Exact Lower Bounds for the Agnostic Probably-Approximately-Correct (PAC) Machine Learning Model

Aryeh Kontorovich and Iosif Pinelis

Abstract: We provide an exact non-asymptotic lower bound on the minimax expected excess risk (EER) in the agnostic probably-approximately-correct (PAC) machine learning classification model and identify minimax learning algorithms as certain maximally symmetric and minimally randomized “voting” procedures. Based on this result, an exact asymptotic lower bound on the minimax EER is provided. This bound is of the simple form $c_\infty/\sqrt{\nu}$ as $\nu \to \infty$, where $c_\infty = 0.16997\ldots$ is a universal constant, $\nu = m/d$, m is the size of the training sample, and d is the Vapnik–Chervonenkis dimension of the hypothesis class. It is shown that the differences between these asymptotic and non-asymptotic bounds, as well as the differences between these two bounds and the maximum EER of any learning algorithms that minimize the empirical risk, are asymptotically negligible, and all these differences are due to ties in the mentioned “voting” procedures. A few easy to compute non-asymptotic lower bounds on the minimax EER are also obtained, which are shown to be close to the exact asymptotic lower bound $c_\infty/\sqrt{\nu}$ even for rather small values of the ratio $\nu = m/d$. As an application of these results, we substantially improve existing lower bounds on the tail probability of the excess risk. Among the tools used are Bayes estimation and apparently new identities and inequalities for binomial distributions.

Keywords and phrases: PAC learning theory, classification, generalization error, minimax decision rules, Bayes decision rules, empirical estimators, binomial distribution.

1. Introduction

The Probably Approximately Correct (PAC) model aims at providing a clean, plausible and minimalistic abstraction of the supervised learning process [25, 24].
In this paper we are concerned with the version of this model most commonly appearing in modern literature, agnostic PAC [9, 12, 11].

Let \mathcal{X} be an arbitrary nonempty set. The objective is to classify the elements of the set \mathcal{X} into two classes, by attaching a label 1 or -1 to each $x \in \mathcal{X}$. Let $\mathcal{Y} := \{-1, 1\}$, the set of labels. Then a possible classification rule may be identified with a map $h: \mathcal{X} \rightarrow \mathcal{Y}$, called a hypothesis. Usually, hypotheses are restricted to be elements of a specified subset H of the set $\mathcal{Y}^\mathcal{X}$ of all maps of \mathcal{X} to \mathcal{Y}; this subset H is called the hypothesis class.

It is assumed that there exists a true (but unknown to us) probability distribution, say D, on the set $\mathcal{X} \times \mathcal{Y}$ of all pairs (x, y) with $x \in \mathcal{X}$ and $y \in \mathcal{Y}$. To avoid tedious matters of measurability, let us just assume that the set \mathcal{X} is finite.

In the agnostic PAC model, considered in this paper, it is assumed that the distribution D may be of completely arbitrary form, and the only information about it is provided to us by the “sample” values of a labeled sample $(X_D^1, Y_D^1), \ldots, (X_D^m, Y_D^m)$ of m independent copies of a random pair (X^D, Y^D); here and in what follows, the superscript indicates the distribution of the random pair.

The classification error probability for a hypothesis $h \in H$ is

$$\text{err}(h, D) := P(h(X^D) \neq Y^D).$$ \hfill (1.1)

It should be clear that the least possible error probability

$$\text{err}_{\min}(D) := \text{err}_{\min,H}(D) := \min_{h \in H} \text{err}(h, D) \hfill (1.2)$$

will usually be strictly greater than 0, even when the true distribution D is known.

In the agnostic PAC model, considered here, the only information about the unknown distribution D is provided by the values of the sequence of m independent random pairs

$$Z^D_m := ((X^D_1, Y^D_1), \ldots, (X^D_m, Y^D_m)).$$ \hfill (1.3)

Therefore, the available “learning” strategies are the mappings

$L: (\mathcal{X} \times \mathcal{Y})^m \rightarrow H$,

called learning algorithms.

Let h_D denote any minimizer of $\text{err}(h, D)$ over $h \in H$. Of course, h_D is unknown, since the distribution D is unknown. However, it may be reasonable to use the plug-in estimator $h_{\hat{D}}_m$ of h_D, obtained by substituting for D the empirical distribution $\hat{D}_m = \hat{D}_m(z_m)$ based on a “realization”

$$z_m := ((x_1, y_1), \ldots, (x_m, y_m)) \in (\mathcal{X} \times \mathcal{Y})^m \hfill (1.4)$$

of the “random sample” Z_m from the distribution D. That is,

$$h_{\hat{D}}_m = L_{\text{ERM}}(Z^D_m),$$
where L_{ERM} is an empirical risk minimizer, that is, any learning algorithm such that for each given sequence $z_m \in (\mathcal{X} \times \mathcal{Y})^m$, the corresponding value $L_{\text{ERM}}(z_m)$ of L_{ERM} is a minimizer in $h \in \mathcal{H}$ of the “empirical risk”

$$\text{err}(h, \hat{D}_m) = \frac{1}{m} \sum_{i=1}^{m} I\{h(x_i) \neq y_i\}.$$

Such a minimizer need not be unique, and so, the “empirical minimization” learning algorithm L_{ERM} does not have to be unique.

A nontrivial question to ask here is how well the empirical risk minimizer $\hat{h}_{\hat{D}_m}$ performs compared to the best possible hypothesis, h_D — that is, how large the excess risk $\Delta(h_{\hat{D}_m}, D)$ is, where

$$\Delta(h, D) := \text{err}(h, D) - \text{err}_{\text{min}}(D) = \text{err}(h, D) - \text{err}(h_D, D). \quad (1.5)$$

This question has been to a large extent resolved. In particular, Theorem 4.9 from [1] (slightly restated here) provides the following upper bound on the tail probabilities for the excess risk.

Theorem A. There is a universal real constant $c > 0$ such that for all finite sets \mathcal{X}, all distributions D on $\mathcal{X} \times \mathcal{Y}$, all sample sizes m, and all hypothesis classes $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ of VC dimension d, we have

$$P\left(\Delta(L_{\text{ERM}}(Z_m^{\hat{D}}), D) \geq cu\right) \leq \exp\left\{-\left(mu^2 - d\right)_+\right\} \quad (1.6)$$

for all real $u \geq 0$, where $z_+ := 0 \vee z$ for real z.

See [1] for an account of the intermediate steps leading up to the highly non-trivial result presented in Theorem A; milestones here include the seminal paper [25] by Vapnik and Chervonenkis, followed, notably, by work of Talagrand [22], Haussler [10], and Long [15].

Recall that the VC dimension (that is, the Vapnik–Chervonenkis dimension) of a set $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ is the largest nonnegative integer k such that there is a subset of \mathcal{X} of cardinality k that is shattered by \mathcal{H}; and a subset \mathcal{X}_0 of \mathcal{X} is said to be shattered by \mathcal{H} if the set of the restrictions to \mathcal{X}_0 of all the functions $h \in \mathcal{H}$ coincides with the entire set $\mathcal{Y}^{\mathcal{X}_0}$ of all functions from \mathcal{X}_0 to \mathcal{Y}.

In what follows, d will always denote $\text{VC}($ \mathcal{H}), the VC dimension of \mathcal{H}. The case $d = 0$ may occur only if the cardinality of \mathcal{H} is at most 1, so that there is at most one hypothesis to choose. This trivial case will be excluded in the sequel; that is, we shall assume that $d = 1$. Then, in particular, one can introduce the fundamental ratio

$$\nu := m/d \quad (1.7)$$

of the sample size m to the VC dimension d.

Lower bounds matching, up to constant factors, the upper bound given in Theorem A are also known. The one with the apparently best currently known numerical constants was given in [1, Theorem 5.2], which can be restated as follows.
Theorem B. If \(\nu = m/d \geq 64^2/320 = 12.8 \), then for any finite set \(\mathcal{X} \), any hypothesis class \(\mathcal{H} \subseteq \mathcal{Y}^\mathcal{X} \) of VC dimension \(d \), and any learning algorithm \(L: (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H} \), there is a distribution \(D \) on \(\mathcal{X} \times \mathcal{Y} \) such that

\[
P \left(\Delta(L(Z^D_m), D) \right) > \frac{1}{\sqrt{320\nu}} \geq \frac{1}{64}
\]

This lower bound is also the culmination of a notable historical development [25, 6, 20], detailed in [1].

Remark 1.1. In [19, Section 28.2.2] a much better constant factor, \(1/8 \), was claimed in place of \(320 \) in (1.8). However, there is a mistake in the calculation; the actual value of the constant furnished by the proof is 512.

Introduce the expected excess risk (EER)

\[
\mathcal{R}(L, D) := \mathcal{R}_m(L, D) := \mathbb{E} \Delta(L(Z^D_m), D).
\]

Let \(\mathcal{H} := \mathcal{P}_\mathcal{X} \) and \(\mathcal{L} := \mathcal{L}_{\mathcal{X}, m, \mathcal{H}} \) denote, respectively, the set of all distributions on \(\mathcal{X} \times \mathcal{Y} \) and the set of all learning algorithms \(L: (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H} \); recall here that \(\mathcal{Y} = \{-1, 1\} \). Let then

\[
C_{UB}^{\nu} := \sqrt{m/d} \sup_{X \in \mathcal{X}} \sup_{\mathcal{H} \subseteq \mathcal{Y}^X} \inf_{L \in \mathcal{L}_{\mathcal{X}, m, \mathcal{H}}} \sup_{D \in \mathcal{D}_X} \mathcal{R}_m(L, D),
\]

\[
C_{LB}^{\nu} := \sqrt{m/d} \inf_{X \in \mathcal{X}} \inf_{\mathcal{H} \subseteq \mathcal{Y}^X} \sup_{L \in \mathcal{L}_{\mathcal{X}, m, \mathcal{H}}} \inf_{D \in \mathcal{D}_X} \mathcal{R}_m(L, D),
\]

where \(\sup_{\mathcal{X}} \) and \(\inf_{\mathcal{X}} \) are taken over all finite sets \(\mathcal{X} \), and \(\sup_{\mathcal{H} \subseteq \mathcal{Y}^X} \inf_{\mathcal{X}} \) are taken over all hypothesis classes \(\mathcal{H} \) of VC dimension \(d \). The quantity \(\inf_{L \in \mathcal{L}} \sup_{D \in \mathcal{D}_X} \mathcal{R}_m(L, D) \) may be referred to as the minimax EER.

Integrating both sides of inequality (1.6) in \(u \geq 0 \), one sees that

\[
C_{UB}^{\nu} := \sup_{m, d} C_{UB}^{m, d} \leq \sup_{m, d} \sqrt{m/d} \sup_{X \in \mathcal{X}} \inf_{\mathcal{H} \subseteq \mathcal{Y}^X} \sup_{L \in \mathcal{L}_{\mathcal{X}, m, \mathcal{H}}} \sup_{D \in \mathcal{D}_X} \mathcal{R}_m(L_{ERM}, D) < \infty,
\]

where \(\sup_{m, d} \) is taken over all natural \(m \) and \(d \); an exact calculation of \(C_{UB} \) seems to be beyond the reach of current methods.

It is also clear that inequality (1.8) implies

\[
C_{LB}^{\nu \geq 12.8} > \left(\frac{1}{64\sqrt{320}} \right) = 0.000873 \ldots > 0,
\]

where \(C_{LB}^{\nu \geq \nu_*} := \inf \{ C_{LB}^{m, d}: m/d \geq \nu_* \} \), for any real \(\nu_* > 0 \). A remarkable fact that follows from (1.11) and (1.12) is that

\[
0 < \liminf_{m/d \to \infty} C_{LB}^{m, d} \leq \limsup_{m/d \to \infty} C_{UB}^{m, d} < \infty;
\]

that is, the upper and lower bounds on the minimax EER are of the same order of magnitude. Establishing an appropriate lower bound on the EER, \(\mathcal{R}(L, D) \), was the crucial part of the proof of Theorem B.
symbol	brief description	appears in/on
\(B(m, d)\) | expression for \(\inf_{L \in \mathcal{H}} \sup_{D} \mathcal{R}_m(L, D)\) | (2.13)
\(B_0(m, d)\) | lower bound on \(B(m, d)\) | (2.21)
\(B_1(\nu)\) | lower bound on \(B_0(m, d)\) | (2.26)
\(B_2(\nu)\) | lower bound on \(B_1(\nu)\) | (2.28)
\(\tilde{B}_2(\nu), \hat{B}_2(\nu)\) | lower bounds on \(B_2(\nu)\) | (2.30), (2.32)
\(\text{bayes}(k, b)\) | Bayes risk for \(d = 1\) | (2.14), (3.2)
\(\hat{\text{bayes}}(\kappa, b)\) | convex minorant of \(\text{bayes}(k, b)\) | Proposition 2.8
\(b \in [-1, 1]\) | \(\mathcal{Y}\)-bias for \(\mathcal{X} = \{1\}\) | symbols \(s_k(b), \ldots\)
\(\beta(x)\) | conditional \(\mathcal{Y}\)-bias at \(x \in \mathcal{X}\) | (2.3)
\(c_{\text{LB}, \nu}^{\mathcal{Y}}\) | \(\nu\times(\text{exact upper}[\text{lower}] \text{ bound})\) on the minimax EER | (1.10)
\(c_{\infty} = 0.16997\ldots\) | limit value of \(c_{\text{LB}, \nu}^{\mathcal{Y}}\) | (2.1)
\(c_{\nu}, \tilde{c}_{\nu}\) | close lower bounds on \(c_{\text{LB}, \nu}^{\mathcal{Y}}\) | (2.29), (2.30)
\(D, D_{p, \beta}\) | distribution on \(\mathcal{X} \times \mathcal{Y}\) | p. 2, p. 8
\(d := VC(\mathcal{H})\) | VC dimension of \(\mathcal{H}\) | p. 3
\(\Delta(h, D)\) | excess risk | (1.5)
\(\text{err}(h, D)\) | error probability | (1.1)
\(\text{err}_{\min}(h, D)\) | minimum error probability | (1.2)
\(h : \mathcal{X} \rightarrow \mathcal{Y}\) | hypothesis | p. 2
\(\mathcal{H}\) | hypothesis class | p. 2, p. 7
\(I(\cdot)\) | indicator function | below (2.6)
\(L\) | learning algorithm (l.a.) | p. 2
\(L_{\text{ERM}}, L_{\text{ERM}}^{\mathcal{H}}\) | empirical risk minimizer | p. 3, (2.7), (2.11)
\(\mathcal{L}\) | set of all non-randomized l.a.’s | p. 4, p. 9
\(\mathcal{L}_{\text{rand}}\) | set of all randomized l.a.’s | p. 9
\(m\) | labeled sample size | p. 2
\(N\) | binomial r.v. w/ parameters \(m, 1/d\) | Theorem 2.5
\(N_p\) | cardinality of the set \(\{i : X_i = x\}\) | Theorem 2.2, (3.5)
\(\nu := m/d\) | fundamental ratio | (1.7)
\(p\) | \(\mathcal{Y}\)-marginal of \(D\) | (2.3)
\(\mathcal{R}(L, D), \mathcal{R}(L; p, \beta)\) | expected excess risk (EER) | (1.9), (2.10)
\(\text{sgn}\) | modified sign function | below (2.6)
\(s_k(b)\) | \(\text{modified sign function}\) | (2.15)
\(V_{b,k}, Y_{b,k}\) | \(\text{vote balance} \text{ at } x \in \mathcal{X}\) | (2.16)
\((X^D_1, Y^D_1), (X^p_1, Y^{p, \beta}_1)\) | labeled sample items | p. 2, p. 8
\(\mathcal{X}\) | set of objects to classify | p. 2, p. 7
\(\mathcal{Y} = \{-1, 1\}\) | set of classification labels | p. 2
\(\mathcal{Z}^D_{m}, \mathcal{Z}^{p, \beta}_{m}\) | labeled sample | (1.3), (2.4)
z* = 0.75179\ldots | maximizer of \(\frac{z}{2} (1 - \text{erf}(z/\sqrt{2}))\) | (2.27)

Table 1. Notations. The places where the symbols are first introduced are underlined.
A few words on the organization of the rest of this paper: The main results are stated and discussed in Section 2. All necessary proofs are given in Section 3, with more technical parts deferred further, to Appendices A–B.

An index of symbols used in this paper non-locally is given in Table 1, which lists the places where the selected symbols are first introduced and, for a few of the symbols, the places where those symbols are generalized, specialized, or otherwise modified.

2. Results: statements and discussion

In this paper, we present optimal lower bounds on the minimax EER, which cannot be further improved. Our main result is Theorem 2.2, which provides an expression of the exact, non-asymptotic lower bound on the minimax EER. This expression is in terms of a certain function \(\text{bayes}(k, b) \), which is the Bayes risk for \(d = 1 \). We show (in Proposition 2.8) that \(\text{bayes}(k, b) \) has a certain convexity property with respect to \(k \). Further important properties of the function \(\text{bayes} \), based on certain apparently novel identities and inequalities for binomial distributions, are presented in Appendix A. Thus, the expression of the non-asymptotic lower bound on the minimax EER given in Theorem 2.2 becomes amenable to high-precision analysis. (Implicitly, the function \(\text{bayes} \) is present in [3], but there it was bounded via Pinsker’s inequality, which yields sub-optimal results.)

In particular, based on Theorem 2.2 and the mentioned analysis of the function \(\text{bayes} \), we determine (in Theorem 2.4) the asymptotics of the just mentioned exact lower bound:

\[
\ell_{m,d}^{LB} \rightarrow c_{\infty} := \max_{z > 0} \frac{z^2}{2} \left(1 - \text{erf}(z/\sqrt{2}) \right) = 0.16997 \ldots
\]

(2.1)

whenever \(m \) and \(d \) vary in such a way that \(\nu = m/d \to \infty \); here, as usual, \(\text{erf} \) denotes the Gauss error function, given by the formula \(\text{erf}(u) := \frac{2}{\sqrt{\pi}} \int_0^u e^{-t^2} dt \) for real \(u \geq 0 \).

It should be noted that in Theorem 2.2 randomization of learning algorithms is allowed; however, it will also be shown (in Theorem 2.4) that the effect of this randomization is asymptotically negligible and is entirely explained by ties in a certain “voting” procedure.

Theorems 2.5, 2.9, 2.11, and Proposition 2.13 present, for finite \(m \) and \(d \), tractable lower bounds on \(\ell_{m,d}^{LB} \). Theorem 2.16 then shows that all these lower bounds on \(\ell_{m,d}^{LB} \), as well as \(\ell_{m,d}^{LB} \) itself, converge to the limit constant \(c_{\infty} \) in (2.1). Moreover, it is shown (see Remarks 2.7 and 2.14, and Figure 2) that these lower bounds on \(\ell_{m,d}^{LB} \), as well as \(\ell_{m,d}^{LB} \) itself, are actually close to the limit value \(c_{\infty} \) even for rather small values of \(\nu = m/d \).

The above discussion suggests a sense of completion in the area of lower bounds for the PAC model. However, results and techniques presented here may be used elsewhere. In fact, they already found an application in [14, Theorem 7.1], where existing lower bounds were not sufficiently delicate for the desired parameter regime.
In this paper, we apply our lower bounds on the EER to obtain substantial improvements of the existing lower bounds on the tail probability of the excess risk, as follows:

Theorem 2.1.

(i) **Keeping the constants 12.8 and 320 in Theorem B in place, one can improve the lower bound $\frac{1}{65} \approx 0.0156$ on the tail probability in (1.8) to 0.238.**

(ii) **Keeping the constants 12.8 and $\frac{1}{64}$ in Theorem B in place, one can improve the constant 320 in (1.8) to 41.3.**

(iii) **If the restriction $\nu \geq 12.8$ in Theorem B is relaxed to $\nu \geq 3$, then the improved values 0.238 and 41.3 of the constants get only slightly worse: 0.227 and 49.6, respectively.**

To state our results, let us introduce some additional notation and conventions to be used in the sequel.

Let $0^0 := 1$.

For any α and ω in $\mathbb{Z} \cup \{\infty\}$, let $[\alpha, \omega] := \{i \in \mathbb{Z} : \alpha \leq i \leq \omega\}$. For any $m \in 0, \infty$, let $[m] := 1, m$. In particular, $[0] = \emptyset$.

As usual, for any two sets S and T, let S^T denote the set of all maps from T to S.

For any set A and any $k \in [0, \infty)$ we identify the k-tuples $v = (v_1, \ldots, v_k) \in A^k$ with functions $v: [k] \to A$, by the formula $v(x) := v_x$ for all $x \in [k]$; thus, we identify the set A^k of k-tuples with the set A^k of functions. So, we use notations $v(x)$ and v_x interchangeably. We shall also identify a function with its graph.

As usual, the sum of the empty family of elements of a linear space is defined as the zero element of that space.

The new results obtained in this paper all concern the lower bound $c_{m,d}^{\text{LB}}$, defined in (1.10), on the minimax EER times the factor $\sqrt{m/d}$, including the limit behavior of $c_{m,d}^{\text{LB}}$ as $m/d \to \infty$.

It is not hard to show (see Appendix B for details) that the defining expression for $c_{m,d}^{\text{LB}}$ in (1.10) can be simplified as follows:

$$c_{m,d}^{\text{LB}} = \sqrt{m/d} \inf_{L, D} \sup \mathfrak{R}_m(L, D),$$

where from now on it will be assumed (unless otherwise specified) that

\[X = [d], \quad \mathcal{H} = \mathcal{Y} = [-1, 1]^d, \quad \inf_L := \inf_{L \in \mathcal{Y}^{[d], m, \mathcal{Y}[d]}} \inf_{D \in \mathcal{Y}[d]}, \quad \sup_D := \sup_{D \in \mathcal{Y}[d]} , \]

so that \inf_L is taken over all learning algorithms $L: ([d] \times \mathcal{Y})^m \to \mathcal{Y}[d]$ and \sup_D is taken over all distributions D on $[d] \times \mathcal{Y}$. Accordingly, from now on we shall use \mathcal{X} and \mathcal{H} interchangeably with $[d]$ and $\mathcal{Y} = [-1, 1]^d$, respectively.

Note next that any distribution D on $\mathcal{X} \times \mathcal{Y}$ is completely characterized by the two maps, say $p = p_D: \mathcal{X} \to [0, 1]$ and $\beta = \beta_D: \mathcal{X} \to [-1, 1]$, such that

$$P(X^D = x, Y^D = y) = D(\{(x, y)\}) = p(x) \left(\frac{1}{2} + \frac{y \beta(x)}{2}\right)$$

(2.3)
for \(x \in \mathcal{X} = [d] \) and \(y \in \mathcal{Y} = \{-1, 1\} \). Clearly, then, one must have \(p_D(x) = P(X_D = x) \) for all \(x \in \mathcal{X} \) and \(\beta_D(x) = 2P(Y_D = 1 | X_D = x) - 1 \) for all \(x \in \mathcal{X} \) with \(p_D(x) \neq 0 \); if \(p_D(x) = 0 \) for some \(x \in \mathcal{X} \), then the value of \(\beta_D(x) \) can be chosen arbitrarily in \([-1, 1]\). So, the distribution of the random variable (r.v.) \(X_D \) is completely characterized by the map \(p = p_D \). Therefore, in what follows let us write \(D = D_{p,\beta} \) if \(p_D = p \) and \(\beta_D = \beta \), and, in the case when \(D = D_{p,\beta} \), let us simply write \(X^p, Y^p, X_1^p, Y_1^p, \ldots \) instead of \(X_D, Y_D, X_1^D, Y_1^D \) (respectively), assuming that the random pairs \((X_i^p, Y_i^p), \ldots, (X_m^p, Y_m^p)\) are independent copies of the random pair \((X_p, Y_p, X_m^p, Y_m^p) = (X_D, Y_D)\); let us then also write

\[
Z_{p,\beta} := Z_m := \left((X_1^p, Y_1^p), \ldots, (X_m^p, Y_m^p) \right)
\]

(cf. (1.3)).

Take next any \(h \in \mathcal{X} = \{-1, 1\}^d \). It is well known (see e.g. [5, page 10]) that the function \(h_\beta \in \{-1, 1\}^d \) given by the formula

\[
h_\beta(x) := \text{sgn} \beta_x
\]

for \(x \in [d] \) is a minimizer of \(\text{err}(h, D_{p,\beta}) \) over all \(h \in \{-1, 1\}^d \), and the excess risk (relative to \(D_{p,\beta} \)) of \(h \) over \(h_\beta \) is

\[
\Delta(h, D_{p,\beta}) = \text{err}(h, D_{p,\beta}) - \text{err}(h_\beta, D_{p,\beta}) = \sum_{x=1}^d p_x |\beta_x| I\{h(x) \neq h_\beta(x)\},
\]

where

\[
\text{sgn} u := 2I\{u \geq 0\} - 1
\]

for real \(u \) and \(I\{\cdot\} \) is the indicator function.

Replacing now the unknown true distribution \(D = D_{p,\beta} \) by the empirical distribution \(\hat{D}_m = \hat{D}_m((x_1, y_1), \ldots, (x_m, y_m)) \) for \((x_1, y_1), \ldots, (x_m, y_m)\) := \(z \in (\mathcal{X} \times \mathcal{Y})^m \), one sees that a function \(h \in \{-1, 1\}^d \) is a minimizer of \(\text{err}(h, \hat{D}_m) \) for the given “sample” \(z \) if and only if \(h(x) = \text{sgn} \hat{p}_x \beta_x \) for all \(x \in \mathcal{X} \) such that \(\hat{p}_x \beta_x \neq 0 \), where \(\hat{p}_x := \frac{1}{m} \sum_{i=1}^m y_i I\{x_i = x\} \); if \(\hat{p}_x \beta_x = 0 \) for some \(x \in \mathcal{X} \), then the value \(h(x) \) of a minimizer \(h \) (of \(\text{err}(h, \hat{D}_m) \)) at this point \(x \) can be chosen arbitrarily in the set \(\{-1, 1\} \). Thus, all the learning algorithms \(L_{\text{ERM}} \) that are minimizers of the empirical risk are given by the formula

\[
L_{\text{ERM}}(z_m)(x) := L_{m,d}:\text{ERM}(z_m)(x) := \begin{cases} \text{sgn} v_x & \text{if } v_x \neq 0, \\ \in \{-1, 1\} & \text{if } v_x = 0 \end{cases}
\]

for all \(z_m \in (\mathcal{X} \times \mathcal{Y})^m \) and \(x \in \mathcal{X} = [d] \), where

\[
v_x := v_x(z_m) := \sum_{i=1}^m y_i I\{x_i = x\} = m \hat{p}_x \beta_x.
\]

Formula (2.7) states that the empirical risk is minimized when the value \(y \in \{-1, 1\} \) assigned by the learning algorithm at point \(x \) based on the “sample” \(z_m \)
is decided by the majority vote \(v_x = v_x(z_m) \) “at \(x \)”, with the “voting” restricted to the pairs \((x_i, y_i)\) with \(x_i = x \); if there is a tie (no majority) at \(x \), then a value \(y \in \{-1, 1\} \) at \(x \) is chosen arbitrarily.

To decrease the risk and also be able to fully use the power of decision theory, one may randomize learning algorithms. A convenient way to define such an algorithm \(L \) is to allow its value (which is a function in \(\mathcal{H} \)) to depend, not only on the nonrandom “sample” \(z_m = ((x_1, y_1), \ldots, (x_m, y_m)) \in (\mathcal{X} \times \mathcal{Y})^m \) as in (1.4), but also on the value \(u \) of another r.v., say \(U \), which is (say) uniformly distributed on the interval \([-1, 1]\) and independent of the random “sample” \(Z_m^D = ((X_1^D, Y_1^D), \ldots, (X_m^D, Y_m^D)) \) as in (1.3). Thus, a randomized learning algorithm \(L \) will be understood as a map from \((\mathcal{X} \times \mathcal{Y})^m \times [-1, 1]\) to \(\mathcal{H} \).

Let \(\mathcal{L}_{\text{rand}} = \mathcal{L}_{\text{rand}, d} \) and \(\mathcal{L} = \mathcal{L}_d \) denote, respectively, the set of all randomized learning algorithms and the set of all non-randomized ones. The definition (1.9) of the EER (for \(L \in \mathcal{L} \)) is naturally extended as follows:

\[
\mathcal{R}(L, D) := \mathfrak{R}_m(L, D) := \mathbb{E} \Delta(L(Z_m^D, U), D)
\]

for \(L \in \mathcal{L}_{\text{rand}} \); it then follows by (2.6) that

\[
\mathfrak{R}_m(L; p, \beta) := \mathfrak{R}_m(L, D_{p, \beta}) = \sum_{x=1}^{d} p_x |\beta_x| \mathbb{P}(L(Z_m^p, U)(x) \neq h_\beta(x)). \tag{2.10}
\]

Of particular importance will be the following “maximally symmetric” and “minimally randomized” version of the learning algorithms \(L_{\text{ERM}} \) that are minimizers of the empirical risk (cf. (2.7)):

\[
L_{\text{ERM}}^*(z_m, u)(x) := L_{d, \text{ERM}}^*(z_m, u)(x) := \begin{cases}
\text{sgn } v_x & \text{if } v_x \neq 0, \\
y_{i_x} & \text{if } v_x = 0 \text{ but } n_x \neq 0, \\
\text{sgn } u & \text{if } n_x = 0
\end{cases}
\]

for \((z_m, u) \in (\mathcal{X} \times \mathcal{Y})^m \times [-1, 1] = ([d] \times \{-1, 1\})^m \times [-1, 1]\), where

\[
n_x := n_x(z_m) := \sum_{i=1}^{m} \mathbb{I}\{x_i = x\} \quad \text{and} \quad i_x := i_x(z_m) := \min\{i \in [m]: x_i = x\}.
\]

That is, the choice of the value of \(L_{\text{ERM}}^*(z_m, u)(x) \) in \(\mathcal{Y} = \{-1, 1\} \) is decided by the majority vote “at \(x \)” if there is a majority there; otherwise, the value \(L_{\text{ERM}}^*(z_m, u)(x) \) is the same as that of the first voter that appeared “at \(x \)” if any one did; finally, if no one arrived to vote “at \(x \)”, then the value is decided by a flip of a fair coin, the flip being independent of any voters. Thus, randomization according to the learning algorithm \(L_{\text{ERM}}^* \) occurs only if no one shows up for voting at some location \(x \in \mathcal{X} \). Yet, this minimal (and, one may argue, quite natural) randomization is enough to make \(L_{\text{ERM}}^* \) a winner (that is, a min-max learning algorithm) against all randomized (and non-randomized) learning algorithms. A precise formulation of this thesis is contained in
Theorem 2.2. Take any \(m \in [0, \infty) \). Then

\[
\inf_{L \in \mathcal{L}} \sup_D R_m(L, D) = \sup_D R_m(L_{\text{ERM}}^*, D)
\]

\[
= B(m, d) := \sup_{p, \beta} \sum_{x=1}^d p_x |\beta_x| \mathbb{E}\,\text{bayes}(N_p^\beta, |\beta_x|), \quad (2.13)
\]

where \(\sup_{p, \beta} \) is taken over all pairs of functions \(p \in [0, 1]^d \) such that \(\sum_{x=1}^d p_x = 1 \) and \(\beta \in [-1, 1]^d \), \(N_p^\beta \) is a r.v. with the binomial distribution with parameters \(m \) and \(p_x \),

\[
bayes(k, b) := \frac{1}{2} (1 - s_k(b)), \quad (2.14)
\]

\[
s_k(b) := |P(V_k^b > 0) - P(V_k^{-b} > 0)|, \quad (2.15)
\]

\[
V_k^b := Y_1^b + \cdots + Y_k^b, \quad (2.16)
\]

and the \(Y_i^b \)’s are iid r.v.’s with \(P(Y_i^b = 1) = \frac{1+b}{2} \) and \(P(Y_i^b = -1) = \frac{1-b}{2} \), for \(k \in [0, \infty) \) and \(b \in [-1, 1] \). Moreover, for each pair of functions \(p \) and \(\beta \) as described above,

\[
R_m(L_{\text{ERM}}^*; p, \beta) = R_m(L_{\text{ERM}}^*; D_{p, \beta}) = \sum_{x=1}^d p_x |\beta_x| \mathbb{E}\,\text{bayes}(N_p^\beta, |\beta_x|), \quad (2.17)
\]

which does not depend on \(\text{sgn} \beta := (\text{sgn} \beta_1, \ldots, \text{sgn} \beta_d) \).

The use of the symbol \(\text{bayes} \) in (2.13) is a reflection of the fact that the minimax learning algorithm \(L_{\text{ERM}}^* \) is a Bayes one with respect to a certain prior distribution on the set of all distributions \(D \) on \(\mathcal{X} \times \mathcal{Y} \); see the beginning of the proof of Theorem 2.2 in Section 3 for details on this. Formula (2.17) means that the learning algorithm \(L_{\text{ERM}}^* \) has an important risk-equalizing property — which actually makes the Bayes decision rule \(L_{\text{ERM}}^* \) minimax; cf. e.g. Theorem 3 and Lemma 1 in [7, §2.11].

Remark 2.3. It is clear from (2.14)–(2.15) that \(\text{bayes} \leq \frac{1}{2} \). Hence, by (2.13), \(\inf_{L \in \mathcal{L}} \sup_D R_m(L, D) \leq \frac{1}{2} \).

It turns out, as may be expected, that the effect of the randomization of learning algorithms is asymptotically negligible whenever \(\nu = m/d \to \infty \); that is, the difference \(\inf_{L \in \mathcal{L}} \sup_D - \inf_{L \in \mathcal{L}} \sup_D \) is asymptotically negligible compared with the “non-randomized” minimax EER \(\inf_{L \in \mathcal{L}} \sup_D \). Moreover, all the learning algorithms of the form \(L_{\text{ERM}}^* \) as in (2.7) that are minimizers of the empirical risk are asymptotically minimax. These facts — along with the asymptotics of the minimax risk — are presented in

Theorem 2.4. For each pair \((m, d) \) of natural numbers, choose any learning algorithm of the form \(L_{m,d,\text{ERM}} \), as in (2.7). Then

\[
\frac{c_{\infty}}{\sqrt{m/d}} \sim \inf_{L \in \mathcal{L}} \sup_D R_m(L, D) \leq \inf_{L \in \mathcal{L}} \sup_D R_m(L, D)
\]

\[
\leq \sup_D R_m(L_{m,d,\text{ERM}}, D) \sim \frac{c_{\infty}}{\sqrt{m/d}} \quad (2.18)
\]
whenever \(m/d \to \infty \), where \(c_\infty = 0.16997 \ldots \) as in (2.1). Moreover,

\[
0 \leq \sup_D R_m(L_{m,d,\text{ERM}}, D) - \inf_{L \in \mathcal{L}_{\text{rand}}} \sup_D R_m(L, D) \\
\leq \frac{1}{2} \sup_{p, \beta} \sum_{x=1}^d p_x |\beta_x| \mathbb{P}(V^{p,\beta}_x = 0) = O\left(\frac{1}{m/d}\right) = o\left(\frac{1}{\sqrt{m/d}}\right),
\]

(2.19)

again whenever \(m/d \to \infty \), where

\[
V^{p,\beta}_x := \sum_{i=1}^m Y^{p,\beta}_i I\{X^p_i = x\},
\]

(2.20)

the vote “balance” at \(x \) based on the random “sample” \(Z^{p,\beta}_m \) as in (2.4).

Here, as usual, the asymptotic equivalence \(A \sim B \) means \(A/B \to 1 \).

Display (2.19) shows that the (asymptotically negligible) pairwise differences between (i) the minimax EER \(\inf_{L \in \mathcal{L}} \sup_D R_m(L, D) \), (ii) its “randomized” version \(\inf_{L \in \mathcal{L}_{\text{rand}}} \sup_D R_m(L, D) \), and (iii) the maximum risk \(\sup_D R_m(L_{m,d,\text{ERM}}, D) \) of any empirical-risk-minimizing learning algorithms of the form \(L_{\text{ERM}} \) are entirely explained by ties in the mentioned “voting”, when the “no-majority” event \(V^{p,\beta}_x = 0 \) occurs for at least one \(x \in \mathcal{X} = [d] \).

It is obvious from (2.13) that

\[
B(m, d) \geq \sum_{x=1}^d \frac{1}{d} b \mathbb{E}_{\text{bayes}}(N_x, b) = b \mathbb{E}_{\text{bayes}}(N, 1, b)
\]

for any \(b \in [0, 1] \), where \(N_x \) stands for \(N^p_x \) with \(p_x = \frac{1}{d} \) for all \(x \in [d] \). Thus, in view of (2.18), one immediately obtains

Theorem 2.5.

\[
\inf_{L \in \mathcal{L}} \sup_D R_m(L, D) \geq \inf_{L \in \mathcal{L}_{\text{rand}}} \sup_D R_m(L, D) \geq B_0(m, d) := \sup_{b \in [0, 1]} b \mathbb{E}_{\text{bayes}}(N, b),
\]

(2.21)

where \(N \) is a binomial r.v. with parameters \(m \) and 1/d.

Recall (2.4) and let

\[
D_\beta := D_{p,\beta} \quad \text{and} \quad Z^\beta_m := Z^{p,\beta}_m \quad \text{when} \quad p_x = \frac{1}{d} \quad \text{for all} \quad x \in \mathcal{X} = [d].
\]

(2.22)

Theorem 2.6. For any \(b \in [0, 1] \),

\[
\inf_{L \in \mathcal{L}_{\text{rand}}} \frac{1}{2d} \sum_{\beta \in \{-b, b\}^d} R(L, D_\beta) = b \mathbb{E}_{\text{bayes}}(N, b).
\]

(2.23)

As we shall see, Theorem 2.6 follows immediately from the proof of Theorem 2.2. On the other hand, Theorem 2.6 could be viewed as a refinement of Theorem 2.5, because clearly \(\frac{1}{2d} \sum_{\beta \in \{-b, b\}^d} R(L, D_\beta) \leq \sup_D R(L, D) \) for any \(L \). Even though the refinement is slight, Theorem 2.6 will be useful, in particular, in the proof of Theorem 2.1.
Remark 2.7. Note that, by (2.14)–(2.15), \(\text{bayes}(k, b) \) is a polynomial in \(b \) of degree \(\leq k \). Hence, \(b \in \text{bayes}(N, b) \) is a polynomial in \(b \) of degree \(\leq m + 1 \), and so, the lower bound \(B_0(m, d) \) in (2.21) is an algebraic number, which is not hard to compute unless \(m \) is too large. For instance, for \(c_0(m, d) := B_0(m, d) \sqrt{m/d} \) we find
\[
c_0(5, 2) = 0.16757 \ldots, \quad c_0(50, 20) = 0.17467 \ldots, \quad \text{and} \quad c_0(50, 2) = 0.16968 \ldots
\]
(with the execution times in Mathematica about 0.02 sec, 1.4 sec, and 1 sec, respectively). One may note that, even for such a rather small value \(5/2 = 50/20 = 2.5 \) of \(\nu = m/d \), the values of \(c_0(m, d) \) are close to the limit value \(c_\infty = 0.16997 \ldots \) — cf. (2.1) and (2.18). However, more work needs to be done to more fully understand the manner in which the lower bound \(B_0(m, d) \) depends on \(m \) and \(d \).

The important first step toward this goal is establishing the following convexity property of the function \(k \mapsto \text{bayes}(k, b) \).

Proposition 2.8. Take any \(b \in [0, 1] \). Then the largest convex function \([0, \infty) \ni \kappa \mapsto \hat{\text{bayes}}(\kappa, b) \) such that \(\hat{\text{bayes}}(k, b) \leq \text{bayes}(k, b) \) for all \(k \in \{0, 1, \ldots\} \) is given by the formula
\[
\hat{\text{bayes}}(\kappa, b) := \begin{cases}
(1 - \kappa) \text{bayes}(0, b) + \kappa \text{bayes}(1, b) = \frac{1}{2} (1 - \kappa b) & \text{if } 0 \leq \kappa \leq 1, \\
\frac{2i + 3 - \kappa}{2} \text{bayes}(2i + 1, b) + \frac{5 - 2i - 1}{2} \text{bayes}(2i + 3, b) & \text{if } 2i + 1 \leq \kappa \leq 2i + 3
\end{cases}
\]
\[(2.25)\]
for any \(i \in \mathbb{N} \).

That is, the largest convex minorant \(\hat{\text{bayes}}(\cdot, b) \) on \([0, \infty) \) of the function \(\text{bayes}(\cdot, b) \) on \(\{0, 1, \ldots\} \) is just the linear interpolation of \(\text{bayes}(\cdot, b) \) at the points \(0, 1, 3, 5, \ldots \). This is illustrated in Figure 1.

Recall the definition (1.7) of \(\nu \). Using (2.21), Proposition 2.8, Jensen’s inequality, and the equality \(\mathbb{E} N = \nu \), one immediately obtains

Theorem 2.9.
\[
\inf_L \sup_D \mathcal{R}(L, D) \geq B_0(m, d) \geq B_1(\nu) := \sup_{b \in (0, 1)} b \hat{\text{bayes}}(\nu, b).
\]
\[(2.26)\]

Here and in the rest of this section, \(\inf_L \) can be replaced by either \(\inf_{L \in \mathcal{L}} \) or \(\inf_{L \in \mathcal{L}_{\text{rand}}} \).

Remark 2.10. An advantage of the lower bound \(B_1(\nu) \) in (2.26) over the bound \(B_0(m, d) \) in (2.21) is that it depends only on \(\nu = m/d \); also, \(B_1(\nu) \) is not hard to compute unless \(\nu \) is too large. Yet, the nature of the dependence of \(B_1(\nu) \) on \(\nu \) may still seem rather obscure. Therefore, we are going to present a lower bound on \(B_1(\nu) \) that is much easier to grasp and yet is (i) asymptotic to the original lower bound \(B_0(m, d) \) for \(\nu = m/d \to \infty \) and (ii) close to \(B_0(m, d) \) even for moderate values of \(\nu = m/d \).
In Appendix A, we shall obtain explicit and rather tight lower bounds on the function bayes. In view of Theorem 2.9 and Proposition 2.8, this will result in explicit lower bounds on the minimax excess risk \(\inf_L \sup_D R(L, D) \), as follows.

Let
\[z_* = 0.75179 \ldots \] (2.27)
be the unique maximizer of \(\frac{z}{2} (1 - \text{erf}(z/\sqrt{2})) \) in real \(z > 0 \), with the maximum value \(c_\infty = 0.16997 \ldots \), as in (2.1).

Theorem 2.11. Assume that \(\nu \geq 1 \). Let \(i_\nu := \lfloor \frac{\nu - 1}{2} \rfloor \). Then
\[\inf_L \sup_D \mathcal{R}(L, D) \geq B_1(\nu) \geq B_2(\nu) := \frac{c_\nu}{\sqrt{\nu}}, \] (2.28)
where
\[c_\nu := \frac{z_*}{2} \left(1 - C_\nu \frac{\text{erf}(z_*/\sqrt{2})}{\exp\{-z_*^2/(6\nu)\}} \right) < c_\infty \quad \text{and} \quad C_i = \frac{\sqrt{\pi(i + 1/2)}}{2^{2i}} \left(\frac{2i}{i} \right)^{2i} \] (2.29)
for \(i = 0, 1, \ldots \). Moreover, for \(\nu \geq 3 \), \(B_2(\nu) \) admits a simple lower bound on it:
\[B_2(\nu) \geq \hat{B}_2(\nu) := \frac{\hat{c}_\nu}{\sqrt{\nu}}, \quad \text{where} \quad \hat{c}_\nu := \frac{z_*}{2} \left(1 - \left(\frac{i_\nu + 1}{i_\nu} \right)^{1/8} \frac{\text{erf}(z_*/\sqrt{2})}{\exp\{-z_*^2/(6\nu)\}} \right) \leq c_\nu. \] (2.30)

Remark 2.12. To obtain the second inequality in (2.28) \((B_1(\nu) \geq B_2(\nu)) \), in the proof of Theorem 2.11 we are going to use, in particular, two facts: (i) that \(C_i \) decreases in \(i \) (as stated in Lemma A.2) and (ii) the concavity of \(\text{erf}(b \sqrt{k/2}) \) in \(k \). If one also uses the obvious fact that \(\text{erf}(b \sqrt{k/2}) \) increases in \(k \), then, by
Chebyshev’s integral inequality,
\[
(1 - w_i)C_i \operatorname{erf}(b\sqrt{\frac{2i+1}{2}}) + w_iC_{i+1} \operatorname{erf}(b\sqrt{\frac{2i+3}{2}})
\leq \left[(1 - w_i)C_i + w_iC_{i+1}\right] \left[(1 - w_i) \operatorname{erf}(b\sqrt{\frac{2i+1}{2}}) + w_i \operatorname{erf}(b\sqrt{\frac{2i+3}{2}})\right]
\leq [(1 - w_i)C_i + w_iC_{i+1}] \operatorname{erf}(b\sqrt{\nu}),
\]
where \(i := i_\nu\) and \(w_i := \frac{\nu - 2i - 1}{\nu} \in [0, 1)\). Thus, one can replace \(C_{i_\nu} = C_{i_\nu} \lor C_{i_\nu+1}\) in (2.29) by the smaller (and hence better) value \((1-w_i)C_i+w_iC_{i+1}\), with \(i = i_\nu\).

Quite similarly, one can replace \(\tilde{C}_{i_\nu} := \left(\frac{i_\nu + 1}{i_\nu}\right)^{1/8} = \tilde{C}_{i_\nu} \lor \tilde{C}_{i_\nu+1}\) in (2.30) by the smaller (and hence better) value \((1-w_i)\tilde{C}_i+w_i\tilde{C}_{i+1}\), with \(i = i_\nu\). However, these improvements are comparatively small, especially for larger values of \(\nu\), and the resulting expressions will be less easy to perceive.

It is clear that
\[
c_\nu \to c_\infty \quad \text{and} \quad \tilde{c}_\nu \to c_\infty \tag{2.31}
\]
as \(\nu \to \infty\). In fact, \(c_\nu\) and even \(\tilde{c}_\nu\) are rather close to \(c_\infty\) already for rather small values of \(\nu\). E.g., one has \(c_5 = 0.15536\ldots\), \(\tilde{c}_5 = 0.15514\ldots\), \(c_{50} = 0.16852\ldots\), and \(\tilde{c}_{50} = 0.16892\ldots\), and indeed all these four values are rather close to \(c_\infty = 0.16997\ldots\). We also see that the values of \(\tilde{c}_\nu\) are not only simpler to compute than, but also very close to, the corresponding values of \(c_\nu\).

Inequality (2.28) in Theorem 2.11 does not cover the case \(0 < \nu < 1\), and inequality (2.30) does not cover the case \(0 < \nu < 3\). These two apparently less important cases are covered, complementarily, by

Proposition 2.13.

\[
\inf_D \sup_L \Re(L, D) \geq \hat{B}_2(\nu) := \begin{cases}
B_1(\nu) = \frac{1}{2} (1 - \nu) & \text{if } 0 < \nu \leq \frac{1}{2}, \\
B_1(\nu) = \frac{1}{8\nu} & \text{if } \frac{1}{2} \leq \nu \leq 1, \\
\frac{(17 - 2\nu)(57187 - 3253\nu - 138\nu^2 + 212\nu^3 - 8\nu^4)}{6480000} & \text{if } 1 \leq \nu \leq 3.
\end{cases}
\tag{2.32}
\]

Remark 2.14. In particular, \(\hat{B}_2(1) = B_1(1) = 0.125\), \(\hat{B}_2(3) = 0.087018\ldots = \frac{0.15072}{\sqrt{3}}\), and \(B_1(3) = 0.087019\ldots = \frac{0.15072}{\sqrt{3}}\) (cf. (2.28)). More generally, the choices \(b = 1\) for \(\nu \in (0, \frac{1}{2}]\) and \(b = \frac{1}{\sqrt{3}}\) for \(\nu \in [\frac{1}{2}, 1]\) in the proof of Proposition 2.13 are optimal, in the sense that \(\hat{B}_2(\nu) = B_1(\nu)\) for \(\nu \in (0, 1]\), as indicated in (2.32). The choice \(b = \frac{1}{8\nu} (17 - 2\nu)\) for \(\nu \in [1, 3]\) in the just mentioned proof is nearly optimal; namely, then \(\hat{B}_2(\nu) > B_1(\nu) - 2 \times 10^{-6}\), for all \(\nu \in [1, 3]\); see details on this remark in Section 3, right after the proof of Proposition 2.13. Of course, one can also rather easily give an exact algebraic expression for \(B_1(\nu)\) with \(\nu \in [1, 3]\); however, that expression (in terms of certain roots of certain polynomials in one variable whose coefficients are polynomials in \(\nu\)) is complicated and therefore omitted here.
Theorem 2.11, Remark 2.12, relations (2.31), Proposition 2.13, and Remark 2.14 are illustrated in Fig. 2.

![Graphs of functions](image)

Fig 2. Left panel: graphs of c_{ν} (red) and $\tilde{c}_{\nu} := \sqrt{\nu} \tilde{B}_2(\nu)$ (black) for $\nu \in [1, 3]$. Right panel: graphs of c_{ν} (red), \tilde{c}_{ν} (green), $c_{\nu, \text{Cheb}}$ (blue), and $\tilde{c}_{\nu, \text{Cheb}}$ (magenta) for $\nu \in [3, 20]$, where $c_{\nu, \text{Cheb}}$ and $\tilde{c}_{\nu, \text{Cheb}}$ are obtained from the expressions for c_{ν} and \tilde{c}_{ν} in (2.29) and (2.30) by replacing there $C_{i\nu}$ and $\tilde{C}_{i\nu} = (i\nu + 1)/(2i\nu)$ by the “Chebyshev” expressions $(1 - w_i)C_{i\nu} + w_i C_{i\nu+1}$ and $(1 - w_i)\tilde{C}_{i\nu} + w_i \tilde{C}_{i\nu+1}$, with $i = i_{\nu}$ and $w_i := \nu - 2i - 1/2$, as discussed in Remark 2.12. The dotted horizontal line in both panels is at the level of $c_{\infty} = 0.16997\ldots$.

Let us also present the following very simple, but suboptimal, lower bound — cf. e.g. (2.18).

Proposition 2.15. If $\nu \geq \frac{3}{41}$, then

$$\inf_L \sup_D \mathfrak{R}(L, D) \geq B_0(m, d) \geq \frac{0.125}{\sqrt{\nu}}. \quad (2.33)$$

Note that the restriction $\nu \geq \frac{3}{41}$ in Proposition 2.15 cannot be dropped, and it is in fact rather close to necessity. Indeed, in view of Remark 2.3, the lower bound $\frac{0.125}{\sqrt{\nu}}$ in (2.33) cannot hold for $\nu < \frac{1}{16} = \frac{3}{48}$. The lower bound $\frac{0.125}{\sqrt{\nu}}$ in (2.33) was obtained by different methods in [2] (under the condition $\nu \geq \frac{1}{4}$, which was omitted from the paper but stated in a corrigendum).

In conclusion of this section, we summarize the asymptotic behavior of the lower bounds $B_0(m, d), B_1(\nu), B_2(\nu), \tilde{B}_2(\nu)$ on the minimax EER, as well as the asymptotic behavior of the minimax EER itself.

Theorem 2.16.

$$\frac{c_{\infty}}{\sqrt{\nu}} \sim \inf_L \sup_D \mathfrak{R}(L, D) \geq B_0(m, d) \geq B_1(\nu) \geq B_2(\nu) \geq \tilde{B}_2(\nu) \sim \frac{c_{\infty}}{\sqrt{\nu}} \quad (2.34)$$

as m and d vary in any way such that $\nu = m/d \to \infty$.

Thus, in view of (2.2), the limit relation in (2.1) holds and, moreover, all the lower bounds $B_0(m, d), B_1(\nu), B_2(\nu), \tilde{B}_2(\nu)$ on the minimax EER are asymptotically equivalent to the minimax EER itself whenever $\nu = m/d \to \infty$. Clearly, Theorem 2.16 complements Theorem 2.4.
3. Proofs

In this section, we shall prove (or provide details for) Theorems 2.2 and 2.6, Proposition 2.8, Theorem 2.11, Proposition 2.13, Remark 2.14, Proposition 2.15, Theorems 2.4 and 2.16 (together), and finally Theorem 2.1, in this order.

Proof of Theorem 2.2. The first equality in (2.13) can be obtained using the von Neumann minimax duality theorem for bilinear functions on the product of simplexes [23] (plus a certain symmetrization argument): more general minimax duality theorems, for convex-concave-like functions, were given in [21], and in [17] a necessary and sufficient condition for the minimax duality for such functions was given.

However, here we are going to offer a more direct and explicit argument, using the explicit form of the to-be-proved-minimax decision rule \(L^* \), as defined in (2.11).

To gain some insight, let us begin with the simple case \(d = 1 \). In that case, \(\mathcal{X} = [d] = [1] = \{1\}, p = (1) \) (that is, \(p_1 = 1 \)) and \(\beta = (b) \) with \(b := \beta_1 \in [-1, 1] \); also, in the just mentioned definition (2.11) of \(L^* \), the terms \(x, v_x, i_x, \) and \(n_x \) simplify, respectively, to 1, \(v_1 = \sum_{i=1}^{m} y_i, 1, \) and \(n_1 = m, \) in accordance with the definitions of \(v_x, i_x, \) and \(n_x \) in (2.8) and (2.12). Here we also have \(X_i = 1 \) for all \(i \) and hence, in view of (2.4) and (2.3), \(Z_m^b := [(1, Y_1^b), \ldots, (1, Y_m^b)] \)

in distribution, where the \(Y_i^b \)'s are as in the statement of Theorem 2.2.

A standard argument (see e.g. [7, §1.8]) shows that \(L^* \) is an optimal Bayesian decision rule, in the sense of being a minimizer of the average \(\frac{1}{2} \sum_{y \in \mathcal{Y}} P(L(Z_m^b, U)(1) \neq y) \) of the types I and II error probabilities over all \(L \in \mathcal{L}_{\text{rand}, 1} \), that is, over all randomized learning algorithms \(L \) for \(d = 1 \). By symmetry, without loss of generality \(b \geq 0, \) and so, \(b \in [0, 1]. \) Then for the corresponding Bayes risk, given by the expression \(\frac{1}{2} \sum_{y \in \mathcal{Y}} P(L^*(Z_m^b, U)(1) \neq y), \) for \(m \geq 1 \) one has

\[
2 \cdot \frac{1}{2} \sum_{y \in \mathcal{Y}} P_L(L(Z_m^b, U)(1) \neq y) \\
\geq 2 \cdot \frac{1}{2} \sum_{y \in \mathcal{Y}} P(L^*(Z_m^b, U)(1) \neq y) \\
= P(V_m^b < 0) + P(V_m^b = 0, Y_1^b < 0) + P(V_m^b > 0) + P(V_m^-b = 0, Y_1^-b > 0) \\
= P(V_m^b < 0) + P(V_m^b = 0) + P(V_m^-b > 0) = P(V_m^b \leq 0) + P(V_m^-b > 0) \\
= 1 - (P(V_m^b > 0) - P(V_m^-b > 0)) = 2 \text{bayes}(m, b),
\]

in accordance with (2.16) (implying, in particular, that \((Y_1^-b, V_m^-b) \) equals \((-Y_1^b, -V_m^b) \) in distribution), (2.14), (2.15), and the assumption \(b \in [0, 1] \) (which implies \(P(V_m^b > 0) \geq P(V_m^-b > 0), \) since \(Y_i^b \) is stochastically increasing in \(b \)).
Thus, the Bayes risk $\frac{1}{2} \sum_{y \in \mathcal{Y}} P(L^*_1,\text{ERM}(Z^{b}_m, U)(1) \neq y)$ equals $\text{bayes}(m, b)$ for $b \in [0, 1]$ and $m \geq 1$. This conclusion also trivially holds for $m = 0$ (in which case $\text{bayes}(m, b) = \frac{1}{2}$).

Moreover, for each $m \in [0, \infty)$, the Bayes rule L^*_1,ERM is a risk equalizer, in the sense that

$$\text{for } b \in [0, 1] \text{ and } y \in \{-1, 1\}, \quad P(L^*_1,\text{ERM}(Z^{b}_m, U)(1) \neq y) = \text{bayes}(m, b),$$

(3.3)

which does not depend on the choice of y; this conclusion follows because (i) $(L^*_1,\text{ERM})((Z^{b}_m)^-, -U) = -L^*_1,\text{ERM}(Z^{b}_m, U)$, where $(Z^{b}_m)^- := ((1, -Y^{b}_1), \ldots, (1, -Y^{b}_k), -U)$, and (ii) the distribution of $(Y^{b}_1, \ldots, Y^{b}_k, -U)$ is the same as that of $-(Y^{b}_1, \ldots, Y^{b}_k, U)$.

Let us now proceed to the general case of any natural d, which in a sense reduces to the case $d = 1$. Take any $m \in [0, \infty)$, any randomized learning algorithm $L : (\mathcal{X} \times \mathcal{Y})^m \times [-1, 1] \to \mathcal{H}$, any $p \in [0, 1]^d$ such that $\sum_{x \in [d]} p_x = 1$, and any $\beta \in [-1, 1]^d$. For each $x \in [d]$, introduce the random set

$$\mathcal{J}^p_x := \{i \in [m] : X^p_i = x\}$$

(3.4)

and its cardinality

$$\mathcal{N}^p_x := \text{card } \mathcal{J}^p_x.$$
(3.5)

Then, by (2.10),

$$\mathcal{R}_m(L; p, \beta) = \sum_{x=1}^{d} p_x |\beta_x| \sum_{k=0}^{m} P(L(Z^{p, \beta}_m, U)(x) \neq h_\beta(x), \mathcal{N}^p_x = k).$$

(3.6)

Next, take any $x \in [d]$ and any $k = 0, \ldots, m$. Then

$$P(L(Z^{p, \beta}_m, U)(x) \neq h_\beta(x), \mathcal{N}^p_x = k)$$

$$= \sum_{J \in \binom{[m]}{k}} P(L(Z^{p, \beta}_m, U)(x) \neq h_\beta(x), \mathcal{J}^p_x = J),$$

(3.7)

where $\binom{[m]}{k} := \{J \subseteq [m] : \text{card } J = k\}$.

Further, take any set $J \in \binom{[m]}{k}$. Writing J as $\{i_1, \ldots, i_k\}$ with $i_1 < \cdots < i_k$, let $X^p_J := (X^p_{i_1}, \ldots, X^p_{i_k})$, and similarly define $Y^{p, \beta}_J$, $Y^{p, \beta}_J$, and $Y^{p, \beta}_J$, where $J^c := [m] \setminus J$. Let also $Z^{p, \beta}_J := (X^p_J, Y^{p, \beta}_J)$. For any $x \in \mathcal{X}$, let $x^J := (x, \ldots, x) \in \mathcal{X}^k$ and $\mathcal{Z}^x := (\mathcal{X} \setminus \{x\}) \times \mathcal{Y}$. Then, in view of (2.5),

$$P(L(Z^{p, \beta}_m, U)(x) \neq h_\beta(x), \mathcal{J}^p_x = J)$$

$$= \sum_{z \in \mathcal{Z}^{x^J}} P(L(Z^{p, \beta}_m, U)(x) \neq \text{sgn}_x \beta_x X^p_J = x^J, Z^{p, \beta}_J = z) P(X^p_J = x^J, Z^{p, \beta}_J = z).$$

(3.8)
(Here and in what follows, to simplify the writing, we neglect the possibility
that \(P(X^p_j = x^j, Z^p_{j^*} = z) \) may equal 0. Of course, in such cases we may let the
 corresponding conditional probabilities in (3.8) take whatever values deemed
most suitable for us at any given point.)

By (3.6), (3.7), and (3.8),

\[
\mathfrak{R}_m(L; p, \beta) = \sum_{x, k, j, z} p_x |\beta_x| P\left(L(Z^p_m, U) (x) \neq \text{sgn} \beta_x | X^p_j = x^j, Z^p_{j^*} = z \right) \times P\left(X^p_j = x^j, Z^p_{j^*} = z \right),
\]

where \(\sum x, k, j, z := \sum_{x=1}^{d} \sum_{k=0}^{m} \sum_{j \in \{\mbox{m} \}} \sum_{z \in \mathbb{X}^{m-k} \} \) , and, moreover, the sum

\[
\sum_{j, z} P\left(X^p_j = x^j, Z^p_{j^*} = z \right) = P(X^p_x = k)
\]

(3.10)

(where \(\sum_{j, z} := \sum_{j \in \{\mbox{m} \}} \sum_{z \in \mathbb{X}^{m-k} \} \) does not depend on \(\beta \). To quickly see why identity

(3.10) holds, look back at (3.7) and (3.8), with the event \(\{ L(Z^p_m, U) (x) \neq E_{\beta}(x) \} \) replaced there by an event of probability 1.

Since \((X^p_1, Y^p_1, \ldots, (X^p_m, \ldots, (X^p_p, Y^p) \), \(U \) are independent, for any \(L \in \mathscr{L}_{\text{rand}}, x \in \{d \}, k \in \{0, m \}, J \in \{\mbox{m} \}, z \in \mathbb{X}^{m-k} \), and \(p \in [0, 1]^d \) such that \(\sum_{x=1}^{d} p_x = 1 \), the conditional probability \(P\left(L(Z^p_m, U) (x) \neq \text{sgn} \beta_x | X^p_j = x^j, Z^p_{j^*} = z \right) \) in (3.8) depends on \(\beta \) only through \(\beta_x \), whereas the unconditional probability \(P\left(X^p_j = x^j, Z^p_{j^*} = z \right) \) in (3.8) depends on \(\beta \) only through \(\beta \in \mathbb{X}^{m-k} \) — the restriction of the function \(\beta \) to the subset \(\mathbb{X}^{m-k} \) of the set \(\mathbb{X}^{m-k} \). So, introducing

the averaging operators

\[
\text{ave} \sigma := \frac{1}{2^d} \sum_{\sigma \in \{-1, 1\}^d \}, \quad \text{ave}_{\sigma, x} := \frac{1}{2^{d-1}} \sum_{\sigma, x \in \{-1, 1\}^{m-k} \} \},
\]

in view of (3.9) one has

\[
\text{ave}_{\sigma} \mathfrak{R}_m(L; p, |\beta| \sigma) = \sum_{x, k, j, z} p_x |\beta_x| \text{ave}_{\sigma} P\left(L(Z^p_m |\beta| \sigma, U) (x) \neq \sigma_x | X^p_j = x^j, Z^p_{j^*} |\beta| \sigma = z \right) \times \text{ave}_{\sigma, x} P\left(X^p_j = x^j, Z^p_{j^*} |\beta| \sigma = z \right).
\]

(3.11)

Recall that the random pairs \((X^p_1, Y^p_1, \ldots, (X^p_m, \ldots, (X^p_p, Y^p) \) are independent copies of the random pair \((X^p, Y^p) = (X^D, Y^D) \) satisfying condition (2.3),
and the r.v. \(U \) is independent of these pairs. So, for any \(x \in \{d \}, k \in \{0, m \}, J \in \{\mbox{m} \}, z \in \mathbb{X}^{m-k} \), and \(p \in [0, 1]^d \) such that \(\sum_{x=1}^{d} p_x = 1 \), the conditional distribution of \((Y^p, U) \) given \(X^p_j = x^j \) and \(Z^p_{j^*} = z \) is the same
as the distribution of \((Y_1^{\beta_1}, \ldots, Y_k^{\beta_k}, U)\), where the \(Y_i^{\beta_i}\)'s are again as in the statement of Theorem \ref{thm:2}. Therefore, in view of (3.2), for each \(x \in [d]\), each \(z = ((x_{k+1}, y_{k+1}), \ldots, (x_m, y_m)) \in \mathcal{Z}_m^{m-k}\), and \(J = [k]\),

\[
\text{ave}_{\sigma_x} \mathbb{P}(L(Z_k^{\beta_\|\sigma\|}, U)(x) \neq \sigma_x | X^p_j = x^J, Z_{J^c}^{\beta_\|\sigma\|} = z) = \text{ave}_{\sigma_x} \mathbb{P}(L(Z_k^{\beta_\|\sigma\|}, U)(1) \neq \sigma_x) \geq \text{bayes}(k, |\beta_x|),
\]

where \(Z_k^p\) is as in (3.1) and \(L_x: ([1] \times \mathcal{Y}^k \times [-1, 1] \to \{-1, 1\}^{|I|}\) is the randomized learning algorithm (for the case \(Z = U\) as the distribution of \((X, Y)\)).

\[
P(L^*_\text{ERM}(Z_m^p, \beta_\|\sigma\|, U)(x) \neq \sigma_x | X^p_j = x^J, Z_{J^c}^{\beta_\|\sigma\|} = z) = \text{bayes}(k, |\beta_x|)
\]

for each \(x \in [d]\) and each \(\sigma_x \in \{-1, 1\}\), and hence the average of the left-hand side (l.h.s.) of (3.13) over \(\sigma_x \in \{-1, 1\}\) equals \(\text{bayes}(k, |\beta_x|)\) as well. Note also that \(P(X^p_j = x^J, Z_{J^c}^{\beta_\|\sigma\|} = z)\) does not depend on \(L\). So, collecting identity (3.11), its counterpart with \(L^*_\text{ERM}\) in place of \(L\), (3.12), and identity (3.13) with its l.h.s. replaced by the average of that l.h.s. over \(\sigma_x \in \{-1, 1\}\), we see that

\[
\text{ave}_{\sigma_x} \mathcal{R}_m(L; p, |\beta\|\sigma\|) \geq \text{ave}_{\sigma_x} \mathcal{R}_m(L^*_\text{ERM}; p, |\beta\|\sigma\|).
\]

Moreover, by (3.9) with \(L^*_\text{ERM}\) in place of \(L\), (3.13) with \(\sigma = \text{sgn} \beta\), and (3.10),

\[
\mathcal{R}_m(L^*_\text{ERM}; p, \beta) = \sum_{x,k,J,z} p_x |\beta_x| \text{bayes}(k, |\beta_x|) \mathbb{P}(X^p_j = x^J, Z_{J^c}^{\beta_\|\sigma\|} = z)
\]

which proves (2.17) and the second equality in (2.13) (here one may recall the definition of \(\mathcal{R}_m(L; p, \beta)\) in (2.10)). We also see that \(\mathcal{R}_m(L^*_\text{ERM}; p, \beta)\) depends
on β only through $|\beta|$. This and (3.14) yield

$$\max_{\sigma \in (-1,1)^d} \mathfrak{R}_m(L^*_{m, ERM}; p, |\beta|\sigma) = \ave \mathfrak{R}_m(L^*_{m, ERM}; p, |\beta|\sigma)$$

$$= \sum_{x=1}^d p_x |\beta_x| \ave \mathbb{E}(N^p_x, |\beta_x|) \leq \ave \mathfrak{R}_m(L; p, |\beta|\sigma) \leq \max_{\sigma \in (-1,1)^d} \mathfrak{R}_m(L; p, |\beta|\sigma).$$

Taking now $\sup_{p, \beta}$, we see that $\sup_D \mathfrak{R}_m(L^*_{m, ERM}, D) \leq \sup_D \mathfrak{R}_m(L, D)$ for all L, which proves the first inequality in (2.13). This completes the proof of Theorem 2.2.

Proof of Theorem 2.6. This theorem follows immediately from (3.14) and (3.15) by taking there $p_x = \frac{1}{d}$ for all $x \in [d]$ and any $\beta \in \{-b, b\}^d$. □

Proof of Proposition 2.8. By (2.14)–(2.15), $\mathbb{E}(k, b) = 1/2$ for all $k = 0, 1, \ldots$ if $b = 0$. Suppose now that $b \in (0, 1]$. Letting $b \to \infty$ and using the law of large numbers, in view of (2.16) we have $\frac{1}{k} V_k^b \to \mathbb{E}Y_k^b = b > 0$ in probability. So, $P(V_k^b > 0) \to 1$; similarly, $P(V_k^{-b} > 0) \to 0$. Recalling (2.14)–(2.15) again, we see that $\mathbb{E}(k, b) \to 0$. So, by Lemma A.1 in Appendix A, $\mathbb{E}(k, b)$ is convex and nonincreasing in $k \in \{0, 1, 3, 5, \ldots\}$, for each $b \in [0, 1]$. It remains to use relations (A.9) and (A.7) in Appendix A and, again, (2.14). □

Proof of Theorem 2.11. The first inequality in (2.28) comes from (2.26). The second inequality in (2.28) follows immediately from Lemma A.3 with $\kappa = \nu$ and $b = z_*/\sqrt{\nu}$. The inequality in (2.29) holds because, by Lemma A.2, $C_i > 1$ and, by the paragraph containing (2.27), $c_\infty = \frac{z_*/\sqrt{\nu}}{2} (1 - \text{erf}(z_*/\sqrt{2}))$. The last equality in (2.29) follows by (A.12). The inequalities in (2.30) follow immediately from (2.28), (2.29), and (A.13). □

Proof of Proposition 2.13. By (2.25), (2.14), and (A.9),

$$\overline{\text{bayes}}(\nu) = \begin{cases} \frac{1}{\nu} (1 - \nu b) & \text{if } 0 < \nu \leq 1, \\ \frac{1}{\nu} (4 + b^3 (\nu - 1) - b(3 + \nu)) & \text{if } 1 \leq \nu \leq 3. \end{cases}$$

Recalling now (2.26) and using the values $b = 1$ for $\nu \in (0, \frac{1}{2}]$, $b = \frac{1}{2\nu}$ for $\nu \in \left[\frac{1}{2}, 1\right]$, and $b = \frac{1}{4\nu} (17 - 2\nu)$ for $\nu \in [1, 3]$, one obtains (2.32). □

Details on Remark 2.14. The inequality $\hat{B}_2(\nu) > B_1(\nu) - 2 \times 10^{-6}$ for all $\nu \in [1, 3]$, mentioned in that remark, can be verified, e.g., by issuing the Mathematica command

```math
Reduce[b 1/8 (4 + b^3 (\nu - 1) - b (3 + \nu)) - hB2[\nu] >= 2 \times 10^{-6} && 1 <= \nu <= 3 && 0 <= b <= 1], where hB2[\nu] stands for \hat{B}_2(\nu).
```

This command then outputs `False`, which means that indeed $B_1(\nu) = \max_{0 \leq b \leq 1} \overline{\text{bayes}}(\nu)$ if $0 \leq b \leq 1$, where $\overline{\text{bayes}}(\nu) = \max_{0 \leq b \leq 1} \frac{1}{\nu} (4 + b^3 (\nu - 1) - b(3 + \nu)) < \hat{B}_2(\nu) + 2 \times 10^{-6}$. □

Proof of Proposition 2.15. The first inequality in (2.33) holds by (2.21). Take now any $b \in (0, 1]$. From (A.5), Lemma A.2, and inequality $S_k(b) \leq b$, it follows that

$$s_k(b) \leq b \sqrt{k}$$

(3.16)
for odd natural k. By (A.7), inequality (3.16) holds for even natural k as well, and it trivially holds for $k = 0$. Using now the definition of $B_0(m, d)$ in (2.21) together with (2.14), (3.16), and Jensen’s inequality, noticing that $\frac{1}{2\sqrt{\nu}} \in (0, 1]$ if $\nu \geq \frac{1}{4}$, and substituting $\frac{1}{2\sqrt{\nu}}$ for b, one has

$$B_0(m, d) \geq b \mathbb{E}\text{bayes}(N, b) \geq \frac{b}{2} (1 - b \mathbb{E}\sqrt{N}) \geq \frac{b}{2} (1 - b \sqrt{\nu}) = \frac{0.125}{\sqrt{\nu}},$$

in the case when $\nu \geq \frac{1}{4}$. It remains to consider the case when $\frac{1}{4} > \nu \geq \frac{3}{41}$. Then, by (2.26) and (2.32),

$$B_0(m, d) \geq B_1(\nu) = \frac{b}{2} (1 - \nu) > \frac{0.125}{\sqrt{\nu}},$$

which completes the proof of Proposition 2.15. \hfill \Box

Proof of Theorems 2.4 and 2.16. The two inequalities in (2.18) are trivial. The first, second, third, and fourth inequalities in (2.34) were already established as the inequalities in (2.21), the second inequality in (2.26), the second inequality in (2.28), and the first inequality in (2.30), respectively. The second asymptotic equivalence in (2.34) follows immediately from (2.30) and (2.31).

So, in view of (2.13), it suffices to show that (2.19) holds and

$$B(m, d) \gtrsim \frac{c_\infty}{\sqrt{\nu}},$$

where, as usual, $A \lesssim B$ means $\lim\sup A/B \leq 1$.

In this proof, all the limit relations are stated for $\nu = m/d \to \infty$ and all the other relations are stated under the condition that ν is large enough.

By (2.10), (2.7), (2.20), and (2.5),

$$\mathcal{R}(L_{\text{ERM}}; p, \beta) \leq \sum_{x=1}^{d} p_{x} |\beta_{x}| \left[P(V_{x}^{p, \beta} \neq 0, \text{sgn } V_{x}^{p, \beta} \neq \text{sgn } \beta_{x}) + P(V_{x}^{p, \beta} = 0) \right].$$

(3.18)

Take now any $b \in [0, 1]$ and $k \in [0, \infty]$. In view of (2.16), V_{k}^{b} equals $-V_{k}^{-b}$ in distribution, and V_{k}^{b} is stochastically greater than V_{k}^{-b} (since $b \geq 0$). So, by the definition (2.14)–(2.15) of bayes(k, b),

$$\text{bayes}(k, b) = Q_-(k, b) + \frac{1}{2} Q_0(k, b),$$

(3.19)

where

$$Q_-(k, b) := P(V_{k}^{b} < 0) \quad \text{and} \quad Q_0(k, b) := P(V_{k}^{b} = 0).$$

(3.20)

Recalling the definition of the random pairs $(X_{1}^{p}, Y_{1}^{p, \beta}), \ldots, (X_{m}^{p}, Y_{m}^{p, \beta})$ in the paragraph containing (2.3) and (2.4), the definition of the random set \mathcal{F}_{x}^{p}
in (3.4), and the definition of the Y_i^{b}’s in Theorem 2.2, we see that, for any $J \in \binom{[m]}{k}$, the conditional distribution of $(Y_i^{p,\beta})_{i \in J}$ given the event $\{J_i^{p} = J\} = \{X_i = x \ \forall i \in J\} \cup \{X_i \neq x \ \forall i \in J^c\}$ is the same as the distribution of $(Y_1^{\beta_x}, \ldots, Y_k^{\beta_x})$.

Therefore, if $\beta_x > 0$ for some $x \in [d]$, then, in view of (3.5), (2.20), and (3.19),

$$P(V_i^{p,\beta} \neq 0, \text{sgn} V_i^{p,\beta} \neq \text{sgn} \beta_x) = P(V_i^{p,\beta} < 0)$$

$$= \sum_{k=0}^{m} P(V_i^{p,\beta} < 0, N_i^{p} = k)$$

$$= \sum_{k=0}^{m} \sum_{J \in \binom{[m]}{k}} P \left(\sum_{i \in J} Y_i^{p,\beta} < 0, J_i^{p} = J \right)$$

$$= \sum_{k=0}^{m} \sum_{J \in \binom{[m]}{k}} P \left(\sum_{i=1}^{k} Y_i^{\beta_x} < 0 \right) P(J_i^{p} = J)$$

$$= \sum_{k=0}^{m} P \left(\sum_{i=1}^{k} Y_i^{\beta_x} < 0 \right) P(N_i^{p} = k)$$

$$= \mathbb{E} Q_-(N_i^{p}, |\beta_x|) = \mathbb{E} \text{bayes}(N_i^{p}, |\beta_x|) - \frac{1}{2} \mathbb{E} Q_0(N_i^{p}, |\beta_x|).$$

Similarly, the latter expression, $\mathbb{E} \text{bayes}(N_i^{p}, |\beta_x|) - \frac{1}{2} \mathbb{E} Q_0(N_i^{p}, |\beta_x|)$, for $P(V_i^{p,\beta} \neq 0, \text{sgn} V_i^{p,\beta} \neq \text{sgn} \beta_x)$ holds when $\beta_x < 0$ as well. On the other hand, it is similarly seen that

$$\mathbb{E} Q_0(N_i^{p}, |\beta_x|) = P(V_i^{p,\beta} = 0).$$

Thus, (3.18) yields

$$\mathcal{R}(L_{\text{ERM}}; p, \beta) \leq \sum_{x=1}^{d} p_x |\beta_x| \mathbb{E} \text{bayes}(N_i^{p_x}, |\beta_x|) + \frac{1}{2} \sum_{x=1}^{d} p_x |\beta_x| \mathbb{E} Q_0(N_i^{p_x}, |\beta_x|).$$

In particular, in view of (2.13), this implies the second inequality in (2.19); the first inequality there is trivial.

Now, to complete the proof of (2.19) and Theorem 2.16, it remains to verify (3.17) and

$$\sup_{p, \beta} \sum_{x=1}^{d} p_x |\beta_x| \mathbb{E} Q_0(N_i^{p_x}, |\beta_x|) \leq O(1/\nu). \quad (3.21)$$

Take any $b \in (0, 1]$ and any natural $k \geq 3$, so that, by (A.3) and (A.2),
$q := q_k \geq 1 > 0$. Note that $s_k(1) = 1$. Hence, by (2.14) and (A.5),

$$\text{bayes}(k, b) = \frac{1}{2} (1 - s_k(b)) = \frac{1}{2} (s_k(1) - s_k(b)) = \frac{1}{2} s'_k(0) (S_q(1) - S_q(b))$$

$$= \frac{1}{2} s'_k(0) \int_b^1 (1 - u^2)^q \, du \leq \frac{1}{2} s'_k(0) \int_1^1 e^{-qu^2} \, du \leq \frac{1}{2} s'_k(0) \int_b^\infty e^{-qu^2} \, du$$

$$= A_k (1 - \text{erf}(b\sqrt{q})), \quad (3.22)$$

where $A_k := \frac{s'_k(0)\sqrt{\pi}}{4\sqrt{q}} \to \frac{1}{2}$ as $k \to \infty$, by Lemma A.2 and (A.6). Therefore, for $z := b\sqrt{2q}$ one has

$$b \text{bayes}(k, b) \leq \lambda_k \frac{z}{\sqrt{k}} \left(1 - \text{erf}(z/\sqrt{2}) \right) \leq c_\infty \frac{\lambda_k}{\sqrt{k}} \quad (3.23)$$

by (2.1), where

$$\lambda_k := 2A_k \sqrt{\frac{k}{2q}} \to 1 \quad (3.24)$$

as $k \to \infty$.

Take now any $\varepsilon \in (0, 1)$. In view of (3.23) and the first part of Remark 2.3,

$$b \text{bayes}(k, b) \leq \frac{A}{\sqrt{k} + 1} \quad (3.25)$$

for some real $A > 0$, all $b \in [0, 1]$, and all $k = 0, 1, \ldots$. Since the r.v. N^p_x has the binomial distribution with parameters m and p_x,

one has the following well-known inequality:

$$P(N^p_x \leq (1 - \varepsilon)m p_x) \leq e^{-\varepsilon^2mp_x/2};$$

see e.g. [4, Exercise 2.9]; also, this inequality immediately follows from the more general and precise results in [16, (1.3) or (2.31)] or [18, Theorem 7].

Therefore,

$$S_{01} := \sum_{x=1}^d p_x E \left[\frac{1}{\sqrt{N^p_x + 1}} I\{N^p_x \leq (1 - \varepsilon)m p_x\} \right]$$

$$\leq \sum_{x=1}^d p_x P(N^p_x \leq (1 - \varepsilon)m p_x) \leq \sum_{x=1}^d p_x e^{-\varepsilon^2mp_x/2} \leq \sum_{x=1}^d a_\varepsilon \frac{1}{m} = a_\varepsilon \frac{d}{m}, \quad (3.26)$$

where $a_\varepsilon := \frac{2}{\varepsilon^2} \sup_{u>0} u e^{-u} = \frac{2}{\varepsilon^2}$, which depends only on ε. Also,

$$S_{02} := \sum_{x=1}^d p_x E \left[\frac{1}{\sqrt{N^p_x + 1}} I\{N^p_x \geq (1 - \varepsilon)m p_x\} \right]$$

$$\leq \sum_{x=1}^d p_x \frac{1}{\sqrt{(1 - \varepsilon)m p_x + 1}} \leq \sum_{x=1}^d \frac{\sqrt{p_x}}{\sqrt{(1 - \varepsilon)m}} \leq \frac{1}{\sqrt{1 - \varepsilon}} \sqrt{\frac{d}{m}} ; \quad (3.27)$$
the last inequality here is obtained using the concavity of the square root function together with the condition \(\sum_{x=1}^{d} p_x = 1 \). Thus, by (3.26) and (3.27),

\[
\sum_{x=1}^{d} p_x \mathbb{E} \frac{1}{\sqrt{N_x^p} + 1} = S_{01} + S_{02} \leq \frac{1}{1 - \varepsilon} \sqrt{\frac{d}{m}} \tag{3.28}
\]

(if \(m/d \) is large enough, depending on \(\varepsilon \); recall the framed convention on page 21).

In view of (3.25),

\[
S_{11} := \sum_{x=1}^{d} p_x |\beta_x| \mathbb{E} \text{bayes}(N^p_x, |\beta_x|) I\{N^p_x > (1 - \varepsilon)mp_x\} I\{p_x \leq \varepsilon/d\}
\leq \sum_{x=1}^{d} p_x \frac{A}{\sqrt{N^p_x + 1}} I\{N^p_x > (1 - \varepsilon)mp_x\} I\{p_x \leq \varepsilon/d\}
\leq A \sum_{x=1}^{d} \frac{\sqrt{p_x}}{(1 - \varepsilon)mp_x + 1} I\{p_x \leq \varepsilon/d\} \leq A \sum_{x=1}^{d} \frac{\sqrt{p_x}}{(1 - \varepsilon)m} I\{p_x \leq \varepsilon/d\}
\leq A \sqrt{\frac{\varepsilon}{1 - \varepsilon}} \sqrt{\frac{d}{m}}.
\]

Next, taking into account (3.23), (3.24), and (3.27), one has

\[
S_{12} := \sum_{x=1}^{d} p_x |\beta_x| \mathbb{E} \text{bayes}(N^p_x, |\beta_x|) I\{N^p_x > (1 - \varepsilon)mp_x\} I\{p_x > \varepsilon/d\}
\leq \sum_{x=1}^{d} p_x |\beta_x| \mathbb{E} \text{bayes}(N^p_x, |\beta_x|) I\{N^p_x > (1 - \varepsilon)mp_x\} I\{N^p_x > (1 - \varepsilon)\varepsilon m/d\}
\leq \sum_{x=1}^{d} p_x (1 + \varepsilon) c_\infty \mathbb{E} \frac{1}{\sqrt{N^p_x + 1}} I\{N^p_x > (1 - \varepsilon)mp_x\} = (1 + \varepsilon) c_\infty S_{02}
\leq (1 + \varepsilon) c_\infty \sqrt{\frac{d}{1 - \varepsilon}} \sqrt{\frac{d}{m}}.
\]

So,

\[
S_1 := \sum_{x=1}^{d} p_x |\beta_x| \mathbb{E} \text{bayes}(N^p_x, |\beta_x|) I\{N^p_x > (1 - \varepsilon)mp_x\} = S_{11} + S_{12}
\leq \frac{(1 + A_1 \sqrt{\varepsilon}) c_\infty}{\sqrt{1 - \varepsilon}} \sqrt{\frac{d}{m}} \tag{3.29}
\]

for some universal real constant \(A_1 > 0 \).
On the other hand, by (3.25) and (3.26),

\[
S_2 := \sum_{x=1}^{d} p_x |\beta_x| E_{bayes}(N^p_x, |\beta_x|) \mathbb{I}\{N^p_x \leq (1 - \varepsilon)mp_x\} \leq AS_{01} \leq Aa \varepsilon d m \leq \varepsilon \sqrt{d/m}.
\]

Combining this with (3.29), we conclude that

\[
\sum_{x=1}^{d} p_x |\beta_x| E_{bayes}(N^p_x, |\beta_x|) = S_1 + S_2 \leq (1 + A_2 \sqrt{\varepsilon})c_\infty \sqrt{1 - \varepsilon} \sqrt{d/m} (3.30)
\]

for some universal real constant \(A_2 > 0 \). Thus, letting here \(\varepsilon \) be arbitrarily small and recalling the definition of \(B(m, d) \) in (2.13), we complete the proof of the asymptotic relation (3.17).

To complete the proof of Theorems 2.4 and 2.16, let us finally verify (3.21).

If \(k = 2j \) is even then, by (3.20),

\[
bQ_0(k, b) = \left(\frac{2j}{j} \right) \frac{1}{4^j} b(1 - b^2)^j \leq \frac{A_3}{\sqrt{k + 1}} b^{-b^2k/2} \leq \frac{A_4}{k + 1}
\]

for some universal real constants \(A_3 > 0 \) and \(A_4 > 0 \) and all \(b \in [0, 1] \); since \(Q_0(k, b) = 0 \) if \(k \) is odd, the above bound in fact holds for all \(k = 0, 1, \ldots \). So,

\[
\sum_{x=1}^{d} p_x |\beta_x| E_{Q_0}(N^p_x, |\beta_x|) \leq A_4 \sum_{x=1}^{d} p_x E \frac{1}{N^p_x + 1} \leq A_4 \left(a_\varepsilon + \frac{1}{1 - \varepsilon} \right) \frac{d}{m};
\]

the second inequality in the above display is obtained similarly to the inequality in (3.28). Thus, (3.21) is verified, and the proof of Theorems 2.4 and 2.16 is complete.

Proof of Theorem 2.1. Take any learning algorithm \(L \in \mathcal{L}_{\text{rand}} \). Take any \(b \in (0, 1) \) and then any \(\varepsilon \in (0, b) \) and any \(\beta \in \{-b, b\}^{[d]} \). Let \(D_\beta \) and \(Z^N_{m, \beta} \) be as in (2.22). Recall (2.6) and let \(\hat{\Delta} := \Delta(L(Z^N_{m, \beta}, U), D_\beta) \), so that \(\hat{\Delta} \leq b \). So, \(I\{\hat{\Delta} > \varepsilon\} \geq \frac{\psi_b(b - \varepsilon)}{b - \varepsilon} \), whence \(\mathbb{P}(\hat{\Delta} > \varepsilon) \geq \frac{1}{b - \varepsilon} (E \Delta^\beta - \varepsilon) \). Therefore, by (2.9), Theorem 2.6, Proposition 2.8, and Jensen’s inequality,

\[
\max_{\beta \in \{-b, b\}^{[d]}} \mathbb{P}(\hat{\Delta} > \varepsilon) \geq \frac{1}{2^d} \sum_{\beta \in \{-b, b\}^{[d]}} \mathbb{P}(\hat{\Delta} > \varepsilon) \geq \frac{1}{b - \varepsilon} \left(\frac{1}{2^d} \sum_{\beta \in \{-b, b\}^{[d]}} E \hat{\Delta}^\beta - \varepsilon \right) \geq \frac{b \text{bayes}(\nu, b) - \varepsilon}{b - \varepsilon}.
\]

Take now any \(\nu_* \in [3, \infty) \) and any real \(\nu \geq \nu_* \). Then, by Lemma A.3 and (A.13), \(\text{bayes}(\nu, b) \geq \frac{1}{2} (1 - \left(\frac{\nu_* + 1}{\nu_* - 1} \right)^{1/8} \psi_b(\nu)) \). Further, take any \(z \in (0, \sqrt{\nu_*}] \)
and \(w \in (0, z) \), and then take \(b = z/\sqrt{\nu} \) and \(\varepsilon = w/\sqrt{\nu} \), so that the conditions
\(b \in (0, 1] \) and \(\varepsilon \in (0, b) \) assumed in the beginning of this proof do hold. Then

\[
\max_{\beta \in \{-1, 1\}} \Pr \left(\frac{\Delta \beta}{\sqrt{\nu}} > \frac{w}{\sqrt{\nu}} \right) \geq \frac{1}{z - w} \left(\frac{z}{2} \left[1 - \left(\frac{i_{\nu_*} + 1}{i_{\nu_*}} \right)^{1/8} \frac{\operatorname{erf}(z/\sqrt{2})}{\exp\{-z^2/(8\nu_*)\}} \right] - w \right) =: P_{\text{low}}(w, \nu_*, z).
\]

It remains to note that
\[
P_{\text{low}}(\frac{1}{\sqrt{120}}, \frac{128}{10}, \frac{321}{1000}) > 0.238, \quad P_{\text{low}}(\frac{1}{\sqrt{120}}, 3, \frac{320}{1000}) > 0.227, \quad P_{\text{low}}(\frac{1}{\sqrt{413/10}}, \frac{128}{10}, \frac{681}{1000}) > 0.01563 > \frac{1}{64}, \quad \text{and} \quad P_{\text{low}}(\frac{1}{\sqrt{496/10}}, 3, \frac{601}{1000}) > 0.0159 > \frac{1}{64}.
\]

\[\square\]

Acknowledgments

We are pleased to thank Peter Grünwald for bringing the result of [2] to our attention, and the referees for carefully reading the paper and useful suggestions on the presentation.

Appendix A: Identities and inequalities for binomial distributions: details concerning the function \(\text{bayes}\)

Recall the definition of \(\text{bayes}\) in (2.14). Take any \(b \in [0, 1] \) and \(k \in 1, \infty \). By (2.15),

\[
s_k(b) = \frac{1}{2^k} \sum_{i=0}^{j} \binom{k}{i} \left[(1 + b)^{k-i}(1 - b)^i - (1 - b)^{k-i}(1 + b)^i \right], \quad (A.1)
\]

\[
j := j_k := \lfloor k/2 \rfloor. \quad (A.2)
\]

Using identities \((k - i) \binom{k}{i} = k \binom{k-1}{i-1}\) and \(i \binom{k}{i} = k \binom{k-1}{i-1}\), we have

\[
\frac{2^k}{k} s'_k(b) := \sum_{i=0}^{j} \binom{k-1}{i} \left[(1 + b)^{k-i-1}(1 - b)^i + (1 - b)^{k-i-1}(1 + b)^i \right]
- \sum_{i=1}^{j} \binom{k-1}{i-1} \left[(1 + b)^{k-i}(1 - b)^{i-1} + (1 - b)^{k-i}(1 + b)^{i-1} \right].
\]

Making in the second sum the substitution \(i = r + 1\), then replacing there \(r\) back by \(i\), and introducing

\[q := q_k := k - j - 1, \quad (A.3)\]

we have

\[
\frac{2^k}{k} s'_k(b) / \binom{k-1}{j} = (1 + b)^q(1 - b)^j + (1 - b)^q(1 + b)^j = 2(1 - b^2)^q, \quad (A.4)
\]
which is non-increasing in \(b \in [0, 1] \). So, the function \(s_k \) is concave.
Moreover, it follows that
\[
s_k(b) = s_k'(0)S_q(b), \quad \text{where} \quad S_q(b) := \int_0^b (1 - u^2)^q \, du. \tag{A.5}
\]
For all \(i \in [0, \infty) \), in view of (A.2), (A.3), and (A.4),
\[
q_{2i+2} = q_{2i+1} = i \quad \text{and} \quad s'_{2i+2}(0) = s'_{2i+1}(0) \tag{A.6}
\]
and hence, by (A.5), one has the curious, and useful, identity
\[
s_{2i+2}(b) = s_{2i+1}(b). \tag{A.7}
\]

We also have

Lemma A.1. Take any \(b \in (0, 1) \). Then the function
\[
\{0, 1, 3, 5, \ldots\} \ni k \mapsto \text{bayes}(k, b) \tag{A.8}
\]
is strictly convex.

Proof. In view of (2.14), it is enough to show that the function \(\{0, 1, 3, 5, \ldots\} \ni k \mapsto s_k(b) \) is strictly concave. By (A.1) and (A.2),
\[
s_0(b) = 0, \quad s_1(b) = b, \quad s_3(b) = \frac{1}{2} (3b - b^3) < 3s_1(b). \tag{A.9}
\]
So, the restriction of the function in (A.8) to the set \(\{0, 1, 3\} \) is strictly concave.

It remains to show that the restriction of this function to the set \(\{1, 3, 5, \ldots\} \) is strictly concave. Take any \(i \in [0, \infty) \). We have to show that
\[
g(b) := \tilde{s}_i(b) + \tilde{s}_{i+2}(b) - 2\tilde{s}_{i+1}(b) < 0,
\]
where
\[
\tilde{s}_i := s_{2i+1}. \tag{A.10}
\]
By (A.5), \(\tilde{s}'_i(b) = \tilde{s}'_i(0)(1 - b^2)\alpha > 0 \); here and in the rest of this proof, \(\alpha \) stands for an arbitrary nonnegative integer. So, \(g'(b) \) has the same sign as
\[
\frac{g'(b)}{\tilde{s}'_{i+1}(b)} \cdot 2(1 - b^2)(i + 2)(2i + 3) = -1 - 2(3 + 2i)w + (15 + 16i + 4i^2)w^2 =: g_1(w) \tag{A.11}
\]
where \(w := b^2 \). Since the function \(g_1 \) is convex, with \(g_1(0) = -1 < 0 \) and \(g_1(1) = 4(2 + 3i + i^2) > 0 \), it follows that \(g_1(w) \) switches exactly once in sign, from \(-\) to \(+\), as \(w \) increases from 0 to 1. That is, \(g(b) \) switches exactly once, from decreasing to increasing, as \(b \) increases from 0 to 1. Also, by (A.1) and (A.10), \(\tilde{s}_0(0) = 0 \) and \(\tilde{s}_\alpha(1) = 1 \), whence \(g(0) = 0 = g(1) \). Thus, indeed \(g(b) < 0 \) for all \(b \in (0, 1) \). \(\square \)
Lemma A.2. For $i \in [0, \infty)$, let
\[
C_i := \sqrt{\frac{\pi}{2}} \frac{s_{2i+1}(0)}{\sqrt{2i+1}} = \sqrt{\frac{\pi}{2}} \frac{(i+1/2)}{2^{2i}} \binom{2i}{i},
\] (A.12)
the latter equality following by (A.4) and (A.2).

Then C_i decreases from $\sqrt{\frac{\pi}{2}}$ to 1 as i increases from 0 to ∞, and for all $i \in [1, \infty)$
\[
C_i < \left(\frac{i+1}{i}\right)^{1/8}.
\] (A.13)

Proof. In this proof, it is assumed that $i \in [0, \infty)$. Let
\[
r_i := \frac{C_i}{C_{i+1}} = 2i + 2 \frac{\sqrt{2i+2}}{1} > 1.
\]
So, C_i indeed decreases in i. It is easy to check that $C_0 = \sqrt{\frac{\pi}{2}}$ and $C_i \to C_\infty := 1$
as $i \to \infty$.

It remains to verify inequality (A.13). Accordingly, assume through the end of this proof that $i \in [1, \infty)$. Then
\[
-1 + r_i^{-8} \left(1 - \frac{1}{(i+1)^2}\right) = \frac{96i^4 + 384i^3 + 560i^2 + 352i + 81}{256i(i+1)^4(i+2)} > 0,
\]
which shows that
\[
r_i < \left(1 - \frac{1}{(i+1)^2}\right)^{-1/8},
\]
whence
\[
C_i = C_\infty \prod_{\alpha=i}^{\infty} r_{\alpha} = \prod_{\alpha=i}^{\infty} r_{\alpha} < \prod_{\alpha=i}^{\infty} \left(1 - \frac{1}{(\alpha+1)^2}\right)^{-1/8}
= \prod_{\alpha=i}^{\infty} \left(\frac{\alpha}{\alpha+1}/\frac{\alpha+1}{\alpha+2}\right)^{-1/8} = \left(\frac{i+1}{i}\right)^{1/8},
\]
which completes the proof of Lemma A.2. □

Lemma A.3. Take any real $\kappa \geq 1$ and any $b \in [0, 1]$. Then
\[
\hat{\text{bayes}}(\kappa, b) \geq \frac{1}{2} \left(1 - C_i \psi_b(\kappa)\right),
\]
where $i_\kappa := \lfloor \frac{\kappa-1}{2} \rfloor$, C_i as in (A.12), and
\[
\psi_b(\kappa) := e^{b^2/6} \text{erf}(b \sqrt{\kappa/2}).
\]

Proof. For brevity, let $i := i_\kappa = \lfloor \frac{\kappa-1}{2} \rfloor$ and $k := 2i + 1$. Then $i \in [0, \infty)$, $k = 2i + 1 \leq \kappa < 2i + 3 = k + 2$, and so, by (2.25),
\[
\hat{\text{bayes}}(\kappa, b) = \frac{k+2-\kappa}{2} \text{bayes}(k, b) + \frac{\kappa-k}{2} \text{bayes}(k+2, b).
\] (A.14)
In view of (A.2) and (A.3), \(j_k = i = q_k = q \). It is well known and easily proved (cf. e.g. [13]) that all mixtures of log-convex functions are log-convex. Therefore and because the function \(q \mapsto e^{-qu^2} \) is log-convex, \(\tilde{S}_q(b) := \int_0^b e^{-qu^2} \, du \) is log-convex in real \(q \); that is, \(f(q) := \ln \tilde{S}_q(b) \) is convex in \(q \). [For readers’ convenience, a quick and direct way to verify the convexity of \(f \) is to see that for any real \(q_1, q_2 \) and any \(t \in (0, 1) \) the inequality \(f((1 - t)q_1 + tq_2) \leq (1 - t)f(q_1) + tf(q_2) \) can be rewritten as the instance of Hölder’s inequality \(\int_0^b F_1(u)F_2(u) \, du \leq (\int_0^b F_1(u)^p \, du)^{1/p} (\int_0^b F_2(u)^{p'} \, du)^{1/p} \) with \(F_1(u) := e^{-(1-t)u^2}, \ F_2(u) := e^{-tu^2}, \ p := \frac{1}{1-t}, \) and \(p' := \frac{1}{t} \).] So, \(\ln \frac{\tilde{S}_{q+1/2}(b)\tilde{S}_0(b)}{\tilde{S}_{1/2}(b)\tilde{S}_q(b)} = f(1/2) - f(q) - f(1/2) + f(0) = f_0^{1/2} [f'(q + u) - f'(u)] \, du \geq 0 \) for \(q \geq 0 \), since \(f'(u) \) is increasing in \(u \) (instead of the last equality here, one can also use inequality [8, (3.17.5)] with \(\phi = f, \ h = x = q/2 + 1/4 \) and \(h' = q/2 - 1/4 \) there). Recalling now (A.5) and using the elementary inequality \(1 - t \leq e^{-t} \) for real \(t \), we have

\[
S_q(b) \leq \tilde{S}_q(b) \leq \frac{\tilde{S}_{q+1/2}(b)\tilde{S}_0(b)}{\tilde{S}_{1/2}(b)\tilde{S}_q(b)} \leq \frac{\sqrt{\pi}}{2} \frac{\text{erf}(b\sqrt{q + 1/2})}{\sqrt{q + 1/2}} = \frac{\sqrt{\pi}}{2} \frac{1}{\sqrt{k}} \psi_b(k); \tag{A.15}
\]

here we used the inequality \(g(b) := \int_0^b e^{-u^2/2} \, du - be^{-b^2/6} > 0 \) for \(b > 0 \), which follows because \(g(0) = 0 \) and \(g'(b) = e^{-b^2/6}(e^{-b^2/3} - (1 - b^2/3)) > 0 \) for \(b > 0 \). So, in view of (2.14), (A.5), and (A.12), bayes\((k, b) \geq \frac{1}{2} \left(1 - C_i \psi_b(k) \right) \). Replacing here \(k \) by \(k + 2 \), one has

\[
\text{bayes}(k + 2, b) \geq \frac{1}{2} \left(1 - C_{i+1} \psi_b(k + 2) \right) \geq \frac{1}{2} \left(1 - C_i \psi_b(k + 2) \right);
\]

the last inequality here follows because, by Lemma A.2, \(C_i \) decreases in \(i \). Now (A.14) yields

\[
\overline{\text{bayes}}(k, b) \geq \frac{1}{2} - \frac{1}{2} \left[C_i \left(\frac{k+2}{2} - \frac{k}{2} \right) \psi_b(k) + \frac{k}{2} \psi_b(k + 2) \right] \geq \frac{1}{2} - \frac{1}{2} C_i \psi_b(k),
\]

the latter inequality following by the concavity of \(\psi_b(u) \) in \(u \geq 0 \). This completes the proof of Lemma A.3. \(\square \)

Appendix B: Simplified form of \(c_{m,d}^{1B} \)

Take any finite set \(\mathcal{X} \). Take then any hypothesis class \(\mathcal{H} \) with \(\text{VC}(\mathcal{H}) = d \). Let now \(\mathcal{X} \) be any subset of \(\mathcal{X} \) of cardinality \(d \) such that \(\mathcal{X} \) is shattered by
Clearly, for any learning algorithm \(L \in \mathcal{L}_{\mathcal{X}, \mathcal{Y}, \mathcal{H}} \) we have

\[
\sup_{D \in \mathcal{D}} \mathcal{R}_m(L, D) \geq \sup_{D \in \mathcal{D}} \mathcal{R}_m(L, \tilde{D}), \tag{B.1}
\]

where \(\mathcal{D}_{\mathcal{X}, \mathcal{Y}} \) is the set of all distributions \(D \in \mathcal{D} \) with support contained in the set \(\mathcal{X} \times \mathcal{Y} \) (and, recall, \(\mathcal{D} \) is the set of all distributions on \(\mathcal{X} \times \mathcal{Y} \)). Next, any distribution \(D \in \mathcal{D}_{\mathcal{X}, \mathcal{Y}} \) may be identified with the corresponding distribution, say \(\tilde{D} \), in \(\mathcal{D} \). Also, for any \(D \in \mathcal{D}_{\mathcal{X}, \mathcal{Y}} \), the value of \(\mathcal{R}_m(L, D) \) depends on \(L \) only through its restriction, say \(\tilde{L} \), to \((\mathcal{X} \times \mathcal{Y})^k \) — so that \(\mathcal{R}_m(L, D) = \mathcal{R}_m(\tilde{L}, \tilde{D}) \). Moreover, we may identify the finite set \(\mathcal{X} \) with the set \(\{1, \ldots, N\} \) for some natural \(N \geq d \), and then without loss of generality \(\mathcal{X} = \{d\} = \{1, \ldots, d\} \). Thus, for any finite set \(\mathcal{X} \) and any hypothesis class \(\mathcal{H} \) with \(\text{VC}(\mathcal{H}) = d \), it follows from (B.1) that

\[
\inf_{L \in \mathcal{L}_{\mathcal{X}, \mathcal{Y}, \mathcal{H}}} \sup_{D \in \mathcal{D}_{\mathcal{X}, \mathcal{Y}}} \mathcal{R}_m(L, D) \geq \inf_{\tilde{L} \in \mathcal{L}_{\mathcal{X}, \mathcal{Y}}} \sup_{\tilde{D} \in \mathcal{D}_{\mathcal{X}, \mathcal{Y}}} \mathcal{R}_m(\tilde{L}, \tilde{D}). \tag{B.2}
\]

The right-hand side (RHS) of (B.2) does not depend on \(\mathcal{X} \) or \(\mathcal{H} \), as long as \(\text{VC}(\mathcal{H}) = d \). So, by (1.10), \(c_{m,d}^{\text{LB}} / \sqrt{m/d} \geq \text{r.h.s. of (B.2)} \). The reverse of the latter inequality follows trivially from (1.10), since the set \(\{d\} \) is finite and \(\text{VC}(\mathcal{Y}^{\{d\}}) = d \). We conclude that \(c_{m,d}^{\text{LB}} / \sqrt{m/d} = \text{r.h.s. of (B.2)} \). Thus, (2.2) follows.

References

