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In a multi-stratum factorial experiment, there are multiple error
terms (strata) with different variances that arise from complicated
structures of the experimental units. For unstructured experimen-
tal units, minimum aberration is a popular criterion for choosing
regular fractional factorial designs. One difficulty in extending this
criterion to multi-stratum factorial designs is that the formulation
of a wordlength pattern based on which minimum aberration is de-
fined requires an order of desirability among the relevant words, but
a natural order is often lacking. Furthermore, a criterion based only
on wordlength patterns does not account for the different stratum
variances. Mitchell, Morris, and Ylvisaker (1995) proposed a frame-
work for Bayesian factorial designs. A Gaussian process is used as the
prior for the treatment effects, from which a prior distribution of the
factorial effects is induced. This approach is applied to study optimal
and efficient multi-stratum factorial designs. Good surrogates for the
Bayesian criteria that can be related to wordlength and generalized
wordlength patterns for regular and nonregular designs, respectively,
are derived. A tool is developed for eliminating inferior designs and
reducing the designs that need to be considered without requiring
any knowledge of stratum variances. Numerical examples are used to
illustrate the theory in several settings.

1. Introduction. In a multi-stratum factorial experiment, there are multiple error
terms (strata) with different variances. For example, in an experiment conducted in several
days, suppose the levels of some treatment factors are difficult to change and must be
kept the same throughout the day, while the levels of the other factors can be changed
from run to run on the same day. Then the precision of the estimates of the main effects
of hard-to-change factors depends on the between-day variability, and that of the main
effects of easy-to-change factors depends on the between-run variability on the same day.
Typically the former is greater than the latter. Such an experiment is said to have two
strata. The two strata arise from the structure of the experimental units that some larger
units (those associated with the days, called whole-plots) are split into smaller units (those
associated with the runs, called subplots). If the experiment is to be blocked, with the
whole-plots grouped into more homogeneous blocks, then we will have a third stratum
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and the associated between-block variability is expected to be greater than the between-
whole-plot variability within the same block. In general, the strata are determined by the
structure of experimental units, called a block structure.

When the experimental units are unstructured, the minimum aberration (MA) criterion
proposed by Fries and Hunter [11] is a popular criterion for choosing regular fractional
factorial designs under the hierarchical assumption that lower-order effects are more im-
portant than higher-order effects and effects of the same order are equally important. This
criterion is based on the so-called wordlength pattern and has been extended to nonregular
designs (Tang and Deng [20]). It has also been extended to several types of multi-stratum
fractional factorial designs, such as block designs, split-plot designs, and blocked split-plot
designs, by modifying the wordlength pattern. The modifications are often ad hoc and
without strong justifications. The formulation of a wordlength pattern requires an order
of desirability among the relevant words, but a natural order is often lacking. Further-
more, a criterion based only on wordlength patterns does not account for the different
stratum variances. Cheng, Steinberg, and Sun [5] showed that minimum aberration is a
good surrogate for maximum estimation capacity, a model-robust criterion that maximizes
the number of estimable models among some potential models. For nonregular designs,
since different estimable models may be estimated with different efficiencies, it is no longer
enough to compare the number of estimable models. In this case, the information capacity
criterion (Sun [18]) of maximizing the average efficiency over a set of potential models
is more appropriate. One can apply the information capacity criterion to compare multi-
stratum factorial designs, under which different estimable models may also be estimated
with different efficiencies due to different stratum variances. Cheng and Tsai [6, 7] adopted
this approach and derived a surrogate for the maximum information capacity criterion.
This line of work, however, assumes that the three-factor and higher-order interactions are
negligible, and can only be applied to orthogonal regular designs.

Mitchell, Morris, and Ylvisaker [16] proposed a framework for Bayesian fractional facto-
rial designs. A Gaussian process commonly used in the literature of computer experiments
(Sacks, Welch, Mitchell, and Wynn [17]) to model unknown deterministic response func-
tions is used as the prior for the treatment effects, from which a prior distribution for the
factorial effects is induced. This approach, which provides more flexibility in incorporating
the prior knowledge, was further developed by Kerr [15] and Joseph [12] for studying opti-
mal fractional factorial designs. Joseph, Ai, and Wu [13] used the same Bayesian approach
to inspire a minimum aberration criterion for mixed two- and four-level designs with un-
structured units. The main objective of the present article is to apply this approach to
multi-stratum factorial designs. Another work relevant to ours is Ai, Kang, and Joseph
[1] in which a Bayesian approach was applied to study blocked fractional factorial designs
with fixed block effects.

Some preliminary materials, including block structures, treatment factorial effects, strata,
orthogonal designs, Bayesian approach, and statistical models, are presented in Section 2.
Explicit forms of Bayesian A- and D-optimality criteria are derived in Section 3. Generally
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analytical results on Bayesian optimal fractional factorial designs are difficult to prove. In
Section 4 we provide one such result in the setting of regular half-fractions with two blocks;
earlier, Bayesian optimal half-fractions without blocking was obtained in [15]. In Section
5, we derive good surrogates for the Bayesian criteria that can also be applied to non-
regular and nonorthogonal designs. For orthogonal blocking of complete factorial designs,
the surrogate criterion reduces to the usual minimum aberration criterion. In the case of
fractional factorial designs for unstructured experimental units, the surrogate criterion is
shown to be a refinement of minimum and generalized minimum aberration for regular
and nonregular designs, respectively. For nonregular multi-stratum designs, our approach
provides a stronger justification than naive modifications of the usual wordlength patterns
from regular to nonregular designs. A tool is developed for eliminating inferior designs
without any knowledge of the stratum variances, thereby reducing the designs that need
to be considered. Examples in several settings are provided in Section 6 to illustrate the
theory.

2. Preliminaries.

2.1. Unit factors and block structures. Let Ω be a set of N experimental units. An nF -
level unit factor F can be considered as a partition of Ω into nF disjoint nonempty subsets.
Each subset, called an F-class, consists of units that have the same level of F . Given two
factors F1 and F2, we say that F1 is nested in F2, (F1 is finer than F2, or F2 is coarser
than F1), denoted by F1 ≺ F2, if any two units in the same F1-class are also in the same
F2-class and F1 6= F2. We write F1 � F2 if F1 ≺ F2 or F1 = F2.

The coarsest factor, denoted by U and called the universal factor, is the single-level
factor with all the units in the same class. On the other hand, the finest factor, denoted
by E and called the equality factor, is the N -level factor with each class consisting of one
single unit. A block structure B is a collection of unit factors on the same Ω and we include
U and E in each block structure. For example, the block structure of a usual block design
with N = bk units in b blocks of size k can be regarded as a collection {U ,B, E} of three
unit factors, where E is a bk-level factor corresponding to bk units, and B is a b-level block
factor that partitions the bk units into b blocks each of size k. We have E � B � U . This is
also the block structure of a split-plot experiment with b whole-plots each consisting of k
subplots. An experiment with unstructured units is considered to have the block structure
{U , E}.

A factor is said to be uniform if all its classes are of the same size. Given two unit factors
F1 and F2, the supremum of F1 and F2, denoted by F1 ∨ F2, is the factor such that (i)
F1,F2 � F1 ∨F2, and (ii) F1 ∨F2 � G for all G such that F1,F2 � G. We say that F1 and
F2 are orthogonal if F1 and F2 have proportional frequencies in each (F1 ∨ F2)-class, i.e.,
for each (F1 ∨ F2)-class Γ , if both the ith F1-class and the jth F2-class are contained in
Γ , then

nij =
ni+n+j
|Γ |

,
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where ni+, n+j , and nij are the numbers of units in, respectively, the ith F1-class, the
jth F2-class, and the intersection of these two classes, and |Γ | is the number of units in
Γ . Throughout this paper, we only consider block structures B that satisfy the following
conditions:

All the factors in B are uniform and pairwise orthogonal.(2.1)

E ∈ B,U ∈ B.(2.2)

F ,G ∈ B⇒ F ∨ G ∈ B.(2.3)

We note that most of the block structures encountered in practice satisfy (2.1), (2.2), and
(2.3).

The relation between the units and the levels of F can be described by an N × nF
incidence matrix XF with 0 and 1 entries such that the (i, j)th entry of XF is 1 if and
only if the ith unit is in the jth F-class. In particular,

XU = 1N ,

where 1N is the N × 1 vector of 1’s.

2.2. Treatment factorial effects. Suppose there are n two-level treatment factors. De-
note each treatment combination by x = (x1, . . . , xn)T , where xi = 0 or 1 is the level of
the ith treatment factor. Let ααα be a 2n×1 vector with components α(x), where α(x) is the
effect of treatment combination x. We can express ααα as ααα = Pβββ, where P is a 2n×2n model
matrix for a 2n complete factorial experiment and βββ = (βS1 , . . . , βS2n

)T is the vector of
treatment factorial effects βSl

, one for each Sl ⊆ {1, . . . , n}. Specifically, β∅ = 1
2n
∑

x α(x)
is the mean and the corresponding column of P consists of 1’s. For S = {i}, 1 ≤ i ≤ n, βS
is a main effect contrast of factor i, and in the associated column of P, the entry corre-
sponding to x is 1 if xi = 1, and is −1 if xi = 0. Furthermore, for S = {i1, . . . , ik}, βS is a
k-factor interaction contrast and the corresponding column of P is the Hadamard product
of the columns corresponding to the main effects of factors i1, . . . , ik, where the Hadamard
product of u = (u1, . . . , uh)T and v = (v1, . . . , vh)T is u� v = (u1v1, . . . , uhvh)T . For con-
venience, βS is often written as i1 . . . ik (or a combination of letters if each factor is labeled
by a letter), and is called a word of length k. Often we do not distinguish among S, βS ,
and the corresponding words.

Under the Bayesian framework, βββ is treated as a random vector. Specifying the distri-
bution of βββ is a crucial step. We take the approach proposed in [16]; see also the discus-
sions in Section 10.11 of Cheng [4]. Here we regard ααα, a function of the factor settings
x = (x1, . . . , xn), as a realization of a Gaussian process. Specifically, suppose the distribu-
tion of ααα is multivariate normal with zero mean and covariance matrix σ2R. It can be seen
that the columns of P are mutually orthogonal; thus βββ = 1

2n PTααα and hence

(2.4) βββ ∼ N
(
0, 2−2nσ2PTRP

)
.
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It was shown in [16] that if ααα is stationary, i.e., the correlation between α(x1) and α(x2)
depends only on the factors where x1 and x2 differ, then the βS ’s, S ⊆ {1, . . . , n}, are
independent. In this case cov(βββ) is diagonal and

(2.5) (2−n/2PT )cov(ααα)(2−n/2P) = 2ncov(βββ)

is the spectral decomposition of cov(ααα). It follows that the columns of P, which define the
βS ’s, S ⊆ {1, . . . , n}, are eigenvectors, and the variances of the βS ’s are the eigenvalues of
cov(ααα) divided by 2n.

As an example, assume that the Gaussian process has the covariance function

cov(α(x1), α(x2)) = σ2
∏

1≤j≤n:x1j 6=x2j

ρj ,

where 0 < ρ1, . . . , ρn < 1. Then we have

var(βS) =
σ2

2n

 ∏
1≤i≤n,i∈S

(1− ρi)


 ∏

1≤i≤n,i/∈S

(1 + ρi)

 , cov(βS , βS′) = 0 if S 6= S′.

This implies that if S ⊂ S′, then var(βS) > var(βS′). This property, consistent with the
hierarchical assumption, was referred to as the property of nested decreasing interaction
variances in [15]. In addition, if ρ1 = · · · = ρn = ρ, then we have var(βS) = σ2

2n (1−ρ)|S|(1+

ρ)n−|S|, where |S| is the number of elements in S. An alternative parametrization is to let
r = (1− ρ)/(1 + ρ) and τ2 = σ2(1 + r)−n, which leads to

var(βS) = τ2r|S|.(2.6)

In this case of isotropic priors, factorial effects of the same order can be regarded as equally
important; thus MA designs are expected to perform well. In the rest of the paper, we
assume that ααα is stationary.

2.3. Design construction and defining words. The construction of a multi-stratum frac-
tional factorial design involves the selection of a subset of treatment combinations and
assigning them to various classes of the unit factors in the block structure. For regular
designs, this is done by solving linear equations. With the levels represented by the two
elements 0 and 1 of the field Z2 under modulo 2 addition and multiplication, the treatment
combinations can be identified with the 2n vectors in the n-dimensional space Zn2 .

For each nonzero vector a in Zn2 , the two equations aTx = 0 and aTx = 1 divide
the treatment combinations x into two disjoint sets, say H0 and H1, respectively. Let
S = {1 ≤ i ≤ n : ai 6= 0}, then the factorial effect βS defined in Section 2.2 is a difference
of
∑

x:x∈H0
α(x) and

∑
x:x∈H1

α(x) divided by 2n.

A system of p linear equations aTi x = bi, i = 1, . . . , p, where a1, . . . ,ap are linearly
independent, has 2n−p solutions, which constitute a regular 2n−p fractional factorial design.
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The 2p− 1 nonzero linear combinations of a1, . . . ,ap (and the corresponding βS) are called
treatment defining words (effects). Let Ak be the number of treatment defining words
of length k. Then (A1, . . . , An) is called the wordlength pattern of the design. The 2p

choices of b1, . . . , bp divide the 2n treatment combinations into 2p disjoint sets, each of
which can be used as a 2n−p fractional factorial design. Similarly, h linearly independent
vectors b1, . . . ,bh such that a1, . . . ,ap,b1, . . . ,bh are linearly independent can be used
to divide the treatment combinations in the fractional factorial design into 2h blocks of
equal size. The vectors a1, . . . ,ap are called independent treatment defining words, and
b1, . . . ,bh are called independent block defining words. The non-zero linear combinations
of a1, . . . ,ap,b1, . . . ,bh that are not treatment defining words are called block defining
words (effects).

2.4. Statistical model. Let y = (y1, . . . , yN )T be the responses under a fractional facto-
rial design, and the N experimental units have a block structure B = {F0,F1, . . . ,Fm}.
Throughout this paper, let F0 = U and Fm = E . Suppose

y = XTααα+
m∑
i=0

XFiγγγ
Fi ,(2.7)

where XT is an N ×2n unit-treatment incidence matrix and γγγFi = (γFi
1 , . . . , γFi

nFi
)T , where

γFi
j is the effect of the jth level of unit factor Fi (for example, block effects, whole-plot ef-

fects, and subplot effects). We assume that the γ’s are independent, with each γFi
j following

an N(0, σ2Fi
) distribution, and that they are independent of ααα. Then

y|βββ ∼ N(XTPβββ,
m∑
i=0

σ2Fi
XFiX

T
Fi

).(2.8)

Let U = XTP and V =
∑m

i=0 σ
2
Fi

XFiX
T
Fi

. Then U is the full model matrix under the
design. Each column of U, except for the column of 1’s, corresponds to a factorial effect.
Throughout this paper, we only consider single-replicate complete factorial designs or frac-
tional factorial designs in which no treatment combination is observed more than once.
Then U consists of N rows of P. Since PPT = 2nI2n , we have

UUT = 2nIN .

If the design is a regular 2n−p fractional factorial design, then the 2n columns of U can
be partitioned into 2n−p sets of size 2p, with the columns in the same set corresponding
to aliased effects. Any two columns of U in the same alias set are either identical or can
be obtained from each other by changing the signs of all the entries. Without loss of
generality, we assume that all the aliased columns of U are identical. For each nonempty
S ⊆ {1, . . . , n}, let A(βS) be the set of βS and all its aliases, and let A(β∅) be the defining
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contrast subgroup, i.e., the set consisting of the mean and the treatment defining words.
For convenience, we also write the A(βS)’s as A0, . . . ,A2n−p−1, with A0 = A(β∅).

Under a block structure satisfying (2.1), (2.2), and (2.3), the covariance matrix V has
m + 1 eigenspaces WF0 , . . . ,WFm , with one eigenspace associated with each of the m + 1
unit factors, where WF0 = WU is the one-dimensional space consisting of all the vectors
with constant entries, and each other eigenvector defines a unit contrast; furthermore,
the eigenspaces are determined by the block structure and do not depend on the entries
of V. The readers are referred to Bailey [2] and [4] for these results as well as how to
determine the WFi ’s from B. Let the corresponding eigenvalues be ξF0 , . . . , ξFm . Then for
each c ∈ WFi , we have var(cTy|βββ) = ‖c‖2 ξFi . The eigenspaces WF0 , . . . ,WFm are called
strata and ξF0 , . . . , ξFm are referred to as stratum variances. Furthermore,

(2.9) ξF =
∑

G∈B:G�F

N

nG
σ2G .

Thus if Fi � Fj , then ξFi ≤ ξFj . The case where γFi
1 , . . . , γFi

nFi
are unknown constants

(fixed effects) can be treated by letting σ2Fi
=∞, which leads to ξFj =∞ if Fi � Fj .

Example 2.1. A block design has the block structure B = {U ,B, E}. Let yij be the
observation on the jth unit in the ith block, i = 1, . . . , b, j = 1, . . . , k. Then under (2.7),

yij = αt(i,j) + γU + γBi + γEi,j ,

where t(i, j) is the label of the treatment assigned to the jth unit in the ith block. Write
γU as µ, γBi as βi, and γEi,j as εi,j. Then µ, βi’s, and εi,j’s are independent random effects

with zero means and var(µ) = σ2U , var(βi) = σ2B, var(εi,j) = σ2E . Each eigenvector in WB is
orthogonal to the vectors of 1’s, with all the entries corresponding to the units in the same
block being equal; thus it defines a between-block contrast. The eigenspace WE is orthogonal
to both WU and WB. It follows that each of its vectors defines a between-unit contrast in
the same block. We call WB and WE inter- and intra-block strata, respectively. For each
c ∈ WB (respectively, WE), we have var(cTy|ααα) = ‖c‖2 ξB (respectively, ‖c‖2 ξE). The two
eigenvalues ξB and ξE are called inter- and intra-block variances, respectively. By (2.9), we
have ξB = kσ2B + σ2E and ξE = σ2E . Thus ξB ≥ ξE . The readers are referred to Chapter 5 of
[4] for detailed derivations of strata for some simple block structures.

For each nonempty S ⊆ {1, . . . , n}, let uS be the column of U corresponding to βS .
Then under a regular fractional factorial design, βS is a treatment defining word if and
only if uS = 1N ; otherwise, 1TNuS = 0. Thus the word count Ak can be expressed as

(2.10) Ak =
1

N

∑
S:|S|=k

‖PWUuS‖2,
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where PWU is the orthogonal projection matrix onto WU .
A regular multi-stratum fractional factorial design is said to be orthogonal if, for each

column vector u of U, we have u ∈ WFi for some i. In this case, we say that the factorial
effect corresponding to u (together with its aliases) is estimated in stratum WFi . For
example, the blocked regular designs constructed by the method described in Section 2.3 are
orthogonal, with all the block defining effects estimated in the interblock stratum (we say
that they are confounded with blocks) and the effects that are neither block nor treatment
defining effects estimated in the intrablock stratum. In this case, for each nonempty S ⊆
{1, . . . , n}, we have that βS is a block defining word if and only if PWBuS = uS , where
PWB is the orthogonal projection matrix onto WB. Let Bk be the number of block defining
words of length k; then similar to (2.10), we have

(2.11) Bk =
1

N

∑
S:|S|=k

‖PWBuS‖
2.

We refer the readers to Chapters 13 and 14 of [4] for a detailed treatment of the con-
struction of orthogonal regular multi-stratum designs and how to determine the factorial
effects estimated in each stratum.

In general, for orthogonal regular multi-stratum designs, we define the word counts in
various strata as follows: for k = 0, . . . , n and i = 0, . . . ,m,

Bk,i = the number of S ⊆ {1, . . . , n} such that |S| = k and uS ∈WFi .

Then

(2.12) Bk,i =
1

N

∑
S:|S|=k

‖PWFi
uS‖2.

Note that for regular fractional factorial designs with unstructured units, (B1,0, . . . , Bn,0)
is the usual wordlength pattern (A1, . . . , An). For nonregular and nonorthogonal designs,
the word counts Bk,i can be defined directly via (2.12). In the case of nonregular designs
with unstructured units, this yields the generalized wordlength pattern in the minimum
G2-aberration criterion introduced by Tang and Deng [20].

3. Optimality criteria. Bayesian optimality criteria, such as the D- and A-criteria,
are based on the posterior covariance matrix cov(βββ|y). From (2.4) and (2.8), the posterior
distribution of βββ given y can easily be obtained by standard results on multivariate normal
distributions. We have that βββ|y is normal with

cov(βββ|y) = ΣΣΣβ −ΣΣΣβU
T (UΣΣΣβU

T + V)−1UΣΣΣβ,(3.1)

where ΣΣΣβ = 2−2nσ2PTRP. We say that a design is Bayesian A-optimal if it minimizes
tr(cov(βββ|y)) =

∑
S⊆{1,...,n} var(βS |y), and Bayesian D-optimal if it minimizes det(cov(βββ|y)).
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For any treatment combination x, α(x) can be expressed as pTxβββ, where pTx is the row of
P corresponding to x. Thus the best linear unbiased predictor of α(x) given y is pTxE(βββ|y),
with conditional prediction error E{[pTxβββ − pTxE(βββ|y)]2|y} = E{[βββ − E(βββ|y)]TpxpTx [βββ −
E(βββ|y)]|y}. It follows that the total conditional prediction error over all the treatment
combinations is equal to∑

x∈full factorial
var(pTxβββ|y) =

∑
x∈full factorial

E{[βββ − E(βββ|y)]TpxpTx [βββ − E(βββ|y)]|y}

= E{[βββ − E(βββ|y)]T (PTP)[βββ − E(βββ|y)]|y}
= 2n

∑
S⊆{1,...,n}

var(βS |y),

where the last equality holds since PTP = 2nI2n . Thus the Bayesian A-optimality is
equivalent to minimizing the overall conditional prediction error of the treatment effects.

The following result gives an explicit form of cov(βββ|y) for orthogonal regular fractional
factorial designs.

Theorem 3.1. Under an orthogonal regular 2n−p design, where the experimental units
have a block structure B = {Fi : i = 0, . . . ,m} satisfying (2.1), (2.2), and (2.3), if βS is
estimated in WFi, then

var(βS |y) = var(βS)− [var(βS)]2∑
β:β∈A(βS) var(β) + 2−(n−p)ξFi

.(3.2)

If βS and βS′ are in different alias sets, then cov(βS , βS′ |y) = 0; if they are in the same
alias set and are estimated in WFi, then

cov(βS , βS′ |y) = − var(βS)var(βS′)∑
β:β∈A(βS) var(β) + 2−(n−p)ξFi

.

Proof. We first deal with the term (UΣΣΣβU
T + V)−1 in (3.1).

Note that RN = ⊕F :F∈BWF , where N = 2n−p. Also RN = ⊕N−1j=0 Tj , where T0 is spanned
by the vector with all entries equal to 1, and each Tj , 1 ≤ j ≤ N−1, is spanned by a factorial
effect contrast of n− p basic factors. Hence we have

⊕F :F∈BWF = ⊕N−1j=0 Tj .

Since the design is orthogonal, each column of U is a basis vector of WFi for some i. We can
extract N distinct columns of U and standardize them to unit length to form a 2n−p×2n−p

orthogonal matrix P̃. Then we have the following eigen-decomposition:

V = P̃ΛBP̃T ,(3.3)
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where ΛB is a diagonal matrix with a diagonal entry equal to ξFi if the corresponding

column in P̃ is a basis vector of WFi .
On the other hand, restricting the Gaussian process to the treatment combinations in

the regular fractional factorial design, analogous to (2.5), we have

cov(XTααα) = 2n−pP̃Λ̃βP̃
T ,(3.4)

where Λ̃β is a 2n−p×2n−p diagonal matrix with each diagonal entry equal to
∑

S∈A var(βS)
for some alias set A. Then since UΣβU

T = cov(Uβββ) = cov(XTααα), by (3.4), we have

UΣβU
T = 2n−pP̃Λ̃βP̃

T .(3.5)

It follows from (3.1), (3.3), and (3.5) that

cov(βββ|y) = Σβ −ΣβU
T P̃(2n−pΛ̃β + ΛB)−1P̃TUΣβ.

The theorem is proved by noting that the inner product of a column of U and a column
of P̃ is 2(n−p)/2 if they are in the same alias set and is zero otherwise.

Let ξ and v be the vectors of the ξFi ’s and var(βS)’s, respectively. Since
∑

S:S⊆{1,...,n}
var(βS) is a constant, by (3.2), among the orthogonal regular designs, a design d∗ is Bayesian
A-optimal for (ξ,v) if and only if it maximizes

ΦA(d; ξ,v) =
∑

S:S⊆{1,...,n}

[var(βS)]2∑
β:β∈A(βS) var(β) + eS

,

where eS = 2−(n−p)ξFi if βS is estimated in WFi .
Under the prior distribution in (2.6), we have the following explicit form of ΦA(d; ξ,v).

Theorem 3.2. Under (2.6), for an orthogonal regular fractional factorial design d,

ΦA(d; ξ,v) =
2n−p−1∑
j=0

τ4
∑n

i=1 r
2iN

(j)
i

τ2
∑n

i=1 r
iN

(j)
i + ej

,

where ej = 2−(n−p)ξFs if the effects in Aj are estimated in WFs and N
(j)
i is the number

of words of length i in Aj. In particular, (N
(0)
1 , . . . , N

(0)
n ) = (A1, . . . , An) is the usual

wordlength pattern.

Theorem 3.3. Among the orthogonal regular 2n−p fractional factorial designs, a design
d∗ is Bayesian D-optimal if and only if it minimizes

ΦD(d; ξ,v) =

2n−p−1∏
j=0

ej∑
β:β∈Aj

var(β) + ej
.(3.6)

Under (2.6), ΦD(d; ξ,v) =
∏2n−p−1
j=0

ej

τ2
∑n

i=1 r
iN

(j)
i +ej

.
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Proof. By (3.1), cov(βββ|y) = ΣβW, where W = I2n −UT (UΣβU
T +V)−1UΣβ. Since

det(ΣβW) = det(Σβ) det(W) and det(Σβ) =
∏
S:S⊆{1,...,n} var(βS), which is a constant, it

is sufficient to show that det(W) is equal to the quantity in (3.6).
By Theorem 3.1, cov(βββ|y) is a block-diagonal matrix, and so is W. Let W = diag(W0, . . . ,

WN−1), where each Wj is a 2p × 2p matrix corresponding to Aj . Then det(W) =
∏N−1
j=0

det(Wj). If the effects in Aj are estimated in WFi , then

Wj =
1

Tj


Tj − x1 −x2 · · · −x2p
−x1 Tj − x2 · · · −x2p

...
...

. . .
...

−x1 −x2 · · · Tj − x2p

 ,

where Tj =
∑

β:β∈Aj
var(β) + 2−(n−p)ξFi and the xl’s are the var(β)’s for β ∈ Aj . Thus

det(Wj) =
1

(Tj)2
p det


Tj − x1 −x2 · · · Tj −

∑2p

i=1 xi
−x1 Tj − x2 · · · Tj −

∑2p

i=1 xi
...

...
. . .

...

−x1 −x2 · · · Tj −
∑2p

i=1 xi



=
Tj −

∑2p

i=1 xi
(Tj)2

p det


Tj − x1 −x2 · · · 1
−x1 Tj − x2 · · · 1

...
...

. . .
...

−x1 −x2 · · · 1



=
Tj −

∑2p

i=1 xi
(Tj)2

p det


Tj 0 · · · 0
0 Tj · · · 0
...

...
. . .

...
0 0 · · · 1


=

ej∑
β:β∈Aj

var(β) + ej
.

We note that in implementing the criteria in Theorem 3.2 and Theorem 3.3 under (2.6),
one needs to specify the parameters τ, r and the ξFi ’s.

When some unit factors have fixed effects, we can define the A- and D-criteria by letting
the corresponding stratum variances go to infinity and taking the limits of ΦA(d; ξ,v) and
ΦD(d; ξ,v). This amounts to imposing improper priors on the corresponding fixed unit
effects.

A useful result used in [7] is that for a Schur concave function f(x1, . . . , xh), if (x1, . . . , xh)
is majorized by (y1, . . . , yh), then f(x1, . . . , xh) ≥ f(y1, . . . , yh). In addition, if f is increas-
ing in each xi, then a good surrogate for maximizing f(x1, . . . , xh) is the (M.S)-criterion
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due to Eccleston and Hedayat [10]: maximize
∑h

i=1 xi, and then minimize
∑h

i=1 x
2
i among

those that maximize
∑h

i=1 xi.

4. An analytical result. General analytical results in the present setting are difficult
to prove. For unstructured units, minimum aberration half fractions were shown to be
Bayesian A- and D-optimal in [15]. In the case of blocked 2n−1 fractional factorial designs
with two blocks of size 2n−2, we show below that, under some mild conditions, the minimum
aberration designs according to a criterion of Cheng and Wu [9] are Bayesian D- and A-
optimal. To construct a design, we need a treatment defining word to define the half fraction
and another treatment interaction (block defining word) to divide the 2n−1 treatment
combinations in the half fraction into two blocks. The block defining effect and its alias are
then confounded with blocks. The other factorial effects are estimated in WE .

The following result can be used to help choose optimal block defining word when the
treatment defining word is fixed.

Lemma 4.1. Among the 2n−1 designs with two blocks of size 2n−2 and a given treat-
ment defining word of length L, those that confound two aliased treatment factorial effects
involving n − dL2 e and n − bL2 c factors with blocks are Bayesian A- and D-optimal under
the prior specified in (2.6).

Proof. Let d be a 2n−1 design with a treatment defining word of length L and two
blocks of size 2n−2. Under d, one pair of aliased words of lengths u+ x and u+ L− x are
confounded with blocks, where x ∈ {0, 1, . . . , bL/2c} and u ∈ {0, 1, . . . , n−L}. Let f(x, u) =
ΦA(d; ξ,v) − ΦA(d; ξ,v), where ΦA(d; ξ,v) is obtained from ΦA(d; ξ,v) by replacing ξB
with ξE . Then since ΦA(d; ξ,v) is a constant not depending on the block defining word,
maximizing ΦA(d; ξ,v) is the same as minimizing f(x, u). We have

f(x, u) =
τ4r2u(r2x + r2L−2x)

τ2ru(rx + rL−x) + ξE/2n−1
− τ4r2u(r2x + r2L−2x)

τ2ru(rx + rL−x) + ξB/2n−1

=
ξB − ξE

2n−1
· (rx + rL−x)2 − 2rL

{rx + rL−x + ξB/τ2

2n−1ru
} · {rx + rL−x + ξE/τ2

2n−1ru
}

(4.1)

=
ξB − ξE

2n−1
· 1

{1 + 1
rx+rL−x

ξB/τ2

2n−1ru
}{1 + 1

rx+rL−x
ξE/τ2

2n−1ru
}

− ξB − ξE
2n−1

· 2rL

{rx + rL−x + ξB/τ2

2n−1ru
}{rx + rL−x + ξE/τ2

2n−1ru
}
.

It is easy to see from (4.1) that when x is fixed, since ξB > ξE and 0 < r < 1, f(x, u)
attains the minimum at u∗ = n − L, the largest possible value of u. Then from the last
expression of f(x, u) above, f(x, n− L) is minimized at x∗ = bL2 c since rx + rL−x attains
its minimum at x∗ = bL2 c. Thus f(x, u) is minimized at x∗ = bL2 c and u∗ = n − L. Then
we have u∗ + x∗ = n− dL2 e and u∗ + L− x∗ = n− bL2 c.
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For the D-optimality, by Theorem 3.3, minimizing ΦD(d; ξ,v) is equivalent to maximizing∏2n−1−1
i=0 (vi + ξi/2

n−1), where each vi is of the form τ2ru(rx + rL−x), exactly one of the

ξi’s is equal to ξB, and all the others are equal to ξE . Since
∏2n−1−1
i=0 (vi + ξi/2

n−1) is a
Schur concave function of (v0 + ξ0/2

n−1, . . . , v2n−1−1 + ξ2n−1−1/2
n−1), a blocking scheme

is D-optimal if its (v0 + ξ0/2
n−1, . . . , v2n−1−1 + ξ2n−1−1/2

n−1) is majorized by that of any
other blocking scheme. Without loss of generality, suppose v0 ≥ . . . ≥ v2n−1−1. Then
since ξB > ξE , it is easy to see that the blocking scheme with ξ2n−1−1 = ξB produces a
(v0 + ξ0/2

n−1, . . . , v2n−1−1 + ξ2n−1−1/2
n−1) that is majorized by that of any other blocking

scheme. Thus it suffices to show that ru(rx + rL−x) is minimized at u∗ = n − L and
x∗ = bL2 c. This holds since ru(rx+ rL−x) is a decreasing function of both u and x (≤ L/2),
and u∗ and x∗ are the largest possible values of u and x, respectively.

Example 4.1. Among the orthogonal regular 24−1 designs with two blocks of size 4 and
treatment defining word 1 (respectively, 12, 123, or 1234), the one with the block defining
word 234(= 1234), (respectively, 134(= 234), 124(= 34), or 24(= 13)), is the best under
the Bayesian A- and D-criteria.

We now show that under some mild conditions the best design in Lemma 4.1 with L = n
(that is, a maximum resolution design) is a Bayesian D-optimal 2n−1 design with two blocks
of size 2n−2.

Theorem 4.1. Let d∗ be the 2n−1 resolution n design with two blocks of size 2n−2 that
confounds two aliased treatment factorial effects involving n−dn2 e and n−bn2 c factors with
blocks. For a given h > 0, suppose

1. r ≤ (
√
h2 + 4− h)2/4,

2. ξB ≤ (2n−1τ2rn−1.5)h.

Then d∗ is Bayesian D-optimal among all the orthogonal regular 2n−1 designs with two
blocks of size 2n−2 under the prior specified in (2.6).

Remark 4.1. It can be seen that the optimal design in Theorem 4.1 has minimum
aberration with respect to the wordlength pattern W1 proposed in [9]. We note that the

assumption ξB ≤ (2n−1τ2rn−1.5)h is equivalent to ξB ≤ (2nτ2rn)( r
−1.5

2 )h, where 2nτ2rn

is the prior variance of a normalized n-factor interaction. It can be seen that f(h) =
(
√
h2 + 4 − h)2/4, the upper bound on r in Theorem 4.1, is decreasing in h. Therefore

when h is large (implying ξB can be large), d∗ is expected to be optimal under smaller r’s.
Kang and Joseph [14] argued that r = 1/3 is a good choice when there is no other prior
knowledge. We have f(1.15) ≈ 1/3, indicating that for r = 1/3, the result in Theorem 4.1
holds for ξB ≤ (2nτ2rn)(31.5 · 1.152 ) ≈ 2.988(2nτ2rn).

Proof of Theorem 4.1. It is sufficient to show that ΦD(d1; ξ,v) ≤ ΦD(d2; ξ,v) for
any two blocked 2n−1 designs d1 and d2 with treatment defining words {1, . . . , L} and
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{1, . . . , L− 1}, respectively (L ≥ 3), and the block defining words as prescribed in Lemma
4.1.

Let H1 = {1, . . . , L}, H2 = {1, . . . , L − 1}, and U0 = {I,H1, H2, H14H2}, where
H14H2 = (H1 ∪ H2) \ (H1 ∩ H2). Then all the 2n words can be partitioned into 2n−2

classes, each of which other than U0 is a coset of U0 with respect to the group operation
4. Denote these cosets by Uj , j = 1, . . . , 2n−2 − 1. Then each Uj consists of two pairs of
aliased words under both d1 and d2. It follows from Theorem 3.3 that for d = d1 or d2,

ΦD(d; ξ,v) =
∏2n−2−1
j=0 ΦD,j(d; ξ,v), where ΦD,j(d; ξ,v) is the contribution of Uj to the

product in (3.6).
Under d1, H1 is aliased with I (which corresponds to the mean). Thus H1 and I (of

lengths L and 0, respectively) are the only effects estimated in WU . The other two words
in U0, H2 and H14H2, have lengths L− 1 and 1, respectively, and cannot be estimated in
WB, since, by Lemma 4.1, the two effects confounded with blocks have lengths n−dL2 e and
n−bL2 c, respectively. Thus H2 and H14H2 are estimated in WE . Likewise, under d2, I and
H2 are estimated in WU , and the other two effects in U0, H1 and H14H2, are estimated
in WE .

Without loss of generality, suppose that under d1, the two effects estimated in WB,
say H and H4H1, are in U1. By Lemma 4.1, we may assume that |H| = n − dL2 e and
|H4H1| = n−bL2 c. Then |H4H1| = n−dL−12 e and |H4(H14H2)| = n−bL−12 c. It follows
that H4H1 and H4(H14H2) are the two words that are aliased and estimated in WB
under d2. Then H4(H14H2) and H4H2 are aliased and estimated in WE under d1, while
H and H4H2 are aliased and estimated in WE under d2.

For all j ≥ 2, all the effects in Uj are estimated in WE . Based on this and the informa-
tion from the previous two paragraphs, one can write down ΦD,0(d1; ξ,v), ΦD,0(d2; ξ,v),
ΦD,1(d1; ξ,v), and ΦD,1(d2; ξ,v). When the experimental units are unstructured, Kerr [15]
proved ΦD(d1; ξ,v) ≤ ΦD(d2; ξ,v) by showing that ΦD,j(d1; ξ,v) ≤ ΦD,j(d2; ξ,v) for all
j = 0, . . . , 2n−2 − 1. Effectively she has shown that ΦD,j(d1; ξ,v) ≤ ΦD,j(d2; ξ,v) for all
j ≥ 2 in our setting. Thus it is sufficient to show ΦD,j(d1; ξ,v) ≤ ΦD,j(d2; ξ,v) for j = 0, 1.

For ΦD,0(d1; ξ,v) ≤ ΦD,0(d2; ξ,v), we need to show

(1 + rL +
ξU

2n−1τ2
)(r + rL−1 +

ξE
2n−1τ2

) ≥ (1 + rL−1 +
ξU

2n−1τ2
)(r + rL +

ξE
2n−1τ2

).

This inequality is equivalent to ξU
2n−1τ2

≥ ξE
2n−1τ2

− 1 + r, which always holds since ξU ≥ ξE
and r < 1.

For ΦD,1(d1; ξ,v) ≤ ΦD,1(d2; ξ,v) when L is odd, we need to show

(r−
1
2 + r

1
2 + δB)(r−

1
2 + r

1
2 + δE) ≥ (2r

1
2 + δB)(2r−

1
2 + δE),

where δB = 2−(n−1)ξB
τ2rn−L/2 and δE = 2−(n−1)ξE

τ2rn−L/2 . This is equivalent to

1− r − (δB − δE)r
1
2 ≥ 0.(4.2)
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It follows from the assumption ξB ≤ {2n−1τ2rn−1.5}h that 0 < δE ≤ δB ≤ h. Then a

sufficient condition for (4.2) is 1− r − hr
1
2 ≥ 0. This holds if r ≤ (

√
h2 + 4− h)2/4.

For ΦD,1(d1; ξ,v) ≤ ΦD,1(d2; ξ,v) when L is even, we need to show

(2 + δB)(r−1 + r + δE) ≥ (1 + r + δB)(1 + r−1 + δE),

which can be simplified as

1− r − r(δB − δE) ≥ 0.(4.3)

Since r1/2 > r, (4.3) is implied by (4.2).

We can also establish a version of Theorem 4.1 for the Bayesian A-criterion by replacing
the conditions ΦD,i(d1; ξ,v) ≤ ΦD,i(d2; ξ,v), i = 0, 1, in the proof with ΦA,i(d1; ξ,v) ≥
ΦA,i(d2; ξ,v), i = 0, 1.

5. More complicated block structures: a surrogate criterion. For a setting as
simple as regular half fractions with two blocks, the proof of Theorem 4.1 is already quite
tedious. The determination of optimal designs with more complicated block structures is
very challenging. In this section, we derive a more manageable two-stage surrogate crite-
rion that can be applied to nonregular designs as well. Notice that the popular minimum
aberration criterion is itself a surrogate for another statistically more meaningful criterion;
see [5]. Interestingly the first stage of our surrogate criterion can be expressed in terms
of wordlength and generalized wordlength patterns for regular and nonregular designs, re-
spectively. The surrogate criterion depends on the stratum variances, but as in [7], a useful
tool is developed for eliminating many inferior designs without having to know the stratum
variances; then one only needs to select from a much smaller “essentially complete class”.

We first note that another expression of cov(β|y) instead of (3.1) is

cov(β|y) =
(
UTV−1U + Σ−1β

)−1
=

(
m∑
i=0

1

ξFi

UTPWFi
U + Σ−1β

)−1
.

Thus we have

det[cov(β|y)−1] = det
(
Σ−1β

)
det

(
m∑
i=0

1

ξFi

ΣβU
TPWFi

U + I2n

)
.

Since det(Σ−1β ) is a constant, maximizing det[cov(β|y)−1] is equivalent to maximizing

det
(∑m

i=0
1
ξFi

ΣβU
TPWFi

U + I2n
)

. A design is said to be Bayesian (M.S)-optimal if it

maximizes tr(
∑m

i=0
1
ξFi

ΣβU
TPWFi

U + I2n) and minimizes tr[(
∑m

i=0
1
ξFi

ΣβU
TPWFi

U +

I2n)2] among the designs that maximize tr(
∑m

i=0
1
ξFi

ΣβU
TPWFi

U + I2n). Since tr(AB) =
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tr(BA) for any two compatible matrices A and B, and P2 = P = PT for any orthogonal
projection matrix P, we have

tr

(
m∑
i=0

1

ξFi

ΣβU
TPWFi

U + I2n

)
=

m∑
i=0

1

ξFi

tr
[
Σ

1/2
β (PWFi

UΣ
1/2
β )T (PWFi

U)
]

+ 2n

=
m∑
i=0

1

ξFi

tr
[
(PWFi

UΣ
1/2
β )T (PWFi

UΣ
1/2
β )

]
+ 2n.

If all the factorial effects involving k factors have identical prior variance vk, k = 0, 1, . . . , n
(say, under (2.6)), then

m∑
i=0

1

ξFi

tr
[
(PWFi

UΣ
1/2
β )T (PWFi

UΣ
1/2
β )

]
=

m∑
i=0

1

ξFi

n∑
k=0

vk

 ∑
S:|S|=k

‖PWFi
uS‖2

 .

Since
∑m

i=0 PWFi
= IN , one can replace PWFm with IN −

∑m−1
i=0 PWFi

. Then

m∑
i=0

1

ξFi

n∑
k=0

vk

 ∑
S:|S|=k

‖PWFi
uS‖2

 = c−
m−1∑
i=0

(
1

ξFm

− 1

ξFi

) n∑
k=0

vk

 ∑
S:|S|=k

‖PWFi
uS‖2


= c−N

m−1∑
i=0

(
1

ξFm

− 1

ξFi

) n∑
k=0

vkBk,i(d),

where c = 1
ξFm

∑n
k=0 vk

∑
S:|S|=k ‖uS‖2, which is a constant, and Bk,i(d) is as defined

in (2.12). Furthermore, since B0,0(d) = 1 and B0,i(d) = 0 for all i > 0, maximizing
tr(
∑m

i=0
1
ξFi

ΣβU
TPWFi

U + I2n) is equivalent to minimizing

ΦM(d; ξ,v) =
m−1∑
i=0

(
1

ξFm

− 1

ξFi

) n∑
k=1

vkBk,i(d).(5.1)

For the designs that minimize ΦM(d; ξ,v), minimizing tr[(
∑m

i=0
1
ξFi

ΣβU
TPWFi

U + I2n)2]

reduces to minimizing

ΦS(d; ξ,v) =
m∑
i=0

1

ξ2Fi

tr
[
(ΣβU

TPWFi
U)2

]
+ 2

∑
0≤l<s≤m

1

ξFl
ξFs

tr
[
(ΣβU

TPWFl
U)(ΣβU

TPWFsU)
]
.

Thus a Bayesian (M.S)-optimal design d∗ minimizes ΦM(d; ξ,v) and minimizes ΦS(d; ξ,v)
among those that minimize ΦM(d; ξ,v). Note that ΦM(d; ξ,v) can be expressed in terms
of the generalized wordlength patterns.
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Under orthogonal regular designs, ΦS(d; ξ,v) can further be simplified. It can be seen
that in this case (ΣβU

TPWFl
U)(ΣβU

TPWFsU) is a zero matrix when l 6= s. Thus we have

ΦS(d; ξ,v) =
m∑
i=0

1

ξ2Fi

tr
[
(ΣβU

TPWFi
U)2

]
.

For i = 1, . . . ,m, let hi be the number of alias sets estimated in WFi , and N
(i,j)
k (d) be

the number of words of length k in the jth alias set estimated in WFi , j = 1, . . . , hi. For

i = 0, let h0 = 1 and N
(0,1)
k (d) = Bk,0(d). Then Bk,i(d) =

∑hi
j=1N

(i,j)
k (d). Some routine

calculation yields

ΦS(d; ξ,v) =
m∑
i=0

N2

ξ2Fi

hi∑
j=1

[
n∑
k=0

vkN
(i,j)
k (d)

]2
.(5.2)

Furthermore, if d is a complete factorial design, thenBk,0(d) = 0 for k ≥ 1 and
∑n

k=0N
(i,j)
k =

1 for all i, j. It follows that
∑hi

j=1

[∑n
k=0 vkN

(i,j)
k (d)

]2
=
∑n

k=0 v
2
kBk,i(d). Then since∑m

i=0Bk,i(d) = Cnk , by (5.2) we have

ΦS(d; ξ,v) = c′ −N2
m−1∑
i=1

(
1

ξ2Fm

− 1

ξ2Fi

)
n∑
k=1

v2kBk,i(d),(5.3)

where c′ is a constant. Thus an orthogonal multi-stratum complete factorial design is
Bayesian (M.S)-optimal if it maximizes

∑m−1
i=1 ( 1

ξ2Fm
− 1

ξ2Fi
)
∑n

k=1 v
2
kBk,i(d) among those

that minimize
∑m−1

i=1 ( 1
ξFm
− 1

ξFi
)
∑n

k=1 vkBk,i(d).

Proposition 5.1. In the case of unstructured experimental units, a regular design
minimizes ΦM(d; ξ,v) if and only if it minimizes

∑n
k=1 vkBk,0(d). If vk � vk+1 for all k,

then a good surrogate is to sequentially minimize B1,0(d), . . . , Bn,0(d); that is, the usual
minimum aberration criterion.

Proof. For unstructured units, B = {F0,F1}. By (5.1), minimizing ΦM(d; ξ,v) is
equivalent to minimizing

∑n
k=1 vkBk,0(d), where (B1,0(d), . . . , Bn,0(d)) is the wordlength

pattern of d.

The condition vk � vk+1 for all k amounts to that the lower-order effects are much more
important than high-order ones. For unstructured units, Proposition 5.1 formally connects
our criterion with minimum aberration, a popular criterion under the commonly made
effect hierarchy assumption when the prior knowledge about the underlying system is vague.
Similarly, for nonregular designs, generalized minimum aberration is a good surrogate for
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minimizing ΦM(d; ξ,v). Thus the Bayesian (M.S)-criterion developed here can be viewed
as a refinement of minimum and generalized minimum aberration. One may also need to
carry out the S-step.

Under the same assumption as in Proposition 5.1, it was shown in [12] that minimum
aberration designs minimize the posterior variance of the mean (intercept), but this re-
sult cannot be extended to nonregular designs. As mentioned earlier, minimum aberration
regular half-fractions were shown to be Bayesian D- and A-optimal in [15].

Blocking of complete 2n factorial designs is related to the construction of 2n−p regular
fractional factorial designs in that a defining contrast subgroup that defines a fractional
factorial design divides the 2n treatment combinations into 2p sets of size 2n−p. Each of
the 2p sets can be used as a 2n−p fractional factorial design. On the other hand, these sets
together form 2p blocks of a complete factorial. The treatment defining words of a fractional
factorial design are those that are confounded with blocks in the corresponding blocking of
the complete factorial. Under the hierarchical assumption, it is desirable not to confound
too many lower order effects with blocks. Sun, Wu, and Chen [19] extended the minimum
aberration criterion from fractional factorial designs to blocked complete factorial designs.
A blocked complete factorial design is said to have minimum aberration if it sequentially
minimizes B1, B2, . . . , where Bi is the number of block defining words of length i. A result
similar to Proposition 5.1 holds for optimal blocking of complete factorial designs.

Proposition 5.2. Suppose the 2n treatment combinations in a complete factorial de-
sign are to be divided into 2p blocks of size 2n−p. If vk � vk+1 for all k, then minimum
aberration is a good surrogate for the Bayesian (M.S)-optimality over orthogonal designs.

Proof. In this case, m = 2. By the discussions preceding Proposition 5.1, since ξF1 >
ξF2 , the M-step is to minimize

∑n
k=1 vkBk,1(d) and the S-step is to maximize

∑n
k=1 v

2
kBk,1(d).

When vk � vk+1 for all k, , minimizing
∑n

k=1 vkBk,1(d) is achieved by sequentially mini-
mizing B1,1(d), B2,1(d), . . ., i.e., minimum aberration. By the same assumption, the designs
that minimize

∑n
k=1 vkBk,1(d) have the same Bk,1 values. It follows that they also have the

same value of
∑n

k=1 v
2
kBk,1(d). Thus the S-step is not needed.

In the following theorem we provide a necessary and sufficient condition for a design
to minimize ΦM(d; ξ,v) for all feasible stratum variances. Here ξξξ is said to be feasible if
Fi ≺ Fj ⇒ ξFi ≤ ξFj .

Theorem 5.1. Suppose B is a block structure satisfying (2.1), (2.2), and (2.3). Then
a necessary and sufficient condition for a design d∗ to minimize ΦM(d; ξ,v) for all feasible
ξξξ is that it minimizes

∑
i:Fi∈G

∑n
k=1 vkBk,i(d) for all subsets G of B \ {Fm} such that

F ∈ G,F ′ ∈ B, and F ≺ F ′ ⇒ F ′ ∈ G.(5.4)

We first show the necessity part since it is straightforward and is useful for understanding
the implications and utilities of the theorem. The proof of the sufficiency part will be
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deferred to the end of this section. Suppose d∗ minimizes ΦM(d; ξ,v) for all feasible ξξξ. For
any G ∈ B\{Fm} satisfying (5.4), let ξξξ be such that ξF = ξF0 for all F ∈ G and ξF = ξFm

for all F /∈ G. Then since ξFm < ξF0 , it is easy to see that such a ξξξ is feasible. In this case,

(5.5) ΦM(d; ξ,v) =

(
1

ξFm

− 1

ξF0

) ∑
i:Fi∈G

n∑
k=1

vkBk,i(d).

It follows that d∗ minimizes
∑

i:Fi∈G
∑n

k=1 vkBk,i(d). This proves the necessity part.
By (5.5), we can interpret the conclusion of Theorem 5.1 as that d∗ minimizes ΦM(d; ξ,v)

for all feasible ξξξ if and only if, for all B satisfying (5.4), it minimizes ΦM(d; ξ,v) for the cases
with ξF = ξF0 for all F ∈ G and ξF = ξFm for all F /∈ G. Since

∑
i:Fi∈G

∑n
k=1 vkBk,i(d) does

not depend on ξξξ and only involves the unit factors in G, it is enough to consider only the case
ξF = ξF0 =∞ for all F ∈ G and ξF = ξFm for all F /∈ G. In other words, in verifying the
necessary and sufficient condition, one only needs to consider the block structures G∪{E}
(note that Fm = E), where all the unit factors in G have fixed effects. Thus by checking the
minimization of ΦM(d; ξ,v) for a small number of extreme cases with fixed unit effects (and
no knowledge about ξξξ is needed to do this), one is able to conclude the strong property
of minimizing ΦM(d; ξ,v) for all feasible ξξξ. Even if a design with such a strong optimality
property does not exist, suppose

∑
i:Fi∈G

∑n
k=1 vkBk,i(d1) ≤

∑
i:Fi∈G

∑n
k=1 vkBk,i(d2) for

all subsets G of B \ {Fm} satisfying (5.4), with strict inequality for at least one such
G; then d2 is worse than d1 and we say that d2 is inadmissible. This provides a simple
way of eliminating inferior designs and substantially reducing the designs that need to
be considered. Since many designs are ruled out from consideration, one can also use the
actual Bayesian A- and D-criterion values to compare the remaining designs.

By (5.3) and the same argument as in the proof of Theorem 5.1, the following result for
complete factorial designs can be established.

Theorem 5.2. Let d∗ be an orthogonal 2n complete factorial design with a block struc-
ture B satisfying (2.1), (2.2), and (2.3). Then d∗ is Bayesian (M.S)-optimal for all feasible
ξξξ if and only if, for all subsets G of B \ {Fm} satisfying (5.4), d∗ minimizes ΦM(d; ξ,v)
and minimizes ΦS(d; ξ,v) among the designs that minimize ΦM(d; ξ,v), where ξFi = ∞
for all Fi ∈ G and ξFi = ξFm for all Fi /∈ G.

Example 5.1 (A chain of nested unit factors). Suppose B = {F0, . . . ,Fm}, where
Fi ≺ Fj for all i > j. The G’s that satisfy (5.4) are the m sets {F0}, {F0,F1}, . . . , {F0, . . .,
Fm−1}. It follows from Theorem 5.1 that a design d∗ minimizes ΦM(d; ξ,v) for all ξ such
that i > j ⇒ ξFi ≤ ξFj provided that it minimizes

∑l
i=0

∑n
k=1 vkBk,i(d) for each l =

0, 1, . . . ,m−1. By the discussions preceding Theorem 5.2, minimizing
∑l

i=0

∑n
k=1 vkBk,i(d)

is the same as minimizing ΦM(d; ξ,v) under the block structure B with ξF0 = · · · = ξFl
=∞

and ξFl+1
= · · · = ξFm. It can be seen that (i) for l > 0, this is equivalent to minimizing

ΦM(d; ξ,v) under the block structure Bl = {F0,Fl,Fm} with ξFl
= ξF0 = ∞, i.e., an
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experiment with fixed block effects, where each block consists of the units with the same
level of Fl, and (ii) for l = 0, it is equivalent to minimizing ΦM(d; ξ,v) under the block
structure B0 = {F0,Fm}, i.e., an experiment with unstructured units. In particular, for
B = {E ,B,U}, a blocked factorial experiment, if a design d∗ minimizes ΦM(d; ξ,v) for an
experiment with fixed block effects (ξB = ∞) as well as an experiment with unstructured
units (ξB = ξE), then it minimizes ΦM(d; ξ,v) for all ξB ≥ ξE .

Under v1 � · · · � vn, a good surrogate for minimizing ΦM(d; ξ,v) is to sequentially
minimize

∑m−1
i=0 ( 1

ξFm
− 1

ξFi
)B1,i(d), . . . ,

∑m−1
i=0 ( 1

ξFm
− 1

ξFi
)Bn,i(d). Thus the minimization

of ΦM(d; ξ,v) leads to a minimum aberration criterion based on the wordlength pattern

(5.6)

(
m−1∑
i=0

(
1

ξFm

− 1

ξFi

)B1,i(d), . . . ,
m−1∑
i=0

(
1

ξFm

− 1

ξFi

)Bn,i(d)

)
.

Such a criterion depends on the stratum variances. On the other hand, a good surrogate for
minimizing

∑
i:Fi∈G

∑n
k=1 vkBk,i(d) is to sequentially minimize

∑
i:Fi∈GB1,i(d), . . . ,

∑
i:Fi∈G

Bn,i(d). For each subset G of B\{Fm} satisfying (5.4), this induces a minimum aberration
criterion based on the wordlength pattern

(5.7)

 ∑
i:Fi∈G

B1,i(d), . . . ,
∑
i:Fi∈G

Bn,i(d)

 .

Similar to Theorem 5.1, the following holds for such surrogate minimum aberration criteria.

Corollary 5.1. A necessary and sufficient condition for a design d∗ to have mini-
mum aberration with respect to the wordlength pattern (5.6) for all feasible ξξξ is that it has
minimum aberration with respect to (5.7) for all subsets G of B \ {Fm} satisfying (5.4).

It follows that if d1 is at least as good as d2 with respect to the MA criterion based on
(5.7) for all subsets G of B \ {Fm} satisfying (5.4), and is better than d2 for at least one
such G, then d2 is dominated by d1 for feasible ξξξ’s with respect to the MA criterion based
on (5.6) and can be ruled out from consideration. The conclusion drawn for experiments
with a chain of nested unit factors (in particular, blocked factorial experiments) studied in
Example 5.1 also applies to the surrogate MA criteria formulated above.

Remark 5.1. Theorem 5.1 has a similar flavor to Theorem 4.1 of [7], which provided a
necessary and sufficient condition for a design to be optimal with respect to a surrogate for
the maximum information capacity criterion considered there for all feasible ξξξ. In applying
Theorem 4.1 of [7], one has to check certain conditions for all subsets G′ of B \ {F0} such
that

F ∈ G′,F ′ ∈ B and F ′ ≺ F ⇒ F ′ ∈ G′.(5.8)
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We note that (5.4) is equivalent to (5.8) if we take G′ to be B \ G. This, coupled with
some tedious technical arguments which are omitted here, indicates that optimal orthogonal
regular designs based on the approach presented in this paper are expected to perform well,
if not optimally, under the criterion studied in [7]. In addition to the assumption that the
three-factor and higher-order interactions are negligible, the most serious drawback of the
approach in [7] is that it cannot be applied to nonregular designs and nonorthogonal regular
designs. The approach proposed in this paper overcomes such difficulties.

Remark 5.2. Theorem 5.1, Theorem 5.2, and Corollary 5.1 are our main tools for
eliminating inferior designs. While Corollary 5.1 is specifically for minimum aberration
versions of the criteria under the effect hierarchy assumption that vk � vk+1 for all k,
Theorem 5.1 and Theorem 5.2 can be used for all vk values.

The sufficiency part of Theorem 5.1 can be proved in a similar fashion to that of Theorem
4.1 of [7].

Proof of the sufficiency part of Theorem 5.1. Let ηi = 1
ξFm
− 1
ξFi

and Bi(d) =∑n
k=1 vkBk,i(d), i = 0, ...,m− 1. Then ΦM(d; ξ,v) =

∑m−1
i=0 ηiBi(d). We have to show that

a design that minimizes
∑

i:Fi∈GBi(d) for all subsets G of B \ {Fm} satisfying (5.4) also

minimizes
∑m−1

i=0 ηiBi(d) for all feasible ξ.
In the following a more general result will be proved: for any subset B′ of B \ {Fm}, if

d∗ minimizes
∑

i:Fi∈GBi(d) for all subsets G of B′ such that

F ∈ G,F ′ ∈ B′ and F ≺ F ′ ⇒ F ′ ∈ G,(5.9)

then d∗ minimizes
∑

i:Fi∈B′ ηiBi(d) for all feasible η. Here η = (η0, . . . , ηm−1)
T , and η is

feasible if all the ηi’s are nonnegative and Fi � Fj ⇒ ηi ≤ ηj . If this is true, then the result
in Theorem 5.1 follows by taking B′ = B \ {Fm}.

We prove the statement in the previous paragraph by mathematical induction on the
number of unit factors in B′. It is clearly true when B′ consists of one single unit factor.
Now suppose that it holds for all subsets of B\{Fm} with fewer than s unit factors, s ≥ 2;
we show that if |B′| = s and d∗ minimizes

∑
i:Fi∈GBi(d) for all subsets G of B′ satisfying

(5.9), then d∗ minimizes
∑

i:Fi∈B′ ηiBi(d) for all feasible η. Under the given assumption,
by taking G = B′, we have that

(5.10) d∗ minimizes
∑

i:Fi∈B′
Bi(d).

If all the ηi’s for which Fi ∈ B′ are equal, say they are all equal to η, then, by (5.10), d∗

minimizes η
∑

i:Fi∈B′ Bi(d) =
∑

i:Fi∈B′ ηiBi(d).
On the other hand, suppose not all the ηi’s for which Fi ∈ B′ are equal. Let η be the

smallest value of such ηi’s and let B∗ = {Fi ∈ B′ : ηi > η}. Then B∗ is nonempty and
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|B∗| < s. For each i such that Fi ∈ B∗, let η∗i = ηi − η; then η∗i > 0. Also, η∗i ≤ η∗i′ if
Fi ≺ Fi′ and Fi,Fi′ ∈ B∗. Furthermore,∑

i:Fi∈B′
ηiBi(d) =

∑
i:Fi∈B∗

η∗iBi(d) + η
∑

i:Fi∈B′
Bi(d).

By (5.10), it suffices to show that d∗ minimizes
∑

i:Fi∈B∗ η
∗
iBi(d). Since |B∗| < s, by the

induction hypothesis, it remains to show that d∗ minimizes
∑

i:Fi∈GBi(d) for all subsets
G of B∗ satisfying the following condition:

F ∈ G,F ′ ∈ B∗ and F ≺ F ′ ⇒ F ′ ∈ G.(5.11)

Suppose a subset G of B∗ satisfies (5.11). By the assumption on B′, d∗ minimizes
∑

i:Fi∈G
Bi(d) provided that G also satisfies (5.9). That is, given F ∈ G, F ′ ∈ B′, and F ≺ F ′,
we want to show F ′ ∈ G. Because F ∈ G ⊆ B∗, by the definition of B∗, we have ηF > η.
Also, ηF ′ ≥ ηF since F ≺ F ′. Thus we have ηF ′ ≥ ηF > η, which leads to F ′ ∈ B∗. Then
by (5.11), F ′ ∈ G.

6. Examples. In this section, we consider the selection of Bayesian D-optimal designs
under the prior specification (2.6) for some specific block structures. We first use Theorem
5.1 (or Corollary 5.1 under the assumption v1 � · · · � vn) to eliminate inadmissible
designs, and then compute det(cov(βββ|y)) for selected values of ξ, σ2, and r to compare the
remaining designs. The value of σ2 is arbitrarily chosen, while the values of r are chosen to
be space-filling in the interval (0,1). Values of ξξξ are chosen for the cases of fixed unit effects,
random unit effects, and unstructured units. In the following examples, the ith treatment
factor is denoted by i if i ≤ 9 and ti if i ≥ 10.

6.1. Blocking of regular fractional factorials. The block structure is B = {F0,F1,
F2} with F2 ≺ F1 ≺ F0, where F1 = B is the block factor. We require that no treatment
main effect be aliased with other treatment main effects nor confounded with blocks. Then
B1,0(d) = B2,0(d) = B1,1(d) = 0. As mentioned in Example 5.1, the subsets G of B \ {F2}
satisfying (5.4) are G1 = {F0} and G2 = {F0,F1}, and that checking the sufficient condi-
tion in Theorem 5.1 amounts to examining the performances of the designs in experiments
with unstructured units as well as a blocked experiment with fixed block effects. Suppose
a 26−2 design is to be run in 4 blocks of size 4. We apply Theorem 5.1 with σ2 = 15, 20
and r = 0.1, 0.3, 0.5, 0.7, 0.9. In all these cases, complete searches show that the design
d∗ defined by 5 = 134,6 = 123,B1 = 13,B2 = 124, where B1 and B2 are indepen-
dent block defining words, is the only design (up to isomorphism) that minimizes both∑n

k=1 vkBk,0(d) +
∑n

k=1 vkBk,1(d) and
∑n

k=1 vkBk,0(d). By Theorem 5.1, d∗ is Bayesian
(M.S)-optimal for all feasible ξ and the selected values of σ2 and r.
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The wordlength patterns (5.7) induced by G1 and G2 are (B3,0(d), . . . , B6,0(d)) and
(B2,0(d) + B2,1(d), . . . , B6,0(d) + B6,1(d)). We found d∗ as the only design (up to isomor-
phism) that sequentially minimizes both B3,0(d), . . . , B6,0(d) and B2,0(d) + B2,1(d), . . . ,
B6,0(d) + B6,1(d). Thus d∗ also has minimum aberration with respect to the wordlength
pattern (5.6) for all feasible ξξξ. Example 14.12 of [4, p. 316] identified the same design to
be optimal with respect to the surrogate for the maximum information capacity criterion
considered there.

Suppose a 213−8 design is to be run in 8 blocks of size 4. Denote the independent block
defining words by B1, B2, and B3. Let d1 be defined by 6 = 12,7 = 13,8 = 14,9 =
234, t10 = 1234, t11 = 235, t12 = 245, t13 = 345,B1 = 23,B2 = 24,B3 = 15, d2 be
defined by 6 = 123,7 = 124,8 = 134,9 = 234, t10 = 125, t11 = 135, t12 = 235, t13 =
145,B1 = 13,B2 = 14,B3 = 15, and d3 be defined by 6 = 12345,7 = 123,8 = 124,9 =
135, t10 = 145, t11 = 134, t12 = 234, t13 = 15,B1 = 12,B2 = 13,B3 = 45. At the
first stage of screening out inferior designs, we apply Corollary 5.1 as well as Theorem 5.1
with σ2 = 15, 20 and r = 0.1, 0.3, 0.5, 0.7, 0.9. In all these cases, each design other than
d1, d2, d3 has the same performance as or is inferior to at least one of them. However,
unlike the example in the previous paragraph, since there are designs that have the same
performance as d1, d2, or d3 in the first-stage screening but are not isomorphic to them,
such designs should be retained in the second-stage screening, where det(cov(βββ|y)), with
ξF2/ξF1 = 0, 0.1, 0.2, 0.5, 1 and r = 0.1, 0.3, 0.5, 0.7, 0.9, are compared. In all these cases,
again d1, d2, and d3 are at least as good as any other design. For the MA surrogates,

(B3,0(d1), . . . , B13,0(d1)) = (4, 39, 32, 48, 56, 39, 32, 0, 4, 1, 0),

(B3,0(d2), . . . , B13,0(d2)) = (0, 55, 0, 96, 0, 87, 0, 16, 0, 1, 0),

(B3,0(d3), . . . , B13,0(d3)) = (4, 38, 32, 52, 56, 33, 32, 4, 4, 0, 0),∑
0≤i≤1

(B2,i(d1), . . . , B13,i(d1)) = (22, 80, 163, 320, 452, 416, 311, 192, 70, 16, 5, 0),

∑
0≤i≤1

(B2,i(d2), . . . , B13,i(d2)) = (36, 0, 365, 0, 848, 0, 651, 0, 140, 0, 7, 0),

∑
0≤i≤1

(B2,i(d3), . . . , B13,i(d3)) = (30, 36, 255, 240, 452, 472, 255, 240, 30, 36, 1, 0).

Since d1 has the smallest B2,0(d) + B2,1(d) among the three designs, it performs the best
in the case ξF0 = ξF1 = ∞, and is expected to be optimal when ξF1 (interblock variance)
is sufficiently greater than ξF2 (intrablock variance). On the other hand, since d2 has the
smallest B3,0(d), it performs the best when ξF1 = ξF2 , and is expected to be optimal
when ξF1 is not too larger than ξF2 . We have B3,0(d3) = B3,0(d1), B4,0(d3) < B4,0(d1) and
B3,0(d3) > B3,0(d2); also, B2,0(d2) + B2,1(d2) > B2,0(d3) + B2,1(d3) > B2,0(d1) + B2,1(d1).
Thus d3 is better than d1 but worse than d2 under ξF1 = ξF2 ; it is better than d2 but
worse than d1 under ξF0 = ξF1 =∞. We expect d3 to be optimal in cases where neither d1
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nor d2 is optimal. These observations are confirmed by comparisons of the three designs
we have made based on det(cov(βββ|y)) with various values of ξξξ, r, and σ2. Note that d1
and d2 were also identified in Example 14.13 of [4, p. 316] as “admissible” designs under a
surrogate criterion for maximum information capacity. We point out the error that d3 is also
admissible but was left out in that example. The conclusions we draw on the comparison
of d1 and d2 are the same as in Example 14.13 of [4].

6.2. Blocking of strip-plots. Example 14.17 of [4, p. 323] considered blocked strip-
plot designs with six row treatment factors, four column treatment factors, and 32 exper-
imental units in 2 blocks, where the 16 units in each block are arranged in 4 rows and
4 columns. The block structure is {F0,F1,F2,F3,F4}, where F0 = U , F4 = E , F1 di-
vides the 32 units into two blocks of size 16, F2 divides the 16 units in each block into
4 rows of size 4, and F3 divides the 16 units in each block into 4 columns of size 4, with
F4 � F3,F2 � F1 � F0. The main effects of row-treatment factors must be estimated in
the between-row stratum within blocks and the main effects of column treatment factors
must be estimated in the between-column stratum within blocks. The G’s satisfying (5.4)
are {F0}, {F0,F1}, {F0,F1,F2}, {F0,F1,F3}, and {F0,F1,F2,F3}. Checking the condi-
tions in Theorem 5.1 or Corollary 5.1 for these G’s amounts to examining performances of
the designs in the following extreme scenarios, respectively: 32 unstructured experimental
units, 2 blocks of size 16, 4 rows of size 4 nested in each of 2 blocks, 4 columns of size 4
nested in each of 2 blocks, and 4 rows and 4 columns nested in each of two blocks, where
all the blocks, rows, and columns have fixed effects. The two admissible designs identified
in Example 14.17 of [4, p. 323] are also the best according to the approach presented in
this paper.

6.3. Blocking of nonregular fractional factorials. We present an application to
nonregular and nonorthogonal blocked fractional factorial designs. The treatment defining
word count Ak and block defining word count Bk for orthogonal regular designs can also
be expressed, respectively, as in (2.10) and (2.11). By interpreting Ak and Bk as the cor-
responding expressions in (2.10) and (2.11), one can extend the wordlength patterns of or-
thogonal regular designs to nonorthogonal/nonregular designs. This was used by Cheng, Li,
and Ye [8] to extend the two wordlength patterns W1(d) ([9]) and W2(d) (Chen and Cheng
[3] and [9]) for blocked regular designs to WG2

1 (d) and WG2
2 (d), respectively, for blocked

nonregular designs. Under orthogonal regular designs, the consequences of the treatment
and block defining words on effect aliasing and confounding are quite clear; however, due
to complex aliasing and nonorthogonality, it is difficult to interpret and justify WG2

1 (d) and
WG2

2 (d). The following example shows how the approach presented here, which is based on
statistically meaningful criteria, can be applied to nonorthogonal/nonregular designs.

Consider 16-run blocked factorial designs with four blocks of size four that are con-
structed by the method of replacement in [8] for five two-level treatment factors. Two
optimal designs 7.21/2+3 and 7.21/6+7 based on WG2

1 and WG2
2 , respectively, were ob-
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tained in [8]. Design 7.21/2+3, denoted by d1 hereafter, is obtained by projecting the
16-run Hall’s design of type II listed in [8] onto factors 1,4,6,8, t10, t12, t15, with 4 and 6
as the block generators. Design 7.21/6+7, denoted by d2 hereafter, is obtained by project-
ing the same 16-run Hall’s design onto factors 1,4,6,8, t10, t12, t15, with t12 and t15 as
the block generators. A complete search based on the results presented in this paper screens
out all the designs except d1 and d2. Design d1 has (B3,0(d1), B4,0(d1), B5,0(d1)) = (0, 0, 1)
and (B2,0(d1) +B2,1(d1), . . . , B5,0(d1) +B5,1(d1)) = (3, 3, 0, 1), and is optimal for the case
ξF1 = ξF2 (G = {F0}), i.e., the case of unstructured units (therefore as well as when
the interblock variance is not too larger than the intrablock variance). In contrast, d2 has
(B3,0(d2), B4,0(d2), B5,0(d2)) = (0, 1, 0) and (B2,0(d2) +B2,1(d2), . . . , B5,0(d2) +B5,1(d2)) =
(2, 4, 1, 0), and is optimal for the case ξF0 = ξF1 = ∞ (G = {F0,F1}), i.e., the case of
fixed block effects (therefore as well as when the interblock variance is sufficiently greater
than the intrablock variance). Define the D-efficiency of d2 relative to d1 as the ratio of
[det(cov(βββ|y))]1/2

5
under d1 over that under d2. Figure 6.1 displays such relative efficien-

cies for ξF0 = ∞, ξF2 = 8, vk = τ2rk, τ2 = σ2(1 + r)−5 with σ2 = 20, 0 < r < 1, and (a)
ξF2/ξF1 = 0, (b) ξF2/ξF1 = 0.01, (c) ξF2/ξF1 = 0.1, (d) ξF2/ξF1 = 1. This figure and the
results we have obtained for other values of σ2, r and ξξξ confirmed the conclusion drawn
above. In panel (d) we see that d1 dominates d2 completely (for all possible values of r)
when the interblock and intrablock variances are equal. The figure shows clearly that as
the ratio of interblock variance over intrablock variance becomes greater than 1, d2 is bet-
ter for some small values of r (the lower-order treatment factorial effects are much more
important than the higher-order ones), and as this ratio increases, the range where d2 is
better gets larger. Eventually for infinite interblock variance (panel (a)), d2 dominates d1
completely. Hence we suggest that d2 be used under fixed block effects.

7. Concluding remarks. In this paper, we use the Bayesian approach proposed in
[16] to study the selection of multi-stratum factorial designs. Our criterion is to minimize
the determinant (or trace) of the posterior covariance matrix. We derive a good surrogate
criterion which can be related to the generalized wordlength patterns. This allows us to
deal with nonorthogonal/nonregular designs, and provides a stronger justification for the
use of generalized wordlength patterns than naive modifications of the usual wordlength
patterns from regular to nonregular designs. We also provide a useful tool for screening
out inferior designs to facilitate the search for optimal designs. Applications of such a
tool are illustrated in several examples. Since the optimal designs in these examples are
obtained through exhaustive computational searches, an efficient algorithm to handle highly
fractionated designs with large run sizes would be desirable.

There are some possible directions to extend this work. One is to consider a more general
prior distribution than (2.6). We point out that many results in Sections 3 and 5, including
Theorems 3.1, 3.3, 5.1, 5.2, and Corollary 5.1, can be extended as long as Σβ is a diagonal
matrix, or equivalently, the underlying Gaussian process is stationary. Another extension
is to consider multi-level treatment factors. However, this is not a trivial task since the
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Fig 6.1. D-efficiencies of d2 relative to d1 for 0 < r < 1, ξF0 = ∞, ξF2 = 8; (a) ξF2/ξF1 = 0; (b)
ξF2/ξF1 = 0.01; (c) ξF2/ξF1 = 0.1; (d) ξF2/ξF1 = 1

prior distribution of treatment factorial effects induced by a Gaussian process is much more
complicated than the two-level case, especially when the treatment factors are quantitative.
This extension needs further investigations.
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