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We consider structural change testing for a wide class of time se-
ries M-estimation with non-stationary predictors and errors. Flexible
predictor-error relationships, including exogenous, state-heteroscedastic
and autoregressive regressions and their mixtures, are allowed. New
uniform Bahadur representations are established with nearly opti-
mal approximation rates. A CUSUM-type test statistic based on the
gradient vectors of the regression is considered. In this paper, a sim-
ple bootstrap method is proposed and is proved to be consistent
for M-estimation structural change detection under both abrupt and
smooth non-stationarity and temporal dependence. Our bootstrap
procedure is shown to have certain asymptotically optimal properties
in terms of accuracy and power. A public health time series dataset
is used to illustrate our methodology, and asymmetry of structural
changes in high and low quantiles is found.

1. Introduction. Consider the following stochastic linear regression:

yi = x′iβ + ei,(1)

where {xi}ni=1 and {ei}ni=1 are the p-dimensional predictor time series and
error series, respectively. We estimate the unknown parameter vector β by
an M-estimator β̂n:

β̂n = argmin
β

n∑
i=1

ρ(yi − x′iβ),(2)

where ρ(·) is a convex loss function with left derivative ψ(·). By choosing
different loss functions ρ, (1) contains a wide class of frequently used regres-
sion models. For instance, for a pre-specified τ ∈ (0, 1), β̂n is the estimate
of the τth quantile regression coefficient if we set ρ(x) = τx+ + (1− τ)(−x)+

with the left derivative ψ(x) = τ − 1(x ≤ 0). Other important examples
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include expectile regression with ρ(x) = |1(x ≤ 0) − α|x2, 0 < α < 1, ro-
bust Lq regression with ρ(x) = |x|q, 1 < q < 2, the Huber’s estimate with
ρ(x) = x21(|x| ≤ ς)/2 + (ς|x| − ς2/2)1(|x| > ς), ς > 0 and the least squares
estimate with ρ(x) = x2.

The purpose of this paper is to provide a theoretical foundation as well
as a unified methodological tool for the inference of (1) with a wide class of
non-stationary predictor and error processes. For brevity and clarity, we will
focus on the structural change detection problem for model (1) throughout
this article. Various other results such as confidence region construction and
goodness of fit tests can be easily established as corollaries of those provided
in this paper. The most significant contributions of the paper lie in the fol-
lowing two aspects. First, we investigate the behaviors of a wide class of
stochastic M-estimators and their residual processes under a general nonlin-
ear and non-stationary time series framework with a very flexible modeling
of the relationship between the regressors and errors. On one hand, follow-
ing [32], we allow the regressors {xi} and the errors {ei} to experience both
smooth and abrupt nonlinear changes in their marginal distributions as well
as dependence structures over time. Such nonlinear and non-stationary mod-
eling of the regressors and errors could be realistic and flexible in many time
series applications; see for instance the Hong Kong public health time series
analyzed in Section 5. On the other hand, by carefully choosing the filtra-
tion (information) that generates the predictor and error processes, we are
able to provide a unified treatment for a wide class of predictor-error rela-
tionships, including exogenous, state-heteroscedastic and autoregressive re-
gressions and their mixtures. Here “state-heteroscedasticity” refers to prob-
abilistic dependence between the errors and covariates. Equivalently, it rep-
resents that, conditional on the covariates, the distribution of the error at
any fixed time changes with respect to different levels of the covariates.
Under the aforementioned settings, we are able to establish a uniform Ba-
hadur representation of the partial sample M-estimators with nearly optimal
approximation rates and derive the limiting behaviors of a gradient-based
structural change test. Our theoretical development depends heavily on in-
vestigating the conditional empirical processes of M-estimators of dependent
and heteroscedastic data. In particular, both martingale and conditional
chaining techniques are used to investigate the maximum stochastic oscilla-
tions of the conditional gradient processes. Then the maximum stochastic
oscillations of the unconditional empirical processes are recovered by certain
integration techniques. To our knowledge, this paper provides the first theo-
retical investigation into general stochastic M-estimations under time series
non-stationarity.

imsart-aos ver. 2014/10/16 file: output.tex date: February 10, 2017



3

Second, we propose in this paper a unified bootstrap methodology which
is consistent for structural change tests of a wide class of M-estimations
under both abruptly and smoothly time-varying temporal dynamics and
predictor-error dependence. To our knowledge, there have been no method-
ological results on structural change tests for time series M-estimation with
non-stationary covariates and errors in the literature. For change point tests
of the mean, [32] proposed a bootstrap procedure which is robust to general
forms of non-stationarity in the time series. However, it is highly non-trivial
to extend such bootstrap procedures to gradient change point tests for M-
estimations. In particular, a naive extension of [32] by progressively convo-
luting the block gradient vectors and i.i.d. standard normals will not yield
a consistent test. Specifically, note that the key to a successful bootstrap is
to mimic the behavior of the estimated gradient cumulative sum (CUSUM)
process {

j∑
i=1

ψ(êi)xi/
√
n

}n
j=1

, where êi = yi − x′iβ̂n(3)

are the residuals of the M-estimation. The bootstrap in [32] mimics the latter
process by {

∑j
i=1[
∑i+m

k=i ψ(êk)xk/
√
nm]Vi}n−mj=1 where m is a user-chosen

block size and Vi’s are standard normals that are independent of the the
data. If the true errors {ei} were known and the residuals in (3) are replaced
by the true errors, then it can be shown that the above bootstrap consistently
mimics (3). However, due to the non-negligible differences between the true
errors and the residuals, it is shown that the limiting behaviors of (3) and
the above bootstrap process differ and hence the bootstrap is inconsistent.

In this paper, we extend and modify the procedure in [32] and propose
an easy-to-implement bootstrap methodology by combining an extension of
the Powell’s sandwich estimates ([24]) and a progressive convolution of the
block sums of the estimated gradient vectors with i.i.d. standard normal
auxiliary random variables. The bootstrap is shown to be consistent for a
wide class of M-estimation under non-stationary temporal dependence and
predictor-error dependence. The bootstrap procedure enjoys the asymptotic
optimal property that it approaches the covariance structure of the target
limiting Gaussian process no slower than the nearly optimal approximation
rate of the Bahadur representation in various important cases such as the
quantile regression. Meanwhile, we prove that our bootstrap can detect lo-
cal alternatives with the optimal 1/

√
n parametric rate. Furthermore, our

simulation studies indicate that the gradient-based method has a superior
finite sample power performance than regression-coefficient-based structural
stability tests under time series non-stationarity.
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There is a large amount of work in testing structural stability of param-
eters for general M-estimation and special cases such as least squares and
quantile regressions. It is impossible to gather a complete list here and we
shall only mention some representative works. For least squares regression,
[9], [20] developed CUSUM tests with i.i.d. normal errors. [21] extended such
tests to stationary and ergodic errors. [1] established Wald-type, LM, LR-like
tests based on partial-sample GMM estimators with strong mixing assump-
tions. These test statistics are constructed through coefficients estimated by
different portions of data. There are also a class of tests which heavily depend
on the residuals of the least squares regression. For example, [6] obtained
asymptotically distribution free test statistics associate with i.i.d. errors;
see also [7] for tests of multiple structural changes. Recently, [15] and [27]
investigated structural change detection for least squares regression when
covariates and errors are non-stationary. For quantile regression, tradition-
ally when dealing with stationary data, the regression coefficient CUSUM
test is shown to be asymptotically pivotal ([26]) and the gradient CUSUM
test is advocated over the regression coefficient test as it is asymptotically
free of the densities of the errors ([16], [26]). For general M-estimation, [25]
investigated the gradient-based change point tests for stationary predictors
and errors with predictor-error independence. We also refer to the recent
review of [2] for more discussions and references. A testing strategy that
prevails throughout most of the above mentioned papers is to pivotalize the
test statistics. As a result, functionals of some well investigated processes,
such as the Brownian bridge, can be used to approximate the large sample
behaviors of the tests. However, due to the non-stationarity of the predictors
and errors considered in this paper, it is shown that the gradient CUSUM
process behaves complexly over time and it cannot be pivotalized in gen-
eral. As a result, in general, the classic testing procedures based on the idea
of pivotalization are not consistent for structural change tests under non-
stationarity. We also refer to [32] for a detailed discussion in the case of
testing structural changes in mean.

The rest of the paper is organized as follows. In Section 2 we will in-
troduce the non-stationary time series models for the predictors and errors
with multiple illustrative examples. A uniform Bahadur representation and
related asymptotic results are established for general M-estimation under
non-stationarity and temporal dependence. Section 3 proposes the struc-
tural change tests and the bootstrap and investigates their asymptotic Type
I error and power behaviors. In Section 4, we perform Monte Carlo ex-
periments to study the finite sample behaviors of the gradient-based test.
Section 5 contains an empirical illustration using a public health time series.
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All technical proofs are relegated to the online appendix.

2. M-estimation Under Time Series Non-stationarity. We first
introduce some notations. Define Xn ≥p Yn if P(Xn ≥ Yn) → 1 as n →
∞. Similarly define “≤p”. For a p-dimensional vector v = (v1, ..., vp)

′, let

|v| =
√∑p

i=1 v
2
i . For an m × n matrix A, define |A| =

√
trace(AA′). For

a random variable X, let ‖X‖q := (E|X|q)1/q be its Lq norm. For a semi-
positive definite matrix Σ, let λ1(Σ) be its smallest eigenvalue. For a p-
dimensional random vector v, let ‖v‖q = ‖|v|‖q. Write v ∈ Lq if ‖v‖q <∞.
For an m× n random matrix A, define ‖A‖q = ‖|A|‖q. Write ‖ · ‖ := ‖ · ‖2.
Let Fi = (..., ηi−1, ηi) and F (j)

i = (..., ηj−1, η
′
j , ηj+1, ..., ηi) for j ≤ i, where

({ηi}∞i=−∞, {η′j}∞j=−∞) are i.i.d. random variables. Write F∗i for F (0)
i . For

x ∈ R, let bxc = max{k ∈ Z, k ≤ x}, and dxe = min{k ∈ Z : k ≥ x}. Write
N = b n

lognc for short. Let “⇒” denote the convergence in distribution.
Throughout the paper, let χ ∈ (0, 1) be a constant which may vary from
case to case, and M be a sufficiently large constant which may vary from
line to line. Let 1(·) be the usual indicator function. Let ψ(u; ε) = |ψ(u +
ε)|+ |ψ(u− ε)|, where ψ(·) is the left derivative of ρ(·), the loss function of
the corresponding M-estimator. For any function f(x), x ∈ R and an open
interval I, we write f(x) ∈ Cl(I) if the lth derivative of f is continuous on
I. Write a ∨ b for max{a, b}, and a ∧ b for min{a, b}.

2.1. Non-stationary Time Series Models. In order to model the complex
temporal dynamics of the covariate and error processes, we introduce the
following class of piecewise locally stationary (PLS) time series ([32]):

Definition 2.1. For k <∞, we say that {ei}ni=1 is a PLS process gen-
erated by filtrations F1,i, F2,i,..., Fk,i with r breaks (PLS(r, F1,i, F2,i,...,
Fk,i)) if there exist constants 0 = b0 < b1 < .... < br < br+1 = 1 and
nonlinear filters G0, G1, ..., Gr, such that

ei = Gj(ti,F1,i, ...,Fk,i), if bj < ti ≤ bj+1,(4)

where ti = i/n, Fl,i = {..., εl,0, εl,1, ..., εl,i} for 1 ≤ l ≤ k. For each l,
{εl,i}∞i=−∞ are i.i.d. r.v’s. For l 6= s, {εl,i}∞i=−∞ and {εs,i}∞i=−∞ are in-
dependent.

In Definition 2.1, the functions G0,...,Gr and the break points b1, ..., br are
unknown nuisance parameters. If Gj(t, ·) is a smooth function in t, then ei
changes smoothly on (bj , bj+1], j = 0, ..., r. The smooth change is interrupted
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at break points b1, ..., br where the time series can experience abrupt changes
in its data generating mechanism. The PLS class is appropriate to describe
stochastic temporal systems which experience occasional structural breaks
and otherwise evolve smoothly over time. In this paper, we model both the
covariate and error processes as PLS series to capture their complexly time-
varying behaviors. To quantify the temporal dependence of PLS processes,
we shall introduce the following dependence measure:

Definition 2.2. Consider the PLS(r,F1,i, ...,Fk,i) process {ei}∞i=−∞
defined in (4). Assume max1≤i≤n ‖ei‖p < ∞ for some p > 0. Then we
define ∆p(G, l), the lth dependence measure for {ei}∞i=−∞ in Lp norm as

∆p(G, l) := max
0≤j≤r

sup
bj<t≤bj+1

‖Gj(t,F1,l, ...,Fk,l)−Gj(t,F∗1,l, ...,F∗k,l)‖p.

Note that ∆p(G, l) = 0 for l < 0. If we view ei as the output of a phys-
ical system which is driven by innovations {εs,i}∞i=−∞, s = 1, ..., k, then
∆p(G, l) measures the contribution of the innovations l steps ahead in gen-
erating the current observation of the system, via replacing them with i.i.d.
copies and measuring the magnitude of change in the output of the system.
The measure ∆p(G, l) for a broad class of classic time series models can be
calculated, e.g., invertible ARMA process, (G)arch models ([12], [8]) and
threshold models ([28]). We refer to [32] for more details about PLS models
and their dependence measures.

Throughout this paper, we assume that

ei = Gk(i/n,Fi,Gi)

if bk < i/n ≤ bk+1 with break points 0 = b0 < b1 < · · · < br < br+1 = 1.
Define w(i) = j if bj < i/n ≤ bj+1. We formulate the covariates as (where
we fix Hk,1 ≡ 1 below for the intercept)

xi = Hk(i/n,Fi−1,Gi) := (Hk,1(i/n,Fi−1,Gi), ...,Hk,p(i/n,Fi−1,Gi))′(5)

for dk < i/n ≤ dk+1, where d0 = 0 < d1 < .. < ds < ds+1 = 1 are break
points of {xi}. Here the filtrations Gi and Fi are generated by (..., ηi−1, ηi)
and (..., εi−1, εi), respectively, where {ηi}∞i=−∞ and {εi}∞i=−∞ are indepen-
dent. Observe that the errors {ei}ni=1 and the covariates {xi}ni=1 are allowed
to be dependent as they are generated by common filtrations {Gi}i∈Z and
{Fi}i∈Z.

The above formulation of the error and covariate processes contains a
wide range of state-heteroscedastic, exogenous and autoregressive linear re-
gression models used in practice. The introduction of Fi−1 and Fi in the
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covariates and errors is to accommodate autoregressive-type models where
the covariates at time i contain response information up to time i − 1. On
the other hand, we introduce filtrations Gi in the definitions of both ei and
xi to accommodate any extra information which could influence the covari-
ates or errors. In particular, if the generating mechanisms of {ei}ni=1 and xi
are functionally independent of Gi and Fi−1 respectively, then we obtain a
purely exogenous model where the covariates and errors are independent.
Below we list two other frequently used subclasses of the above formulation.

Example 1. Consider the following heteroscedastic error model:

yi = x′iβ + s(xi)ηi,

where s(·) is a piecewise smooth function, {ηi}ni=1 is PLS(r,Fi) and {xi}ni=1

is PLS(s,Gi). Furthermore the filtrations {Fi}i∈Z and {Gi}i∈Z are indepen-
dent. Note that ei = s(xi)ηi can be written as a PLS process generated by
(Fi,Gi). Lack of fit tests in regression quantiles of the above heteroscedastic
error model with {ηi}ni=1 i.i.d. are investigated in [16], among others.

Example 2. Consider the following autoregressive model:

yi = x′iβ + ei,

where xi = (yi−1, ..., yi−p)
′
, β = (β1, ..., βp)

′
,
∑p

j=1 βjz
j 6= 1 for all |z| ≤ 1+c

with some constant c > 0 and {ei} is PLS(r,Fi). Note that xi is a PLS
process generated by Fi−1.

2.2. Asymptotic Theory for M-estimation. Consider model (1). In this
paper, we focus on robust loss functions in the sense that

|ψ(x)− ψ(y)| ≤M1 +M2|x− y|(6)

for all x, y ∈ R and some positive constants M1 and M2. It is easy to check
that the left derivatives of the loss functions of quantile, expectile, Lq for
1 < q < 2, least squares and the Huber regressions all satisfy (6).

The asymptotic behavior of the M-estimator β̂n in (2) was investigated
by numerous researchers. Among them, for quantile regression with i.i.d.
error, [5] approximated

√
n(β̂n−β) by linear forms and [18] showed that the

remaining term of the approximation is of order Oa.s(n
−1/4(log log n)3/4). [4]

obtained asymptotic results for strong mixing errors. [23] acquired asymp-
totic approximations of

√
n(β̂n−β) when the errors are “m-decomposable”.

With physical dependence measures, [29] obtained Bahadur representation
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for models with fixed design and stationary errors. As a first contribution
of this paper, we obtain a Bahadur representation with nearly optimal rate
(except a multiplicative logarithm factor) for model (1) with a wide class
of PLS errors and regressors. The imposed conditions are mild and can be
checked easily; see Proposition 2.1 and below.
For q ≥ 0, j = 0, 1, · · · , r, define for t ∈ (bj , bj+1],

Ξ
(q)
j (t, x|Fk−1,Gk) =

∂q

∂xq
E{ψ(Gj(t,Fk,Gk) + x)|Fk−1,Gk},

κ̄j(t, x,xi) =
∂

∂x
E(ψ(Gj(t,Fi,Gi) + x)|xi),

F
(q)
j (t, x|Fk−1,Gk) =

∂q

∂xq
E{1(Gj(t,Fk,Gk) ≤ x)|Fk−1,Gk},

F
(q)
j (t, x|xk) =

∂q

∂xq
E{1(Gj(t,Fk,Gk) ≤ x)|xk},

fj(t, x|Fk−1,Gk) = F
(1)
j (t, x|Fk−1,Gk), fj(t, x|xk) = F

(1)
j (t, x|xk).

Note that for integer q ≥ 0, f
(q)
j (t, x|Fk−1,Gk) = F

(q+1)
j (t, x|Fk−1,Gk). For

τth quantile regression, F
(q)
j (t, x|Fk−1,Gk) = τ − Ξ

(q)
j (t,−x|Fk−1,Gk). Also

by (5), κ̄j(t, x,xi) = E(Ξ
(1)
j (t, x|Fi−1,Gi)|xi). Omit the superscript q if q = 0.

The following regularity conditions are needed for the covariate and error
processes:

(S0) Assume that max0≤i≤r supbi<s<t≤bi+1
‖Gi(t,F0,G0)−Gi(s,F0,G0)

t−s ‖v ≤ M
for some constant v > 1. The dependence measure of ei in Lv norm,
∆v(G, k), satisfies ∆v(G, k) = O(χk). Assume v = 4(p+ 1)∨ 20 unless
otherwise specified.

(S1) Define Ξ̄(q)(x|xi) = ∂q

∂xqE(ψ(ei + x)|xi). We require that for all i =
1, 2, ..., n and any p-dimensional vector g,

E(ψ(ei)|xi) = Ξ̄(0|xi) = 0 a.s.,

E(Ξ̄(x′iδ|xi)x′ig) = E(Ξ̄(1)(0|xi)x′iδx′ig) +O(|δ|2)(7)

and Ξ̄(1)(x|xi) > 0 a.s. for |x| ≤ ε for some ε > 0.
Define

νi(δ) = E{[ψ(ei + |xi||δ|)− ψ(ei − |xi||δ|)]2|xi|2}.

Assume that νi(t) is continuous at t = 0 and that for 0 ≤ j ≤ r,

sup
t∈(bj ,bj+1],x,y∈R

|Ξj(t, x|F−1,G0)− Ξj(t, y|F−1,G0)|

≤ Cj,1|x− y|+ Cj,2|x2 − y2|+ Cj,3|x− y|2,(8)
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where Cj,1, Cj,2, Cj,3 ∈ L4 are (F−1,G0) measurable random variables.

We also require that for 0 ≤ j ≤ r, Ξ
(1)
j (t, 0|F−1,G0) is stochastically

Lipschitz continuous for t ∈ (bj , bj+1], i.e., ∃M < ∞, s.t. ∀ t1, t2 ∈
(bj , bj+1], 0 ≤ j ≤ r,

‖Ξ(1)
j (t1, 0|F−1,G0)− Ξ

(1)
j (t2, 0|F−1,G0)‖ ≤M |t1 − t2|.(9)

(S2) For covariates process, assume that ∆v(H, k) = O(χk) and
max1≤i≤n ‖xi‖5p+10 ≤ M . For all 0 ≤ k ≤ s and all t1, t2 ∈ (dk, dk+1],
assume that ‖Hk(t1,F−1,G0) −Hk(t2,F−1,G0)‖v ≤ M |t1 − t2| for v
defined in (S0).

A few comments on the above regularity conditions are in order. Con-
dition (S0) (resp. (S2)) requires that the process ei (resp. xi) to be short
range dependent with exponentially decaying dependence measures. Fur-
thermore, (S0) (resp. (S2)) requires that the data generating mechanisms of
ei (resp. xi) to be smooth between adjacent break points by posting certain
piecewise stochastically Lipschitz continuous constraints. The assumption
that v = 4(p + 1) ∨ 20 in (S0) guarantees that the process {ψ(ei)xi}ni=1

is a stochastically Hölder continuous PLS process with order higher than
1/4. We point out that when ψ(·) is bounded or light-tailed, the moment
requirements in (S0) and (S2) can be significantly relaxed. Our simulation
results also show that our method works well under less restrictive moment
conditions. However, for simplicity of presentation, we will omit the separate
discussions and use (S0) and (S2) throughout this paper. (S2) also implies
that max1≤i≤n |xi| = Op(n

1/(5p+10)).

Assumption (S1) is necessary for the consistency of β̂n. Since ψ(·) is
monotone, by Cauchy’s inequality, the dominated convergence theorem and
(6), the continuity of νi(t) at t = 0 is satisfied whenever ei, 1 ≤ i ≤ n
have continuous distribution functions. (8) holds if supu |ψ(1)(u)| < ∞,
thus it holds for least squares regression. For quantile regression, (8) holds
if max0≤j≤r supt∈(bj ,bj+1],x∈R |fj(t, x|F−1,G0)| < ∞. In general, a sufficient
condition for (8) is (6) with condition (A1) below, which we show in Propo-
sition A.3 of the supplemental material.

In addition, (9) in (S1) is required for the existence of quantity Λ(s); see
equation (21) of the paper. A sufficient condition for (9) is similarly

max
0≤j≤r

sup
t∈(bj ,bj+1],x∈R

∫ ∥∥∥∥ ∂∂tf (1)j (t, x|F−1,G0)
∥∥∥∥ |ψ(x)|dx <∞.

Finally, (7) is implied by condition (10) in (A1), (S2) and (6).
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For t ∈ (bj , bj+1], 0 ≤ j ≤ r, ε ∈ R, define

v
(q)
j (t, ε) =

∫
(ψ(x; ε) + 1)‖f (q)j (t, x|F−1,G0)‖4dx,

w
(q)
j (t, k, ε) =

∫
(ψ(x; ε) + 1)‖f (q)j (t, x|Fk−1,Gk)− f

(q)
j (t, x|F∗k−1,G∗k)‖4dx.

We need following additional conditions for the Bahadur representations:

(A0) Let λan be the smallest eigenvalue of E{
∑banc

i=1 Ξ̄(1)(0|xi)xix′i/a} for
any a ∈ (0, 1]. Assume that ∀s ∈ (0, 1], lim infn→∞ λ

s
n/n > 0, and

lim infn→∞,s→0+,ns→∞ λ
s
n/n ∈ (0,+∞).

(A1) There exist constants ε0 and M such that for 0 ≤ q ≤ p+ 1, k ∈ N,

max
0≤j≤r

sup
t∈(bj ,bj+1],|ε|≤ε0

v
(q)
j (t, ε) ≤M,(10)

max
0≤j≤r

sup
t∈(bj ,bj+1],|ε|≤ε0

w
(q)
j (t, k, ε) = O(χk).(11)

Furthermore, for quantile regression where ψ(x) = τ − 1(x ≤ 0), we assume
the following condition (A1*) instead of (A1):

(A1*) There exists some constant ε0 s.t. for 0 ≤ q ≤ p , k ∈ N, 0 ≤ j ≤ s,

sup
t∈(dj ,dj+1],|u|≤ε0

‖F (q)
δ(t)(t,Hj(t,Fk−1,Gk)′u|Fk−1,Gk)−

F
(q)
δ(t)(t,Hj(t,F∗k−1,G∗k)′u|F∗k−1,G∗k)‖4 = O(χk),(12)

where δ(t) = l if bl < t ≤ bl+1, 0 ≤ l ≤ r.

By definition, the right hand sides of (11) and (12) will be excatly 0 when
k < 0. Condition (A0) guarantees the consistency of {β̂j}nj=N where β̂j is the
M-estimation coefficient using (x1, y1), ..., (xj , yj). It is actually quite mild.
By condition (S1) and Weyl inequality, if there exists an ε > 0 such that

min
0≤k≤s

inf
t∈(dk,dk+1]

λ1(E{Hk(t,F−1,G0)H′k(t,F−1,G0)}) ≥ ε,

then (A0) is fulfilled. In other words, we only require that the matrices
E{Hk(t,F−1,G0)H′k(t,F−1,G0)}, 0 ≤ k ≤ s, t ∈ (dk, dk+1] are not degener-
ate. For (A1) and (A1*), (10) requires the (differentiated) conditional densi-

ties f
(q)
j (t, x|F−1,G0) to be sufficiently light-tailed with respect to x. Mean-

while, (11) and (12) are short-range-dependent conditions for the processes
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{F (q)
j (t, x|Fk−1,Gk)}nk=1. The following four examples show that conditions

(A1) and (A1*) can be verified for a wide range of non-stationary time series
M-estimation.

Example 3. (Quantile regression for PLS linear processes) Suppose we
have the following PLS linear time series:

Gk(t,Fi,Gi) =
∞∑
j=0

ak,j(t)εi−jhk(t,Gi−j), bk < t ≤ bk+1, 0 ≤ k ≤ r(13)

where {εi}i∈Z are i.i.d. mean 0 r.v’s with E|ε0|4u < ∞ for some u > 1.
In addition, hk(t, ·) and aj,k(·) are piecewise (stochastically) Lipschitz con-
tinuous functions. Without loss of generality, let ak,0(t) ≡ 1. Assume that

supx∈R |f
(l)
ε (x)| ≤M <∞ for 0 ≤ l ≤ p where fε(x) is the density function

of ε0. Write w = u/(u− 1). We have the following proposition.

Proposition 2.1. Assume that i): there exists an η > 0 such that
|hk(t, ·)| ≥ η, ii): for 0 ≤ k ≤ r, t ∈ (bk, bk+1], ‖hk(t,G0)‖4w ≤ C, ‖hk(t,Gi)−
hk(t,G∗i )‖4w = O(χi), ak,j(t) = O(χj) and iii):

max
0≤j≤s

sup
t∈(dj ,dj+1]

‖Hk(t,F−1,G0)‖4u <∞,∆4(H, i) = O(χi).

Then (A1*) holds.

As a side note, for PLS linear model (13), (S0) holdes if we further assume

E|ε0|vu <∞,
∞∑
j=0

(
max
0≤k≤r

sup
t∈(bk,bk+1]

|ȧk,j(t)|

)
<∞,

max
0≤k≤r

sup
t,s∈(bk,bk+1]

‖hk(t,G0)− hk(s,G0)‖vw ≤M |t− s|.

Example 4. (General M-estimation for PLS linear processes) Consider
general M-estimation with errors following (13). Write θγ(du) = (1+|u|)γdu
and ∆γ =

∫
ψ4/3(x)θ−γ(dx). Then we have the following proposition.

Proposition 2.2. Assume i): for 0 ≤ k ≤ r, t ∈ (bk, bk+1], ‖hk(t,Gi)−
hk(t,G∗i )‖8 = O(χi), hk(t,G0) ≥ η > 0 and that ak,j(t) = O(χj), ii): there
exists a pair of positive numbers v1, v2, v−11 + v−12 = 1, such that ε0 ∈
Lv1(3γ∨4), max0≤k≤r supbk<t≤bk+1

‖hk(t,G0)‖v2(3γ∨4) < ∞, iii): there exists
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γ > 1 s.t. ∆γ <∞ and iv):

p+2∑
q=0

∫
(f (q)ε (u))4θ3γ(du) <∞,

p+2∑
q=0

∫
(f (q)ε (u)u)4θ3γ(du) <∞,(14)

where the second inequality of (14) can be removed if for 0 ≤ j ≤ r, bj <
t ≤ bj+1, hj(t,G0) ≡ 1. Then we have that condition (A1) holds.

Example 5. (Quantile regression for PLS nonlinear processes) Suppose
the errors are generated from the following nonlinear system:

Gk(t,Fi,Gi) = Rk(t, Gk(t,Fi−1,Gi−1), εi, ηi)(15)

for bk < t ≤ bk+1, 0 ≤ k ≤ r. Assume that max0≤k≤r ‖Rk(t, x0, ε0, η0)‖v <
∞ for some x0 where v is defined in (S0). Let

χ0 = max
0≤k≤r

sup
x 6=y,t∈(bk,bk+1]

‖Rk(t, x, ε0, η0)−Rk(t, y, ε0, η0)‖v
|x− y|

.

The above formulation offers natural extensions of many frequently used
stationary nonlinear time series models, e.g. (G)ARCH models ([12]; [8]),
threshold models ([28]) and bilinear models, into the non-stationary realm.
Write F̄k(t, x, s, u) = P(Rk(t, s, εi, u) ≤ x). For quantile regression with er-
rors following (15), we have the following proposition.

Proposition 2.3. Assume that
i): 0 < χ0 < 1,
ii): max0≤k≤r supt∈(bk,bk+1]

‖M(Gk(t,F0,G0))‖v <∞, where

M(x) = max
0≤k≤r

sup
t,s∈(bk,bk+1],t 6=s

‖Rk(t, x, ε0, η0)−Rk(s, x, ε0, η0)‖v
|t− s|

,

iii): for 0 ≤ q ≤ p,

max
0≤k≤r

sup
t∈(bk,bk+1],x,s∈R

∣∣∣∣ ∂q∂xq (
∂

∂s
+

∂

∂x
)F̄k(t, x, s, η0)

∣∣∣∣ ≤M a.s..

Then (15) admits a unique solution for each integer k ∈ [0, r] and the as-
sociated t ∈ (bk, bk+1]. Furthermore, assume ∆4(H, i) = O(χi). Then (S0),
(A1*) hold.
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Example 6. (General M-estimation for PLS nonlinear processes) As-
sume that for t ∈ (bk, bk+1], 0 ≤ k ≤ r, and εi i.i.d. with density fε(x),

Gk(t,Fi,Gi) = νk(t, Gk(t,Fi−1,Gi−1), ηi) + εi.(16)

Consider general M-estimation with errors satisfying (16). Recall the defini-
tion of ∆γ and θγ(du) in Example 4. We have the following proposition.

Proposition 2.4. Assume i): ‖νk(t, x, η0)−νk(t, y, η0)‖6γ∨8 ≤ χ0|x−y|
for some 0 < χ0 < 1 and for t ∈ (bk, bk+1], 0 ≤ k ≤ r; ii): there exists
some x0 such that max0≤k≤r supt∈(bk,bk+1]

‖νk(t, x0, η0)‖6γ∨8 < ∞ and iii):
∆γ <∞ for some γ > 1, and that

p+2∑
q=0

∫
(f (q)ε (u))4θ3γ(du) <∞.

Then we have that condition (A1) holds and ∆6γ∨8(G, l) = O(χl0) when
errors follow (16).

For the rest of the paper, we assume that for 1 ≤ i ≤ n,

νi(t) = O(|t|η) for some η > 0,

as it is satisfied by all quantile, expectile, least squares, the Huber and robust
Lq regressions. Without the assumption, via the same techniques used in
this paper, all the results can still be established but with more factors of
logarithms involved. Write d1,n = n−1/2 log n, d2,n = n−1/2 (log n)2 for short.

Lemma 2.1. Assume (S0)-(S2), (A0) and (A1) (or (A1*) for quantile
regression). Then we have i): |β̂n−β| ≤p d1,n, ii): maxN≤j≤n |β̂j−β| ≤p d2,n.

Result i) shows that β̂n is weakly consistent. Result ii) establishes the
uniform consistency of β̂j estimated by different sub-samples with at least N
observations. The consistency results are needed for the structural stability
test in Section 3. The following theorem establishes an important uniform
Bahadur representation for a wide class of non-stationary time series M-
estimation.

Theorem 2.1. Write Λ́(j) = E{
∑j

i=1 κ̄w(i)(i/n, 0,xi)xix
′
i/n}. Assume

that max0≤j≤r supt∈(bj ,bj+1],x∈R |fj(t, x|F−1,G0)| < ∞. Then under assump-
tions (S0)-(S2), (A0) and (A1) (or (A1*) for quantile regression), we have
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i):

√
n(β̂n − β)− (Λ́(n)n1/2)−1

n∑
i=1

ψ(ei)xi

= Op

(√∑n
i=1 νi(d1,n)

n
log n+ rn

)
,(17)

and ii):

max
N≤j≤n

∣∣∣√n(β̂j − β)−(Λ́(j)n1/2)−1
j∑
i=1

ψ(ei)xi

∣∣∣(18)

= Op

(√∑n
i=1 νi(d2,n)

n
log n+ rn

)
.

The quantity rn equals zero if ψ(·) is continuous, otherwise rn = n
1

5p+10 .

Remark 2.1. (The order of the quantity νi(δ))
For quantile regression, if for i = 1, ..., n, the conditional densities satisfy

max
0≤k≤r

sup
t∈(bk,bk+1],x∈R

|fk(t, x|xi)| ≤M0 <∞ a.s.,(19)

then we have νi(δ) = O(|δ|), which results in that
√∑n

i=1 νi(d2,n) = O(n1/4 log2 n).
As in the discussion of Example 1 of [29], for the Huber, L2 and expectile re-
gressions, there exists u such that for 1 ≤ i ≤ n, sup|δ|≤u ‖ψ′(ei+|xi||δ|)‖4 ≤
M <∞. Hence νi(δ) = O(δ2), and consequently

√∑n
i=1 νi(d2,n) = O(log2 n).

For robust Lq regression, noting that νi(t) ≤ 2(ν+i (t) + ν−i (t)), where

ν+i (δ) = E{[ψ(ei + |xi||δ|)− ψ(ei)]
2|xi|2},

ν−i (δ) = E{[ψ(ei)− ψ(ei − |xi||δ|)]2|xi|2}.

By Lemma 4 of [3], we have that for 3/2 < q < 2,

ν+i (δ) ≤ 36δ2E(|xi|4|ei|2q−4).

Since 2q − 4 > −1, assuming (19), we get

E(|ei|2q−4|xi) = E(

∫
|y|2q−4fw(i)(i/n, y|xi)dy) ≤

E(M0

∫ 1

0
|y|2q−4dy +

∫ ∞
1

fw(i)(i/n, y|xi)dy) ≤M.
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By applying similar arguments to ν−i (δ), we have that νi(δ) = O(δ2). For
1 < q ≤ 3/2, by Lemma 4 of [3], we obtain

ν+i (δ) ≤ 36δ2E(|xi|4|ei|2q−41(|ei| ≥ δ)) + 24−2q|δ|2q−2E(|xi|2q1(|ei| ≤ δ)).

For q = 3/2, by (19), we have E(|ei|2q−41(|ei| ≥ δ)|xi) ≤ Mδ2q−3 log(|δ|−1)
and E(1(|ei| ≤ δ)|xi) ≤Mδ, which lead to that ν+i (δ) = O(|δ|2q−1 log(|δ|−1)).
By applying similar arguments to ν−i (δ), we have νi(δ) = O(|δ|2q−1 log(|δ|−1)).
Similar but easier arguments show that νi(δ) = O(|δ|2q−1) for 1 < q < 3/2.

In Theorem 2.1, i) establishes a Bahadur representation of β̂n for non-
stationary time series M-estimation and ii) establishes a uniform Bahadur
representation of {β̂j , N ≤ j ≤ n}. When L1 loss is applied, both results
almost achieve the optimal order n−1/4(log log n)3/4 except a factor of mul-
tiplicative logarithms. For Huber, Lq, 3/2 < q ≤ 2 and expectile regressions,
according to Remark 2.1, the approximation rates are log2 n and log3 n in i)
and ii) respectively. The latter rates are again nearly optimal except a fac-
tor of multiplicative logarithms. Observe that, due to the non-stationarity,
the approximating processes depend on {κ̄w(i)(i/n, 0,xi), 1 ≤ i ≤ n}, which
are the conditional densities of the errors ei in the scenario of quantile re-
gression. [23] also provided a similar form of Bahadur representation with
non-stationary errors for quantile regression.

3. Structural Stability Tests. We are now ready to propose and
investigate change point tests for general non-stationary time series M-
estimation.

3.1. Test Statistics. Consider a general nonparametric M-estimation model
of the form

yi = x′iβi + ei, i = 1, 2, · · · , n.
We are interested in testing whether βi’s remain constant over time. That
is, we test

H0 : β1 = β2 = ... = βn = β ↔ HA : βi 6= βj for some 1 ≤ i < j ≤ n

for some unknown β. Consider the following test statistic:

Tn = max
1≤j≤n

∣∣∣∣∣
∑j

i=1 ψ(êi,n)xi√
n

∣∣∣∣∣ ,
where êi,n = yi−x′iβ̂n are the residuals. The test statistic Tn is the CUSUM
statistic of the estimated gradient vectors of the regression. If H0 is vi-
olated, then Tn tends to be large. In the following, we shall investigate
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the asymptotic null distribution and power behavior of Tn in detail. Note
that, under conditions (S0)-(S2), ψ(ei)xi can be viewed as a realization
from a PLS process with r1 break points c1, ..., cr1 , namely, G̃v(i)(t,Fi,Gi),
where v(i) = k for ck < i/n ≤ ck+1. We set c0 = 0 and cr1+1 = 1. Then
ψ(ei)xi = G̃v(i)(i/n,Fi,Gi). Here r1 = |A ∪B|, where A = {b1, ..., br} is the
set of break points of the errors, and B = {d1, ..., ds} is the set of break
points of the covariates. Here | · | denotes the cardinality of a set. The de-
tailed mathematical form of G̃v(i)(t,Fi,Gi) is complex which we treat as a
nuisance parameter. Define the long-run covariance matrices:

Σ2(t) =
∞∑

h=−∞
Cov(G̃k(t,F0,G0), G̃k(t,Fh,Gh)), t ∈ (ck, ck+1], 0 ≤ k ≤ r1.

Let Σ2(0) = limt↓0 Σ2(t). In order to investigate the limiting behavior of Tn,
we shall further introduce the following assumption:

(A2) The smallest eigenvalue of Σ2(t) is bounded away from 0 for t ∈ [0, 1].

It is shown in Proposition A.2 in the supplemental material that the depen-
dence of {ψ(ei)xi}ni=1 decays exponentially fast to 0. Meanwhile, condition
(A2) assures that the long run variance of ψ(ei)xi is not degenerate over
time, which is a mild requirement. We have the following proposition, which
is useful in the asymptotic study of the process {ψ(ei)xi}ni=1:

Proposition 3.1. Let fk(t, x) be the density of Gk(t,F0,G0). Assume
(A2), (S0)-(S2) with v = 4(p+1). Assume that (i): there exists a sufficiently
small positive ι such that

sup
0≤k≤r,t∈(bk,bk+1]

‖ψ (Gk(t,F0,G0))‖ 4(p+1)
p

+ι
≤M <∞,

and (ii):
∫
ψ(x; 1)| ∂∂xfk(t, x)|dx is finite for 0 ≤ k ≤ r, t ∈ (bk, bk+1]. Then

on a possibly richer probability space, there exists a p-dimensional zero-mean

Gaussian process U(t) with covariance function γ(t, s) =
∫ min(t,s)
0 Σ2(r)dr,

such that

max
1≤j≤n

∣∣∣∣∣ 1√
n

j∑
i=1

ψ(ei)xi − U(j/n)

∣∣∣∣∣ = op(n
−1/4 log2 n).
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Write Λ(t) = limn→∞ E{
∑bntc

i=1 κ̄w(i)(i/n, 0,xi)xix
′
i}/n. Since xi is (Fi−1,Gi)

measurable, we have that

E


bntc∑
i=1

κ̄w(i)(i/n, 0,xi)xix
′
i

 = E


bntc∑
i=1

Ξ
(1)
w(i)(i/n, 0|Fi−1,Gi)xix

′
i

 .

Without loss of generality, suppose that the covariates and the errors have
the same break points, i.e, {b1, ..., br} = {d1, ..., ds}. Then by (9) in (S1), we
have that for s ∈ (bj , bj+1],

Λ(s) =

j−1∑
l=0

∫ bl+1

bl

E{Ξ(1)
l (t, 0|F−1,G0)Hl(t,F−1,G0)Hl(t,F−1,G0)′}dt+∫ s

bj

E{Ξ(1)
j (t, 0|F−1,G0)Hj(t,F−1,G0)Hj(t,F−1,G0)′}dt.(21)

The following theorem establishes the limiting null distribution of Tn for
non-stationary time series M-estimation:

Theorem 3.1. Assume that max0≤j≤r supt∈(bj ,bj+1,]x∈R |fj(t, x|F−1,G0)| <
∞. Suppose (S0)-(S2), (A0)-(A2) and the conditions of Proposition 3.1 hold.
Then under the null hypothesis of no structural change, we have

Tn ⇒ sup
t∈(0,1]

|G(t)| := sup
t∈(0,1]

|U(t)− Λ(t)Λ−1(1)U(1)|,(22)

where U(t) is defined in Proposition 3.1.

Theorem 3.1 establishes that Tn converges to the maximum of certain cen-
tered Gaussian process. Two important observations should be made. First,
the Gaussian process U(t) is not pivotal and it has a complex covariance

structure γ(t, s) =
∫ min(t,s)
0 Σ2(r)dr. In particular, Σ2(s) can change both

smoothly and abruptly on [0,1] and hence it is inappropriate to perform Tn
by checking quantile tables of certain pivotal Gaussian processes (such as the
Brownian bridge). Second, due to the non-stationarity, Λ(t)Λ−1(1) no longer
equals tIp as in the stationary case, where Ip is the p× p identity matrix. In
particular, the gradient CUSUM test Tn is no longer asymptotically free of
the density functions of {ei}ni=1 and the ratio Λ(t)Λ−1(1) should be estimated
when performing the gradient CUSUM test for non-stationary time series
M-estimation. Consequently, the independent wild bootstrap procedure in
[16] will in general yield inconsistent testing results under non-stationarity.
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The following theorem studies the asymptotic power behavior of the test
for non-stationary time series M-estimation. For any bounded piecewise Lip-
schitz continuous p× 1 vector function g(·), write

Λ(s, g(·)) = lim
n→∞

E


bntc∑
i=1

κ̄w(i)(i/n, 0,xi)xix
′
ig(i/n)/n

 .

By the arguments of (21), Λ(s, g(·)) is well defined. Write

z(t, g(·)) = Λ(t, g(·))− Λ(t)Λ(1)−1Λ(1, g(·)).

Theorem 3.2. Consider the alternative model HA : βi = β + Lng(i/n),
where g(·) is a bounded non-constant piecewise Lipschitz continuous p × 1
vector function defined in [0, 1]. Suppose that (S0)-(S2), (A0)-(A2) and the
conditions of Proposition 3.1 hold. Assume

max
0≤k≤r

sup
t∈(bk,bk+1],x∈R

|f (j)k (t, x|F−1,G0)| <∞

for 0 ≤ j ≤ 3. For quantile regression, assumes (A1*) instead of (A1). Then
we have,
i): if Ln = n−1/2,

Tn ⇒ sup
0<t≤1

|G(t) + z(t, g(·))|,

where G(t) is defined in Theorem 3.1.

ii): If the deterministic sequence Ln satisfies Ln = o(1),

√∑n
i=1 νi(Ln)√

n
log n→

0,
√
nLn →∞, then Tn →p ∞ at the rate

√
nLn.

Theorem 3.2 shows that the power of the test converges to 1 if
√
nLn →

∞, Ln = o(1) and

√∑n
i=1 νi(Ln)√

n
log n → 0, which implies that our test can

detect local alternatives at the same rate n−1/2 as the classic stationary case.

3.2. The Bootstrap. Theorem 3.1 reveals that the key to accurate tests
under non-stationarity is to consistently mimic the behaviors of the processes
{Λ(t)} and {U(t)}. A straightforward way to generate the limiting distribu-
tion in Theorem 3.1 is to directly estimate {Λ(t)} and {U(t)}, which involves
the estimation of conditional densities and long-run covariances Σ2(t) over
time t, respectively. However, this approach is not operational in practice
for the following two reasons. First, the estimation of the densities and the
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long-run covariance at a fixed time t requires a total of four bandwidth pa-
rameters, which are difficult to choose in practice and can cause inaccurate
testing results for moderate samples. Second, the nonparametric estimates
of {Λ(t)} and Σ2(t) are inconsistent near the break points of the PLS errors
and covariates. Hence it is unclear whether those plug-in procedures asymp-
totically achieve the nominal size. In this section, we shall propose a boot-
strap procedure which avoids directly estimating the densities and long-run
covariances while requiring only two tuning parameters. The proposed boot-
strap procedure combines the advantages of moving block bootstrap ([19])
and subsampling ([22]) by progressively convoluting block partial sums of
the estimated gradient vectors and auxiliary standard normals in order to
preserve the temporal dependence structure and to mimic the pattern of the
non-stationarity over time. Furthermore, in our bootstrap, we make use of
an extension of the “Powell Sandwich” ([24]) to optimally estimate {Λ(t)}.
In the following we shall discuss the approximations of {Λ(t)} and {U(t)}
separately.

Let cn be a bandwidth parameter. Define Λ̂cn(t) = λ̂cn(bntc), where

λ̂cn(j) =

j∑
i=1

(ψ(êi,n + cn)− ψ(êi,n − cn))xix
′
i

2ncn
.(23)

Note that for least squares regression, λ̂cn(j) in (23) equals
∑j

i=1 xix
′
i/n

which is independent of cn. In addition, for quantile regression, we propose
another smooth estimator for {Λ(t)}t∈(0,1]. Define

λ̂cn(j) =

j∑
i=1

K(êi,n/cn)xix
′
i

ncn
.(24)

where K(·) is a symmetric smooth kernel function with bounded second
order derivative, satisfying

∫
K(x)dx = 1,

∫
K(x)x2dx ≤ M ,

∫
K2(x)dx ≤

M and
∫
K ′2(x)dx ≤ M . The following theorem states that {Λ̂cn(t)}t∈(0,1]

could be used to approximate {Λ(t)}t∈(0,1] uniformly.

Theorem 3.3. Assume (S0)-(S2), (A0) and (A1) with 0 ≤ q ≤ (3 ∨
(p + 1))( or (A1*) for quantile regression). Further assume for 0 ≤ s ≤
3, max0≤k≤r supbk<t≤bk+1,x∈R |f

(s)
k (t, x|F−1,G0)| < ∞. Then (i): assuming

cn → 0,

√∑n
i=1 νi(cn) logn

ncn
→ 0, nc2n/ log2 n→∞, we have

sup
t∈(0,1]

|Λ̂cn(t)− Λ(t)| = Op

(
(
√∑n

i=1 νi(cn) ∨ 1) log n

ncn
+ c2n + n−1/2 log n

)
.
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ii): If smooth estimator (24) is used for quantile regression, assuming

max0≤j≤r supbj<t≤bj+1,x∈R ‖f
(q)
j (t, x|Fi−1,Gi) − f (q)j (t, x|F∗i−1,G∗i )‖ = O(χi)

for q = 0, 1, cn log2 n→ 0 and nc3n/ log2 n→∞, then we have

sup
t∈(0,1]

|Λ̂cn(t)− Λ(t)| = Op

(
n−1/2c−1/2n + c2n +

log2 n

nc3n

)
.

In fact, λ̂cn(j) is an extension of the “Powell’s Sandwich”. Furthermore, for
quantile regression, λ̂cn(j) can be viewed as a progressive local constant ker-
nel estimation of integrated conditional densities. Theorem 3.3 shows that
{Λ̂cn(t)}t∈(0,1] are uniformly consistent estimators of {Λ(t)}t∈(0,1]. Elemen-
tary calculations show that, even with PLS errors, the optimal bandwidth
cn for Theorem 3.3 is almost of the order of n−1/5 for quantile regression.
Therefore the convergence rate of Theorem 3.3 is still almost at the order
of n−2/5 except a factor of multiplicative logarithms, where the order n−2/5

is the well known optimal approximation rate of the Powell’s sandwich es-
timates for i.i.d. data. Note that the nearly n−2/5 rate above is faster than
n−1/4 log2 n, which is the nearly optimal approximation rate of the Bahadur
representation in (18). For the Huber, expectile and Lq, q ∈ (3/2, 2] regres-
sions, our method also achieves the almost optimal rate n−1/2 log n when cn
satisfies the stated bandwidth conditions and converges to zero no slower
than n−1/4 and no faster than n−1/2. For L1.5, the convergence rate could
achieve n−1/2 log2 n.

The remaining task for evaluating the critical values is to find a simple
and data-driven way to simulate the non-stationary Gaussian process U(t).
The covariance structure of U(t) could be quite complex. In particular, it
does not necessarily have stationary increments. We propose the following
gradient-based process Ψ̃m,n(t) to bootstrap U(t):

Ψ̃m,n(t) = Ψbntc,m + (nt− bntc)(Ψbntc+1,m −Ψbntc,m),(25)

Ψi,m =
i∑

j=1

1√
m(n−m+ 1)

($̂j,m −
m

n
$̂n)Rj , i = 1, ..., n−m+ 1,

where $̂j,m =
∑j+m−1

r=j ψ(êr,n)xr, $̂n = $̂1,n and (Ri)
n
i=1 are i.i.d. standard

normals independent of {Fi}∞i=−∞, {Gi}∞i=−∞. The consistency of {Ψ̃m,n(t)}
as an estimate of {U(t)} is provided by the following theorem:

Theorem 3.4. Assume that max0≤j≤r supt∈(bj ,bj+1],x∈R |fj(t, x|F−1,G0)| <
∞ and the bandwidth m = m(n) satisfies m→∞, m/n→ 0. Suppose (S0)-
(S2), (A0)-(A2) and the conditions of Proposition 3.1 hold. Further assume
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that there exists some constant ε0, such that for m and 1 ≤ j ≤ n−m+ 1,
|
∑j+m−1

r=j νr(δ)| ≤M m
n

∑n
i=1 νi(δ) for all |δ| ≤ ε0. Then conditional on (Fn,

Gn), Ψ̃m,n(t)⇒ U(t) on C(0, 1) with the uniform topology.

By the proof of Theorem 3.4, for quantile regressions, if we further require√
n log n/m → ∞, then conditional on (Fn,Gn), the covariance function of

Ψ̃m,n(t) converges uniformly to that of U(t) at the rate n−1/4 log3/2 n, which
is also of the same order of the nearly optimal approximation rate of the
Bahadur representation in (17). Therefore Theorem 3.3 and Theorem 3.4
suggest that our bootstrap approaches the covariance structure of the tar-
get limiting Gaussian process no slower than the nearly optimal approxima-
tion rate of the Bahadur representation. We also note that for the Huber,
Lq, 3/2 ≤ q ≤ 2 and expectile regressions, by Remark 2.1, the optimal
Bahadur representation rate is almost of the order of 1√

n
except a fact of

multiplicative of logarithms, which could not be archived by Theorem 3.4.
The reason is that the optimal approximation rate of the robust bootstrap
is of the order n−1/3, see [32].

In Theorem 3.2, we show that underHA, if Ln → 0,

√∑n
i=1 νi(Ln)√

n
log n→ 0

and
√
nLn →∞, the test statistic goes to infinity at the rate

√
nLn. Propo-

sition B.1 in the supplemental material further discusses the property of
{Λ̂cn(t)}t∈(0,1] and Ψ̃m,n(t) under the local alternative hypotheses. Assumes

that m log8 n
n = o(1). Then the divergence rate of Tn under the local alterna-

tives in ii) of Theorem 3.2 is
√
nLn, which is faster than

√
m(Ln∨ log2 n√

n
) log n,

the fastest possible rate at which Ψ̃m,n(t) can go to infinity by Proposition
B.1. Hence Theorem 3.2 together with Proposition B.1 shows that our boot-
strap method has asymptotic power 1 under the considered local alternatives
in ii) of Theorem 3.2. In particular, our bootstrap can detect local alterna-
tives with the optimal n−1/2 parametric rate.

Remark 3.1. The limiting distribution of the test statistic, and hence
the non-local power, is hard to evaluate when Ln = 1 due to the time series
non-stationarity and the possibly non-differentiable gradient function. When
Ln � 1, [17] proposes to replace êi with ẽi to deal with the non-local power
issue, where êi is the residual of the parametric linear regression under the
null hypothesis, and ẽi is the residual of a general nonparametric regression.
We only consider very general form of alternatives. Hence [17] is not directly
applicable. We leave the problem of non-local power as a rewarding future
work.

Combining Theorems 3.3 and 3.4, we have the following step-by-step
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implementation procedures for performing structural change tests for non-
stationary time series M-estimation.

Algorithm 3.1.
(i): By Section 3.3, select appropriate m and cn.
(ii): Apply Theorem 3.3 to get λ̂cn(j), j = 1, ...n. Use Theorem 3.4 to gen-

erate B (say 2000) conditional i.i.d. copies {Ψ(r)
i,m}

n−m+1
i=1 , r = 1, ..., B.

(iii): Calculate F
(r)
i = Ψ

(r)
i,m−λ̂cn(i)λ̂−1cn (n−m+1)Ψ

(r)
n−m+1,m for r = 1, ..., B,

i = m, ..., n−m+ 1.

(iv): Let Fr = supm≤i≤n−m+1 |F
(r)
i |. Let F(1) ≤ F(2)... ≤ F(B) be the order

statistics of Fr. Then Fb(1−α)Bc consistently estimates the level α critical
value for the gradient-based structural change test (22).

Theorem 3.5. Under conditions of Theorem 3.3 and 3.4, algorithm 3.1
generates consistent estimator of the level α critical value for the test (22).

In the supplemental material, we also extend our method to test structural
changes for multiple M-estimators simultaneously and discuss the applica-
bility of the method to dynamic models.

3.3. Bandwidth Selection. To implement our testing procedure, one has
to choose the tuning parameters cn andm (except for least squares regression
where only m needs to be chosen). Due to the complex data structure,
a robust bandwidth selection method which does not depend on specific
forms of the data generating mechanisms is desired. To this end, for selecting
proper m of Theorem 3.4, we apply the method of minimum volatility (MV)
suggested by [32] to Ψ̃m,n(t) in (25). The procedures are quite similar except
that we replace unknown ψ(ei)xi with estimated ψ(êi,n)xi. Define

γ̂m(r/n, s/n) =

r∧s∑
i=1

($̂i,m −
m

n
$̂n)2/(m(n−m+ 1)).

Calculate {γ̂mj (r/n, r/n)}n−mj+1
r=1 for a grid of possible window sizes m1 ≤

... ≤ mM . Write

se({γ̂mj (r/n, r/n)}bj=a) =

 1

b− a

b∑
j=a

(
γ̂mj (r/n, r/n)− ¯̂γ(r/n, r/n)

)21/2

,

where ¯̂γ(r/n, r/n) = 1
b−a+1

∑b
j=a γ̂mj (r/n, r/n). Then we choose m = mj

where j = argmin4≤j≤3(max1≤r≤n−mM+1 se({γ̂mj+k
(r/n, r/n)}3k=−3)). For

imsart-aos ver. 2014/10/16 file: output.tex date: February 10, 2017



23

more discussions about the “MV” method, see [22]. We also apply the MV
method to the selection of the bandwidth cn. Our procedure of selecting cn
is as follows:

(i): Choose suitable end points a1 < a2, such that the optimal cn ∈ I :=
[a1, a2].

(ii): Divide interval I into m̄, say m̄ = 99 pieces. Specifically, let h1 = a1,
h100 = a2, and hk′ = a1 + (k′ − 1)(a2 − a1)/99, 1 ≤ k′ ≤ 100.

(iii): For each hi, use it as a bandwidth to calculate the estimating quantity
{Λ̂hi(tj)}nj=1. Let C(i) be the maximum of RHS process of (22) for t ∈
[ 1n , 1] obtained by replacing {U(t), t ∈ [ 1n , 1]} with {

∑bntc
i=1

ψ(êi,n)xi√
n

, t ∈
[ 1n , 1]} and replacing {Λ(t), t ∈ [ 1n , 1]} with {Λ̂hi(t), t ∈ [ 1n , 1]}, respec-
tively.

(iv): Define D(s) = { 1
2k

∑s+k
j=s−k[C(j) − 1

2k+1

∑s+k
j=s−k C(j)]2}1/2 for some

k > 0. Let l be the minimizer of {D(s)}100−ks=k+1. Then we select hl as
our bandwidth cn.

Since Λ(t) is a p×p matrix, directly applying the MV method for selecting
cn will be time-consuming. Our proposed procedure is based on the fact that

U(t) is the limiting distribution of
∑bntc

i=1
ψ(ei,n)xi√

n
. This motivates us to gen-

erate the pseudo limiting distribution via replacing U(t) with
∑bntc

i=1
ψ(êi,n)xi√

n

and choose the bandwidth as the one which stabilizes the pseudo quantity
mostly. The numeric experiment shows that our bandwidth selection criteria
work well under various circumstances.

4. Simulation Studies.

4.1. Type I Error. In this section we examine the performance of our
method for L2 (least squares) regression, the Huber regression with ς = 1.5,
L1.5 regression and quantile regression with quantiles 0.5 and 0.8. Through-
out our simulations the number of bootstrap samples B = 2000. For quantile
regression, we also compare our results with SQ method in [26]. The descrip-
tion of the SQ method for τth quantile regression is as follows.

Let X = (x1, ...,xn)′. Define Hλ,n(β̂) = (XX′)−1/2
∑bλnc

i=1 xiψτ (yi − x′iβ̂),
where ψτ (x) = τ − 1(x ≤ 0). Then the SQ test statistic is defined as

SQτ = sup
λ∈[0,1]

‖(τ(1− τ))−1/2[Hλ,n(β̂)− λH1,n(β̂)]‖∞.

The associated critical values for the SQτ test are in Table 1 of [26]. To
estimate {Λ(t), t ∈ (0, 1]}, we choose bandwidth from 100 equally spaced
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points in a certain range. In each iteration we select the bandwidths by the
MV method we proposed in Section 3.3.

We consider the following heteroscedastic linear regression model

yi = 1 + xi + ei, ei = (1 + γxi)(Υi − ci)/2(26)

for i = 1, ..., n, γ = 0.1. In our simulations, xi are i.i.d. χ2(5)/5 and ci =
F̃−1i (0) where F̃i(x) = E(ψ(Υi − x)). Let filtration Fi = (ε−∞, ..., εi) where
{εs}∞s=−∞ are independent of {xi}ni=1. We shall consider the following models
for {Υi}∞i=−∞.

(I): Consider

Υi = G(ti,Fi), G(t,Fi) = 0.75 cos(2πt)G(t,Fi−1) + εi,

where εi are i.i.d. N(0,1). This is a locally stationary model since its
AR(1) coefficient 0.75 cos(2πt) changes smoothly over (0, 1].

(II): Consider Υi = G(ti,Fi), and

G(t,Fi) = G1(t,Fi)1(0 < t ≤ 0.8) +G2(t,Fi)1(0.8 < t ≤ 1),

where

G1(t,Fi) = 0.6 cos(2πt)G1(t,Fi−1) + εi,

G2(t,Fi) = (0.5− t)G2(t,Fi−1) + εi

and ε′is are i.i.d. N(0,1). This is a PLS model. The AR coefficient
changes smoothly before and after t = 0.8, with an abrupt change at
t = 0.8.

(II’): Model II’ is the same as model II except we change the i.i.d. N(0,1)
ε′is to i.i.d. student t distribution with 12 degrees of freedom (t(12)).

(II*): Model II* is the same as model II’ except we set xi i.i.d. 1+(5/3)−1/2t(5).

Note that in Models I, II, II’ and II*, the covariates are independent and
identically distributed. However, the errors are heteroscedastic with respect
to the covariates. Furthermore, the errors are PLS processes which exhibit
smooth and (or) abrupt changes in their data generating mechanisms over
time.

We also consider the following non-stationary dynamic model III. Let
{zi}i∈Z be i.i.d. χ2(1) random variables, and

(III): yi = 0.3yi−1/(1 + zi−1) + ei/3, y0 ∼ N(0, 1), where ei = G(ti,Fi)
with

G(t,Fi) = (1+
1

3
(t− 1)2)εi1(0 < t ≤ 0.5)

+ (1 + 0.5 cos(2πt))εi1(0.5 < t ≤ 1), ε′is i.i.d. N(0, 1),
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Table 1
Simulated type I error rates for Huber (ς = 1.5), L1.5 and L2 regression

Huber Regression L1.5 Regression Least Squares Regression

n=300 n=600 n=300 n=600 n=300 n=600

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

I 4.25 11.55 4.35 11 5.3 13.05 4.8 11.55 5.55 13.2 5.35 12.25
II 4.45 10.35 4.55 9.95 3.85 9.8 4.25 10.4 4.8 12.05 5.2 11.6
II’ 4.1 10.35 4.75 10.3 4.35 10.3 4.7 10.2 5.65 12.35 4.8 10.9
II* 4.05 9.95 5.2 10.75 3.7 9.25 4.2 10.05 4.9 11.7 4.2 10.65
III 4.3 10.55 4.95 10.85 4.3 10.85 4.65 10.3 3.95 10.6 4.45 10.15
IV 3.15 8.0 5.1 10.85 3.9 8.75 4.75 10.25 3.15 7.95 4.4 9.6

Finally we consider the following scenario IV. Let Υi be the PLS process
defined in Model II and ci be the corresponding quantity defined below (26).
Let {εi}i∈Z, {ηi}i∈Z, {εi}i∈Z be i.i.d. N(0,1)’s. Furthermore, {εi}i∈Z, {ηi}i∈Z
and {εi}i∈Z are independent of each other. Let υi = ηi+εi√

2
. Consider

(IV): Let x1,i be the PLS process generated from G1(t,Gi) =
∑∞

j=0(0.5 −
0.5t)jυi−j , and x2,i be the PLS process generated from G2(t,Gi) =∑∞

j=0(0.25 + 0.5t)jεi−j , where Gi = (..., εi, ηi). Let

yi = 1 + x1,i + x2,i + ei, ei =

√
1 + x1,i + x2,i(Υi − ci)

4
.

Table 2
Simulated type I error rates for quantile regressions, gradient-based test

0.5 Quantile 0.8 Quantile

n=300 n=600 n=300 n=600

5% 10% 5% 10% 5% 10% 5% 10%

Model I 4.8 14.05 4.1 10.9 4.8 13.45 4.55 10.75
Model II 4.05 11.35 4.25 11.1 4.95 12.55 4.35 9.95
Model II’ 4.7 12.05 4.25 10.6 5.6 12.3 4.65 10.9
Model II* 3.1 10.1 3.65 9.05 3.6 10.75 3.8 9.65
Model III 4.35 9.2 5.2 10.3 3.95 10.2 4.3 10.15
Model IV 4.0 8.55 4.25 9.45 3.65 10.1 4.5 10.2

AR(0.5) 4.05 9.2 4.95 10.85 4.2 9.25 5.55 10.25

Note that in Model IV both the covariates and errors are non-stationary
time series. We examine our test with sample sizes 300 and 600 at two
nominal levels 5% and 10%. We report the simulated type I errors in Tables
1-2 for our proposed gradient-vector-based test (22). In Table 1, we present
our simulation results for the Huber regression, L1.5 regression and least
squares regression, respectively. Table 2 contains our simulation results for
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quantile regressions with τ = 0.5 and 0.8, respectively. The simulated Type
I errors are quite close to the nominal levels. Meanwhile, our simulation
results show that increasing the sample size from 300 to 600 in general
significantly improves the performance of our test. In addition, for quantile
regression, the test performs better when the quantile is less extreme. The
Monte Carlo experiments also show the inadequacy of the SQ method when
ei and (or) xi are non-stationary. For comparison purpose, we also generated
a stationary AR(0.5) model: yi = 0.5yi−1 + εi where ε′is are i.i.d. N(0, 1).
We find that the SQ method works well for this stationary AR(0.5) model,
which is consistent with the results reported in [26]. Meanwhile, simulation
results show that our method performs almost as well as SQ method under
the stationary scenario.

Table 3
Simulated type I error rates for quantile regressions, SQ method

0.5 Quantile 0.8 Quantile

n=300 n=600 n=300 n=600

5% 10% 5% 10% 5% 10% 5% 10%

I 15 24.8 15.65 24.85 11.3 19.1 14.9 24.2
II 5.55 10.55 5.55 11.45 5.15 10.8 6.55 12.7
II’ 5.7 10.25 6 10.8 5.2 10.8 6.05 12.2
II* 4.8 9.3 5.9 11.75 6.75 12.15 7.1 13.3
III 2.25 4.7 3.1 6.15 5.7 10.8 6.85 13.05
IV 9.15 18.75 9.5 19.65 9.05 17.9 9.9 20.2

AR(0.5) 5.4 10.45 4.65 10.1 3.85 7.55 4.85 9.45

4.2. Simulated Power. We consider the alternative model that

yi = 1 + xi(1 + δ1(i ≥ bn/2c)) + ei, ei = (1 + γxi)(Υi − ci)/2,

where Υi follows model II, which is PLS. We shall simulate different jump
sizes δ to investigate the power performances of our testing procedures. The
sample size and significance level are 300 and 10% in our simulation. The
left panel of Figure 1 examines the simulated powers for the Huber regres-
sion with ς = 1.5, L1.5 regression, L2 (least squares) regression and median
qunatile regression. The results show that our testing procedure has decent
power for general M-estimation with moderate sample size. As expected,
the regression with more robust loss function tends to have less power.
The significance level is 10%. We also construct and examine a regression-
coefficient-based CUSUM test and find that it has a significantly inferior
power performance than the gradient-based test. See right panel of Figure
1. Additional empirical results show that under stationarity, our method is
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a little less powerful than the SQ method in [26] when investigating quantile
regression but more powerful than the SCB method in [31] when investi-
gating least squares regression. The detailed results and explanations are
relegated to Section 5 of the online supplemental material.
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Fig 1: Simulated power with Υi following Model II for gradient-based method
(left) and for coefficient-based method (right)

5. Data Analysis. In this section, we apply our method to the Hong
Kong circulatory and respiratory data. It consists of daily measurements of
pollutants and daily hospital admissions in Hong Kong between January 1,
1994 and December 31, 1995. This dataset has been analyzed under i.i.d.
assumptions in [13], [14] and [10] among others. It has also been studied
under locally stationary assumptions; see for example [31] and [30]. The aim
of this data analysis is to capture the relationship between the daily total
number of hospital admissions of circulation/respiration and the levels of
pollutants such as sulphur dioxide (SO2) (in micrograms per cubic metre),
nitrogen dioxide (NO2) (in micrograms per cubic metre) and dust (in micro-
grams per cubic metre). By fitting time-varying linear regression models, the
results of [31] indicated the existence of change points in the least squares
regression coefficients between January 1st, 1994, and December 31st, 1995.
By carefully observing the patterns of regression coefficients and their si-
multaneous confidence band plotted in Figure 2 of their paper, it is difficult
to tell whether there is a change point in the mean regression relationship
between January 1st, 1995, and December 31st, 1995. To justify the neces-
sity to use the PLS formulation of the errors and covariates, we first perform
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the tests in [32] and [11] for change points in the mean and autocovariances.
The p − values for no change point in mean for NO2, SO2 and dust are
0.5%, 5.15% and 0.025%, respectively. For NO2 and dust, the p − values
for no change points in lag-1 autocovariance are 9.9% and 8%, respectively,
while the p− values for no change points in lag-2 autocovariance are 4.7%
and 3.3%, respectively. These results show strong evidence that the data we
considered are non-stationary. Thus, we consider the following model:

yi = β0 +
3∑
l=1

βlxi,l + εi,

where yi is the daily number of hospital admissions, and {xi,1, 1 ≤ i ≤ n}
is the level of SO2, {xi,2, 1 ≤ i ≤ n} is the level of NO2, {xi,3, 1 ≤ i ≤ n}
is the level of dust, and εi is a PLS noise. We test the null hypothesis that
β := (β0, ..., β3)

′ remains constant from January 1st, 1995 to December 31st,
1995 for both least squares regression and quantile regression. For quantile
regression, we consider 7 different quantiles 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. For
the least squares regression, we choose bandwidth m = 20. It turns out that
the 90% critical value is 10532.89, and 95% critical value is 11973.6, while
the test statistic is 10464.35. Our result shows that there is no evidence
indicating that the relationship in mean between hospital admissions and
pollutants changed in the year of 1995 under the PLS assumptions.

We also summarize the quantile regression results as follows:

Table 4
Structural Change Test for 0.2,0.3,0.4,0.5,0.6,0.7,0.8 quantiles. The null hypothesis of no

structural change in the relationship between daily hospital admissions and pollutants
levels is rejected for 0.2,0.3,0.4 quantiles at 5% significance level, rejected for 0.5 quantile

at 10% significance level, and is not rejected for 0.6,0.7,0.8 quantiles.

Quantile 0.2** 0.3** 0.4** 0.5* 0.6 0.7 0.8

test statistics 61.27 79.74 85.53 81.84 74.52 78 70.27
m 13 12 7 12 12 12 17
h 0.84 0.67 0.16 0.36 0.26 0.16 0.27

90% 48.65 68.34 74.75 75.16 96.39 104.7 102.83
95% 53.83 78.23 85.33 82.92 112.42 120.74 115.41

SQ method 5.38 5.86 6.19 5.85 5.32 6.28 6.8

Our results show that for mid and low quantiles there are structural
changes in the regression coefficients; while for high quantiles there are none.
For 0.5 quantile, our results show that the p-value is between 5% and 10%.
This is a potentially interesting finding which shows the influence of pol-
lutants on low hospital admissions has changed while there is no change
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in the relationship on the high end. Consequently, it is appropriate to use
a parametric model to fit the high quantile regression while nonparamet-
ric dynamic models are more appropriate to model the low quantiles. Such
asymmetric behavior across different quantiles cannot be identified by the
hypothesis testing procedures in mean regression proposed in [30]. The last
line of the table lists the test statistics generated via SQ method. The 95%
and 99% critical values of SQ test are 1.569 and 1.795, respectively. By
Table 4, SQ method strongly rejects the null hypothesis at all quantiles
considered in this paper. This is likely due to the violation of the strict sta-
tionarity assumptions in [26] for this data set, which makes SQ test overact
to the spurious patterns of change points in regression coefficients caused
by the non-stationary errors and covariates. As a result, it seems that the
SQ method in [26] cannot detect the asymmetric behavior across different
quantiles and it yields too significant testing results with too small p-values
due to the non-stationarity of the errors and covariates of the regression.

6. Technical Appendix. The proofs of the theoretical results have
been moved to the supplemental material.
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