and Wang and Yao (2013) derived the limiting null distribution, which is the same as that in (2.21), but Jiang and Yang (2013) imposes normality assumption.

For test of sphericity, the T_{n2} becomes

$$T_{n2} = \text{tr}[S_n/(p^{-1} \text{tr} S_n) - I_p]^2.$$

Under normality assumption, it follows by Theorem 2.3 that

$$\frac{T_{n2} - (p + 1)y_{n-1}}{2y_{n-1}} \to N(0, 1).$$
The test statistic in (2.22) coincides with the corrected John’s test proposed by Wang and Yao (2013) with $y \in (0, \infty)$. Wang and Yao (2013) further showed that the power of their proposed corrected John’s test is similar to that of Chen, Zhang and Zhong (2010), and the corrected LRT had greater power than the corrected John’s test and Chen, Zhang and Zhong (2010)’s test, when the dimension p is not large relative to the sample size n. But when p is large relative to $n (p < n)$, the corrected LRT had smaller power than the corrected John’s test and the test proposed by Chen, Zhang and Zhong (2010).

Example 2.2. The compound symmetric structure of high dimensional covariance matrix is another commonly-used linear structure of covariance matrix. Let $A_1 = I_p$ and $A_2 = 1_p1_p^T$, where 1_p stands for a p-dimensional column vector with all elements being 1. Testing compound symmetric structure is to test

$$H_{20} : \Sigma = \theta_1 A_1 + \theta_2 A_2,$$

where $\theta_1 > 0$ and $-1/(p - 1) < \theta_2/(\theta_1 + \theta_2) < 1$ versus $H_{21} : \Sigma \neq \theta_1 A_1 + \theta_2 A_2$. Under normality assumption, Kato, Yamada and Fujikoshi (2010) studied the asymptotic behavior of the corresponding LRT when $p < n$, and Srivastava and Reid (2012) proposed a new test statistic for H_{20} even if $p \geq n$. Without normality assumption, the EL and QL tests can be used to test the compound symmetric structure. By (2.4), $\hat{\theta}_1$ and $\hat{\theta}_2$ can be estimated by

$$\hat{\theta}_1 = p^{-1}(p - 1)^{-1}(p tr S_n - 1_p^T S_n 1_p), \quad \hat{\theta}_2 = p^{-1}(p - 1)^{-1}(1_p^T S_n 1_p - tr S_n),$$

respectively. Thus, both $\hat{\theta}_1$ and $\hat{\theta}_2$ are n-consistent under Assumptions A and B. By Theorem 2.3, it follows that

$$\frac{T_{n2} - (p + \kappa - 2)y_{n-1}}{2y_{n-1}} \xrightarrow{d} N(0, 1),$$

since $\sigma_{n2} = y_{n-1}$ in this example. While it seems that the limiting distributions of T_{n1} given in (2.17) and (2.18) cannot be further simplified.

Under normality assumption, when $p < n - 1$, T_{n1} equals $(2/n)$ times the logarithm of the LRT in Kato, Yamada and Fujikoshi (2010). Srivastava and Reid (2012)’s method is different from Kato, Yamada and Fujikoshi (2010) and our proposed tests since Srivastava and Reid (2012) tested the compound symmetric structure of covariance matrix by testing the independence of random variables. The details are as follows. Let G be the
orthogonal matrix with the first column being the $p^{-1/2}1_p$ and the ith column being $i^{-1/2}(1, \ldots, 1, -i + 1, 0, \ldots, 0)^T$. Thus, $G^T \Sigma G$ is a diagonal matrix with the first diagonal element being $\theta_1[1 + (p - 1)\theta_2]$ and the remaining diagonal elements being $\theta_1(1 - \theta_2)$. Thus, Srivastava and Reid (2012) cast the testing problem H_{20} as testing the independence of the first random variable and the remaining $p - 1$ random variables. Kato, Yamada and Fujikoshi (2010) and Srivastava and Reid (2012)’s tests are both proposed for the normal case. However, Kato, Yamada and Fujikoshi (2010)’s test is only valid when $p < n$, and Srivastava and Reid (2012)’s test still works when $p \geq n$.

Example 2.3. Denote by σ_{ij} the (i, j)-entry of Σ. Here a $(K - 1)$-banded covariance matrix means that $\sigma_{ij} = \sigma_{ji} = \theta_k$ if $|i - j| = k - 1$, $k = 1, \cdots, K$, and $\sigma_{ij} = 0$ if $|i - j| \geq K$. Let $A_1 = I_p$ and A_k, $2 \leq k \leq K$, be a $p \times p$ matrix with (i, j)-element being 1 if $|i - j| = k - 1$ and 0 otherwise. Testing the $(K - 1)$-banded covariance matrix is equivalent to test

$$H_{30} : \Sigma = \theta_1 A_1 + \cdots + \theta_K A_K,$$

where θ_k’s are unknown parameters. By (2.4), we have

$$\hat{\theta}_1 = p^{-1} \text{tr} S_n,$$

$$\hat{\theta}_k = \frac{1}{2}(p - k + 1)^{-1} \text{tr} S_n A_k, \quad \text{for} \quad 2 \leq k \leq K.$$

When K is a finite positive integer, it can be shown that $\hat{\theta}_k = \theta_k + O_p(n^{-1})$ if $p/n \to y \in (0, \infty)$.

Qiu and Chen (2012) proposed a test for banded covariance matrix based on U-statistic. Their test is different from our proposed testing methods. For general K, the limiting null distributions in Theorem 2.3 cannot be further simplified. For $K = 2$, we may obtain a closed form for d_k, $k = 1, 2$ in Theorem 2.3(c). Specifically, let $\alpha = \theta_1(2\theta_2)^{-1}$, $\beta = -\alpha + \text{sgn}(\alpha)\sqrt{\alpha^2 - 1}$. Then it follows by some calculations that

$$d_1 = \frac{\beta}{(1 - \beta^2)(1 - \beta^2 p + 1)} \hat{\theta}_2 \left[\frac{2(\beta^2 - \beta^2(p + 1)}{p(1 - \beta^2)} - 1 - \beta^2(p + 1) \right],$$

$$d_2 = \frac{\beta}{(1 - \beta^2)(1 - \beta^2 p + 1)} \hat{\theta}_2 \left[\frac{4(\beta^3 - \beta^2 p + 1)}{p(1 - \beta^2)} - 2(1 - p^{-1})\beta - 2(1 - p^{-1})\beta^2 p + 1 \right].$$

Then $B = d_1 I_p + d_2 A_2$. Thus, σ_{n2}^2 can be obtained. Then testing H_{30} can be carried out by using the proposed EL and QL tests.
Example 2.4. The factor model assumes that \(\mathbf{X} \) can be represented as \(\mathbf{X} = v_{1} \mathbf{U}_{1} + \cdots + v_{K-1} \mathbf{U}_{K-1} + \mathbf{e} \), where \(v_{1}, \ldots, v_{K-1} \) are random variables and \(\mathbf{U}_{k}, k = 1, \cdots, K-1 \) are random vectors. Suppose that \(v_{1}, \ldots, v_{K-1}, \mathbf{U}_{1}, \ldots, \mathbf{U}_{K-1} \) and \(\mathbf{e} \) are mutually independent and \(\text{Cov}(\mathbf{e}) = \theta I_{p} \). Conditioning on \(\mathbf{U}_{k}, k = 1, \cdots, K-1 \), the covariance matrix of factor model has the structure \(\mathbf{\Sigma} = \theta_{1} I_{p} + \theta_{2} \mathbf{U}_{1} \mathbf{U}_{1}^{T} + \cdots + \theta_{K} \mathbf{U}_{K-1} \mathbf{U}_{K-1}^{T} \), where \(\theta_{k+1} = \text{Var}(v_{k}) \) for \(k = 1, \ldots, K-1 \). Let \(\mathbf{A}_{1} = I_{p} \), and \(\mathbf{A}_{k+1} = \mathbf{U}_{k} \mathbf{U}_{k}^{T} \) for \(k = 1, \cdots, K-1 \). Thus, it is of interest to test

\[
H_{40} : \mathbf{\Sigma} = \theta_{1} \mathbf{A}_{1} + \cdots + \theta_{K} \mathbf{A}_{K},
\]

where \(\theta_{k} \)'s are unknown parameters. Generally, \(\mathbf{U}_{k} \) are orthogonal such that \(\mathbf{U}_{s}^{T} \mathbf{U}_{t} = p \) for \(s = t \) and 0 for \(s \neq t \). The parameters can be estimated by

\[
\hat{\theta}_{1} = (p-K+1)^{-1} \left(\text{tr} \mathbf{S}_{n} - p^{-1} \sum_{k=1}^{K-1} \mathbf{U}_{k}^{T} \mathbf{S}_{n} \mathbf{U}_{k} \right), \quad \hat{\theta}_{k+1} = p^{-2} (\mathbf{U}_{k}^{T} \mathbf{S}_{n} \mathbf{U}_{k} - p \hat{\theta}_{1})
\]

for \(k = 1, \cdots, K-1 \). Thus, when \(K \) is finite and \(p/n \) has a finite positive limit, \(\hat{\theta}_{k} = \theta_{k} + O_{p}(n^{-1}) \) under \(H_{40} \) and Assumptions A and B. Then testing \(H_{40} \) can be carried out by using the proposed EL and QL tests.

Example 2.5. In this example, we consider testing the particular pattern of covariance matrix. For even \(p \) which is fixed and finite, McDonald (1974) considered

\[
H_{50} : \mathbf{\Sigma} = \begin{pmatrix} \theta_{1} I_{p/2} + \theta_{2} I_{p/2}^{1} I_{p/2}^{T} & \theta_{3} I_{p/2} \ \\
\theta_{3} I_{p/2} & \theta_{1} I_{p/2} + \theta_{2} I_{p/2}^{1} I_{p/2}^{T} \end{pmatrix}.
\]

Let \(\mathbf{A}_{1} = I_{p}, \)

\[
\mathbf{A}_{2} = \begin{pmatrix} I_{p/2} I_{p/2}^{T} & 0 \\
0 & I_{p/2} I_{p/2}^{T} \end{pmatrix} \quad \text{and} \quad \mathbf{A}_{3} = \begin{pmatrix} 0 & I_{p/2} \\
I_{p/2} & 0 \end{pmatrix}.
\]

Then \(H_{50} \) can be written as \(H_{50} : \mathbf{\Sigma} = \theta_{1} \mathbf{A}_{1} + \theta_{2} \mathbf{A}_{2} + \theta_{3} \mathbf{A}_{3} \). Thus, the proposed EL and QL tests can be used to \(H_{50} \) with high-dimensional data.

3. Simulation studies and application.

3.1. Practical implementation issues. The limiting distributions derived in Theorem 2.3 involve the unknown parameter \(\kappa \). Thus, we need to estimate \(\kappa \) in practice. By Assumption A and some direct calculations, it follows that

\[
\text{Var}\{(\mathbf{x} - \boldsymbol{\mu})^{T} (\mathbf{x} - \boldsymbol{\mu})\} = 2 \text{tr}(\mathbf{\Sigma}^{2}) + (\kappa - 3) \sum_{j=1}^{p} \sigma_{jj}^{2}.
\]
where \(\sigma_{jj} \) is the \(j \)-th diagonal element of \(\Sigma \). This enables us to construct a moment estimator for \(\kappa \). Specifically, we estimate \(\sigma_{jj} \) by \(\hat{\sigma}_{jj} = s_{jj} \), where \(s_{jj} \) is the \(j \)-th diagonal element of \(S_n \). A natural estimator for \(\text{Var}\{(\mathbf{x} - \boldsymbol{\mu})^T(\mathbf{x} - \boldsymbol{\mu})\} \) is

\[
\hat{V} = (n - 1)^{-1} \sum_{i=1}^{n} \{(\mathbf{x}_i - \bar{x})^T(\mathbf{x}_i - \bar{x}) - n^{-1} \sum_{i=1}^{n} [(\mathbf{x}_i - \bar{x})^T(\mathbf{x}_i - \bar{x})]\}^2.
\]

Under \(H_0 \), a natural estimator of \(\Sigma \) is \(\hat{\Sigma}_0 = \sum_{k=1}^{K} \hat{\theta}_k \mathbf{A}_k \) defined in Section 2.2. As a result, we may estimate \(\text{tr}\Sigma^2 \) by using \(\text{tr}\hat{\Sigma}_0^2 \). Thus, we may estimate \(\kappa \) by

\[
(3.2) \hat{\kappa}_0 = 3 + \frac{\hat{V} - 2 \text{tr}(\hat{\Sigma}_0^2)}{\sum_{j=1}^{p} s_{jj}^2}.
\]

It can be shown that \(\hat{\kappa}_0 \) is a consistent estimator of \(\kappa \) under \(H_0 \). The corresponding test statistics control Type I error rate very well in our simulation study.

As shown in Theorem 2.2, in general, \(p^{-1} \text{tr}\Sigma_n^2 - p^{-1} \text{tr}\Sigma^2 \) does not tend to zero. This implies that \(\text{tr}\Sigma_n^2 \) may not serve as an estimator of \(\text{tr}\Sigma^2 \). According to Theorem 2.2 and ignoring the higher order term, a natural estimator for \(\text{tr}\Sigma^2 \) is

\[
\hat{\text{tr}}(\Sigma^2) = (n - 1)\{\text{tr}(\Sigma_n^2) - (n - 1)^{-1} [\text{tr}(\Sigma_n)]^2\} / n.
\]

This estimator is calibrated by the ratio \(p/(n - 1) = y_{n-1} \). This leads to another estimator of \(\kappa \) given by

\[
(3.3) \hat{\kappa}_1 = 3 + \frac{n\hat{V} - 2\{(n - 1)\text{tr}(\Sigma_n^2) - [\text{tr}(\Sigma_n)]^2\}}{n \sum_{j=1}^{p} s_{jj}^2}.
\]

Chen and Qin (2010) also studied the issue of estimation of \(\text{tr}(\Sigma^2) \) and proposed the following estimator

\[
(3.4) \hat{\text{tr}}(\Sigma^2) = \frac{1}{n(n - 1)} \text{tr} \left[\sum_{j \neq k}^{n} (\mathbf{x}_j - \bar{\mathbf{x}}_{(j,k)})\mathbf{x}_j^T(\mathbf{x}_k - \bar{\mathbf{x}}_{(j,k)})\mathbf{x}_k^T \right],
\]

where \(\bar{\mathbf{x}}_{(j,k)} \) is the sample mean after excluding \(\mathbf{x}_j \) and \(\mathbf{x}_k \). This leads to another estimator of \(\kappa \):

\[
(3.5) \hat{\kappa}_2 = 3 + \frac{\hat{V} - 2n^{-1}(n - 1)^{-1} \text{tr}[\sum_{j \neq k}^{n} (\mathbf{x}_j - \bar{\mathbf{x}}_{(j,k)})\mathbf{x}_j^T(\mathbf{x}_k - \bar{\mathbf{x}}_{(j,k)})\mathbf{x}_k^T]}{\sum_{j=1}^{p} s_{jj}^2}.
\]
We compare the performance of $\hat{\kappa}_0$, $\hat{\kappa}_1$ and $\hat{\kappa}_2$ by Monte Carlo simulation study. Simulation results are reported in the supplementary material. From our numerical comparison, $\hat{\kappa}_0$ performs very well across all scenarios of all simulation examples in Section 3.2 and its sample standard deviation is much less than those of $\hat{\kappa}_1$ and $\hat{\kappa}_2$. This implies that $\hat{\kappa}_0$ is more stable than $\hat{\kappa}_1$ and $\hat{\kappa}_2$. Thus, we will use $\hat{\kappa}_0$ throughout our numerical examples in Section 3.2.

3.2. Numerical studies. We illustrate the proposed testing procedure by a real data example in the supplemental material. In this section, we focus on assessing the finite sample performance of the proposed tests including their Type I error rates and powers. All simulations are conducted by using R code. We generate n random samples from a population $x = \Sigma^{1/2}w$, where Σ will be set according to the hypothesis to be tested, and w is defined in the previous section. In order to examine the performance of the proposed tests under different distributions, we consider the elements of w being independent and identically distributed as (a) $N(0, 1)$ or (b) $\text{Gamma}(4, 2) - 2$. Both distributions have means 0 and variances 1. For each setting, we conduct 1000 Monte Carlo simulations. The Monte Carlo simulation error rate is $1.96\sqrt{0.05 \times 0.95/1000} \approx 0.0135$ at level 0.05. In the numerical studies, we consider four different covariance matrix structures, which have been studied in the literature.

Example 3.1. This example is designed to compare the performance of proposed testing procedures and the test proposed in Srivastava and Reid (2012) for hypothesis H_{20} in Example 2.2. We set the covariance matrix structure as $\Sigma = \theta_1 I_p + \theta_2 1_p 1_p^T + \theta_3 u_p u_p^T$, where u_p is a p-dimensional random vector following uniform distribution over $[-1, 1]$. The third term is to examine the empirical power when $\theta_3 \neq 0$. In our simulation, we set $(\theta_1, \theta_2) = (6, 1)$ and $\theta_3 = 0.0, 0.5, 1.0$, respectively. We set $\theta_3 = 0$ to examine Type I error rates and $\theta_3 = 0.5, 1.0$ to study the powers of the proposed tests. The sample size is set as $n = 100, 200$ and the dimension is taken to be $p = 50, 100, 500, 1000$. The percentages of rejecting H_{20} at level 0.05 over 1000 simulations are summarized in Table 1, where the labels QL, EL and SR stand for the QL-test, the EL-test and the test proposed by Srivastava and Reid (2012), respectively. The top panel with $\theta_3 = 0$ in Table 1 is Type I error rates for different testing methods. Table 1 indicates that both QL and EL tests retain Type I error rates reasonably well across different sample sizes and dimensions. As Srivastava and Reid (2012) mentioned, SR test can control Type I error rate under normal assumption. But when the population distribution departures from the normality, SR test fails to control Type I
error rate, even the sample size increases from 100 to 200. This is expected since the SR test is derived based on multivariate normality assumption. As the sample size increases from $n = 100$ to $n = 200$, both QL-test and EL-test control Type I error rate better. The empirical powers are listed in the panel with $\theta_3 = 0.5$ or 1.0 in Table 1, from which we can see that QL-test has higher power than EL-test for all cases in this example, and SR test for most cases in this example. For normal samples with $p = 50$ and 100, SR test is more powerful than EL-test. We notice that the empirical power of our proposed methods increases as the dimension increases. It is consistent with our theoretical results. The power of all three tests increases significantly when the value of θ_3 increases from 0.5 to 1 or the sample size n increases from 100 to 200.

In summary, QL-test performs the best in terms of retaining Type I error rate and power. The SR test cannot control Type I error rate for nonnormal samples. EL-test can control Type I error rate well, but is less powerful than QL-test. Under normality assumption, EL-test is equivalent to the LRT test, which is the most powerful test in the traditional setting. For high dimensional setting, the EL-test corresponds to the corrected LRT, whose power can be improved by the QL-test for H_{k0}, $k = 2, 3, 4$ and 5 from this example and simulation examples below. Additional numerical comparison with a test proposed by Zhong, Lan, Song and Tsai (2017) is given in the Section S.5.2 in Zheng, Chen, Cui and Li (2018). The proposed QL- and EL-test both outperform the test proposed by Zhong, Lan, Song and Tsai (2017).

Example 3.2. To test covariance matrix structure in H_{30}, the banded covariance structure, we construct a banded matrix defined in Example 2.3 with width of band $K = 3$. Therefore, the null hypothesis H_{30} has the linear decomposition $\Sigma = \theta_1 I_p + \theta_2 A_2 + \theta_3 A_3 + \theta_4 u_p u_p^T$, where A_2 and A_3 are defined in Example 2.3 and u_p is generated by the same way in the Example 3.1. We take $(\theta_1, \theta_2, \theta_3) = (6.0, 1.0, 0.5)$ and $\theta_4 = 0$ to examine Type I error rates and take $\theta_4 = 0.5, 1$ to examine the powers. In the simulation studies, we still set sample size $n = 100, 200$ and dimension $p = 50, 100, 500, 1000$. The percentages of rejecting H_{30} at level 0.05 over 1000 simulations are listed in Table 2. In this example, we compare the test proposed by Qiu and Chen (2012) for the banded covariance matrix with our proposed tests, and refer their test as “QC” test hereinafter. Table 2 indicates that QL, EL and QC tests control Type I error rates well. QC test is supposed to control Type I error rates well and has high power since it is particularly proposed for testing banded matrix. Table 2 indicates that QL-test has higher power.
Table 1

Simulation Results for H_{20} (in percentage of rejecting H_{20} over 1000 replications)

<table>
<thead>
<tr>
<th>θ_3</th>
<th>n</th>
<th>Test</th>
<th>$W_j \sim N(0,1)$</th>
<th>$W_j \sim \text{Gamma}(4.2)-2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>QL</td>
<td>5.73 5.40 5.12 5.19</td>
<td>6.48 5.99 5.64 5.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>5.32 6.51 5.12 5.18</td>
<td>5.77 6.35 5.46 5.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR</td>
<td>4.90 5.01 4.91 4.98</td>
<td>9.60 8.96 8.15 8.04</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>QL</td>
<td>40.25 80.58 100.0 100.0</td>
<td>41.01 80.70 100.0 100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>13.42 11.38 99.78 100.0</td>
<td>13.74 11.42 99.74 100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR</td>
<td>24.46 59.04 99.99 100.0</td>
<td>24.46 59.04 99.99 100.0</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>QL</td>
<td>95.88 99.97 100.0 100.0</td>
<td>95.98 99.97 100.0 100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>53.53 29.97 100.0 100.0</td>
<td>53.71 30.18 100.0 100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR</td>
<td>87.90 99.67 100.0 100.0</td>
<td>87.90 99.67 100.0 100.0</td>
</tr>
<tr>
<td>0</td>
<td>200</td>
<td>QL</td>
<td>5.22 5.14 5.12 5.19</td>
<td>6.32 5.78 5.31 5.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>5.18 5.12 5.05 5.13</td>
<td>5.94 5.42 5.23 5.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR</td>
<td>4.98 4.93 4.93 5.03</td>
<td>9.95 9.23 8.44 8.43</td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>QL</td>
<td>79.86 99.32 100.0 100.0</td>
<td>78.56 99.28 100.0 100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>42.00 58.62 100.0 100.0</td>
<td>41.22 58.62 100.0 100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR</td>
<td>61.74 95.79 100.0 100.0</td>
<td>61.74 95.79 100.0 100.0</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>QL</td>
<td>99.98 100.0 100.0 100.0</td>
<td>99.96 100.0 100.0 100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>97.23 99.53 100.0 100.0</td>
<td>96.86 99.55 100.0 100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR</td>
<td>99.81 100.0 100.0 100.0</td>
<td>99.91 100.0 100.0 100.0</td>
</tr>
</tbody>
</table>

than QC test in our simulation settings, in particular, for $p = 50$. From our simulation experience, we find that QC test requires more computing time than QL and EL tests since QC test is a U-statistic method.

Example 3.3. In this example, we examine Type I error rates and empirical powers of the proposed tests for H_{40} and H_{50} defined in Examples 2.4 and 2.5 respectively. We first investigate the performance of QL and EL tests for H_{40}. We generate several mutually orthogonal factors. Suppose that u_k^\ast, $k = 1, \cdots, K$ are independent and identically distributed random vectors following $N(0, I_p)$. Let $u_1 = u_1^\ast$ and $u_k = (I_p - P_k)u_k^\ast$, where P_k is the projection matrix on u_1, \cdots, u_{k-1} for $k = 2, \cdots, K$. Providing the vectors u_k, we have the covariance matrix structure

$$
\Sigma = \theta_0 I_p + \sum_{k=1}^{K} \theta_k u_k u_k^T
$$

for the factor model defined in Example 2.4. In this simulation, we set $K = 4$ and the coefficient vector $(\theta_0, \theta_1, \theta_2, \theta_3)^T = (4, 3, 2, 1)^T$. Similarly, $\theta_4 = 0$ is for Type I error rates and $\theta_4 = 0.5, 1.0$ is for powers. We summarize simulation results in the top panel of Table 3. Both QL and EL tests control
Table 2
Simulation Results for H_{30} (in percentage of rejecting H_{30} over 1000 replications)

<table>
<thead>
<tr>
<th>θ_4</th>
<th>n</th>
<th>Test</th>
<th>p = 50</th>
<th>100</th>
<th>500</th>
<th>1000</th>
<th>$W_j \sim N(0,1)$</th>
<th>$W_j \sim \text{Gamma}(4,2)-2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>QL</td>
<td>5.30</td>
<td>5.19</td>
<td>5.29</td>
<td>5.34</td>
<td>6.61</td>
<td>6.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>5.31</td>
<td>6.34</td>
<td>5.20</td>
<td>5.36</td>
<td>5.83</td>
<td>6.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC</td>
<td>5.00</td>
<td>5.50</td>
<td>5.50</td>
<td>5.90</td>
<td>5.00</td>
<td>5.80</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>QL</td>
<td>46.01</td>
<td>84.91</td>
<td>100.0</td>
<td>100.0</td>
<td>45.13</td>
<td>83.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>15.20</td>
<td>12.23</td>
<td>99.90</td>
<td>100.0</td>
<td>15.35</td>
<td>12.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC</td>
<td>17.00</td>
<td>70.00</td>
<td>100.0</td>
<td>100.0</td>
<td>24.00</td>
<td>85.30</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>QL</td>
<td>97.49</td>
<td>99.98</td>
<td>100.0</td>
<td>100.0</td>
<td>96.96</td>
<td>99.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>64.05</td>
<td>33.68</td>
<td>100.0</td>
<td>100.0</td>
<td>59.80</td>
<td>33.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC</td>
<td>83.00</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>78.00</td>
<td>99.90</td>
</tr>
<tr>
<td>0</td>
<td>200</td>
<td>QL</td>
<td>5.25</td>
<td>5.19</td>
<td>5.16</td>
<td>5.10</td>
<td>6.44</td>
<td>5.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>5.24</td>
<td>5.15</td>
<td>5.04</td>
<td>4.94</td>
<td>6.01</td>
<td>5.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC</td>
<td>6.00</td>
<td>5.40</td>
<td>5.50</td>
<td>4.50</td>
<td>4.00</td>
<td>4.50</td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>QL</td>
<td>85.30</td>
<td>99.66</td>
<td>100.0</td>
<td>100.0</td>
<td>84.09</td>
<td>99.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>48.46</td>
<td>65.39</td>
<td>100.0</td>
<td>100.0</td>
<td>47.62</td>
<td>65.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC</td>
<td>49.00</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>49.00</td>
<td>99.70</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>QL</td>
<td>99.99</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>99.98</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>98.27</td>
<td>99.80</td>
<td>100.0</td>
<td>100.0</td>
<td>98.00</td>
<td>99.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Type I error rates well and have high powers at $\theta_4 = 0.5$ and 1.0. For some cases such as $p = 100$ and $\theta_4 = 0.5$, QL-test has slightly higher power than EL-test.

We next investigate the performance of QL and EL tests for the covariance matrix with a special pattern H_{50}. We represent the covariance matrix as a linear combination

$$\Sigma = \sum_{k=1}^{4} \theta_k A_k,$$

where A_1, A_2, and A_3 are defined in Example 2.5 and $A_4 = u_p u_p^T$ with $u_p \sim N_p(0, I_p)$. We set the first three coefficients $(\theta_1, \theta_2, \theta_3) = (6.0, 0.5, 0.1)$ and $\theta_4 = 0.0$, 0.5 and 1.0 for examining Type I error rates and powers, respectively. We summarize the simulation results in the bottom panel of Table 3, which shows that both QL and EL tests can control Type I error rates, and have high power as well, although QL-test has higher power than EL-test for $(n, p) = (100, 100)$ and $\theta_5 = 0.5$.

4. Technical proofs.
Table 3

Simulation Results for Example 3.3 (in percentage of rejecting null hypothesis over 1000 replications)

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(n)</th>
<th>Test</th>
<th>(p = 50)</th>
<th>(100)</th>
<th>(500)</th>
<th>(1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>QL</td>
<td>5.46</td>
<td>5.46</td>
<td>6.02</td>
<td>6.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>5.40</td>
<td>6.40</td>
<td>5.79</td>
<td>6.20</td>
</tr>
<tr>
<td>0.5</td>
<td>100</td>
<td>QL</td>
<td>99.99</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>97.58</td>
<td>86.91</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>QL</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>100.0</td>
<td>99.93</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>0</td>
<td>200</td>
<td>QL</td>
<td>5.32</td>
<td>5.28</td>
<td>5.42</td>
<td>5.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>5.30</td>
<td>5.22</td>
<td>5.33</td>
<td>5.65</td>
</tr>
<tr>
<td>0.5</td>
<td>200</td>
<td>QL</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>99.99</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>1</td>
<td>200</td>
<td>QL</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EL</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

4.1. Proofs of Theorems 2.1 and 2.2.

Recall the definitions of \(\bar{x} \) and \(S_n \) in (2.1) and \(F \) in (2.8), it follows that under Assumption A,

\[
F = \Gamma^{-1}S_n(\Gamma^T)^{-1} \quad \text{and} \quad S_n = \Gamma \Gamma^T.
\]

Proof of Theorem 2.1. Using Chebyshev’s inequality, the proof of (2.10) and (2.11) is completed by showing that

\[
E p^{-1} \text{tr}FC_1FC_2 - p^{-1} \text{tr}C_1C_2 - y_{n-1}(p^{-1} \text{tr}C_1)(p^{-1} \text{tr}C_2) = o(1)
\]

and

\[
E p^{-1} \text{tr}FC_0 - p^{-1} \text{tr}C_0 = o(1), \quad \text{Var}(p^{-1} \text{tr}FC_0) = o(1), \quad \text{Var}\{p^{-1} \text{tr}(FC_1FC_2)\} = o(1).
\]
We have
\[p^{-1} \text{tr} F C_0 = p^{-1} \sum_{i=1}^{n} \gamma_i^T C_0 \gamma_i - p^{-1} n \gamma \gamma^T C_0 \bar{\gamma}, \]
where \(\gamma_i = (n-1)^{-1/2} w_i \) and \(\bar{\gamma} = n^{-1} \sum_{i=1}^{n} \gamma_i \). Then \(p^{-1} E \sum_{i=1}^{n} \gamma_i^T C_0 \gamma_i = n(n-1)^{-1} p^{-1} \text{tr} C_0 \) and \(p^{-1} n E \bar{\gamma}^T C_0 \bar{\gamma} = (n-1)^{-1} p^{-1} \text{tr} C_0 \to 0 \). Thus
\[(4.2) \quad E p^{-1} \text{tr} F C_0 - p^{-1} \text{tr} C_0 \to 0. \]
Moreover
\[(4.3) \quad E(p^{-1} \sum_{i=1}^{n} \gamma_i^T C_0 \gamma_i - p^{-1} (n-1)^{-1} n \text{tr} C_0)^2 = n p^{-2} E(\gamma_1^T C_0 \gamma_1 - (n-1)^{-1} \text{tr} C_0)^2 \to 0. \]
By (4.2) and (4.3), we have
\[p^{-1} \sum_{i=1}^{n} \gamma_i^T C_0 \gamma_i - p^{-1} \text{tr} C_0 = o_p(1). \]
Similarly, we have
\[p^{-1} n \gamma \gamma^T C_0 \bar{\gamma} = o_p(1). \]
Thus, we have
\[p^{-1} \text{tr} F C_0 - p^{-1} \text{tr} C_0 = o_p(1). \]
Moreover, we have
\[p^{-1} \text{tr} F C_1 C_2 = p^{-1} \sum_{i \neq j} \gamma_i^T C_1 \gamma_j \gamma_j^T C_2 \gamma_i + p^{-1} \sum_i \gamma_i^T C_1 \gamma_i \gamma_i^T C_2 \gamma_i - 2 p^{-1} n \gamma \gamma^T C_1 C_2 \bar{\gamma} + p^{-1} n^2 \gamma \gamma^T C_1 \bar{\gamma} \gamma \gamma^T C_2 \bar{\gamma}, \]
where \(p^{-1} E \sum_{i \neq j} \gamma_i^T C_1 \gamma_j \gamma_j^T C_2 \gamma_i = [n/(n-1)] p^{-1} \text{tr} C_1 C_2, \)
\[p^{-1} \sum_i E\{\gamma_i^T C_1 \gamma_i \gamma_i^T C_2 \gamma_i\} = [n/(n-1)^2] p^{-1} \text{tr} C_2 \text{tr} C_1 + 2 n / [n(n-1)^2] \text{tr} C_1 C_2 + o(1), \]
and \(E p^{-1} n \gamma \gamma^T C_1 C_2 \bar{\gamma} = n / [n(n-1)^2] \text{tr} C_1 C_2 + o(1) \) and \(E p^{-1} n^2 \gamma \gamma^T C_1 \bar{\gamma} \gamma \gamma^T C_2 \bar{\gamma} = o(1) \). Then
\[p^{-1} \text{E} \text{tr} F C_1 C_2 - p^{-1} \text{tr} C_1 C_2 - y_{n-1} (p^{-1} \text{tr} C_1)(p^{-1} \text{tr} C_2) \to 0. \]
Similarly, we can prove
\[\text{Var}[p^{-1} \sum_{i \neq j} \gamma_i^T C_1 \gamma_j \gamma_j^T C_2 \gamma_i] \to 0, \]
Thus we have
\[\text{Var}[p^{-1} \sum_{i} \gamma_i T C_1 \gamma_i T C_2 \gamma_i] = p^{-2} \text{Var}[\gamma_i T C_1 \gamma_i T C_2 \gamma_i] \to 0, \]
\[\text{Var}[p^{-1} n \gamma T C_1 \bar{F} C_2 \gamma] \to 0, \quad \text{Var}[p^{-1} n^2 \gamma T C_1 \bar{F} \gamma T C_2 \gamma] \to 0. \]

Thus we have
\[\left[p^{-1} \sum_{i \neq j} \gamma_i T C_1 \gamma_j T C_2 \gamma_i = p^{-1} \text{tr} C_1 C_2 \right] = o_p(1), \]
\[\left[p^{-1} \sum_i \gamma_i T C_1 \gamma_i T C_2 \gamma_i - y_{n-1} (p^{-1} \text{tr} C_1) (p^{-1} \text{tr} C_2) - 2n/[p(n-1)^2] \text{tr} C_1 C_2 \right] = o_p(1) \]
and
\[\{p^{-1} n \gamma T C_1 \bar{F} C_2 \gamma - n/[p(n-1)^2] \text{tr} C_1 C_2\} = o_p(1), \quad \{p^{-1} n^2 \gamma T C_1 \bar{F} \gamma T C_2 \gamma\} = o_p(1). \]

Then we have
\[\left[p^{-1} \text{tr} \bar{F} C_1 C_2 - p^{-1} \text{tr} C_1 C_2 - y_{n-1} (p^{-1} \text{tr} C_1) (p^{-1} \text{tr} C_2) \right] = o_p(1). \]

This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. Recall \(\gamma_i = (n-1)^{-1/2} w_i, i = 1, \ldots, n \), and \(\bar{\gamma} = n^{-1} \sum_{i=1}^{n} \gamma_i \). To derive its limiting distribution, we first calculate \(E(p^{-u_1} \text{tr} \bar{F} C_1 C_1, p^{-u_2} \text{tr} \bar{F} C_2)^T \). Under Assumptions A and B, \(E[\text{tr}(\bar{F} C_2)] = \text{tr} C_2 \) and it follows by some calculations that
\[
p^{-u_1} E \text{tr} \bar{F} C_1 C_1 = p^{-u_1} \left(E \sum_{i \neq j} \text{tr} \gamma_i \gamma_j T C_1 \gamma_j T C_1 + E \sum_{i=1}^{n} \gamma_i T C_1 \gamma_i T C_1 \right) + 2n \sum_{i=1}^{n} \text{tr} \gamma_i T C_1 \gamma_i T C_1 + E n^2 \sum_{i=1}^{n} \text{tr} \gamma_i T C_1 \gamma_i T C_1 \right) \]
\[
 = p^{-u_1} \left([\text{tr} C_1^2 + y_{n-1} p^{-1} (\text{tr} C_1)^2] + y_{n-1} p^{-1} \text{tr} C_1^2 \right) + y_{n-1} (\kappa - 3)p^{-1} \sum_{i=1}^{n} (e_i T C_1 e_i)^2 \right) + o(1). \]

To establish the asymptotic normality of \((p^{-u_1} \text{tr} \bar{F} C_1 C_1, p^{-u_2} \text{tr} \bar{F} C_2)^T \), it suffices to establish the asymptotic normality of \(p^{-u_1} \text{tr} \bar{F} C_1 C_1 + b p^{-u_2} \text{tr} \bar{F} C_2 \) for any constant \(b \). Define
\[A_{n_1} = p^{-u_1} \left(\sum_{i \neq j} \text{tr} \gamma_i \gamma_j T C_1 \gamma_j T C_1 + \sum_{i=1}^{n} \gamma_i T C_1 \gamma_i T C_1 \right) + p^{-u_2} b \sum_{i=1}^{n} \gamma_i T C_2 \gamma_i. \]
and
\[A_{n2} = p^{-u_1} \left(-2n \sum_j \text{tr} \tilde{\gamma}_j \gamma_j^T C_1 \gamma_j \gamma_j^T C_1 + n^2 \text{tr} \tilde{\gamma}_j \gamma_j^T C_1 \gamma_j \gamma_j^T C_1 \right) - p^{-u_2} b n \gamma^T C_2 \gamma. \]

It follows that
\[p^{-u_1} \text{tr} FC_1 FC_1 + p^{-u_2} b \text{tr} FC_2 = A_{n1} + A_{n2}. \]

Because \(\text{Var}(A_{n2}) = o(1) \), it is sufficient to deal with \(A_{n1} \). We will use Lindeberg CLT on martingale difference sequence to establish the asymptotic normality of \(A_{n1} \). Let \(E_\ell(Z) \) be the conditional expectation of \(Z \) given \(\{\gamma_1, \ldots, \gamma_\ell\} \). Then it can be verified that \(\{(E_\ell - E_{\ell-1})A_{n1}, \ell = 1, \ldots, n\} \) is a martingale difference sequence. Define
\[
\delta_{1\ell} = (E_\ell - E_{\ell-1}) \sum_{i \neq j} \text{tr} \gamma_i \gamma_i^T C_1 \gamma_j \gamma_j^T C_1,
\]
\[
\delta_{2\ell} = \gamma_\ell^T C_1 \gamma_\ell \gamma_\ell^T C_1 \gamma_\ell - E \gamma_\ell^T C_1 \gamma_\ell \gamma_\ell^T C_1 \gamma_\ell,
\]
\[
\delta_{3\ell} = b [\gamma_\ell^T C_2 \gamma_\ell - (n-1)^{-1} \text{tr} C_2].
\]

Then \((E_\ell - E_{\ell-1})A_{n1} = p^{-u_1} \delta_{1\ell} + p^{-u_1} \delta_{2\ell} + p^{-u_2} \delta_{3\ell} \). We may simplify \(\delta_{1\ell} \) as follows:
\[
\delta_{1\ell} = E_\ell \sum_{i \neq j} \text{tr} \gamma_i \gamma_i^T C_1 \gamma_j \gamma_j^T C_1 - E_{\ell-1} \sum_{i \neq j} \text{tr} \gamma_i \gamma_i^T C_1 \gamma_j \gamma_j^T C_1
\]
\[
= \frac{2(n-\ell)}{(n-1)} [\gamma_\ell^T C_1^2 \gamma_\ell - (n-1)^{-1} \text{tr} C_1^2]
\]
\[
+ 2 \sum_{j \leq \ell-1} [\gamma_j^T C_1 \gamma_j \gamma_j^T C_1 \gamma_\ell - (n-1)^{-1} \gamma_j^T C_1 \gamma_\ell].
\]

Rewrite
\[
\delta_{2\ell} = \gamma_\ell^T C_1 \gamma_\ell \gamma_\ell^T C_1 \gamma_\ell - E \gamma_\ell^T C_1 \gamma_\ell \gamma_\ell^T C_1 \gamma_\ell
\]
\[
= [\gamma_\ell^T C_1 \gamma_\ell - (n-1)^{-1} \text{tr} C_1]^2 - E[\gamma_\ell^T C_1 \gamma_\ell - (n-1)^{-1} \text{tr} C_1]^2
\]
\[
+ 2(n-1)^{-1} \text{tr} C_1 [\gamma_\ell^T C_1 \gamma_\ell - (n-1)^{-1} \text{tr} C_1].
\]

Because the Lindeberg condition of the martingale difference sequence \((p^{-u_1} \delta_{1\ell} + p^{-u_1} \delta_{2\ell} + p^{-u_2} \delta_{3\ell}) \) may be easily verified, it is sufficient to derive the limit of \(\sum_{\ell=1}^n (E_\ell - E_{\ell-1})[p^{-u_1} \delta_{1\ell} + p^{-u_1} \delta_{2\ell} + p^{-u_2} \delta_{3\ell}]^2 \). Bai and Silverstein (2010) pointed out that the CLT of the linear spectral statistics of the sample covariance matrix \(S_n \) from \(\{w_{ij} I(|w_{ij}| \leq n^{1/3}) \}, i = 1, \ldots, p, j = 1, \ldots, n \) is the same as the sample covariance matrix \(S_n \) from \(\{w_{ij}, i = 1, \ldots, p, j = 1, \ldots, n \} \)
\[\{1, \ldots, n\} \text{ where } \eta_n \to 0 \text{ and } \eta_n \sqrt{n} \to \infty. \] Then it follows by using Lemma 9.1 in Bai and Silverstein (2010) that

\[p^{-2u_1} \sum_{\ell=1}^{n} E_{\ell-1} \delta_1 \delta_2 \]

\[= p^{-2u_1} \left\{ 4(n-1)^{-2} \text{tr} C_1 \left[2\text{tr} C_1^3 + (\kappa - 3) \sum_{i=1}^{p} (e_i^T C_1 e_i)(e_i^T C_1^2 e_i) \right] \right\} + o_p(1). \]

By some calculations, we have

\[p^{-2u_1} \sum_{\ell=1}^{n} E_{\ell-1} \delta_1 \delta_2 \]

\[= \left[4(n-1)^{-2} \text{tr} C_1 \left[2\text{tr} C_1^3 + (\kappa - 3) \sum_{i=1}^{p} (e_i^T C_1 e_i)(e_i^T C_1^2 e_i) \right] \right] + o_p(1). \]

and

\[p^{-(u_1+u_2)} \sum_{\ell=1}^{n} E_{\ell-1} \delta_2 \delta_3 \]

\[= 2bp^{-(u_1+u_2)}(n-1)^{-1} \left[2\text{tr} (C_1^2 C_2) + (\kappa - 3) \sum_{i=1}^{p} e_i^T C_1 e_i e_i^T C_2 e_i \right] + o_p(1) \]

by using Lemma 9.1 in Bai and Silverstein (2010) again. We next deal with the squared terms. We can show that

\[p^{-2u_1} \sum_{\ell=1}^{n} E_{\ell-1} \delta_1^2 = 4p^{-2u_1} (n-1)^{-1} \left[2\text{tr} C_1^4 + (\kappa - 3) \sum_{i=1}^{p} (e_i^T C_1^2 e_i)^2 \right] + o_p(1). \]

\[p^{-2u_1} \sum_{\ell=1}^{n} E_{\ell-1} \delta_2^2 \]

\[= 4p^{-2u_1} (n-1)^{-2} \left[2\text{tr} C_1^2 + (\kappa - 3) \sum_{i=1}^{p} (e_i^T C_1 e_i)^2 \right] + o_p(1), \]

\[p^{-2u_2} \sum_{\ell=1}^{n} E_{\ell-1} \delta_3^2 \]

\[= b^2 p^{-2u_2} (n-1)^{-1} \left[2\text{tr} C_2^2 + (\kappa - 3) \sum_{i=1}^{p} (e_i^T C_2 e_i)^2 \right] + o_p(1). \]

Thus, we can further derive \(\sum_{\ell=1}^{n} E_{\ell-1} (p^{-u_1} \delta_1 + p^{-u_1} \delta_2 + p^{-u_2} \delta_3)^2. \)
Applying Lindeberg CLT on martingale difference sequence on $p^{-u_1}\delta_{1\ell} + p^{-u_1}\delta_{2\ell} + p^{-u_2}\delta_{3\ell}$, it follows that for any $b, p^{-u_1}(\text{tr}FC_1FC_1 - \text{Etr}FC_1FC_1) + p^{-u_2}b(\text{tr}FC_2 - \text{Etr}FC_2)$ converges to a normal distribution with mean 0 and variance $\lim_{n\to\infty} \sum_{\ell=1}^n E_{\ell-1}(p^{-u_1}\delta_{1\ell} + p^{-u_1}\delta_{2\ell} + p^{-u_2}\delta_{3\ell})^2$. The proof of Theorem 2.2 is completed by calculating the corresponding mean vector and covariance matrix, which equal $\mu_n^{(1)}$ and $\Sigma_n^{(1)}$ given in Section 2.4.

4.2. Proofs of Theorems 2.3, 2.4 and 2.5. Recall $\Sigma_0 = \theta_1A_1 + \cdots + \theta_KA_K$ and $\hat{\Sigma}_0 = \hat{\theta}_1A_1 + \cdots + \hat{\theta}_KA_K$. Using the identity $\hat{\Sigma}_0^{-1} - \Sigma_0^{-1} = -\Sigma_0^{-1}(\Sigma_0 - \Sigma_0)\hat{\Sigma}_0^{-1}$, it follows that

$$\hat{\Sigma}_0^{-1} = \Sigma_0^{-1} - \sum_{k=1}^K (\hat{\theta}_k - \theta_k)\Sigma_0^{-1}A_k\Sigma_0^{-1} + \sum_{i,j}[(\hat{\theta}_i - \theta_i)(\hat{\theta}_j - \theta_j)\hat{\Sigma}_0^{-1}A_i\Sigma_0^{-1}A_j\Sigma_0^{-1}]$$

$$= \Sigma_0^{-1}[I_p - \sum_{k=1}^K (\hat{\theta}_k - \theta_k)A_k\Sigma_0^{-1}] + \sum_{i,j}[(\hat{\theta}_i - \theta_i)(\hat{\theta}_j - \theta_j)\hat{\Sigma}_0^{-1}A_i\Sigma_0^{-1}A_j\Sigma_0^{-1}].$$

Then we have $S_n\hat{\Sigma}_0^{-1} = S_n\Sigma_0^{-1}[I_p - \sum_{k=1}^K (\hat{\theta}_k - \theta_k)A_k\Sigma_0^{-1}] + \sum_{i,j}[(\hat{\theta}_i - \theta_i)(\hat{\theta}_j - \theta_j)S_n\hat{\Sigma}_0^{-1}A_i\Sigma_0^{-1}A_j\Sigma_0^{-1}].$ Under H_0, by $\hat{\theta}_k = \theta_k + O_p(1/n)$, then the trace of the second term is of order $o_p(1)$.

Proof of Theorem 2.3(a) and (b). When $p < n - 1$, it follows by the Taylor expansion of $\hat{\theta}_k$ at $\theta_k, k = 1, \cdots, K$ that under H_0,

$$\text{tr}S_n\hat{\Sigma}_0^{-1} - \log|S_n\hat{\Sigma}_0^{-1}|$$

$$= \text{tr}S_n\Sigma_0^{-1} - \sum_{k=1}^K p(\hat{\theta}_k - \theta_k)\text{tr}S_n\Sigma_0^{-1}A_k\Sigma_0^{-1}$$

$$- \log|S_n\Sigma_0^{-1}| + \sum_{k=1}^K p(\hat{\theta}_k - \theta_k)\text{tr}A_k\Sigma_0^{-1} + o_p(1)$$

$$= \text{tr}S_n\Sigma_0^{-1} - \log|S_n\Sigma_0^{-1}| + o_p(1)$$

$$= \text{tr}F - \log|F| + o_p(1)$$

(4.4)

since $p^{-1}\text{tr}S_n\Sigma_0^{-1}A_k\Sigma_0^{-1} - p^{-1}\text{tr}A_k\Sigma_0^{-1} = o_p(1)$ under H_0 by (2.10) with setting $C_0 = \Gamma^\top\Sigma_0^{-1}A_k\Sigma_0^{-1}\Gamma$. By Lemma 2.1 and when $p < n - 1$, we have

$$\frac{T_{n1} + p\alpha_1(y_{n-1}) + m_1(y_{n-1})}{\sigma_n(y_{n-1})} \overset{d}{\to} N(0, 1),$$
where \(\sigma_{21}^2(y_{n-1}) = -2y_{n-1} - 2\log(1 - y_{n-1}) \).

This completes the proof of Theorem 2.3(a) with \(p < n - 1 \). Similarly, Theorem 2.3(a) with \(p = n - 1 \) can be obtained.

Similarly, for \(p > n - 1 \), a direct application of Lemma 2.1 to (4.4) leads to

\[
\frac{T_{n1} + p \alpha_2(y_{n-1}) + m_{22}(y_{n-1})}{\sqrt{y_{n-1}v_{11}(y_{n-1}) + v_{22}(y_{n-1}) - 2y_{n-1}v_{12}(y_{n-1})}} \xrightarrow{d} N(0, 1).
\]

That is,

\[
\frac{T_{n1} + p \alpha_2(y_{n-1}) + m_{22}(y_{n-1})}{\sigma_1(y_{n-1})} \xrightarrow{d} N(0, 1).
\]

This completes the proof of Theorem 2.3(b).

Proof of Theorem 2.3(c). Under \(H_0 \), \(\hat{\theta}_k = \theta_k + O_p(1/n) \), it follows that

\[
\begin{align*}
\text{tr}(S_n \hat{\Sigma}_0^{-1} - I_p)^2 &= \text{tr}(S_n \hat{\Sigma}_0^{-1} - I_p)^2 + p \sum_{k=1}^{K} (\hat{\theta}_k - \theta_k)^2 \text{tr}S_n \Sigma_0^{-1} A_k \Sigma_0^{-1} \\
&= -p \sum_{k=1}^{K} (\hat{\theta}_k - \theta_k)^2 \text{tr}(S_n \Sigma_0^{-1})^2 A_k \Sigma_0^{-1} + o_p(1).
\end{align*}
\]

(4.5)

Taking \(C_0 = \Gamma^T \Sigma_0^{-1} A_k \Sigma_0^{-1} \Gamma \) for \(k = 1, \cdots, K \), it follows by Theorem 2.1 that

\[
\begin{align*}
\text{tr}(S_n \hat{\Sigma}_0^{-1} - I_p)^2 &= \text{tr}(S_n \hat{\Sigma}_0^{-1} - I_p)^2 - 2y_{n-1} \sum_{k=1}^{K} (\hat{\theta}_k - \theta_k) \text{tr}A_k \hat{\Sigma}_0^{-1} + o_p(1) \\
&= \text{tr}(S_n \Sigma_0^{-1} - I_p)^2 - 2y_{n-1}(\text{tr}\hat{\Sigma}_0 \Sigma_0^{-1} - p) + o_p(1).
\end{align*}
\]

By the definition of \(\hat{\theta} \) in Section 2.1, it follows that

\[
\text{tr}\hat{\Sigma}_0 \Sigma_0^{-1} = \text{tr}S_n B = \text{tr}\Gamma^T \Gamma B,
\]

where \(B \) is defined in Theorem 2.3(c) and \(\text{tr}\Sigma_0 B = \text{tr}\Sigma_0 \Sigma_0^{-1} = p \). As a result, we have

\[
\begin{align*}
\text{tr}(S_n \hat{\Sigma}_0^{-1} - I_p)^2 &= \text{tr}(F - I_p)^2 - 2y_{n-1}(\text{tr}\hat{\Sigma}_0 \Sigma_0^{-1} - p) + o_p(1) \\
&= -2\text{tr}F - 2y_{n-1}\text{tr}\hat{\Sigma}_0 \Sigma_0^{-1} + \text{tr}F^2 + 2y_{n-1}p + p + o_p(1) \\
&= -2\text{tr}F - 2y_{n-1}\text{tr}\Gamma^T \Gamma B + \text{tr}F^2 + 2y_{n-1}p + p + o_p(1) \\
&= \text{tr}F^2 + \text{tr}F(-2I_p - 2y_{n-1}\Gamma^T \Gamma B) + 2y_{n-1}p + p + o_p(1).
\end{align*}
\]
By Theorem 2.2, we have
\[
\frac{\text{tr}(S_n\hat{\Sigma}_0^{-1} - I_p)^2 - py_{n-1} - (\kappa - 2)y}{2\sigma} \rightarrow N(0, 1),
\]
where
\[
\sigma^2 = 4^{-1} \left[4(\kappa - 1)(y + 2y^2) + 8y^3p^{-1}\text{tr}(\Sigma_0B)^2 + 4(\kappa - 3)y^3p^{-1}\sum_{i=1}^{p}(e_i^T\Gamma^T\Gamma e_i)^2 \\
+ 4y^2 + 4(\kappa - 1)(y + 2y^2 + y^3) - 8(\kappa - 1)y(1 + y)^2 \right]
\]
\[
= 4^{-1} \left[4y^2 + 8y^3p^{-1}\text{tr}(\Sigma_0B)^2 + 4(\kappa - 3)y^3p^{-1}\sum_{i=1}^{p}(e_i^T\Gamma^T\Gamma e_i)^2 - 4(\kappa - 1)y^3 \right]
\]
\[
= y^2 + 2y^3p^{-1}\text{tr}(\Sigma_0B)^2 + (\kappa - 3)y^3p^{-1}\sum_{i=1}^{p}(e_i^T\Gamma^T\Gamma e_i)^2 - (\kappa - 1)y^3.
\]

Proof of Theorem 2.4 (c). Due to the space limit, the proof of Theorem 2.4 (a) and (b) are given in the supplementary material.

We next derive the power function of \(T_{n2} \). First, we consider \(\Gamma^T\Sigma_1^{-1}\Gamma \) being bounded spectral norm. When \(\Gamma^T\Sigma_1^{-1}\Gamma \) has unbounded spectral norm, we only add a factor \(p^{-3/2} \) to \(T_{n2} \). Then the same results are obtained. Under \(H_1 \), it follows that
\[
\text{tr}(S_n\hat{\Sigma}_0^{-1} - I_p)^2
\]
\[
= \text{tr}(S_n\Sigma_1^{-1} - I_p)^2 + p\sum_{k=1}^{K}(\hat{\theta}_k - \theta_k^1)^22p^{-1}\text{tr}S_n\Sigma_1^{-1}A_k\Sigma_1^{-1} - p\sum_{k=1}^{K}(\hat{\theta}_k - \theta_k^1)^22p^{-1}\text{tr}(S_n\Sigma_1^{-1})^2A_k\Sigma_1^{-1} + o_p(1).
\]
Recall \(F = \sum_{i=1}^{n}\gamma_i\gamma_i^T - n\hat{\gamma}\hat{\gamma}^T \). Thus, we have
\[
p^{-1}\text{tr}S_n\Sigma_1^{-1}A_k\Sigma_1^{-1} = p^{-1}\sum_{i=1}^{n}\gamma_i^T\Gamma^T\Sigma_1^{-1}A_k\Sigma_1^{-1}\Gamma\gamma_i - (n/p)\gamma^T\Gamma^T\Sigma_1^{-1}A_k\Sigma_1^{-1}\Gamma\gamma.
\]
Because \(p^{-1}\sum_{i=1}^{n}E\gamma_i^T\Gamma^T\Sigma_1^{-1}A_k\Sigma_1^{-1}\Gamma\gamma_i = p^{-1}\text{tr}\Sigma\Sigma_1^{-1}A_k\Sigma_1^{-1} + o(1) \) and
\[
(n/p)E\gamma^T\Gamma^T\Sigma_1^{-1}A_k\Sigma_1^{-1}\Gamma\gamma = [(n - 1)p]^{-1}\text{tr}\Sigma\Sigma_1^{-1}A_k\Sigma_1^{-1},
\]
then we have

$$p^{-1} \text{E} \text{tr} S_n \Sigma_1^{-1} A_k \Sigma_1^{-1} - p^{-1} \text{tr} \Sigma \Sigma_1^{-1} A_k \Sigma_1^{-1} \to 0.$$

Furthermore, we can show that

$$\text{Var}[p^{-1} \sum_{i=1}^n \gamma_i \Gamma^T \Sigma_1^{-1} A_k \Sigma_1^{-1} \Gamma_i] \to 0, \quad \text{and} \quad \text{Var}[\gamma^T \Gamma^T \Sigma_1^{-1} A_k \Sigma_1^{-1} \Gamma \gamma] \to 0.$$

Then we have

$$p^{-1} \text{tr} S_n \Sigma_1^{-1} A_k \Sigma_1^{-1} - p^{-1} \text{tr} \Sigma \Sigma_1^{-1} A_k \Sigma_1^{-1} = o_p(1).$$

Moreover, we have

$$p^{-1} \text{E} \text{tr}[S_n \Sigma_1^{-1}]^2 A_k \Sigma_1^{-1}$$

$$= p^{-1} \text{E} \sum_{i=1}^n \text{tr} \gamma_i \gamma_i^T \Gamma^T \Sigma_1^{-1} \Gamma \gamma_i \gamma_i^T \Gamma^T \Sigma_1^{-1} A_k \Sigma_1^{-1} \Gamma$$

$$+ p^{-1} \text{E} \sum_{i \neq j} \text{tr} \gamma_i \gamma_i^T \Gamma^T \Sigma_1^{-1} \Gamma \gamma_j \gamma_j^T \Gamma^T \Sigma_1^{-1} A_k \Sigma_1^{-1} \Gamma$$

$$= np^{-1} (n-1)^{-2} [2 \text{tr} A_k \Sigma_1^{-1} (\Sigma \Sigma_1^{-1})^2$$

$$+ (\kappa - 3) \sum_{\ell=1}^p (e_\ell^T \Gamma^T \Sigma_1^{-1} \Gamma e_\ell)(e_\ell^T \Gamma^T \Sigma_1^{-1} A_k \Sigma_1^{-1} \Gamma e_\ell)]$$

$$+ np^{-1} (n-1)^{-2} (\text{tr} \Sigma \Sigma_1^{-1} A_k \Sigma_1^{-1}) + np^{-1} (n-1)^{-1} \text{tr} A_k \Sigma_1^{-1} (\Sigma \Sigma_1^{-1})^2.$$

Thus, it follows that

$$p^{-1} \text{E} \text{tr} (S_n \Sigma_1^{-1})^2 A_k \Sigma_1^{-1} - y_{n-1} (p^{-1} \text{tr} \Sigma \Sigma_1^{-1} (p^{-1} \text{tr} \Sigma \Sigma_1^{-1} A_k \Sigma_1^{-1})$$

$$- p^{-1} \text{tr} A_k \Sigma_1^{-1} (\Sigma \Sigma_1^{-1})^2 \to 0.$$

Similarly, it can be shown that

$$\text{Var}[p^{-1} \sum_{i=1}^n \gamma_i \gamma_i^T \Gamma^T \Sigma_1^{-1} \Gamma \gamma_i \gamma_i^T \Gamma^T \Sigma_1^{-1} A_k \Sigma_1^{-1} \Gamma] \to 0$$

and

$$\text{Var}[p^{-1} \text{E} \sum_{i \neq j} \gamma_i \gamma_i^T \Gamma^T \Sigma_1^{-1} \Gamma \gamma_j \gamma_j^T \Gamma^T \Sigma_1^{-1} A_k \Sigma_1^{-1} \Gamma] \to 0.$$

Therefore, we obtain

$$p^{-1} \text{tr} (S_n \Sigma_1^{-1})^2 A_k \Sigma_1^{-1} - y_{n-1} (p^{-1} \text{tr} \Sigma \Sigma_1^{-1} (p^{-1} \text{tr} \Sigma \Sigma_1^{-1} A_k \Sigma_1^{-1})$$
\[p^{-1} \text{tr} A_k \Sigma_1^{-1} (\Sigma \Sigma_1^{-1})^2 = o_p(1). \] As a result, it follows that

\[
tr(S_n \Sigma_0^{-1} - I_p)^2 = \sum_{k=1}^K (\hat{\theta}_k - \theta_k^*)^2 p^{-1} \text{tr} S_n \Sigma_1^{-1} - 2p^{-1} \text{tr} S_n \Sigma_1^{-1} A_k \Sigma_1^{-1}
\]

\[
- p \sum_{k=1}^K (\hat{\theta}_k - \theta_k^*)^2 2p^{-1} \text{tr} (S_n \Sigma_1^{-1})^2 A_k \Sigma_1^{-1} + o_p(1)
\]

\[
= \text{tr} [S_n \Sigma_1^{-1} - I_p]^2 + 2p \sum_{k=1}^K (\hat{\theta}_k - \theta_k^*)^2 p^{-1} \text{tr} \Sigma_1^{-1} A_k \Sigma_1^{-1} - 2p^{-1} \text{tr} \Sigma_1^{-1} A_k \Sigma_1^{-1}
\]

\[-2p \sum_{k=1}^K (\hat{\theta}_k - \theta_k^*)^2 p^{-1} \text{tr} \Sigma_1^{-1} A_k \Sigma_1^{-1} = 2 \text{tr} \Sigma_0 \Sigma_1^{-1} - 2 \text{tr} \Sigma_1^{-1} - 2p^{-1} \text{tr} \Sigma_1^{-1} \Sigma_1^{-1}
\]

and

\[
2p \sum_{k=1}^K (\hat{\theta}_k - \theta_k^*)^2 p^{-1} \text{tr} \Sigma_1^{-1} A_k \Sigma_1^{-1} = 2 \text{tr} \Sigma_0 \Sigma_1^{-1} - 2 \text{tr} \Sigma_1^{-1} - 2 \text{tr} \Sigma_1^{-1}
\]

Note that

\[
2p \sum_{k=1}^K (\hat{\theta}_k - \theta_k^*)^2 p^{-1} \text{tr} \Sigma_1^{-1} A_k \Sigma_1^{-1} = 2 \text{tr} \Sigma_0 \Sigma_1^{-1} - 2 \text{tr} \Sigma_1^{-1}
\]

and

\[
2p \sum_{k=1}^K (\hat{\theta}_k - \theta_k^*)^2 p^{-1} \text{tr} \Sigma_1^{-1} A_k \Sigma_1^{-1} = 2 \text{tr} \Sigma_0 \Sigma_1^{-1} - 2 \text{tr} \Sigma_1^{-1}
\]

Thus,

\[
2p \sum_{k=1}^K (\hat{\theta}_k - \theta_k^*)^2 p^{-1} \text{tr} \Sigma_1^{-1} A_k \Sigma_1^{-1}
\]

\[-2p \sum_{k=1}^K (\hat{\theta}_k - \theta_k^*)^2 p^{-1} \text{tr} \Sigma_1^{-1} A_k \Sigma_1^{-1} = 2p^{-1} \text{tr} \Sigma_1^{-1} \Sigma_1^{-1}
\]

\[
= 2(1 - p^{-1} \text{tr} \Sigma_1^{-1}) \text{tr} \Sigma_0 \Sigma_1^{-1} \Sigma_1^{-1} - 2 \text{tr} \Sigma_0 \Sigma_1^{-1} (\Sigma_1^{-1})^2
\]

\[-2p \text{tr} \Sigma_1^{-1} + 2p^{-1} \text{tr} \Sigma_1^{-1} \Sigma_1^{-1} - 2p^{-1} \text{tr} \Sigma_1^{-1} \Sigma_1^{-1}
\]

\[
= \text{tr} S_n B_1 - 2 \text{tr} \Sigma_1^{-1} + 2p^{-1} \text{tr} \Sigma_1^{-1} \Sigma_1^{-1} + 2 \text{tr} \Sigma_1^{-1} \Sigma_1^{-1}
\]
where $B_1 = \sum_{k=1}^{K} e_k^T D g \cdot A_k$ with $g = (\text{tr}G A_1, \ldots, \text{tr}G A_K)^T$ and $G = \Sigma_{i}^{-1} \Sigma_{i}^{-1} 2(1 - y_{n-1} p^{-1} \text{tr} \Sigma_{i}^{-1}) - 2 \Sigma_{i}^{-1} (\Sigma_{i}^{-1})^2$. Then we have

$$\text{tr}(S_n \hat{\Sigma}_0^{-1} - I_p)^2$$

$$= \text{tr}(S_n \Sigma_i^{-1} - I_p)^2 + 2p \sum_{k=1}^{K} (\hat{\theta}_k - \theta_k^*) p^{-1} \text{tr} \Sigma_i^{-1} A_k \Sigma_i^{-1}$$

$$- 2p \sum_{k=1}^{K} (\hat{\theta}_k - \theta_k^*) [y_{n-1} p^{-1} \text{tr} \Sigma_i^{-1} \Sigma_i^{-1} A_k \Sigma_i^{-1} + p^{-1} \text{tr} A_k \Sigma_i^{-1} (\Sigma_i^{-1})^2]$$

$$+ o_p(1)$$

$$= \text{tr}(S_n \Sigma_i^{-1} - I_p)^2 + \text{tr} S_n B_1 - 2p \text{tr} \Sigma_i^{-1} + 2y_{n-1} p^{-1} (\text{tr} \Sigma_i^{-1})^2 + 2p (\text{tr} \Sigma_i^{-1})^2$$

$$+ o_p(1)$$

$$= \text{tr}(F \Gamma^T \Sigma_i^{-1} \Gamma)^2 + \text{tr} F (-2 \Gamma^T \Sigma_i^{-1} \Gamma + \Gamma^T B_1 \Gamma)$$

$$+ p - 2p \text{tr} \Sigma_i^{-1} + 2y_{n-1} p^{-1} (\text{tr} \Sigma_i^{-1})^2 + 2p (\text{tr} \Sigma_i^{-1})^2 + o_p(1).$$

It follows by Theorem 2.2 that under $H_1,$

$$\frac{\text{tr}(S_n \hat{\Sigma}_0^{-1} - I_p)^2 - \mu_3^{(1)}}{\sigma^{(1)}_{n3}} \rightarrow N(0, 1),$$

where

$$\sigma^{(1)}_{n3}^2$$

$$= 8[n^{-1} \text{tr}(\Sigma_i^{-1})^4] + 4[n^{-1} \text{tr}(\Sigma_i^{-1})^2]^2 + 8(n^{-1} \text{tr}(\Sigma_i^{-1})^2)^2 + 16(n^{-1} \text{tr}(\Sigma_i^{-1})^3) + 2n^{-1} \text{tr}(-2 \Gamma^T \Sigma_i^{-1} \Gamma + \Gamma^T B_1 \Gamma)^2$$

$$+ 8n^{-1} \text{tr}[(-2 \Sigma_i^{-1} + B_1)]$$

$$+ 8(n^{-1} \text{tr} \Sigma_i^{-1})^2 + (\Sigma_i^{-1})^2 \Sigma(-2 \Sigma_i^{-1} + B_1)]$$

$$+ 4(\kappa - 3)n^{-1} \sum_{i=1}^{p} (e_i^T \Gamma^T \Sigma_i^{-1} \Sigma_i^{-1} \Gamma e_i)^2$$

$$+ 4(\kappa - 3)(n^{-1} \text{tr} \Sigma_i^{-1})^2 + n^{-1} \sum_{i=1}^{p} (e_i^T \Gamma^T \Sigma_i^{-1} \Gamma e_i)^2$$

$$+ 8(\kappa - 3)(n^{-1} \text{tr} \Sigma_i^{-1})[n^{-1} \sum_{i=1}^{p} (e_i^T \Gamma^T \Sigma_i^{-1} \Gamma e_i)(e_i^T \Gamma^T \Sigma_i^{-1} \Sigma \Sigma_i^{-1} \Gamma e_i)]$$

$$+ (\kappa - 3)n^{-1} \sum_{i=1}^{p} [e_i(-2 \Gamma^T \Sigma_i^{-1} \Gamma + \Gamma^T B_1 \Gamma) e_i]^2$$
\[+4(\kappa - 3)n^{-1} \sum_{i=1}^{p} e_i^T \Gamma^T \Sigma_i^{*-1} \Sigma \Sigma_i^{*-1} \Gamma e_i e_i^T \Gamma (-2 \Sigma_i^{*-1} + B_1) \Gamma e_i \]

\[+4(\kappa - 3)(n^{-1} \text{tr} \Sigma \Sigma_i^{*-1}) [n^{-1} \sum_{i=1}^{p} e_i^T \Gamma^T \Sigma_i^{*-1} \Gamma e_i e_i^T \Gamma (-2 \Sigma_i^{*-1} + B_1) \Gamma e_i] , \]

and

\[\mu_3^{(1)} = \frac{(\text{tr} \Sigma \Sigma_i^{*-1})^2}{n-1} + \frac{n-2}{n-1} \text{tr} \Sigma \Sigma_i^{*-1} - \text{tr} \Sigma \Sigma_i^{*-1} + p \]

\[+ \frac{1}{n-1} [2 \text{tr} \Sigma \Sigma_i^{*-1}]^2 + (\kappa - 3) \sum_{i=1}^{p} (e_i^T \Gamma^T \Sigma_i^{*-1} \Gamma e_i)^2 , \]

5. Discussion. We have studied hypothesis testing on linear structure of high dimensional covariance matrix, and developed two tests for the linear structure. Under the null hypothesis, the covariance matrix can be represented as a linear combination of a finite number of pre-specified matrix bases. This implies that we may estimate the covariance matrix well. If the null hypothesis gets rejected, one may have to consider more general structure or unstructured covariance matrix, and conduct further study.

Acknowledgements. The authors wish to thank the Associate Editor and anonymous referees for their constructive comments, which lead to significant improvement of this work. The authors thank Professor Ping-Shou Zhong for sharing his code of Zhong, Lan, Song and Tsai (2017), and the code was used for our numerical comparison in Section S.5.2 in Zheng, Chen, Cui and Li (2018).

SUPPLEMENTARY MATERIAL

 Supplement to “Hypothesis Testing on Linear Structures of High Dimensional Covariance Matrix”: (doi: COMPLETED BY THE TYPESETTER; .pdf). This supplementary material consists of the technical proofs and addition numerical results.

References.

Schott, J. R. (2007). A test for the equality of covariance matrices when the dimension is large relative to the sample size. *Computational Statistics and Data Analysis, 51,*

S. Zheng
KLAS and School of Mathematics
and Statistics,
Northeast Normal University,
Changchun, Jilin,
P.R. China
E-mail: zhengsr@nenu.edu.cn

Z. Chen
School of Data Science
Fudan University
Shanghai
P.R. China
E-mail: zuc4@psu.edu

H. Cui
Department of Statistics,
Capital Normal University,
Beijing,
P.R. China
E-mail: hjcui@bnu.edu.cn

R. Li
Department of Statistics,
and The Methodology Center
The Pennsylvania State University,
University Park, PA 16802-2111
USA
E-mail: rzli@psu.edu