ESTIMATION AND PREDICTION USING GENERALIZED WENDLAND COVARIANCE FUNCTIONS UNDER FIXED DOMAIN ASYMPTOTICS

By Moreno Bevilacqua*, Tarik Faouzi†, Reinhard Furrer‡,∥ and Emilio Porcu††

Universidad de Valparaiso§ Universidad del BioBio¶ University of Zurich† University Federico Santa Maria‡, University of Newcastle††

Abstract We study estimation and prediction of Gaussian random fields with covariance models belonging to the generalized Wendland (GW) class, under fixed domain asymptotics. As for the Matérn case, this class allows for a continuous parameterization of smoothness of the underlying Gaussian random field, being additionally compactly supported. The paper is divided into three parts: first, we characterize the equivalence of two Gaussian measures with GW covariance function, and we provide sufficient conditions for the equivalence of two Gaussian measures with Matérn and GW covariance functions. In the second part, we establish strong consistency and asymptotic distribution of the maximum likelihood estimator of the microergodic parameter associated to GW covariance model, under fixed domain asymptotics. The third part elucidates the consequences of our results in terms of (misspecified) best linear unbiased predictor, under fixed domain asymptotics. Our findings are illustrated through a simulation study: the former compares the finite sample behavior of the maximum likelihood estimation of the microergodic parameter with the given asymptotic distribution. The latter compares the finite-sample behavior of the prediction and its associated mean square error when using two equivalent Gaussian measures with Matérn and GW covariance models, using covariance tapering as benchmark.

1. Introduction. Covariance functions cover a central aspect of inference and prediction of Gaussian fields defined over some (compact) set of \mathbb{R}^d. For instance, the best linear unbiased prediction at an unobserved site depends on the knowledge of the covariance function. Since a covariance function must be positive definite, practical estimation generally requires

*Supported by grant FONDECYT 1160280 from Chilean government
†Acknowledges support of URPP GCB
‡Supported by grant FONDECYT 1130647 from Chilean government
MSC 2010 subject classifications: Primary 62M30; secondary 62F12, 60G25
Keywords and phrases: compactly supported covariance, spectral density, large dataset, microergodic parameter
the selection of some parametric classes of covariances and the corresponding estimation of these parameters.

The maximum likelihood (ML) estimation method is generally considered best for estimating the parameters of covariance models. The study of asymptotic properties of ML estimators is complicated by the fact that more than one asymptotic framework can be considered when observing a single realization from a Gaussian field. In particular, under fixed domain asymptotics, one supposes that the sampling domain is bounded and that the sampling set becomes increasingly dense. Under increasing domain, the sampling domain increases with the number of observed data, and the distance between any two sampling locations is bounded away from zero.

The asymptotic behavior of ML estimators of the covariance parameters can be quite different under these two frameworks (Zhang and Zimmerman, 2005). A general result under increasing domain asymptotic framework and some mild regularity conditions is given in Mardia and Marshall (1984). Specifically, they show that ML estimators are consistent and asymptotically Gaussian, with asymptotic covariance matrix equal to the inverse of the Fisher information matrix.

Equivalence of Gaussian measures (Skorokhod and Yadrenko, 1973; Ibragimov and Rozanov, 1978) represents an essential tool to establish the asymptotic properties of both prediction and estimation of Gaussian fields under fixed domain asymptotics. In his tour de force, Stein (1988, 1990, 1993, 1999a, 2004) provides conditions under which predictions under a misspecified covariance function are asymptotically efficient, and mean square errors converge almost surely to their targets. Since Gaussian measures depend exclusively on their mean and covariance functions, practical evaluation of Stein’s conditions translates into the fact that the true and the misspecified covariances must be compatible, i.e., the induced Gaussian measures are equivalent.

Under fixed domain asymptotics, no general results are available for the asymptotic properties of ML estimators. Yet, some results have been obtained when assuming that the covariance belongs to the parametric family of Matérn covariance functions (Matérn, 1960) that has been very popular in spatial statistics for its flexibility with respect to continuous parameterization of smoothness, in the mean square sense, of the underlying Gaussian field. For a Gaussian field defined over a bounded and infinite set of \(\mathbb{R}^d \), Zhang (2004) shows that when the smoothness parameter is known and fixed, not all parameters can be estimated consistently when \(d = 1, 2, 3 \). Instead, the ratio of variance and scale (to the power of the smoothing parameter), sometimes called microergodic parameter (Zhang and Zimmerman, 2005).
is consistently estimable. In contrast for \(d \geq 5 \), Anderes (2010) proved the orthogonality of two Gaussian measures with different Matérn covariance functions and hence, in this case, all the parameters can be consistently estimated under fixed-domain asymptotics. The case \(d = 4 \) is still open.

Asymptotic results for ML estimator of the microergodic parameter of the Matérn model can be found in Zhang (2004), Du, Zhang and Mandrekar (2009), Wang and Loh (2011) and Kaufman and Shaby (2013). In particular, Kaufman and Shaby (2013) give strong consistency and asymptotic distribution of the microergodic parameter when estimating jointly the scale and variance parameters, generalizing previous results in Zhang (2004) and Wang and Loh (2011) where the scale parameter is assumed known and fixed. Kaufman and Shaby (2013) show by means of simulation study that asymptotic approximation using a fixed scale parameter can be problematic when applied to finite samples, even for large sample sizes. In contrast, they show that performance is improved and asymptotic approximations are applicable for smaller sample sizes when the parameters are jointly estimated.

Under the Matérn family, similar results have been obtained for the covariance tapering (CT) method of estimation, as originally proposed in Kaufman, Schervish and Nychka (2008) and consisting of setting to zero the dependence after a given distance. This is in turn achieved by multiplying the Matérn covariance with a taper function, that is, a correlation function being additionally compactly supported over a ball with given radius. Thus, the resulting covariance tapered matrix is sparse, with the level of sparseness depending on the radius of compact support. Sparse matrix algorithms can then be used to evaluate efficiently an approximate likelihood where the original covariance matrix is replaced by the tapered matrix. The results proposed in Kaufman, Schervish and Nychka (2008) have then inspired the works in Du, Zhang and Mandrekar (2009), Wang and Loh (2011) and Kaufman and Shaby (2013), where asymptotic properties of the CT estimator of the Matérn microergodic parameter are given.

Using the Matérn family, Furrer, Genton and Nychka (2006) study CT when applied to the best unbiased linear predictor and show that under fixed domain asymptotics and some specific conditions of the taper function, asymptotically efficient prediction and asymptotically correct estimation of mean square error can be achieved using a tapered Matérn covariance function. Extensions have been discussed by, e.g., Stein (2013) and Hirano and Yajima (2013). The basic message of CT method is that large data sets can be handled both for estimation and prediction exploiting sparse matrix algorithms when using the Matérn model.
Inspired by this idea, we focus on a covariance model that offers the strength of the Matérn family and allows the use of sparse matrices. Specifically, we study estimation and prediction of Gaussian fields under fixed domain asymptotics, using the generalized Wendland (GW) class of covariance functions (Gneiting, 2002a; Zastavnyi, 2006), the members of which are compactly supported over balls of \mathbb{R}^d with arbitrary radii, and additionally allows for a continuous parameterization of differentiability at the origin, in a similar way to the Matérn family.

In particular, we provide the following results. First, we characterize the equivalence of two Gaussian measures with covariance functions belonging to the GW class and sharing the same smoothness parameter. A consequence of this result is that, as in the Matérn case (Zhang, 2004), when the smoothness parameter is known and fixed, not all parameters can be estimated consistently under fixed domain asymptotics. Then we give sufficient conditions for the equivalence of two Gaussian measures where the state of truth is represented by a member of the Matérn family and the other measure has a GW covariance model and vice versa.

We assess the asymptotic properties of the ML estimator of the microergodic parameter associated to the GW class. Specifically, for a fixed smoothness parameter, we establish strong consistency and asymptotic distribution of the microergodic parameter estimate assuming the compact support parameter fixed and known. Then, we generalize these results when jointly estimating with ML the variance and the compact support parameter.

Finally, using results in Stein (1988, 1993), we study the implications of our results on prediction under fixed domain asymptotics. One remarkable implication is that when the true covariance belongs to the Matérn family, asymptotic efficiency prediction and asymptotically correct estimation of mean square error can be achieved using a compatible GW covariance model.

The remainder of the paper is organized as follows. In Section 2, we review some results of Matérn and GW covariance models. In Section 3, we first characterize the equivalence of Gaussian measure under the GW covariance model. Then we find a sufficient condition for the equivalence of two Gaussian measures with Matérn and GW covariance models. In Section 4, we establish strong consistency and asymptotic distribution of the ML estimator of the microergodic parameter of the GW models, under fixed domain asymptotics. Section 5 discusses the consequences of the results in Section 3 on prediction under fixed domain asymptotics. Section 6 provides two simulation studies: The first shows how well the given asymptotic distribution of the microergodic parameter applies to finite sample cases when estimating with ML a GW covariance model under fixed domain asymptotics. The
second compare the finite-sample behavior of the prediction when using two compatible Matérn and GW models, using CT as a benchmark. The final section provides discussion on the consequence of our results and identifies problems for future research.

2. Matérn and generalized Wendland covariance models. We denote \(\{Z(s), s \in D\} \) a zero mean Gaussian field on a bounded set \(D \) of \(\mathbb{R}^d \), with stationary covariance function \(C : \mathbb{R}^d \to \mathbb{R} \). We consider the class \(\Phi_d \) of continuous mappings \(\phi : [0, \infty) \to \mathbb{R} \) with \(\phi(0) > 0 \), such that

\[
\text{cov} \left(Z(s), Z(s') \right) = C(s' - s) = \phi(\|s' - s\|),
\]

with \(s, s' \in D \), and \(\| \cdot \| \) denoting the Euclidean norm. Gaussian fields with such covariance functions are called weakly stationary and isotropic.

Schoenberg (1938) characterized the class \(\Phi_d \) as scale mixtures of the characteristic functions of random vectors uniformly distributed on the spherical shell of \(\mathbb{R}^d \), with any positive measure, \(F \):

\[
\phi(r) = \int_0^\infty \Omega_d(r\xi) F(d\xi), \quad r \geq 0,
\]

with \(\Omega_d(r) = r^{1-d/2}J_{d/2-1}(r) \) and \(J_\nu \) a Bessel function of order \(\nu \). The class \(\Phi_d \) is nested, with the inclusion relation \(\Phi_1 \supset \Phi_2 \supset \ldots \supset \Phi_\infty \) being strict, and where \(\Phi_\infty := \bigcap_{d \geq 1} \Phi_d \) is the class of continuous mappings \(\phi \), the radial version of which is positive definite on any \(d \)-dimensional Euclidean space.

The Matérn function, defined as:

\[
M_{\nu, \alpha, \sigma^2}(r) = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{r}{\alpha} \right)^\nu K_\nu \left(\frac{r}{\alpha} \right), \quad r \geq 0,
\]

is a member of the class \(\Phi_\infty \) for any positive values of \(\alpha \) and \(\nu \). Here, \(K_\nu \) is a modified Bessel function of the second kind of order \(\nu \), \(\sigma^2 \) is the variance and \(\alpha \) a positive scaling parameter. The parameter \(\nu \) characterizes the differentiability at the origin and, as a consequence, the differentiability of the associated sample paths. In particular for a positive integer \(k \), the sample paths are \(k \) times differentiable, in any direction, if and only if \(\nu > k \).

When \(\nu = 1/2 + m \) and \(m \) is a nonnegative integer, the Matérn function simplifies to the product of a negative exponential with a polynomial of degree \(m \), and for \(\nu \) tending to infinity, a rescaled version of the Matérn converges to a squared exponential model being infinitely differentiable at the origin. Thus, the Matérn function allows for a continuous parameterization of its associated Gaussian field in terms of smoothness.
We also define Φ_d^b as the class that consists of members of Φ_d being additionally compactly supported on a given interval, $[0, b]$, $b > 0$. Clearly, their radial versions are compactly supported over balls of \mathbb{R}^d with radius b.

We now define GW correlation functions $\varphi_{\mu, \kappa}$ as introduced by Gneiting (2002b), Zastavnyi (2006) and Chernih and Hubbert (2014). For $\kappa > 0$, we define

$$
\varphi_{\mu, \kappa}(r) := \begin{cases}
\frac{1}{B(2\kappa, \mu+1)} \int_{r}^{1} u(u^2 - r^2)^{\kappa - 1}(1 - u)^{\mu} du, & 0 \leq r < 1, \\
0, & r \geq 1,
\end{cases}
$$

with B denoting the beta function. Arguments in Gneiting (2002b) and Zastavnyi (2006) show that, for a given $\kappa > 0$, $\varphi_{\mu, \kappa} \in \Phi^1_d$ if and only if

$$\mu \geq \lambda(d, \kappa) := (d + 1)/2 + \kappa.$$

Throughout, we use λ instead of $\lambda(d, \kappa)$ whenever no confusion arises. Integration by parts shows that the first part of (1) can also be written as:

$$
\frac{1}{B(1 + 2\kappa, \mu)} \int_{r}^{1} (u^2 - r^2)^{\kappa}(1 - u)^{\mu - 1} du, \quad 0 \leq r < 1.
$$

Note that $\varphi_{\mu, 0}$ is not defined because κ must be strictly positive. In this special case we consider the Askey function (Askey, 1973)

$$A_{\mu}(r) = (1 - r)^\mu = \begin{cases}
(1 - r)^\mu, & 0 \leq r < 1, \\
0, & r \geq 1,
\end{cases}
$$

where $(\cdot)_{+}$ denotes the positive part. Arguments in Golubov (1981) show that $A_{\mu} \in \Phi^1_d$ if and only if $\mu \geq (d + 1)/2$ and we define $\varphi_{\mu, 0} := A_{\mu}$.

Finally, we define the GW covariance function, with compact support $\beta > 0$, variance σ^2, and smoothness parameter $\kappa > 0$ as:

$$
\varphi_{\mu, \kappa, \beta, \sigma^2}(r) := \sigma^2 \varphi_{\mu, \kappa}(r/\beta), \quad r \geq 0,
$$

and $\varphi_{\mu, \kappa, \beta, \sigma^2} \in \Phi^\beta_d$ if and only if $\mu \geq \lambda$. Accordingly, for $\kappa = 0$, we define

$$
\varphi_{\mu, 0, \beta, \sigma^2}(r) := \sigma^2 \varphi_{\mu, 0}(r/\beta), \quad r \geq 0.
$$

When computing (3), numerical integration is obviously feasible, but could be cumbersome to (spatial) statisticians used to handle closed form parametric covariance model. Nevertheless, closed form solution of the integral in Equation (1) can be obtained when $\kappa = k$, a positive integer. In this case, $\varphi_{\mu, k, 1, 1}(r) = A_{\mu+k}(r)P_k(r)$, with P_k a polynomial of order k.

GENERALIZED WENDLAND COVARIANCE FUNCTIONS

Table 1

GW correlation \(\varphi_{\mu,\kappa,1,1}(r) \) and Matérn correlation \(M_{\nu,1,1}(r) \) with increasing smoothness parameters \(\kappa \) and \(\nu \). SP(\(k \)) means that the sample paths of the associated Gaussian field are \(k \) times differentiable.

<table>
<thead>
<tr>
<th>(\kappa)</th>
<th>(\varphi_{\mu,\kappa,1,1}(r))</th>
<th>(\nu)</th>
<th>(M_{\nu,1,1}(r))</th>
<th>SP((k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>((1 - r)^{\mu})</td>
<td>0</td>
<td>(0.5) (e^{-r})</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>((1 - r)^{\mu+1}(1+r(\mu+1)))</td>
<td>1.5</td>
<td>(e^{-r}(1+r))</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>((1 - r)^{\mu+2}(1+r(\mu+2)+r^2(\mu^2+4\mu+3)\frac{1}{2}))</td>
<td>2.5</td>
<td>(e^{-r}(1+r+\frac{r^2}{2}))</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>((1 - r)^{\mu+3}(1+r(\mu+3)+r^2(2\mu^2+12\mu+15)\frac{1}{2} + r^3(\mu^3+9\mu^2+23\mu+15)\frac{1}{15}))</td>
<td>3.5</td>
<td>(e^{-r}(1+\frac{r}{2}+r^2\frac{\mu}{15}+\frac{r^3}{15}))</td>
<td>3</td>
</tr>
</tbody>
</table>

These functions, termed (original) Wendland functions, were originally proposed by Wendland (1995). Other closed form solutions of integral (1) can be obtained when \(\kappa = k + 0.5 \), using some results in Schaback (2011). Such solutions are called missing Wendland functions.

Recently, Porcu, Zastavnyi and Bevilacqua (2016) have shown that the GW class includes almost all classes of covariance functions with compact supports known to the geostatistical and numerical analysis communities. Not only original and Wendland functions, but also Wu’s functions (Wu, 1995), which in turn include the spherical model (Wackernagel, 2003), as well as the Trigub splines (Zastavnyi, 2006). Finally, Chernih, Sloan and Womersley (2014) show that, for \(\kappa \) tending to infinity, a rescaled version of the GW model converges to a squared exponential covariance model.

As noted by Gneiting (2002a), GW and Matérn functions exhibit the same behavior at the origin, with the smoothness parameters of the two covariance models related by the equation \(\nu = \kappa + 1/2 \).

Fourier transforms of radial versions of members of \(\Phi_d \), for a given \(d \), have a simple expression, as reported in Yaglom (1987) or Stein (1999b). For a member \(\phi \) of the class \(\Phi_d \), we define its isotropic spectral density as

\[
\hat{\phi}(z) = \frac{z^{1-d/2}}{(2\pi)^d} \int_0^\infty u^{d/2} J_{d/2-1}(uz) \phi(u) du, \quad z \geq 0,
\]

and throughout the paper, we use the notations: \(\hat{M}_{\nu,\alpha,\sigma^2} \), and \(\hat{\varphi}_{\mu,\kappa,\beta,\sigma^2} \) for the radial parts of Fourier transforms of \(M_{\nu,\alpha,\sigma^2} \) and \(\varphi_{\mu,\kappa,\beta,\sigma^2} \), respectively.

A well-known result about the spectral density of the Matérn model is
the following:

\[
\tilde{M}_{\nu,\alpha,\sigma^2}(z) = \frac{\Gamma(\nu + d/2)}{\pi^{d/2}} \frac{\sigma^2 \alpha^d}{(1 + \alpha^2 z^2)^{\nu + d/2}}, \quad z \geq 0.
\]

For two given non-negative functions \(g_1(x)\) and \(g_2(x)\), with \(g_1(x) \propto g_2(x)\) we mean that there exist two constants \(c\) and \(C\) such that \(0 < c < C < \infty\) and \(cg_2(x) \leq g_1(x) \leq Cg_2(x)\) for each \(x\). The next result follows from Zastavnyi (2006), Chernih and Hubbert (2014), and from standard properties of Fourier transforms. Their proofs are thus omitted. Let us first define the function \(_1F_2\) as:

\[
_1F_2(a; b, c; z) = \sum_{k=0}^{\infty} \frac{(a)_k z^k}{(b)_k (c)_k k!}, \quad z \in \mathbb{R},
\]

which is a special case of the generalized hypergeometric functions \(qF_p\) (Abramowitz and Stegun, 1970), with \((q)_k = \Gamma(q + k)/\Gamma(q)\) for \(k \in \mathbb{N} \cup \{0\}\), being the Pochhammer symbol.

Theorem 1. Let \(\varphi_{\mu,\kappa,\beta,\sigma^2}\) be the function defined at Equation (3) and let \(\lambda\) as defined through Equation (2). Then, for \(\kappa, \sigma^2, \beta > 0\) and \(\mu \geq \lambda\):

1. \(\tilde{\varphi}_{\mu,\kappa,\beta,\sigma^2}(z) = \sigma^2 L^\varsigma \beta^d _1F_2\left(\lambda; \lambda + \frac{\mu}{2}, \lambda + \frac{\mu}{2} + \frac{1}{2}; -\frac{(z\beta)^2}{4} \right), \quad z > 0;\)

2. \(\tilde{\varphi}_{\mu,\kappa,\beta,\sigma^2}(z) = \sigma^2 L^\varsigma \beta^d \left[c_3(z\beta)^{-2\lambda} \left\{ 1 + \mathcal{O}(z^{-2}) \right\}
+ c_4(z\beta)^{-(\mu+\lambda)} \left\{ \cos(z\beta - c_5) + \mathcal{O}(z^{-1}) \right\} \right], \quad \text{for } z \to \infty;\)

3. \(\tilde{\varphi}_{\mu,\kappa,\beta,\sigma^2}(z) \propto z^{-2\lambda}, \quad \text{for } z \to \infty,\)

where \(c_3 = \frac{\Gamma(\mu+2\lambda)}{\Gamma(\mu)}, \quad c_4 = \frac{\Gamma(\mu+2\lambda)}{\Gamma(\lambda)2^{\varsigma-1}}, \quad c_5 = \frac{\pi}{2} (\mu + \lambda), \quad L^\varsigma = \frac{K^\varsigma \Gamma(\kappa)}{\pi^{\varsigma-1} \Gamma(2\kappa,\mu+1)}\) and

\[
K^\varsigma = \frac{2^{-\kappa-d+1} \pi^{-\frac{d}{2}} \Gamma(\mu + 1) \Gamma(2\kappa + d)}{\Gamma(\kappa + \frac{d}{2}) \Gamma(\mu + 2\lambda)},
\]

where \(\varsigma := (\mu, \kappa, d)'\).

Point 1 has been shown by Zastavnyi (2006). Points 2 and 3 can be found in Chernih and Hubbert (2014). Note that the case \(\kappa = 0\) is not included in Theorem 1. We consider it in the following result, whose proof follows the lines of Zastavnyi (2006) and Chernih and Hubbert (2014) for the case \(\kappa > 0\).
Theorem 2. Let \(\varphi_{\mu,0,\beta,\sigma^2} \) as being defined at Equation (4). Then, for \(\sigma^2, \beta > 0, \mu \geq (d + 1)/2 \):

1. \[\tilde{\varphi}_{\mu,0,\beta,\sigma^2}(z) = \sigma^2 K^\varsigma \beta^d x_i F_2 \left(\frac{d + 1}{2}; \frac{d + 1}{2} + \mu, d + 1; \frac{d}{2} + \frac{1}{2} - \frac{z^2}{4} \right), \quad z > 0; \]

2. \[\tilde{\varphi}_{\mu,0,\beta,\sigma^2}(z) = \sigma^2 K^\varsigma \beta^d \left[c_3(z\beta)^{-(d+1)}(1 + O(z^{-2})) + c_4(z\beta)^{-(\mu+(d+1)/2)} \{ \cos(z\beta - c_5) + O(z^{-1}) \} \right], \quad \text{for } z \rightarrow \infty; \]

3. \[\tilde{\varphi}_{\mu,0,\beta,\sigma^2}(z) \approx z^{-(d+1)}, \quad \text{for } z \rightarrow \infty, \]

with \(c_3, c_4, c_5 \) and \(K^\varsigma \) defined as in Theorem 1 but with \(\varsigma := (\mu, 0, d)' \).

The spectral density and its decay for \(z \rightarrow \infty \) in Theorems 1 and 2 are useful when studying some geometrical properties of a Gaussian field or its associated sample paths (Adler, 1981). For instance, using Theorem 1 Point 1 or Theorem 2 Point 1, it is easy to prove that for a positive integer \(k \), the sample paths of a Gaussian field with GW function are \(k \) times differentiable, in any direction, if and only if \(\kappa > k - 1/2 \).

Table 1 compares the GW \(\varphi_{\mu,\kappa,1.1}(r) \) for \(\kappa = 0.1, 2, 3 \) with \(M_{\nu,1.1}(r) \) for \(\nu = 0.5, 1.5, 2.5, 3.5 \) with the associated number of sample paths differentiability.

3. Equivalence of Gaussian measures with GW models. Equivalence and orthogonality of probability measures are useful tools when assessing the asymptotic properties of both prediction and estimation for Gaussian fields. Denote with \(P_i, i = 0, 1 \), two probability measures defined on the same measurable space \(\{ \Omega, \mathcal{F} \} \). \(P_0 \) and \(P_1 \) are called equivalent (denoted \(P_0 \equiv P_1 \)) if \(P_1(A) = 1 \) for any \(A \in \mathcal{F} \) implies \(P_0(A) = 1 \) and vice versa. On the other hand, \(P_0 \) and \(P_1 \) are orthogonal (denoted \(P_0 \perp P_1 \)) if there exists an event \(A \) such that \(P_1(A) = 1 \) but \(P_0(A) = 0 \). For a stochastic process \(\{ Z(s), s \in \mathbb{R}^d \} \), to define previous concepts, we restrict the event \(A \) to the \(\sigma \)-algebra generated by \(\{ Z(s), s \in D \} \), where \(D \subset \mathbb{R}^d \). We emphasize this restriction by saying that the two measures are equivalent on the paths of \(\{ Z(s), s \in D \} \) (Ibragimov and Rozanov, 1978).

Let \(P(\rho_i), i = 0, 1 \) be two zero mean Gaussian measures with isotropic covariance function \(\rho_i \) and associated spectral density \(\hat{\rho}_i, i = 0, 1 \), as defined through (5). Using results in Skorokhod and Yadrenko (1973) and Ibragimov
and Rozanov (1978), Stein (2004) has shown that, if for some $a > 0$, $\hat{\rho}_0(z)z^a$ is bounded away from 0 and ∞ as $z \to \infty$, and for some finite and positive c,

$$\int_c^\infty z^{d-1} \left\{ \frac{\hat{\rho}_1(z) - \hat{\rho}_0(z)}{\hat{\rho}_0(z)} \right\}^2 dz < \infty,$$

then for any bounded subset $D \subset \mathbb{R}^d$, $P(\rho_0) \equiv P(\rho_1)$ on the paths of $Z(s), s \in D$.

For the remainder of the paper, we denote with $P(\mathcal{M}_{\nu,\alpha,\sigma^2})$ a zero mean Gaussian measure induced by a Matérn covariance function with associated spectral density $\hat{\mathcal{M}}_{\nu,\alpha,\sigma^2}$, and with $P(\varphi_{\mu,\kappa,\beta,\sigma^2})$ a zero mean Gaussian measure induced by a GW covariance function with associated spectral density $\hat{\varphi}_{\mu,\kappa,\beta,\sigma^2}$.

Using (7) and (6), Zhang (2004) established the following characterization concerning the equivalent conditions of two Gaussian measures with Matérn covariance models.

Theorem 3 (Zhang, 2004). For a given $\nu > 0$, let $P(\mathcal{M}_{\nu,\alpha_i,\sigma_i^2}), i = 0, 1$, be two zero mean Gaussian measures. For any bounded infinite set $D \subset \mathbb{R}^d$, $d = 1, 2, 3$, $P(\mathcal{M}_{\nu,\alpha_0,\sigma_0^2}) \equiv P(\mathcal{M}_{\nu,\alpha_1,\sigma_1^2})$ on the paths of $Z(s), s \in D$ if and only if

$$\sigma_0^2/\alpha_0^{2\nu} = \sigma_1^2/\alpha_1^{2\nu}.$$

The first relevant result of this paper concerns the characterization of the equivalence of two zero mean Gaussian measures under GW functions. The crux of the proof is the arguments in Equation (7), coupled with the asymptotic expansion of the spectral density as in Theorem 1 and 2.

Theorem 4. For a given $\kappa \geq 0$, let $P(\varphi_{\mu,\kappa,\beta_i,\sigma_i^2}), i = 0, 1$, be two zero mean Gaussian measures and let $\mu > \lambda + d/2$, with λ as defined through Equation (2). For any bounded infinite set $D \subset \mathbb{R}^d$, $d = 1, 2, 3$, $P(\varphi_{\mu,\kappa,\beta_0,\sigma_0^2}) \equiv P(\varphi_{\mu,\kappa,\beta_1,\sigma_1^2})$ on the paths of $Z(s), s \in D$ if and only if

$$\sigma_0^2/\beta_0^{2\kappa+1} = \sigma_1^2/\beta_1^{2\kappa+1}.$$

Proof. We first consider the case $\kappa > 0$. Let us start with the sufficient part of the assertion. From Theorem 1 (Point 3), there exist two positive constants c_i and C_i such that

$$c_i \leq z^{2\lambda} \hat{\varphi}_{\mu,\kappa,\beta_i,\sigma_i^2}(z) \leq C_i, \quad i = 0, 1.$$
In order to prove the sufficient part, we need to find conditions such that, for some positive and finite c,

$$(10) \quad \int_c^\infty z^{d-1} \left(\frac{\varphi_{\mu,\kappa,\beta_1}^2(z) - \varphi_{\mu,\kappa,\beta_0}^2(z)}{\varphi_{\mu,\kappa,\beta_0}^2(z)} \right)^2 dz < \infty,$$

We proceed by direct construction, and, using Theorem 1 (Points 1 and 2), we find that, as $z \to \infty$,

$$\left| \frac{\varphi_{\mu,\kappa,\beta_1}^2(z) - \varphi_{\mu,\kappa,\beta_0}^2(z)}{\varphi_{\mu,\kappa,\beta_0}^2(z)} \right| \leq L^a c_{0}^{-1} z^{2\lambda} \left[\sigma_1^2 \beta_1^{-\mu} \left\{ \cos(\beta_1 z - c_5^2) + O(z^{-1}) \right\} \right]$$

$$+ c_4^2 (z\beta_0)^{-\mu} \left\{ \cos(\beta_0 z - c_5^2) + O(z^{-1}) \right\} - \sigma_0^2 \beta_0 \left\{ c_3^2 (\beta_0 z)^{-2\lambda} \left\{ 1 + O(z^{-2}) \right\} \right\}$$

$$+ c_4^2 (z\beta_0)^{-\mu} \left\{ \cos(\beta_0 z - c_5^2) + O(z^{-1}) \right\}$$

$$\leq L^a c_{0}^{-1} \left[c_3^2 \left(\sigma_1^2 \beta_1^{-1+2\kappa} - \sigma_0^2 \beta_0^{-1+2\kappa} \right) \right] + O(z^{-2})$$

$$+ c_4^2 z^{\lambda-\mu} \left[\sigma_1^2 \beta_1^\lambda \cos(\beta_1 z - c_5^2) - \sigma_0^2 \beta_0^\lambda \cos(\beta_0 z - c_5^2) \right]$$

$$+ c_4^2 z^{\lambda-\mu} O(z^{-1}) \left\{ \sigma_1^2 \beta_1^\lambda - \sigma_0^2 \beta_0^\lambda \right\},$$

where $\lambda = d - (\mu + \lambda)$. Let us now write

$$A(z) = c_3^2 \left(\sigma_1^2 \beta_1^{-1+2\kappa} - \sigma_0^2 \beta_0^{-1+2\kappa} \right) + O(z^{-2}),$$

$$B(z) = c_4^2 z^{\lambda-\mu} \left[\sigma_1^2 \beta_1^\lambda \cos(\beta_1 z - c_5^2) - \sigma_0^2 \beta_0^\lambda \cos(\beta_0 z - c_5^2) \right],$$

$$D(z) = c_4^2 z^{\lambda-\mu} O(z^{-1}) \left\{ \sigma_1^2 \beta_1^\lambda - \sigma_0^2 \beta_0^\lambda \right\}.$$

Then, a sufficient condition for (10) is the following:

$$(11) \quad (L^a / c_0)^2 \int_c^\infty z^{d-1} \left(A(z) + B(z) + D(z) \right)^2 dz < \infty.$$

Note that $A(z)$ is of order $O(z^{-2})$ under Condition (9). We claim that (11) is satisfied if $\sigma_1^2 \beta_1^{(1+2\kappa)} = \sigma_0^2 \beta_0^{(1+2\kappa)}$ for $\mu > \lambda + d/2, d = 1, 2, 3$.

In fact, we have, for $z \to \infty$,

$$|B(z)| \leq c_4^2 z^{\lambda-\mu} \left[\sigma_1^2 \beta_1^\lambda + \sigma_0^2 \beta_0^\lambda \right] \leq c_6 z^{\lambda-\mu},$$
and

\[|D(z)| \leq c_6 z^{\lambda - \mu} O(z^{-1}) \{ \sigma_1^2 \beta_1^{-1} + \sigma_0^2 \beta_0^{-1} \} \]

\[\leq c_7 c_6 z^{\lambda - \mu - 1} \{ \sigma_1^2 \beta_1^{-1} + \sigma_0^2 \beta_0^{-1} \} \leq c_8 z^{\lambda - \mu - 1} \]

with \(c_6, c_7 \) and \(c_8 \) being positive and finite constants. Expanding (11) we notice that the dominant terms are \(A_\varphi \) with \(\kappa > 0 \), but using the arguments in Theorem 2.

The next result depicts an interesting scenario in which a GW and Matérn model are considered and gives sufficient conditions for the compatibility of these two covariance models. We omit the proof of the special case \(\kappa = 0 \), since is similar to the case \(\kappa > 0 \), but using the arguments in Theorem 2.

An immediate consequence of Theorem 4 is that for fixed \(\kappa \) and \(\mu \), the \(\beta \) and \(\sigma^2 \) parameters cannot be estimated consistently (Zhang, 2004). Instead, the microergodic parameter \(\sigma^2 \beta^{-1(1+2\kappa)} \) is consistently estimable. In Section 4, we establish the asymptotic properties of ML estimation associated to the microergodic parameter.

The next result depicts an interesting scenario in which a GW and Matérn model are considered and gives sufficient conditions for the compatibility of these two covariance models. We establish the asymptotic properties of ML estimation associated to the microergodic parameter.

Theorem 5. For given \(\nu > 1/2 \) and \(\kappa > 0 \), let \(P(\mathcal{M}_{\nu,\alpha,\sigma_0^2}) \) and \(P(\varphi_{\mu,\kappa,\beta,\sigma_1^2}) \)

be two zero mean Gaussian measures. If \(\nu = \kappa + 1/2 \), \(\mu > \lambda + d/2 \), with \(\lambda \) as defined through Equation (2), and

\[\sigma_0^2 \alpha^{-2\nu} = C_{\nu,\kappa,\mu} \sigma_1^2 \beta^{-1(1+2\kappa)} \]

where \(C_{\nu,\kappa,\mu} = \frac{\mu^2 \Gamma(\nu) \Gamma(\nu)}{\Gamma(\nu+d/2) \Gamma(\nu+d/2) \Gamma(2\kappa+1)} \), then for any bounded infinite set \(D \subset \mathbb{R}^d \), \(\nu = 1, 2, 3 \), \(P(\mathcal{M}_{\nu,\alpha,\sigma_0^2}) = P(\varphi_{\mu,\kappa,\beta,\sigma_1^2}) \) on the paths of \(Z(s), s \in D \).

Proof. In order to prove Theorem 5, we need to find conditions such

\[\]
that for some positive and finite c,

$$
\int_{c}^{\infty} z^{d-1} \left(\frac{\hat{\varphi}_{\mu, \kappa, \beta, \sigma_{1}^{2}}(z) - \hat{\mathcal{M}}_{\nu, \alpha, \sigma_{0}^{2}}(z)}{\mathcal{M}_{\nu, \alpha, \sigma_{0}^{2}}(z)} \right)^{2} dz < \infty.
$$

It is known that $\hat{\mathcal{M}}_{\nu, \alpha, \sigma_{0}^{2}}(z)$ is bounded away from 0 and a for some $a > 0$ (Zhang, 2004). Using (6) and Theorem 1 (Points 1 and 2), we have, as $z \to \infty$,

\[
\left| \frac{\hat{\varphi}_{\mu, \kappa, \beta, \sigma_{1}^{2}}(z) - \hat{\mathcal{M}}_{\nu, \alpha, \sigma_{0}^{2}}(z)}{\mathcal{M}_{\nu, \alpha, \sigma_{0}^{2}}(z)} \right| \leq \\
\left| \frac{\sigma_{1}^{2} \beta^{d} \Gamma(\nu) Ls}{\Gamma(\nu + d/2) \sigma_{0}^{2} \alpha^{-2 \nu} - \pi^{-2}} \left(c_{3}^{3}(\beta z)^{-2 \lambda} \{ 1 + O(z^{-2}) \} \\
+ c_{4}(\beta^{-(\mu + \lambda)}) \{ \cos(\beta z - c_{5}^{\nu}) + O(z^{-1}) \} \right) \right| (\alpha^{2} + z^{2})^{\nu + \frac{d}{2}} - 1 \right| \\
= \left| w_{1} z^{-2 \lambda} \{ 1 + O(z^{-2}) \} z^{2 \nu + d} \left[1 + (\nu + d/2)(\alpha z)^{-2} + O(z^{-2}) \right] \\
+ w_{2} z^{-(\mu + \lambda)} z^{2 \nu + d} \left[1 + (\nu + d/2)(\alpha z)^{-2} + O(z^{-2}) \right] \{ \cos(\beta z - c_{5}^{\nu}) + O(z^{-1}) \} - 1 \right|,
\]

where $w_{1} = \frac{Ls \sigma_{1}^{2} \beta^{-(1 + 2\nu)} \Gamma(\nu) c_{3}^{5}}{\Gamma(\nu + d/2) \sigma_{0}^{2} \alpha^{-2 \nu} - \pi^{-2} / 2}$, $w_{2} = w_{1} c_{4}^{3} \beta^{\lambda - \mu} / c_{3}^{5}$. Since $z^{2 \nu + d} [(\nu + d/2)(\alpha z)^{-2} + O(z^{-2})] = O(z^{2 \nu + d - 2})$, we have

$$
\int_{c}^{\infty} z^{d-1} \left| \frac{\hat{\varphi}_{\mu, \kappa, \beta, \sigma_{1}^{2}}(z) - \hat{\mathcal{M}}_{\nu, \alpha, \sigma_{0}^{2}}(z)}{\mathcal{M}_{\nu, \alpha, \sigma_{0}^{2}}(z)} \right|^{2} dz \\
= \int_{c}^{\infty} z^{d-1} \left| w_{1} z^{-2 \lambda} O(z^{2 \nu + d - 2}) \right| + \left| w_{1} z^{2 \nu -(1 + 2\nu)} - 1 \right| + w_{1} z^{-2 \lambda} \\
\times \left| O(z^{2 \nu + d - 2}) + O(z^{2 \nu + d - 4}) \right| + w_{2} z^{-(\mu + \lambda)} \{ O(z^{2 \nu + d - 2}) + z^{2 \nu + d} \} \{ \cos(\beta z - c_{5}^{\nu}) + O(z^{-1}) \} \right|^{2} dz.
$$

imsart-aos ver. 2014/10/16 file: Annals_Revision_10.tex date: August 10, 2017
For assessing the last integral, the following is relevant:

(i) \(w_1 z^{2\nu-1+2\kappa} - 1 = 0 \) if \(\nu = \kappa + 1/2 \) and \(w_1 = 1 \).
(ii) \(\int_c^\infty z^{-d-1} \left(w_1 z^{-2\lambda \mathcal{O}(z^{2\nu+d-2})} \right)^2 \, dz < \infty \) if \(d = 1, 2, 3 \) and \(\nu = \kappa + 1/2 \).
(iii) \(\int_c^\infty z^{-d-1} \left(w_1 z^{-2\lambda \mathcal{O}(z^{2\nu+d-2})} + \mathcal{O}(z^{2\nu+d-4}) \right)^2 \, dz < \infty \) if \(d = 1, 2, 3 \) and \(\nu = \kappa + 1/2 \).
(iv) \(\int_c^\infty z^{-d-1} \left(w_2 z^{-(\mu+\lambda)} \mathcal{O}(z^{2\nu+d-2}) \right)^2 \, dz < \infty \) if \(\mu > \lambda + d/2 \) and \(\nu = \kappa + 1/2 \).
(v) \(\int_c^\infty z^{-d-1} \left(w_2 z^{-(\mu+\lambda)} \mathcal{O}(z^{2\nu+d-2}) \right) \left(w_1 z^{-2\lambda \mathcal{O}(z^{2\nu+d-2})} + \mathcal{O}(z^{2\nu+d}) \right) \, dz < \infty \) if \(d = 1, 2, 3 \) and \(\nu = \kappa + 1/2 \).
(vi) \(\int_c^\infty z^{-d-1} \left(w_2 z^{-(\mu+\lambda)} \mathcal{O}(z^{2\nu+d-2}) \right) \left(w_2 z^{-(\mu+\lambda)} \mathcal{O}(z^{2\nu+d-2}) + \mathcal{O}(z^{2\nu+d}) \right) \, dz < \infty \) if \(\mu > \lambda + d - 2 \) and \(\nu = \kappa + 1/2 \).
(vii) \(\int_c^\infty z^{-d-1} \left(w_2 z^{-(\mu+\lambda)} \mathcal{O}(z^{2\nu+d-2}) \right) \left(w_2 z^{-(\mu+\lambda)} \mathcal{O}(z^{2\nu+d-2}) + \mathcal{O}(z^{2\nu+d}) \right) \, dz < \infty \) if \(\mu > \lambda + d - 2 \) and \(\nu = \kappa + 1/2 \).

This allows us to conclude that, for a given \(\kappa > 0 \), if \(w_1 = 1, \nu = \kappa + 1/2, \mu > \lambda + d/2 \) and \(d = 1, 2, 3 \) then (13) holds and thus \(P(M_{\nu,\sigma_0^2}) \equiv P(\varphi_{\mu,\kappa,\beta,\sigma_1^2}) \).

Condition \(w_1 = 1 \) is equivalent to

\[
L^3 c_3^2 \beta^{-(1+2\kappa)} = \pi^{-d/2} \Gamma(\nu + d/2) \Gamma(\nu)^{-1} \sigma_0^2 \alpha^{-2\nu},
\]

and from the definition of \(c_3^\kappa \) and \(L^k \), the previous condition can be rewritten as \(\sigma_0^2 \alpha^{-2\nu} = C_{\nu,\kappa,\mu} \sigma_1^2 \beta^{-(1+2\kappa)} \).

Theorem 6. Let \(P(M_{1/2,\alpha,\sigma_0^2}) \) and \(P(\varphi_{\mu,0,\beta,\sigma_1^2}) \) be two zero mean Gaussian measures. If \(\mu > d + 1/2 \) and

\[
\sigma_0^2 \alpha^{-2\nu} = R_{\mu} \sigma_1^2 \beta^{-1},
\]

where \(R_{\mu} = \mu \left(\frac{2^{1-d} \Gamma(1/2) \Gamma(d)}{\Gamma(1/2+d/2) \Gamma(d/2)} \right) \), then for any bounded infinite set \(D \subset \mathbb{R}^d \), \(d = 1, 2, 3 \), \(P(M_{1/2,\alpha,\sigma_0^2}) \equiv P(\varphi_{\mu,0,\beta,\sigma_1^2}) \) on the paths of \(Z(s), s \in D \).

Proof. The proof follows the same arguments exposed for the case \(\kappa > 0 \) in Theorem 5, but using (6) and Theorem 2 (Points 1 and 2). In this case, it can be shown that if \(\mu > d + 1/2, d = 1, 2, 3 \) and \(\mu \left(\frac{2^{1-d} \Gamma(1/2) \Gamma(d)}{\Gamma(1/2+d/2) \Gamma(d/2)} \right) \sigma_1^2 \beta^{-1} = \sigma_0^2 \alpha^{-2\nu} \) then (13) holds.

Remark: In Theorems 5 and 6 since \(\nu = \kappa + 1/2 \) for \(\kappa \geq 0 \), using the duplication formula of the gamma function, we easily obtain \(C_{\kappa+1/2,\mu,\nu} = \)
We now focus on the microergodic parameter distribution of the ML estimator. In particular, we will show that the microergodic parameter can be estimated consistently, and then we will assess the asymptotic distribution of the ML estimation of the microergodic parameter of the GW family. The following results fix the asymptotic properties of its ML estimator. In particular, we will show that the microergodic parameter can be estimated consistently, and then we will assess the asymptotic distribution of the ML estimator.

Let $D \subset \mathbb{R}^d$ be a bounded subset of \mathbb{R}^d and let $Z_n = (Z(s_1), \ldots, Z(s_n))'$ be a finite realization of a zero mean stationary Gaussian field with a given parametric covariance function $\sigma^2 \phi(\| \cdot \|; \tau)$, with $\sigma^2 > 0$, τ a parameter vector and ϕ a member of the class Φ_d, with $\phi(0; \tau) = 1$.

We then write $R_n(\tau) = [\phi(\| s_i - s_j \|; \tau)]_{i,j=1}^n$ for the associated correlation matrix. The Gaussian log-likelihood function is defined as:

$$
L_n(\sigma^2, \tau) = -\frac{1}{2} \left(n \log(2\pi \sigma^2) + \log(\| R_n(\tau) \|) + \frac{1}{\sigma^2} Z'_n R_n(\tau)^{-1} Z_n \right).
$$

Under the Matérn model, the Gaussian log-likelihood is obtained with $\phi(\cdot; \tau) \equiv \mathcal{M}_{\nu,\alpha,1}$ and $\tau = (\nu, \alpha)'$. Since in what follows ν is assumed known and fixed, for notation convenience, we write $\tau = \alpha$. Let $\hat{\sigma}^2$ and $\hat{\alpha}$ be the maximum likelihood estimator obtained maximizing $L_n(\sigma^2, \alpha)$ for a fixed ν.

Below, we report a result that establishes strong consistency and asymptotic distribution of the ML estimation of the microergodic parameter of the Matérn model.

Theorem 7 (Kaufman and Shaby, 2013). Let $Z(s)$, $s \in D \subset \mathbb{R}^d$, $d = 1, 2, 3$, be a zero mean Gaussian field with a Matérn covariance model $\mathcal{M}_{\nu,\alpha_0,\sigma_0^2}$. Suppose $(\sigma_0^2, \alpha_0)' \in (0, \infty) \times [\alpha_L, \alpha_U]$, for any $0 < \alpha_L < \alpha_U < \infty$. Let $(\hat{\sigma}_n^2, \hat{\alpha}_n)'$ maximize (16) over $(0, \infty) \times [\alpha_L, \alpha_U]$. Then as $n \to \infty$,

1. $\hat{\sigma}_n^2 / \hat{\alpha}_n^{2\nu} \overset{a.s.}{\longrightarrow} \sigma_0^2 / \alpha_0^{2\nu}$, and
2. $\sqrt{n}(\hat{\sigma}_n^2 / \hat{\alpha}_n^{2\nu} - \sigma_0^2 / \alpha_0^{2\nu}) \overset{D}{\longrightarrow} \mathcal{N}(0, 2(\sigma_0^2 / \alpha_0^{2\nu})^2)$.

Analogous results can be found in (Zhang, 2004; Wang and Loh, 2011), when $\hat{\alpha}_n$ is replaced by α, an arbitrary positive fixed constant.
and Shaby (2013) show, through simulation study, that asymptotic approximation using a fixed scale parameter can be problematic when applied to finite samples, even for large sample sizes. In contrast, they show that performance is improved and asymptotic approximations are applicable for smaller sample sizes, when the parameters are jointly estimated.

Now, let us consider the Gaussian log-likelihood under the GW model, so that \(\tau = (\mu, \kappa, \beta)' \) and \(\phi(\cdot; \tau) = \varphi_{\mu, \kappa, \beta} (\cdot) \) according to the previous notation. Since in what follows \(\kappa \) and \(\mu \) are assumed known and fixed, for notation convenience we write \(\tau = \beta \). To prove the analogue of Theorem 7 for the GW case, we consider two types of estimators. The first maximizes (16) with respect to \(\sigma^2 \) for a fixed arbitrary compact support \(\beta > 0 \), obtaining the following estimator

\[
\hat{\sigma}^2_n(\beta) = \arg \max_{\sigma^2} \mathcal{L}_n(\sigma^2, \beta) = Z_n' R_n(\beta)^{-1} Z_n/n.
\]

Here \(R_n(\beta) \) is the correlation matrix coming from the GW family \(\varphi_{\mu, \kappa, \beta} \).

The following result offers some asymptotic properties of the sequence of random variables \(\hat{\sigma}^2_n(\beta)/\beta^{1+2\kappa} \).

Theorem 8. Let \(Z(s) \), \(s \in D \subset \mathbb{R}^d \), \(d = 1, 2, 3 \), be a zero mean Gaussian field with GW covariance model \(\varphi_{\mu, \kappa, \beta_0, \sigma_0^2} \), with \(\mu > \lambda + d/2 \). Suppose \((\sigma_0^2, \beta_0) \in (0, \infty) \times (0, \infty) \). For a fixed \(\beta > 0 \), let \(\hat{\sigma}^2_n(\beta) \) as defined through Equation (17). Then, as \(n \to \infty \),

1. \(\hat{\sigma}^2_n(\beta)/\beta^{1+2\kappa} \xrightarrow{a.s.} \sigma_0^2(\beta_0)/\beta_0^{1+2\kappa} \) and
2. \(\sqrt{n}(\hat{\sigma}^2_n(\beta)/\beta^{1+2\kappa} - \sigma_0^2(\beta_0)/\beta_0^{1+2\kappa}) \xrightarrow{D} \mathcal{N}(0, 2(\sigma_0^2(\beta_0)/\beta_0^{1+2\kappa})^2) \).

Proof. The proof of the first assertion follows the same arguments of the proof of Theorem 3 in Zhang (2004), and we omit it. The proof of the second assertion is quite technical and long and it has been deferred to the supplementary material.

The second type of estimation technique considers the joint maximization of (16) with respect to \((\sigma^2, \beta) \in (0, \infty) \times I \), where \(I = [\beta_L, \beta_U] \) and \(0 < \beta_L < \beta_U < \infty \). The solution of this optimization problem is given by \((\hat{\sigma}^2_n(\hat{\beta}_n), \hat{\beta}_n) \) where

\[
\hat{\sigma}^2_n(\hat{\beta}_n) = Z_n' R_n(\hat{\beta}_n)^{-1} Z_n/n
\]

and \(\hat{\beta}_n = \arg \max_{\beta \in I} \mathcal{P}\mathcal{L}_n(\beta) \). Here \(\mathcal{P}\mathcal{L}_n(\beta) \) is the profile log-likelihood:

\[
\mathcal{P}\mathcal{L}_n(\beta) = -\frac{1}{2} \left(\log(2\pi) + n \log(\hat{\sigma}^2_n(\beta)) + \log |R_n(\beta)| + n \right).
\]
In order to establish strong consistency and asymptotic distribution of the sequence of random variables $\hat{\sigma}_n^2(\beta_n)/\beta_n^{1+2\kappa}$, we use the following Lemma that establishes the monotone behaviour of $\hat{\sigma}_n^2(\beta)/\beta_1^{1+2\kappa}$ when viewed as a function of $\beta \in I$ under specific condition on the μ parameter.

LEMMA 1. Let $S_n = \{s_1,\ldots, s_n \in D \subset \mathbb{R}^d\}$ denote any set of distinct locations. For any $\beta_1 < \beta_2 \in I$ and for each n, $\hat{\sigma}_n^2(\beta_1)/\beta_1^{1+2\kappa} \leq \hat{\sigma}_n^2(\beta_2)/\beta_2^{1+2\kappa}$ if and only if $\mu \geq \lambda + 3$.

PROOF. The proof follows Kaufman and Shaby (2013). Let $0 < \beta_1 < \beta_2$, with $\beta_1, \beta_2 \in I$. Then, for any Z_n,

$$\hat{\sigma}_n^2(\beta_1)/\beta_1^{1+2\kappa} - \hat{\sigma}_n^2(\beta_2)/\beta_2^{1+2\kappa} = \frac{1}{n} Z_n' (R_n(\beta_1)^{-1} \beta_1^{-(1+2\kappa)} - R_n(\beta_2)^{-1} \beta_2^{-(1+2\kappa)}) Z_n$$

is nonnegative if the matrix $R_n(\beta_1)^{-1} \beta_1^{-(1+2\kappa)} - R_n(\beta_2)^{-1} \beta_2^{-(1+2\kappa)}$ is positive semidefinite and this happens if and only if the matrix $B = R_n(\beta_2)\beta_2^{1+2\kappa} - R_n(\beta_1)\beta_1^{1+2\kappa}$ with generic element

$$B_{ij} = \beta_2^{1+2\kappa} \varphi_{\mu,\kappa,\beta_2,1}(||s_i - s_j||) - \beta_1^{1+2\kappa} \varphi_{\mu,\kappa,\beta_1,1}(||s_i - s_j||).$$

is positive semidefinite. From Theorem 2 in Porcu, Zastavnyi and Bevilacqua (2016), this happens if and only if $\mu \geq \lambda + 3$. \hfill \Box

THEOREM 9. Let $Z(s)$, $s \in D \subset \mathbb{R}^d$, $d = 1, 2, 3$, be a zero mean Gaussian field with a GW covariance model $\varphi_{\mu,\kappa,\beta_0,\sigma_0^2}$ with $\mu \geq \lambda + 3$. Suppose $(\sigma_0^2, \beta_0) \in (0, \infty) \times I$ where $I = [\beta_L, \beta_U]$ with $0 < \beta_L < \beta_U < \infty$. Let $(\hat{\sigma}_n^2, \hat{\beta}_n)$ maximize (16) over $(0, \infty) \times I$. Then as $n \to \infty$,

1. $\hat{\sigma}_n^2(\beta_n)/\hat{\beta}_n^{1+2\kappa} \overset{a.s.}{\to} \sigma_0^2(\beta_0)/\beta_0^{1+2\kappa}$ and
2. $\sqrt{n}(\hat{\sigma}_n^2(\beta_n)/\hat{\beta}_n^{1+2\kappa} - \sigma_0^2(\beta_0)/\beta_0^{1+2\kappa}) \overset{\mathcal{D}}{\to} \mathcal{N}(0, 2(\sigma_0^2(\beta_0)/\beta_0^{1+2\kappa})^2)$.

PROOF. The proof follows Kaufman and Shaby (2013) which use the same arguments in the Matérn case. Let $G_n(x) = \hat{\sigma}_n^2(x)/x^{1+2\kappa}$ and define the sequences $G_n(\beta_L)$ and $G_n(\beta_U)$. Since $\beta_L \leq \beta_n \leq \beta_U$ for every n, then, using Lemma 1, $G_n(\beta_U) \leq G_n(\beta_n) \leq G_n(\beta_L)$ for all n with probability one. Combining this with Theorem 8 implies the result. \hfill \Box

5. Prediction using GW model. We now consider prediction of a Gaussian field at a new location s_0, using the GW model, under fixed domain asymptotics. Specifically, we focus on two properties: asymptotic efficiency prediction and asymptotically correct estimation of prediction variance. Stein (1988) shows that both asymptotic properties hold when the
Gaussian measures are equivalent. Let \(P(\varphi_{\mu, \kappa, \beta_i, \sigma_i^2}^2), \ i = 1, 2, \) be two probability zero mean Gaussian measures. Under \(P(\varphi_{\mu, \kappa, \beta_0, \sigma_0^2}^2) \), and using Theorem 4, both properties hold when \(\sigma_0^2 \varepsilon^{-(1+2\kappa)} = \sigma_1^2 \varepsilon^{-(1+2\kappa)} \), \(\mu > \lambda + d/2 \) and \(d = 1, 2, 3 \).

Similarly, let \(P(M_{\nu, \alpha, \sigma_2^2}) \) and \(P(\varphi_{\mu, \kappa, \beta_1, \sigma_1^2}^2) \) be two Gaussian measures with Matérn and GW model. Under \(P(M_{\nu, \alpha, \sigma_2^2}) \) both properties hold when (15) is true, \(\mu > \lambda + d/2 \), \(d = 1, 2, 3 \). Actually, Stein (1993) gives a substantially weaker condition for asymptotic efficiency prediction based on the asymptotic behaviour of the ratio of the isotropic spectral densities. Now, let

\[
\tilde{Z}_n(\mu, \kappa, \beta) = c_n(\mu, \kappa, \beta) R_n(\mu, \kappa, \beta)^{-1} Z_n
\]

be the best linear unbiased predictor at an unknown location \(s_0 \in D \subset \mathbb{R}^d \), under the misspecified model \(P(\varphi_{\mu, \kappa, \beta, \sigma^2}^2) \), where \(c_n(\mu, \kappa, \beta) = [\varphi_{\mu, \kappa, \beta, 1}||s_0 - s_i||]_{i=1}^n \) and \(R_n(\mu, \kappa, \beta) = [\varphi_{\mu, \kappa, \beta, 1}||s_i - s_j||]_{i,j=1}^n \) is the correlation matrix.

If the correct model is \(P(\varphi_{\mu, \kappa, \beta_0, \sigma_0^2}^2) \), then the mean squared error of the predictor is given by:

\[
\text{Var}_{\mu, \kappa, \beta_0, \sigma_0^2} \left[\tilde{Z}_n(\mu, \kappa, \beta) - Z(s_0) \right] = \sigma_0^2 \left(1 - 2c_n(\mu, \kappa, \beta)^\prime R_n(\mu, \kappa, \beta)^{-1} c_n(\mu, \kappa, \beta_0) \right.
\]
\[
+ c_n(\mu, \kappa, \beta)^\prime R_n(\mu, \kappa, \beta)^{-1} R_n(\mu, \kappa, \beta_0) R_n(\mu, \kappa, \beta_0)^{-1} c_n(\mu, \kappa, \beta) \right).
\]

In the case that \(\beta_0 = \beta \), i.e., true and wrong models coincide, this expression simplifies to

\[
\text{Var}_{\mu, \kappa, \beta_0, \sigma_0^2} \left[\tilde{Z}_n(\mu, \kappa, \beta) - Z(s_0) \right] = \sigma_0^2 \left(1 - c_n(\mu, \kappa, \beta_0)^\prime R_n(\mu, \kappa, \beta_0)^{-1} c_n(\mu, \kappa, \beta_0) \right).
\]

Similarly, \(\text{Var}_{\nu, \alpha, \sigma_2^2} \left[\tilde{Z}_n(\nu, \alpha) - Z(s_0) \right] \) and \(\text{Var}_{\nu, \alpha, \sigma_2^2} \left[\tilde{Z}_n(\nu, \alpha) - Z(s_0) \right] \) can be defined under \(P(M_{\nu, \alpha, \sigma_2^2}) \), where \(\tilde{Z}_n(\nu, \alpha) \) is the best linear unbiased predictor using the Matérn model. The following results are an application of Theorems 1 and 2 of Stein (1993).

Theorem 10. Let \(P(\varphi_{\mu, \kappa, \beta_0, \sigma_0^2}^2), P(\varphi_{\mu, \kappa, \beta_1, \sigma_1^2}^2), P(M_{\nu, \alpha, \sigma_2^2}) \) be three Gaussian probability measures on \(D \subset \mathbb{R}^d \) and let \(\mu > \lambda \). Then, for all \(s_0 \in D \):

1. Under \(P(\varphi_{\mu, \kappa, \beta_0, \sigma_0^2}^2) \), as \(n \to \infty \),

\[
\frac{\text{Var}_{\mu, \kappa, \beta_0, \sigma_0^2} \left[\tilde{Z}_n(\mu, \kappa, \beta_1) - Z(s_0) \right]}{\text{Var}_{\mu, \kappa, \beta_0, \sigma_0^2} \left[\tilde{Z}_n(\mu, \kappa, \beta_0) - Z(s_0) \right]} \to 1,
\]
for any fixed $\beta_1 > 0$.

2. Under $P(M_{\nu, \alpha, \sigma_2^2})$, if $\nu = \kappa + 1/2$ as $n \to \infty$,

$$\text{Var}_{\nu, \alpha, \sigma_2^2} \left[\frac{\hat{Z}_n(\mu, \kappa, \beta_1) - Z(s_0)}{\hat{Z}_n(\nu, \alpha) - Z(s_0)} \right] \to 1,$$

for any fixed $\beta_1 > 0$.

3. Under $P(\phi_{\mu, \kappa, \beta_0, \sigma_0^2})$, if $\sigma_0^2 \beta_0^-(1+2\kappa) = \sigma_1^2 \beta_1^-(1+2\kappa)$, then as $n \to \infty$,

$$\text{Var}_{\mu, \kappa, \beta_0, \sigma_0^2} \left[\frac{\hat{Z}_n(\mu, \kappa, \beta_1) - Z(s_0)}{\hat{Z}_n(\mu, \kappa, \beta_1) - Z(s_0)} \right] \to 1.$$

4. Under $P(M_{\nu, \alpha, \sigma_2^2})$, if $\mu \Gamma(2\kappa + \mu + 1)/\Gamma(\mu + 1) \times \sigma_1^2 \beta_1^-(1+2\kappa) = \sigma_2^2 \alpha - 2\nu$, $\nu = \kappa + 1/2$, then as $n \to \infty$,

$$\text{Var}_{\mu, \kappa, \beta_1, \sigma_2^2} \left[\frac{\hat{Z}_n(\mu, \kappa, \beta_1) - Z(s_0)}{\hat{Z}_n(\nu, \alpha) - Z(s_0)} \right] \to 1.$$

Proof. Since $\hat{\phi}_{\mu, \kappa, \beta_0, \sigma_0^2}(z)$ is bounded away from zero and infinity and as $z \to \infty$,

$$\frac{\hat{\phi}_{\mu, \kappa, \beta_1, \sigma_1^2}(z)}{\hat{\phi}_{\mu, \kappa, \beta_0, \sigma_0^2}(z)} = \frac{\sigma_1^2 \beta_1^d \left[c_{\beta_1}^{-2\lambda} \{1 + \mathcal{O}(z^{-2})\} + c_{\beta_1}^{\nu} \beta_1^{-\nu} \{ \cos(z \beta_1 - c_5^\nu) + \mathcal{O}(z^{-1}) \} \right]}{\sigma_0^2 \beta_0^d \left[c_{\beta_0}^{-2\lambda} \{1 + \mathcal{O}(z^{-2})\} + c_{\beta_0}^{\nu} \beta_0^{-\nu} \{ \cos(z \beta_0 - c_5^\nu) + \mathcal{O}(z^{-1}) \} \right]},$$

then, for $\mu > \lambda$, we have

$$\lim_{z \to \infty} \frac{\hat{\phi}_{\mu, \kappa, \beta_1, \sigma_1^2}(z)}{\hat{\phi}_{\mu, \kappa, \beta_0, \sigma_0^2}(z)} = \frac{\sigma_1^2 \beta_1^-(1+2\kappa)}{\sigma_0^2 \beta_0^-(1+2\kappa)},$$

and using Theorem 1 of Stein (1993), we obtain (22). If $\sigma_1^2 \beta_1^-(1+2\kappa) = \sigma_2^2 \beta_0^-(1+2\kappa)$ and using Theorem 2 of Stein (1993), we obtain (24).

Similarly, since $\hat{M}_{\nu, \alpha, \sigma_2^2}(z)$ is bounded away from zero and infinity and as
\[\lim_{z \to \infty} \frac{\mathcal{G}_{\mu,\nu,0,\rho,\sigma^2}(z)}{\mathcal{M}_{\nu,\alpha,\sigma^2}(z)} = \frac{\sigma^2_{\nu} \beta_1^{-\nu} \Gamma(\nu)}{\sigma^2_{\nu} \alpha^{-\nu} \Gamma(\nu)} \left(\frac{\Gamma(2\nu + \mu + 1)}{\Gamma(\mu + 1)} \right) \text{.} \]

Using Theorem 1 of Stein (1993), we obtain (23). If \(\sigma^2_{\nu} \beta_1^{-\nu} \Gamma(\nu) = \sigma^2_{\nu} \alpha^{-\nu} \Gamma(\nu) \), and using Theorem 2 of Stein (1993), we obtain (25). \(\square \)

The implication of Point 1 is that under \(P(\mathcal{G}_{\nu,\alpha,\sigma^2}) \), prediction with \(\mathcal{G}_{\nu,\alpha,\sigma^2} \) with an arbitrary \(\beta_1 > 0 \) gives asymptotic prediction efficiency, if the correct value of \(\nu \) and \(\alpha \) are used and \(\mu > \lambda \). By virtue of Point 2, under \(P(\mathcal{M}_{\nu,\alpha,\sigma^2}) \), prediction with \(\mathcal{G}_{\nu,\alpha,\sigma^2} \), with an arbitrary \(\beta_1 > 0 \), gives asymptotic prediction efficiency, if \(\nu > \lambda \). For instance, if \(\sigma^2_{\nu} \alpha^{\nu} \beta_1 \) is the true covariance, asymptotic prediction efficiency can be achieved with \(\sigma^2_{\nu} 1 - r/\beta_1 \), using an arbitrary \(\beta_1 \), and \(\mu > 1.5 \) when \(d = 2 \).

In view of Point 3, under \(P(\mathcal{G}_{\nu,\alpha,\sigma^2}) \), prediction with \(\mathcal{G}_{\nu,\alpha,\sigma^2} \), when \(\sigma^2_{\nu} \alpha^{\nu} \beta_1 = \sigma^2_{\nu} \alpha^{\nu} \beta_1 \) provides asymptotic prediction efficiency and asymptotically correct estimates of error variance, if \(\mu > \lambda \). Finally, Point 4 implies that under \(P(\mathcal{M}_{\nu,\alpha,\sigma^2}) \), prediction using \(\mathcal{G}_{\nu,\alpha,\sigma^2} \), under the conditions...
\[\mu \Gamma(2\kappa + \mu + 1)/\Gamma(\mu + 1) = \sigma_2^2 \beta_1^{-(1+2\kappa)} = \sigma_2^2 \alpha^{-2\nu}, \nu = \kappa + 1/2 \text{ and } \mu > \lambda, \]

provides asymptotic prediction efficiency and asymptotically correct estimates of error variance.

For instance, if \(\sigma_2^2 e^{-r/\alpha} \) is the true covariance and \(d = 2 \), asymptotic prediction efficiency and asymptotically correct estimates of variance error can be achieved with \(\sigma_2^2 (1 - r/\beta_1)^{\mu} \) setting \(\beta_1 = \mu \sigma_2^2 \sigma_2^{-2} \), and \(\mu > 1.5 \). Setting \(\sigma_2^2 = \sigma_1^2 = 1, \mu = 3, \alpha = x/3 \) (\(x \) in this case is the so-called practical range, i.e., the correlation is lower than 0.05 when \(r > x \)), the equivalent compact support is \(\beta_1 = x \). Note that in this special case, the practical range of the exponential model and the compact support of the Askey function coincide. Figure 1 shows the Matérn correlation model with \(\nu = 0.5, 1, 1.5 \) and practical range equal to 0.6, and two compatible GW correlation models when \(d = 2 \) with \(\kappa = \nu - 0.5, \mu = \lambda + 1 + x \), with \(x = 0.5, 2 \) and the associated compact supports are obtained using the equivalence condition. They are 0.601, 0.595, 0.624 for \(\kappa = 0, 0.5, 1 \) respectively when \(x = 0.5 \) and 0.901, 0.821, 0.815 for \(\kappa = 0, 0.5, 1 \) respectively, when \(x = 2 \).

In practice, covariance parameters are unknown, so it is common to estimate them and then plug into (19) and (21). Nevertheless, the asymptotic properties of this procedure are quite difficult to obtain (Putter and Young, 2001). Instead, most theoretical results have been given under a framework in which plug-in parameters are fixed, rather than being estimated from observations.

As in Theorem 4 of Kaufman and Shaby (2013), our Points 3 and 4 may be extended to include estimation of the variance parameter. Specifically let
\(\hat{\sigma}_n^2 = Z_n' R_n(\mu, \kappa, \beta_1)^{-1} Z_n/n. \) Then as \(n \to \infty, \)
\[
\begin{align*}
\text{Var}_{\mu, \kappa, \beta_1, \hat{\sigma}_n^2} \left[\hat{Z}_n(\mu, \kappa, \beta_1) - Z(s_0) \right] & \to 1, \\
\text{Var}_{\mu, \kappa, \beta_0, \sigma_0^2} \left[\hat{Z}_n(\mu, \kappa, \beta_1) - Z(s_0) \right] & \to 1.
\end{align*}
\]

The proof follows the lines of Kaufman and Shaby (2013), and we omit it. As outlined in Kaufman and Shaby (2013), we also conjecture that \((28)\) and \((29)\) hold if \(\beta_1\) is replaced by its maximum likelihood estimator.

6. Simulations and illustrations. The main goals of this section are twofold: on the one hand, we compare the finite sample behavior of the ML estimation of the microergodic parameter of the GW model with the asymptotic distributions given in Theorems 8 and 9. On the other hand, we compare the finite sample behavior of MSE prediction of a zero mean Gaussian field with Matérn covariance model, using both a Matérn and a compatible GW covariance model, using CT applied to a Matérn model as benchmark.

Regarding the first goal, we simulate, using Cholesky decomposition, and then we estimate with ML, 1000 realizations from a zero mean Gaussian field with GW model. Sampling locations are constructed as in Kaufman, Schervish and Nychka (2008), using a perturbed regular grid. A perturbed grid helps to get more stable estimates because different sets of small distances are available to estimate the parameters. Specifically, we have considered a regular grid with increments 0.03 over \([0, 1]^d, d = 2\). Then the grid points have been perturbed, adding a uniform random value on \([-0.01, 0.01]\) to each coordinate. Figure 2 shows the perturbed grid considered, from which we randomly choose \(n = 50, 100, 250, 500, 1000 \) locations without replacement.

For the GW covariance model \(\varphi_{\mu, \kappa, \beta_0, \sigma_0^2} \), we use different values of the compact support and smoothness parameters, that is \(\beta_0 = 0.2, 0.4, 0.6, \kappa = 0, 0.5, 1 \), and fix \(\sigma_0^2 = 1 \) and, in view of Theorem 9, \(\mu = \lambda(2, \kappa) + 3 \). For each simulation, we consider \(\kappa \) and \(\mu \) as known and fixed, and we estimate with ML the variance and compact support parameters, obtaining \(\hat{\sigma}_i^2 \) and \(\hat{\beta}_i \), \(i = 1, \ldots, 1000 \). To estimate, we first maximize the profile log-likelihood \((18)\) to get \(\hat{\beta}_i \). Then, we obtain \(\hat{\sigma}_i^2(\hat{\beta}_i) = z_i' R(\hat{\beta}_i)^{-1} z_i/n, \) where \(z_i \) is the data vector of simulation \(i \).
Optimization was carried out using the R (R Development Core Team, 2016) function `optimize` where, following Kaufman and Shaby (2013), the compact support parameter was restricted to the interval \([\varepsilon, 15\beta]\) and \(\varepsilon\) is slightly larger than machine precision, about \(10^{-15}\) here.

Using the asymptotic distributions stated in Theorems 8 and 9, Table 2 compares the sample quantiles of order 0.05, 0.25, 0.5, 0.75, 0.95, mean and variance of \(\sqrt{n/2}(\sigma^2_i(x)\beta_0^{1+2\kappa}/(\sigma_0^2 x^{1+2\kappa}) - 1)\) for \(x = \tilde{\beta}_i, \beta_0, 0.5\beta_0, 2\beta_0\) with the associated theoretical values of the standard Gaussian distribution, for \(\beta_0 = 0.4, \kappa = 0, 0.5, 1\) and \(n = 250, 500, 1000\).

As expected, the best approximation is achieved overall when using the true compact support, i.e., \(x = \beta_0\), with little difference between the different values of \(\beta\) and \(\kappa\). In the case of \(x = \tilde{\beta}_i\), the asymptotic distribution given in Theorem 9 is a satisfactory approximation of the sample distribution, visually improving when increasing \(n\). The value of \(\kappa\) has less impact compared to \(\beta_0\). In general, smaller values lead to better results.

When using compact supports that are too small or too large with respect to the true compact support \((x = 0.5\beta_0, 2\beta_0)\), the convergence of the asymptotic distribution given in Theorem 8 is very slow. In particular, when \(x = 0.5\beta_0\), the asymptotic approximation is not satisfactory even for \(n = 1000\). In other words, confidence intervals for the microergodic parameter, based on Theorem 8, i.e., fixing an arbitrary compact support, can be problematic when applied to finite samples, even for large sample sizes. We strongly recommend jointly estimating variance and compact support.
Table 2
Sample quantiles, mean and variance of \(\sqrt{n/2}(\hat{\sigma}_i^2(x)\hat{\beta}_0 + \beta_0)/((\sigma_0^2 x^1 + 2\kappa)) - 1\),
for \(i = 1, \ldots, 1000\), \(x = \hat{\beta}_i, \beta_0, 0.5\beta_0, 2\beta_0\) for different values of \(\kappa\), when \(\beta_0 = 0.4\) and \(n = 250, 500, 1000\), compared with the associated theoretical values of the standard Gaussian distribution.

<table>
<thead>
<tr>
<th>(\kappa)</th>
<th>(x)</th>
<th>(n)</th>
<th>5%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>95%</th>
<th>Mean</th>
<th>Var</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\hat{\beta})</td>
<td>250</td>
<td>-1.699</td>
<td>-0.721</td>
<td>-0.020</td>
<td>0.798</td>
<td>2.084</td>
<td>0.072</td>
<td>1.375</td>
</tr>
<tr>
<td>0</td>
<td>(\beta_0)</td>
<td>500</td>
<td>-1.680</td>
<td>-0.677</td>
<td>0.027</td>
<td>0.758</td>
<td>1.966</td>
<td>0.071</td>
<td>1.212</td>
</tr>
<tr>
<td>0</td>
<td>(\beta_0)</td>
<td>1000</td>
<td>-1.614</td>
<td>-0.666</td>
<td>0.062</td>
<td>0.767</td>
<td>1.788</td>
<td>0.057</td>
<td>1.104</td>
</tr>
<tr>
<td>0</td>
<td>(\beta_0)</td>
<td>250</td>
<td>-1.548</td>
<td>-0.670</td>
<td>-0.039</td>
<td>0.735</td>
<td>1.833</td>
<td>0.025</td>
<td>1.058</td>
</tr>
<tr>
<td>0</td>
<td>(\beta_0)</td>
<td>500</td>
<td>-1.632</td>
<td>-0.665</td>
<td>0.001</td>
<td>0.661</td>
<td>1.754</td>
<td>0.027</td>
<td>1.047</td>
</tr>
<tr>
<td>0</td>
<td>(\beta_0)</td>
<td>1000</td>
<td>-1.629</td>
<td>-0.690</td>
<td>0.020</td>
<td>0.698</td>
<td>1.627</td>
<td>0.011</td>
<td>1.009</td>
</tr>
<tr>
<td>0.5</td>
<td>(\beta_0)</td>
<td>250</td>
<td>3.224</td>
<td>4.953</td>
<td>6.163</td>
<td>7.471</td>
<td>9.370</td>
<td>6.234</td>
<td>3.493</td>
</tr>
<tr>
<td>0.5</td>
<td>(\beta_0)</td>
<td>500</td>
<td>3.399</td>
<td>4.762</td>
<td>5.948</td>
<td>7.018</td>
<td>8.879</td>
<td>5.979</td>
<td>2.840</td>
</tr>
<tr>
<td>0.5</td>
<td>(\beta_0)</td>
<td>1000</td>
<td>2.792</td>
<td>4.063</td>
<td>5.059</td>
<td>5.984</td>
<td>7.516</td>
<td>5.088</td>
<td>2.088</td>
</tr>
<tr>
<td>2</td>
<td>(\beta_0)</td>
<td>250</td>
<td>-2.443</td>
<td>-1.698</td>
<td>-1.128</td>
<td>-0.391</td>
<td>0.610</td>
<td>-1.065</td>
<td>0.898</td>
</tr>
<tr>
<td>2</td>
<td>(\beta_0)</td>
<td>500</td>
<td>-2.485</td>
<td>-1.576</td>
<td>-0.941</td>
<td>-0.313</td>
<td>0.718</td>
<td>-0.904</td>
<td>0.947</td>
</tr>
<tr>
<td>2</td>
<td>(\beta_0)</td>
<td>1000</td>
<td>-2.324</td>
<td>-1.438</td>
<td>-0.759</td>
<td>-0.039</td>
<td>0.819</td>
<td>-0.757</td>
<td>0.949</td>
</tr>
<tr>
<td>(N(0,1))</td>
<td>(\hat{\beta})</td>
<td>250</td>
<td>-1.669</td>
<td>-0.721</td>
<td>-0.020</td>
<td>0.798</td>
<td>2.084</td>
<td>0.072</td>
<td>1.375</td>
</tr>
<tr>
<td>(N(0,1))</td>
<td>(\beta_0)</td>
<td>500</td>
<td>-1.680</td>
<td>-0.677</td>
<td>0.027</td>
<td>0.758</td>
<td>1.966</td>
<td>0.071</td>
<td>1.212</td>
</tr>
<tr>
<td>(N(0,1))</td>
<td>(\beta_0)</td>
<td>1000</td>
<td>-1.614</td>
<td>-0.666</td>
<td>0.062</td>
<td>0.767</td>
<td>1.788</td>
<td>0.057</td>
<td>1.104</td>
</tr>
</tbody>
</table>
and using the asymptotic distribution give in Theorem 9 or, alternatively, choosing β conservatively.

As a graphical example, Figure 3 compares the empirical CDF of the ML estimates of the standardized microergodic parameter with the CDF of the standard Gaussian distribution when $\sigma_0^2 = 1$, $\kappa = 0, 0.5, 1$ (from left to right), $\beta_0 = 0.6$ and $n = 250, 500, 1000$. Finally, our numerical results are consistent with the results in Kaufman and Shaby (2013), in the Matérn case.

As for the second goal, using the results given in Theorem 10 Points 2 and 4, we now specifically compare asymptotic prediction efficiency and asymptotically correct estimation of prediction variance using ratios (23) and (25) respectively. As a benchmark, we also consider the same ratios using a tapered Matérn model.

More precisely, we consider a Matérn model $\mathcal{M}_{\nu, \alpha, \sigma_2^2}$ setting $\sigma_2^2 = 1$, $\nu = 0.5, 1, 1.5$ and $\alpha = y/c_\nu$ with $y = 0.1, 0.2, 0.4$ if $\nu = 0.5$, $y = 0.101, 0.202, 0.404$ if $\nu = 1$ and $y = 0.097, 0.193, 0.385$ if $\nu = 1.5$. Here c_ν is a scalar depending on ν such that $\mathcal{M}_{\nu, 1.1}(r)$ is lower than 0.05 when $r > c_\nu$ that is, y is the practical range.

Let us define the ratios (23) and (25) as $U_1(\beta_1)$ and U_2, respectively. For each ν and α, we randomly select $n_j = 50, 100, 250, 500, 1000$, $j = 1, \ldots, 500$ location sites without replacement from the perturbed grid in Figure 2.

For each j, we compute the ratio $U_{1j}(\beta_1)$ and the ratio U_{2j}, $j = 1, \ldots, 500$, using closed form expressions in Equation (20) and (21) when predicting the location site $(0.26, 0.48)^T$ (black dot in Figure 2).

Specifically for each U_{2j}, following the conditions in Theorem 10 Point 4, we set $\sigma_1^2 = 1$, $\kappa = \nu - 1/2$, $\mu = \lambda + 1.5$. The “equivalent” compact support
is obtained as:

\[
\beta_1^* = \left[\left(\frac{\Gamma(2\kappa + \mu + 1)}{\Gamma(\mu + 1)} \right) \frac{\sigma^2_1 \alpha^{-2\nu}}{\sigma^2_2} \right]^{1/(1+2\kappa)}.
\]

Under this specific setting the “equivalent” compact support associated to the (varying with \(\nu\)) practical range is approximately \(\beta_1^* = 0.1, 0.2, 0.4\), irrespectively of \(\nu\). Figure 2 shows the location sites involved in the prediction using GW functions with \(\beta_1^* = 0.1, 0.2, 0.4\).

For each \(U_{1j}(\beta)\), following Theorem 10 Point 2, we fix \(\kappa = \nu - 1/2\), \(\mu = \lambda + 1.5\) and \(\beta = \beta_1^*\). Then, to investigate the effect of considering an arbitrary compact support on the convergence of ratio (23), we also consider, \(U_{1j}(0.2\beta_1^*)\) and \(U_{1j}(5\beta_1^*)\).

For each combination of \(\nu, \alpha\), Table 3 shows the empirical means \(\bar{U}_1(x\beta_1^*) = \sum_{j=1}^{500} U_{1j}(x\beta_1^*)/500\) for \(x = 1, 0.5, 2\), and \(\bar{U}_2 = \sum_{j=1}^{500} U_{2j}/500\) when increasing \(n\).

As a benchmark, we also compute the empirical means replacing the GW model with a tapered Matérn covariance model, that is, considering the model \(M_{\nu,\alpha,\sigma^2_2} K_{x\beta_1^*}\), and we denote these means by \(\bar{U}_1^T(x\beta_1^*)\) and \(\bar{U}_2^T\). Here, \(K_{x\beta_1^*}\) is a known compactly supported correlation function called taper function. Following Furrer, Genton and Nychka (2006), as taper function, we use \(K_{x\beta_1^*} = \varphi_{2,0,x\beta_1^*,1}\) if \(\nu = 0.5\), \(K_{x\beta_1^*} = \varphi_{3,1,x\beta_1^*,1}\) if \(\nu = 1\) and \(K_{x\beta_1^*} = \varphi_{4,2,x\beta_1^*,1}\) if \(\nu = 1.5\) for \(x = 1, 0.5, 2\).

These specific choices of taper functions guarantee the convergence of ratios (23) and (25), using a tapered Matérn model instead of the GW model (see Theorem 2 in Furrer, Genton and Nychka, 2006). In Table 3, the percentages of nonzero elements in the covariance matrices are also reported in all scenarios and for each \(n\) when using the compact support \(\beta_1^*\).

Table 3 shows that \(\bar{U}_2^T\) clearly overall outperforms \(\bar{U}_2^T\) in terms of speed of convergence in particular when increasing \(\beta_1^*\). This implies that in terms of finite sample, if the Matern model is the state of nature, prediction efficiency and correct estimation of prediction variance are better achieved when predicting with the (compatible) GW model with respect to the so-called naive CT predictor (Furrer, Genton and Nychka, 2006), sharing the same compact support.

Comparing \(\bar{U}_1(x\beta_1^*)\) with \(\bar{U}_1^T(x\beta_1^*)\) for \(x = 1, 0.5, 2\) note that when \(x = 1\), \(\bar{U}_1(\beta_1^*)\) overall slightly outperforms \(\bar{U}_1^T(\beta_1^*)\) and when \(x = 0.5\), the convergence of both ratios seems to be very slow, in particular for larger \(\nu\). This suggests that taking an arbitrary compact support too small with respect to the “equivalent” compact support \(\beta_1^*\) can seriously affect the prediction efficiency both for tapered Matérn and GW models. This kind of problem
disappears when $x = 2$, as expected. By the tapering effect, i.e., inducing a covariance with an apparent shorter range, $\bar{U}_1^T (2\beta^*_1)$ slightly outperforms $\bar{U}_1 (2\beta^*_1)$.

7. Concluding Remarks. Parameter estimation for interpolation of spatially or spatio-temporally correlated random processes is used in many areas and often requires particular models or careful implementation. In recent years the dataset sizes have steadily increased such that straightforward statistical tools are computationally too expensive to use. The use of covariance functions with an (inherent or induced) compact support, leading to sparse matrices, is a very accessible and scalable approach. In this paper we studied estimation and prediction of Gaussian fields with covariance models belonging to the GW class, under fixed domain asymptotics.

Specifically, we first characterize the equivalence of two Gaussian measures with GW models, and then we establish strong consistency and asymptotic Gaussianity of the ML estimator of the associated microergodic parameter when considering both an arbitrary and an estimated compact support. Simulation results show that for a finite sample, the choice of an arbitrary compact support can result in a very poor approximation of the asymptotic distribution. These results are consistent with those in Kaufman and Shaby (2013) in the Matérn case.

In a second aspect, we give a sufficient condition for the equivalence of two Gaussian measures with Matérn and GW model, and we study the effect on prediction when using these two covariance models under fixed domain asymptotics. A first consequence of our results is that GW model is more than a valid competitor of the Matérn model. It allows, as in the Matérn case, a continuous parameterization of smoothness of the underlying Gaussian field and, under fixed domain asymptotics, prediction and mean square error prediction obtained with a Matérn model can be achieved using a GW model inducing an equivalent Gaussian measure, using our condition. For this reason, we advocate the GW class when working with (not necessarily) large or huge spatial datasets since well established and implemented algorithms for sparse matrices can be used when estimating the covariance parameters and/or predicting at unknown locations (e.g., Furrer and Sain, 2010). Alternatively, for covariances which are analytic away from the origin as the Matérn model, in some circumstances a hierarchical factorization scheme as proposed for instance in Ambikasaran et al. (2016), is a possible solution in order to handle sample sizes that cannot be handled by straightforward Cholesky factorization.

As the theoretical and numerical results illustrate, CT for prediction is
essentially an obsolete approach. When comparing both approaches with the same sensible compact support, the tapered CT is less efficient. For estimation, one has to distinguish between a so-called one-taper or two-taper approach, i.e., a proper likelihood or an estimating function approach, Kaufman, Schervish and Nychka (2008). Fixing again the support, a GW model can approximate a Matérn covariance function much better than a tapered one. Thus, the GW is in an estimation setting superior to a one-taper CT. In both approaches, one needs to be aware of the resulting biases, which can be substantial. In the case of (kriging) predictions based on plug-in estimates, the biases are largely canceled (Furrer, Bachoc and Du, 2016). Finally, the two-taper approach is conceptually a different approach and, as it is computationally very expensive, it would not be fair to compare it with the GW model.

Similarly to the Matérn model with smoothness parameter different to \(p + 1/2 \), \(p \in \mathbb{N} \), the GW does not have a closed form expression when its smoothness parameter is different to \(p \), and low level software implementations are needed for a computationally efficient use.

REFERENCES

Department of Statistics
Universidad de Valparaíso
2360102 Valparaíso, Chile
E-mail: moreno.bevilacqua@uv.cl

Department of Statistics
Universidad del BioBio
4081112 Concepción, Chile
E-mail: tfaouzi@ubiobio.cl

Department of Mathematics and
Department of Computational Science
University of Zurich
8057 Zurich, Switzerland
E-mail: reinhard.furrer@math.uzh.ch

Department of Mathematics
Universidad Federico Santa María
2360102 Valparaíso, Chile
E-mail: emilio.porcu@usm.cl
Table 3. $\tilde{U}(x)$, $\tilde{U}^T(x)$, $x = 0.5\beta^*_1, 2\beta^*_1, \beta^*_1$ and \tilde{U}_2, \tilde{U}^T_2, as defined in Section 6, when considering a Matérn model with increasing practical range y, smoothness parameter ν and n. Here β^*_1 is the compact support parameter of the GW model computed using the equivalence condition. The column $\%$ reports the mean of percentages of non-zero elements in the covariance matrices involved when considering β^*_1.

<table>
<thead>
<tr>
<th>ν</th>
<th>$\alpha = \frac{\nu}{c_\nu}$</th>
<th>$y = 0.1$</th>
<th>$y = 0.101$</th>
<th>$y = 0.097$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu = 0.5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 1.5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 4$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 10$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 20$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 50$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 100$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 200$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 500$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 1000$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 1.0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 1.5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 2.0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 3.0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 4.0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 5.0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 10.0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 20.0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 50.0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 100.0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 200.0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 500.0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\nu = 1000.0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\nu = 0.5$				
$\nu = 1$				
$\nu = 1.5$				
$\nu = 2$				
$\nu = 3$				
$\nu = 4$				
$\nu = 5$				
$\nu = 10$				
$\nu = 20$				
$\nu = 50$				
$\nu = 100$				
$\nu = 200$				
$\nu = 500$				
$\nu = 1000$				