In 2011, the Los Angeles Police Department (LAPD), in conjunction with other governmental and nonprofit groups, launched the Community Safety Partnership (CSP) in several public housing developments in Los Angeles. Following a relationship-based policing model, officers were assigned to work collaboratively with community members to reduce crime and build trust. However, evaluating the causal impact of this policy intervention is difficult given the notable differences between communities where CSP was implemented and the surrounding communities in South Los Angeles. In this paper, we use a novel data set based on the LAPD’s reported crime incidents and calls-for-service to evaluate the effectiveness of this program via augmented synthetic control models, a cutting-edge method for policy evaluation. We perform falsification analyses to evaluate the robustness of the results. In the public housing developments where it was first deployed, we find that CSP exhibited modest but statistically insignificant reductions in reported violent crime incidents, shots fired and violent crime calls-for-service, and Part I reported crime incidents. We do not find evidence of crime displacement from CSP regions to neighboring control regions.

1. Introduction. In 2011, the Los Angeles Police Department (LAPD) partnered with the Housing Authority of the City of Los Angeles, and the Urban Peace Institute to launch the Community Safety Partnership (CSP) (Rice and Lee, 2015). CSP was designed to address high levels of violent crime and the corrosive effects of multi-generational violent gangs entrenched in several Los Angeles public housing developments (PHDs). In Jordan Downs, Nickerson Gardens, and Imperial Courts, located in the Watts neighborhood of South Los Angeles, rivalries between gangs in the PHDs brought near daily conflict to the communities and allowed violent and property crime to thrive.

At its core, CSP was a rethinking of how to approach the problems of violent crime and gangs built around a relationship-based policing model. Two decades of heavy-handed crime suppression had succeeded in cultivating widespread distrust of police, but appeared to do little to blunt the control of gangs (Leap, 2020; Rice and Lee, 2015). CSP saw arrest-based crime suppression as a last resort and rather sought to have “police officers and residents work in mutually respectful partnership to identify and prevent crime” (LA Office of the Mayor, 2017). Funded by the LAPD and the Housing Authority of the City of Los Angeles, CSP recruited and trained a special group of officers for five-year assignments in the PHDs. CSP officers were tasked with “support[ing] community and youth programs, address[ing] quality of life issues and develop[ing] programs to address and reduce violent crimes” (LAPD News
In effect, CSP officers were to become invested members of the community, rather than simply an intervening force that shows up when there are problems.

The relationship-based model was expected to impact crime and disorder, while also improving trust between police and the public. The rationale was that the informal social networks linking CSP officers to community members make it easier to identify the problems that matter to community members (not just the police). Informal social networks allow police and community members to try out solutions together, in near real-time, blunting the potential that small problems metastasize into serious ones. The corollary is that solving smaller problems (and avoiding serious ones) helps to build trust in those informal social relationships and, by extension, the police-public partnership. The relationship-based model contrasts with other, established forms of community policing that most often rely on intermittent community meetings to identify problems, which then largely fall to police and other city agencies to solve (Skogan, 2006; Eck and Maguire, 2000). CSP is therefore akin to just-in-time adaptive interventions in health (Nahum-Shani et al., 2018), with the adaptive flexibility in CSP provided by the relationships formed between police and community members.

The communities participating in CSP exhibited reduced violent crime and improved relations with the police almost immediately, a fact that attracted considerable media attention (e.g. Siegler, 2013; Blackstone, 2014; Streeter, 2014). Though encouraging, it is critical to recognize that inferring causality is challenging under the circumstances. CSP was implemented in highly targeted communities and developed at a time when Los Angeles was experiencing an unprecedented decline in crime. Crime peaked in Los Angeles in 1992, a year which saw nearly 1,100 murders citywide. Los Angeles then experienced nearly two decades of falling violent and property crimes, while simultaneously adding a half-million new residents. At its lowest point in 2013, there were 251 homicides citywide, a 335% reduction from the earlier peak. Given the overall decrease in crime throughout the city, it is possible that crime would have fallen in CSP areas, even if the program had not existed. Given the significance surrounding policing reform in America, it is important to carefully consider the causal impact of community-policing programs such as the CSP.

To determine whether CSP actually reduced crime, we require knowledge of what crime and disorder would have been like in these communities had CSP not been implemented, i.e., the counterfactual. Here we aim to evaluate the causal impact of CSP using panel data: we have access to crime outcomes measured pre- and post-treatment across South Los Angeles communities that both participated in CSP (treated units) and did not participate in CSP (control units). We consider two common approaches to estimating causal effects using panel data, including difference-in-differences and synthetic control methods. As discussed in Section 4.2.1, the parallel trends assumption required for a difference-in-differences approach is not credible in this application and thus is not appropriate for this application. Therefore, we rely on an alternative approach designed for our data setting, the synthetic control method (SCM), in which there are relatively many pre-treatment time periods and one (or few) treated units.

Synthetic control methods, introduced in a series of seminal papers by Abadie and Gardeazabal (2003), Abadie, Diamond and Hainmueller (2010), and Abadie, Diamond and Hainmueller (2015), in effect, construct a counterfactual for the treated units using a weighted combination of “donor control units”, or control units that never receive treatment. While widely used in policy evaluations, these methods have until recently been infeasible in a number of important data settings. In particular, when SCM weights are constrained to the

1Figure S1 provides Los Angeles homicide counts from 1987 - 2017 (Federal Bureau of Investigation, 2021; Blumstein, Wallman and Farrington, 2006).
simplex, balancing on larger numbers of pre-treatment periods and incorporating additional observable covariates, this weighting becomes less feasible (Ferman and Pinto, 2019). Additionally, when treatment is implemented for more than one unit, one must find a principled way to pool the information across the SCMs (Ben-Michael, Feller and Rothstein, 2019). We follow O’Neill et al. (2016) and Robbins, Saunders and Kilmer (2017) and fully pool the treated units by considering the average treated unit.

We use a new technique, the augmented synthetic control method (ASCM) (Ben-Michael, Feller and Rothstein, 2021), to estimate the impact of CSP. ASCM is an innovative method that extends the powerful SCM approach to a data setting like ours, in which we have few treated units; many pre-treatment time periods with which to fit the data; and possible violations of the necessary causal identifying assumptions required by the original SCM. To address violations of the traditional SCM assumptions, such as imperfect pre-treatment fit of SCM weights, the ASCM uses an outcome model for bias adjustment, simultaneously minimizing the extrapolation from the control units in a principled way using regularization via ridge regression. Thus, ASCM is a cutting-edge method that allows for robust estimation of treatment effects for policies such as CSP, which are implemented in a small number of jurisdictions where other methods may not be credible.

We evaluate the impact of CSP on crime in Nickerson Gardens, Jordan Downs, and Imperial Courts, three public housing developments in South Los Angeles, for the six-year period between 2012-2017 using a novel data set based on the LAPD’s reported crime incidents and calls-for-service data. Specifically, we estimate the average number of violent crime incidents, Part I crime incidents, and violent crime calls-for-service prevented bi-annually per public housing development. Previewing our results, we find statistically insignificant reductions across our crime measures. We estimate that, on average, CSP prevented 5.51 \(p = 0.48 \) violent crimes and reduced violent crime calls-for-service by 1.26 \(p = 1 \) per six-month period per public housing development between January 1, 2012 and December 31, 2017 \(p \)-values for the joint null of no effect in any post-treatment period are provided in parentheses). Additionally, we find that, on average, CSP led to an reduction of 10.36 \(p = 0.58 \) Part I reported crime incidents per six-month period per housing development during this time.

The remainder of this paper proceeds as follows. In Section 2, we describe CSP and how it sought to address well-known challenges in “community policing.” In Section 3, we describe the data used in model balancing and testing. Section 4 introduces panel data methods before presenting augmented synthetic control methods and their underlying assumptions. Section 5 turns to model evaluation using placebo tests. Section 6 presents results on the impact of CSP in Jordan Downs, Nickerson Gardens, and Imperial Courts PHDs. Section 7 discusses the implications of the results for CSP and relationship-based policing more broadly.

2. Background. The Community Safety Partnership was launched in four public housing developments in Los Angeles in late 2011 (Leap, 2020). It is one part of a comprehensive approach to violence reduction in places that have long suffered under the control of powerful street gangs and the corrosive effects of heavy-handed crime suppression tactics, persistent neglect by city officials, and concentrated social and economic disadvantage (Fagan and MacDonald, 2012). Gang prevention and intervention efforts, as well as broad community engagement projects, are spearheaded by the Mayor’s Office of Gang Reduction and Youth Development (GRYD) (Tremblay et al., 2020). Infrastructure improvement in PHDs is the responsibility of the Housing Authority of the City of Los Angeles. CSP is a merging of these motivations, responsible for establishing and sustaining basic security and safety in the targeted communities. The approach of CSP is to concentrate on building long-lasting relationships between police and members of the community, leveraging those relationships for collaborative problem solving (Leap, 2020; Rice and Lee, 2015).
CSP extends a fifty-year history of community policing efforts that have all sought to correct for the many deficiencies of the professionalization model that dominated much of the 20th Century (Reisig, 2010; Blumstein, 2018; Katzenbach, 1967; Kelling and Moore, 1989; Sherman et al., 1973; Kelling et al., 1981; Goldstein, 1979, 1977). In spite of promising early steps, community policing today is perhaps best described as a general orientation adopted by policing organizations. Indeed, the US Department of Justice defines community policing as “a philosophy that promotes organizational strategies which support the systematic use of partnerships and problem-solving techniques, to proactively address the immediate conditions that give rise to public safety issues such as crime, social disorder, and fear of crime” (DOJ, 2009, pg.1). The most persistent criticism of community policing is that it is too amorphous (Cordner, 1997; Skogan, 2006). A wide range of policing strategies and tactics may qualify as community policing. Thus, evaluation and generalization of individual community policing efforts is challenging. In Section 7 we situate our findings in the broader community policing literature.

CSP in Los Angeles was designed with these weaknesses of past community policing efforts in mind. It is a deliberate model of police recruitment, training, deployment, strategic and tactical orientation, and command oversight (Leap, 2020). CSP started with a year of planning prior to launch in 2011. A detailed selection process was established to recruit officers with existing orientations towards problem solving. Selected officers underwent training aimed at building understanding of the interrelated cultural, demographic, and economic factors that impact public safety in CSP sites. Training was designed and delivered by the Urban Peace Institute, a community-based civilian organization. Officers were trained on techniques for defusing community-wide dangers without over-relying on traditional suppression tactics such as arrest.

The CSP model also recognized that alternatives to suppression require trust and a network of community relationships that could be called on to solve immediate, local problems (see also Skogan, 2006). Since building reliable social networks requires both time and stability of effort, CSP established long-term deployments for officers, lasting five-years in each community. The deployments also had a separate command structure allowing for greater autonomy and discretion of officers. Officers were provided unique incentives (promotion and pay) to reward community-engaged behaviors not captured by traditional metrics such as crime and arrest statistics. The ultimate goal of CSP was not only to build trust in policing, but also to provide the basic security and safety necessary for normal social and economic activity. While it is clear that CSP has not been immune to many of the well-known challenges facing community policing, such as ambiguity about how to balance enforcing laws against relationship building (Leap, 2020), even partial adherence to the CSP model may be expected to have an impact. Our purpose is to evaluate whether CSP succeeded in improving basic security and safety in the PHDs where it was deployed.

3. Data. We rely on three primary sources to construct our dataset: LAPD reported crime incidents data, LAPD calls-for-service data, and U.S. Census data. Below we discuss how treated units, donor control units, and outcome and covariate data are defined.

3.1. Outcomes. Our focus is on estimating the causal impact of CSP on crime and disorder. The augmented synthetic control method we rely on requires both pre- and post-treatment measures of crime as well as pre-treatment covariate data. In this section we describe how

2In Section S2.4 we drop this year of planning (2011) from the pre-treatment data and estimate “pseudo” effects of CSP. The results are comparable to the reported ATTs and therefore provides evidence against notable anticipation effects.
we define and aggregate our crime outcomes using the LAPD reported crime incidents and calls-for-service data.

To introduce the two LAPD data sources, a crime, or a reported crime incident, in the LAPD’s South Bureau region typically originates from a call to the police by a member of the public, i.e., a call-for-service. However, because reported crimes also undergo a verification process, they filter out much of the noise associated with calls (Klinger and Bridges, 1997). Therefore, a given crime will only be listed once in the reported crime incidents data, while multiple, distinct calls pertaining to that incident may be reported in the calls-for-service data. Calls-for-service are thus viewed as an aggregate indicator of police demand, fear of crime, and victimization (Porter et al., 2019). Reported crimes are viewed primarily as an indicator of victimization. We consider outcomes of both measures here.

Within these LAPD data sources, we only include observations with valid geospatial coordinates for which we can attribute treatment status, i.e., CSP or non-CSP locations can be determined. We exclude crime incidents and calls recorded with geospatial coordinates corresponding to police stations. We restrict our final dataset to the period of overlap for these two data sources, measuring reported crime incidents and calls-for-service outcomes during the period July 1, 2007 to December 31, 2017.

As discussed in Section 2, CSP was largely motivated by a desire to decrease violent crime rates in certain regions of South Los Angeles. Therefore, this work focuses on estimating the effect of CSP on several violent crime outcomes. The US Federal Bureau of Investigation tracks two broad categories of crimes on an annual basis: Part I and Part II crimes. The so-called Part I crimes are serious crimes that occur with sufficient frequency and visibility to warrant statistical tracking. The Part I crimes include homicide, aggravated assault (assault with a deadly weapon), robbery, rape, burglary, car theft, and arson. It excludes crimes such as kidnapping which is serious, but rare. The so-called Part II crimes are lesser crimes that range from simple assault to vandalism.

Within this work, we consider three violent crime outcomes related to this official crime severity categorization. First, we measure reported Part I crime incidents, excluding arson from the standard list of Part I crimes due to irregular reporting in police data. Second, we consider two measures of non-property violent crime: violent crime, drawn from the reported crime incidents data, and shots fired and violent crime, drawn from the calls-for-service data.

Formally, we define our primary outcomes of interest as violent crime incidents, shots fired and violent crime calls-for-service, and Part I crime incidents. We categorize the reported crime data and calls-for-service data based on the LAPD Consolidated Crime Analysis Database (CCAD) code provided in the data sources. Our primary outcomes are defined as follows (CCAD code in parentheses): violent crime is defined as homicide (110), assault with a deadly weapon/attempted homicide (230), and robbery (210); shots fired and violent crime calls-for-service is defined as shots fired (246), robbery (211), assault with a deadly weapon (245), and murder (187) calls. Part I crime incidents is defined as homicide (110), assault with a deadly weapon/attempted homicide (230), robbery (210), rape (121), burglary (310), and stolen vehicle (510). Our primary analyses consider the aggregate raw count data, but we show the results are robust to evaluation using per capita outcomes, normalizing by the Census population counts discussed below. These analyses are included in Section S4.2.

Due to the sensitive nature of the data, we are not able to provide the raw data as part of the publication. Substantially similar open-source data is available at https://data.

It is common practice to use a police station address when the location of the crime is unknown. This exclusion removes approximately two percent of the data.

Nonviolent crime outcomes (reported crime incidents: residential burglary; calls-for-service: quality of life) are evaluated and included in Section S5.
In addition, individuals may request data for research purposes by contacting the LAPD directly. Instructions are available at https://www.lapdonline.org/inside_the_lapd/content_basic_view/9136.

3.1.1. Temporal Aggregation. The data described above is reported in real-time. For our analysis, we aggregate our crime data bi-annually (i.e. in 6-month periods) which we refer to as semesters. Temporally, semesters are defined as events from January 1 to June 30 (denoted in our graphs as year.0) and from July 1 to December 31 (denoted year.5) within a given year. Semester is chosen as the smallest time-level specification as it is better able to demonstrate seasonal trends than year and is less noisy than quarter-level data. Our choice of temporal aggregation leaves us with nine pre-treatment measurements and twelve post-treatment. To evaluate the robustness of our choice, we consider aggregating up to 3-month periods (quarter) and show that the semester-level results are substantively similar to the quarter-level results in Section S4.2.

3.2. Treated Units. Our treated units are defined, geographically, by the public housing developments in LAPD’s South Bureau that received CSP in November, 2011. In particular, this includes Jordan Downs, Nickerson Gardens, and Imperial Courts. We note that CSP was implemented in Jordan Downs, Nickerson Gardens, and Imperial Courts in November, 2011. Therefore, at the semester level, treatment implementation is approximated with the beginning of 2012 (i.e. 2012.0 in our figures).

3.3. Control Units. A key part of synthetic control methods is defining donor control units. As public housing developments are unique in their community structure, we aim to find naturally-occurring control units that are of similar size and lie within a similar geographic region. We use Census boundaries, and their associated shapefiles, to construct control units for analysis.

Los Angeles is a large and diverse metropolis, so we first restrict the data to Census tracts within the 77th Street and Southeast Divisions of LAPD’s South Bureau, which are closest to the treated units, limiting to the southernmost Census tract in the region as tract 2911.10. We refer to this region as “South Los Angeles”. By restricting the pool of control units to a geographic area more closely surrounding the treated units, rather than using the whole of the LAPD area, we inherently address unobservable factors specific to this region (Abadie, Diamond and Hainmueller, 2015).

Within this restricted geographic region, donor control units are defined using Census geographies. Spatially, events are grouped by Census block group boundaries, shown for the region of study in Figure S2. In total, the pool of control units consists of 234 block groups where all units that eventually receive treatment are excluded. We focus on block group-level control units, rather than block-level control units (the smallest Census geography unit) as the former is of a similar population size to public housing units. All CSP PHDs are comprised of

5Two additional public housing developments within LAPD’s South Bureau received the CSP intervention in July 2016 (Avalon Gardens and Gonzaque Village) and one in October 2017 (Harvard Park). We do not have sufficient post-treatment data to robustly evaluate the impact, however we use these units as a robustness check for pre-treatment model fit in Section S6. CSP was also deployed in the Ramona Gardens public housing development in East Los Angeles in late 2011. Ramona Gardens was not considered in our analyses since it is outside the South Los Angeles Bureau, from which we draw our donor controls.

6Under this approximation, the final pre-treatment semester contains approximately two months of CSP conditions, which might lead to concerns about bias due the final pre-treatment period containing some treated data. Our results are robust to assigning treatment periods to be exact (i.e. recoding incidents in November and December, 2011 to have occurred during the first semester of 2012). See Section S4.2.
multiple Census blocks. In our analyses, Jordan Downs and Imperial Courts each encompass seven blocks while Nickerson Gardens encompasses 13 blocks. Therefore, these PHDs are of similar geographical size to the average block group, or donor control unit, in our study: the average number of blocks within a control block group in our region of study is 10.41.

<table>
<thead>
<tr>
<th>Status</th>
<th>Region</th>
<th>Violent Crime Incidents</th>
<th>Part I Crime Incidents</th>
<th>Shots Fired and Violent Crime Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treated</td>
<td>Imperial Courts</td>
<td>16.00</td>
<td>28.56</td>
<td>28.89</td>
</tr>
<tr>
<td>Treated</td>
<td>Jordan Downs</td>
<td>20.11</td>
<td>40.78</td>
<td>29.11</td>
</tr>
<tr>
<td>Treated</td>
<td>Nickerson Gardens</td>
<td>42.44</td>
<td>75.33</td>
<td>57.00</td>
</tr>
<tr>
<td>Control</td>
<td>South Los Angeles</td>
<td>8.31</td>
<td>18.20</td>
<td>16.43</td>
</tr>
<tr>
<td>Reference</td>
<td>Los Angeles</td>
<td>3.42</td>
<td>10.48</td>
<td>12.79</td>
</tr>
</tbody>
</table>

Table 1
Average violent crime counts per semester during the pre-treatment period by the treated units of interest, the average Los Angeles block group, and the average control unit in the restricted, South LA region of study.

Table 1 provides average violent crime counts per semester during the pre-treatment period for the treated units of study, the average unit in the control region of South LA, and, for reference, the average block group in LA more broadly. For each of the outcomes, the treated units have substantially more violent crime per semester: LA and South LA block groups average 3.42 and 8.31 reported violent crime incidents, respectively, while the treated PHDs have between 16.00 (for Imperial Courts) and 42.44 (for Nickerson Gardens) average reported violent crime incidents per semester. This disparity is consistent for both the reported Part I crime incidents and shots fired and violent crime calls-for-service. This outcome table shows the uniqueness of our treated units, and supports our decision to limit the control area to South LA, as South LA is more similar to the treated units than LA on average.7

3.4. Pre-treatment Covariates. Accounting for pre-treatment covariates in the construction of the weights can reduce bias in synthetic control methods (Botosaru and Ferman, 2019). Our LAPD crime data does not include additional demographic information; to account for demographic differences between the treated and donor control units, we append demographic measures from the 2010 Census. We consider the following pre-treatment covariates from the Census data: proportion of residents who identify as Hispanic or Latino; white, black, or “other” single race category; total number of housing units; and variables for the distribution of residents by age and gender.8

Our pre-treatment covariates are defined using Census block groups.9 As we define our donor control units at the block group level, this naturally allows us to merge the Census data with our crime data. However, while bigger than a census block, our treated PHDs do not always consist of an entire block group region. Therefore, to construct demographic profiles, all blocks within a given PHD are aggregated to construct a single block group unit. Blocks assigned to a PHD are then removed from the set of donor control block groups.10 For figures demonstrating the allocation of Census units to PHD boundaries, see Section S1.1.

7 We present per capita outcomes in Table S1.
8 See Section S1.2 for the full data description.
9 Data from the Census Bureau’s Decennial Census, which records various demographic information, are only available for blocks and block groups.
10 The American Community Survey (ACS) records covariates on socioeconomic status, educational attainment, and geographical mobility. However, the ACS information is minimally recorded at the block group level and therefore would require additional assumptions to match the nonstandard PHD regions. In Section S4.1, we demonstrate the results for Jordan Downs, which comprises a single block-group, are robust to the inclusion of these ACS covariates.
Of these included Census covariates, Table 2 reports those where the treated units are most different from the South LA region from which we draw our donor control units (see Table S2 for comparison of the remaining covariates). As a reference, we also present averages for broader Los Angeles. As expected, Jordan Downs, Nickerson Gardens, and Imperial Courts each have more housing units and more population than the average control unit in both Los Angeles and the South Los Angeles region of study. Nickerson Gardens is especially housing and population dense with approximately three times the population of the average LA and South LA block group. The treated PHDs also tend to have a greater proportion of residents under 18: the proportion of both male and female residents under 18 is nearly double that of the average control unit in LA. The racial characteristics of the treated units are similar to that of South LA, but unique from the average LA block group, supporting our decision to restrict donor control units to South LA.

4. Methodology. Synthetic control methods (SCMs) solved an important problem for applied policy researchers by providing a method for estimating the causal effect with one (or few) treated unit(s), relying on a version of a selection-on-observables assumption. In essence, synthetic control methods construct a counterfactual for the treated unit using a weighted combination of the control units, known as a “synthetic control.” The weights are constructed to make the synthetic control’s pre-treatment outcomes match those of the treated unit, and the effect is estimated as the average difference in the post-treatment period between the treated unit and the synthetic control unit.\(^{11}\) However, SCMs are no panacea and the original authors only suggest the use of synthetic controls with (near) exact pre-treatment fit on the pre-treatment outcomes and covariates. Despite these constraints, SCM is “arguably the most important innovation in the policy evaluation literature in the last 15 years” (Athey and Imbens, 2017).

Recent advances in SCMs aim to relax the perfect pre-treatment fit for pre-treatment outcomes and covariates. We note extrapolation is a concern in our data as the crime outcomes in our treated units are higher than many of the donor control units, see Figure S4. Finding a feasible set of weights becomes more difficult with higher dimensional data, particularly with a growing number of pre-treatment outcomes and covariates, thus many papers have suggested regularized approaches to constructing the weights (e.g. Doudchenko and Imbens, 2016; Robbins, Saunders and Kilmer, 2017; Ben-Michael, Feller and Rothstein, 2021; Abadie and L’Hour, 2020). These relax the balance constraints, possibly allowing for extrapolation (such as Doudchenko and Imbens (2016) and Ben-Michael, Feller and Rothstein (2021)). There are papers that aim to weaken the linear-factor model assumption required for identification (Hazlett and Xu, 2018). Another branch of research has shown the relationship between SCM and difference-in-differences, and uses this to incorporate a type of

\(^{11}\)Matching methods are related to this approach, where, with one-to-one matching, control units are given a weight of zero or one.
model-based adjustment to SCM (e.g. Doudchenko and Imbens, 2016; Ferman and Pinto, 2019; Arkhangelsky et al., 2018; Ben-Michael, Feller and Rothstein, 2021). We employ one such approach, augmented synthetic control methods, detailed in Section 4.4, which combines regularized weights with a model-based adjustment to improve inference when exact pre-treatment fit is infeasible (Ben-Michael, Feller and Rothstein, 2021). ASCM incorporates many of the model-based adjustment approaches (including Doudchenko and Imbens (2016), Ferman and Pinto (2019), Arkhangelsky et al. (2018)) as special cases.

Finally, our data setting does not fit in the canonical SCM framework in that we have three, rather than one, treated unit. Many recent methods have extended both difference-in-differences and SCM to multiple treated units with, potentially, staggered adoption. Ben-Michael, Feller and Rothstein (2019) show that researchers can partially or fully pool the information in the treated units. We take a “fully pooled” approach suggested by O’Neill et al. (2016) and Robbins, Saunders and Kilmer (2017), in which treated units are first averaged before constructing the SCM weights and conducting the augmentation step, in effect averaging the results of separate ASCM estimates for each unit.

4.1. Notation and Estimands. We now introduce notation and details, following those outlined in Ben-Michael, Feller and Rothstein (2021), for the augmented synthetic control method. We have $i = 1, \ldots, N$ units observed for $t = 1, \ldots, T$ time periods with N and T fixed. We consider D_i as an indicator that unit i is treated at time $T_0 < T$, where units with $D_i = 0$ never receive treatment. For simplicity of notation, and following conventional notation, we assume that only one unit, $i = 1$, is treated. As discussed above, we have three treated units treated at time T_0 in which we use full-pooling, in effect averaging the three treated units to define unit $i = 1$. We let $N_0 = N - 1$ be the number of possible donor control units. We define the pre-treatment time period as $T \leq T_0$, and the post-treatment time period as $T > T_0$.

We define the potential outcomes for unit i at time-period t as $Y_{it}(1)$ for treatment and $Y_{it}(0)$ for control (Rubin, 1974). We rely on the common stable unit treatment value assumption (SUTVA), which rules out interference between units and assumes treatment and control is commonly defined among all units (Rubin, 1978). We define pre-treatment outcomes as X, where $X_1\cdot$ refers to the pre-treatment outcomes for the treated unit $i = 1$, and $X_0\cdot$ refers to the matrix of pre-treatment outcomes for donor control units. We also consider a small set of pre-treatment covariates $Z_i \in \mathbb{R}^K$, from the appended Census data, with $Z_1\cdot$ and $Z_0\cdot$ defined analogously. The observed outcomes in our dataset are thus:

$$Y_{it} = \begin{cases}
Y_{it}(0) & \text{if } D_i = 0 \text{ or } t \leq T_0 \\
Y_{it}(1) & \text{if } D_i = 1 \text{ and } t > T_0
\end{cases}$$

We define the potential outcomes under control as generated by a fixed component, m_{it} and an additive idiosyncratic component ϵ_{it} drawn from some distribution $P(\cdot)$ with mean zero, making $Y_{it}(0) = m_{it} + \epsilon_{it}$. We then define the treated potential outcome as $Y_{it}(1) = Y_{it}(0) + \tau_{it}$ where the τ_{it} are the individual level treatment effects for a given time period t.

The fundamental problem of causal inference is that the potential outcomes for unit i and time t are never jointly observable, making τ_{it} unobservable (Holland, 1986). Yet, this quantity is of primary interest in policy problems such as the CSP evaluation, where we wish to know the impact of CSP for, specifically, the units who received treatment. To evaluate the CSP policy,
our primary quantity of interest, then, is the average treatment effect on the treated (ATT), a policy-relevant estimand that captures the impact of the CSP for the PHDs that participated in the program. We can also evaluate the average treatment effect for the treated units at a given time period, called the ATT_t:

$$ATT_t = \mathbb{E}[Y_{it}(1) - Y_{it}(0) | D_i = 1], \quad T_0 < t \leq T. \quad (1)$$

$$ATT = \mathbb{E}[ATT_t], \quad T_0 < t \leq T. \quad (2)$$

Substantively, the ATT_t (Equation (1)) is the average difference between the crime rates in treated regions post-treatment and what the crime rate would have been in those regions during the post-treatment years had CSP not been implemented for a given post-treatment time period $t > T_0$. Equation (2), the average of the ATT_t over all post-treatment time periods, captures the overall impact of CSP during our study period.

In Ben-Michael, Feller and Rothstein (2021), the authors follow the extant literature and consider two models for m_{it}, including an outcome that is linear in pre-treatment outcomes and covariates, and a linear factor model. They consider bias bounds of ASCM under these models. Causal identification of the estimands above relies on an ignorability assumption, namely that the treatment assignment D_i is ignorable given model m_{it}, formalized as:

$$\mathbb{E}[D_i \epsilon_{iT}] = \mathbb{E}_{\epsilon_T}[(1 - D_i) \epsilon_{iT}] = \mathbb{E}_{\epsilon_T} \epsilon_{iT} = 0 \forall T > T_0 \quad (3)$$

which states that the noise terms in the post-treatment time-periods are mean-zero and uncorrelated, meaning that the noise terms do not systematically differ for treated and control units. This allows us to estimate the counterfactual synthetic control as a weighted combination of the donor control units, with weights estimated to balance the pre-treatment outcomes and covariates. The bias bounds further impose independence across time and units, with common variance.

4.2. Difference-in-Differences. A common approach to estimating causal effects with panel data is difference-in-differences, which leverage a “parallel trends” assumption, that the treated units follow a parallel, but mean shifted path, to the control units in the absence of treatment to address confounding of treatment assignment. Difference-in-differences was originally derived under a single pre- and post-treatment time period (Card and Krueger, 1993; Angrist and Pischke, 2008), but recent literature has extended these results to allow for more pre- and post-treatment time periods with optional staggered treatment implementation (e.g. Athey and Imbens, 2018; Callaway and Sant’Anna, 2020; Egami and Yamauchi, 2021), and shown the relationship to common two-way linear fixed effects estimators in time-series cross-sectional analysis (e.g. Imai, Kim and Wang, 2020). With numerous pre-treatment observations, researchers can rely on the extended parallel trends assumption, which provides a testable implication (i.e. a placebo test), namely that parallel trends holds among the pre-treatment time periods (Callaway and Sant’Anna, 2020; Egami and Yamauchi, 2021).

4.2.1. Failure of Parallel Trends. We leverage our multiple pre-treatment time periods to evaluate the plausibility of the parallel trends assumption in our application. The right hand panel of Figure 1 presents the time trends in the treated and control units for each outcome. As is visually evident, the treated and control units do not follow similar pre-treatment trends, with crime measures spiking then steeply declining in our treated PHDs, and crime more gently declining in the control region. We conduct a statistical test of this assumption using the double difference-in-differences estimator of Egami and Yamauchi (2021), which tests
Fig 1: To assess the plausibility of the parallel trends assumption, we plot the equivalence confidence intervals, in standard deviations from baseline control group mean, across pre-treatment time (left) and the mean outcome across time (right) for the treated units (black) and the control units (gray). Parallel trends are not plausible for these outcomes.

the parallel trends-in-trends assumption, a further relaxation of the extended parallel trends assumption allowing for linear time-varying unmeasured confounding.

The left hand panel of Figure 1 provides statistical evidence of strong deviations from even this weaker version of parallel trends. The figure presents standardized equivalence confidence intervals (Hartman and Hidalgo, 2018) of the effect at each pre-treatment time-period using the double difference-in-differences estimator. The parallel trends-in-trends assumption implies these estimates should be close to zero, and as discussed in Egami and Yamauchi (2021), the equivalence confidence interval should be narrow to provide credible evidence for parallel trends. Our data exhibit large ranges around zero, with many time periods exhibiting differences of one or more standard deviations above the baseline control mean, indicating a lack of evidence for the plausibility of the parallel trends assumption. One alternative is to rely on a conditional parallel trends assumption (see Callaway and Sant’Anna, 2020) which allows for the inclusion of covariates to meet the parallel trends assumption, however given the large deviations from parallel trends, our relatively limited set of additional observed covariates, and our limited number of treated units, we instead rely on the alternative identification strategy provided by SCMs.

4.3. Synthetic Control Method Weights. We begin by describing estimation using synthetic control methods (SCMs), which estimate Equations (1) and (2) by constructing a counterfactual for the treated unit as a convex combination of the donor control units, where the weights are chosen such that the weighted average of the controls closely approximates the pre-treatment outcomes and covariates for the treated units. Specifically, we follow Ben-Michael, Feller and Rothstein (2021), and choose SCM to solve the following constrained optimization problem:\[\text{An importance matrix of the pre-treatment outcomes and covariates can be incorporated, see Ben-Michael, Feller and Rothstein (2021).}^{13}\]
where the weights \(w_{SCM}^i \) are constrained to be in the simplex \(\Delta_N^0 = \{ w_{SCM} \in \mathbb{R}_N^0 | w_i \geq 0, \sum_i w_i = 1 \} \), and are normalized to sum to 1. The “synthetic control” counterfactual is estimated as the weighted average of the post-treatment outcomes of the control units, \(\hat{\bar{Y}}_{1t} \) for time period \(t > T_0 \), with weights \(w_{SCM} \). Thus, we can estimate the \(ATT_t \) as the difference in the treated unit and the weighted donor control units, and the \(ATT \) as the average of the \(ATT_t \) over all \(t, t > T_0 \).

\[
\hat{ATT}_t = Y_{1t} - \hat{\bar{Y}}_{1t}(0) \quad \text{for} \quad t > T_0
\]

\[
\hat{ATT} = \frac{1}{T - T_0} \sum_{t:T > T_0} (Y_{1t} - \hat{\bar{Y}}_{1t}(0))
\]

The \(\zeta \) in Equation (4) is a dispersion parameter proposed by Abadie, Diamond and Hainmueller (2015). We return to the choice of \(\zeta \) below, ultimately relying on ridge regression for regularization. The constraint that the weights must be positive implies that the treated unit must be within the convex hull of the donor control units, a requirement that is harder to meet as the dimensionality of the problem increases, such as with more pre-treatment time periods or covariates (Ferman and Pinto, 2019). If weights are allowed to be negative, the estimator extrapolates beyond the convex hull. While the original suggestion of Abadie, Diamond and Hainmueller (2010) was to avoid using SCM when excellent pre-treatment fit on the pre-treatment outcomes and covariates cannot be achieved, ASCM relaxes the constraints to allow for principled extrapolation beyond the convex hull.

4.3.1. Synthetic Control Weights with Intercept Shift. One approach to addressing the failure of the parallel trends assumption for difference-in-differences is to combine the synthetic control method with an intercept shift (Doudchenko and Imbens, 2016; Ferman and Pinto, 2019). This allows for unobservable unit-level differences unaddressed by the synthetic control weights by differencing the unit-level pre-treatment average for each unit. Let \(\bar{\bar{Y}}_i = \frac{1}{T_0} \sum_{t:T_0} Y_{it} \) be the pre-treatment average for unit \(i \). This results in the following estimator for the \(ATT_t \):

\[
\hat{ATT}_t = Y_{1t} - \bar{\bar{Y}}_1 - \sum_{i:D_i=0} w_{SCM}^i (Y_{it} - \bar{\bar{Y}}_i) \quad \text{for} \quad t > T_0.
\]

When the weights are uniform, this estimator is equivalent to the standard difference-in-differences estimator. This “SCM with intercept-shift” model is a special case of the augmented synthetic control method we describe below.

4.4. Augmented Synthetic Control Methods (ASCM). When excellent pre-treatment fit on the pre-treatment outcomes and covariates is not achievable given the constraints on the weights in Equation (4), Ben-Michael, Feller and Rothstein (2021) suggest an augmented synthetic control. ASCM relaxes the constraint that the weights lie within the simplex, allowing for negative weights on donor control units—a form of extrapolation. Akin to doubly robust estimation (Bang and Robins, 2005), ASCM introduces an augmentation step that first estimates then adjusts for the potential bias in the SCM estimate due to residual imbalance in the pre-treatment outcomes and covariates. The generic form of the ASCM estimator for the potential outcome under control is:
The hyperparameter \(\lambda \) after residualizing the pre-treatment outcomes on the pre-treatment covariates. Importantly, the appropriateness of SCM methods. In particular, we assess the fit of the ASCM for each outcome and in light of the fact that we are estimating the treatment effect for a very small number of units, in this case only three PHDs. Traditionally, the most common way to evaluate the fit of synthetic control methods has been to use placebo tests (Abadie, Diamond and Hainmueller, 2010), which rely on the idea that we should not find evidence of treatment effects where none should exist, i.e. before treatment has been implemented or among the control units. Estimation of nonzero placebo effects would undermine the credibility of the final results. The more evidence that passes the scrutiny of the placebo tests, the more credible the resulting analysis.

These placebo tests, suggested by the literature (Heckman and Hotz, 1989; Abadie, Diamond and Hainmueller, 2010, 2015), serve as the primary method of evaluating the appropriateness of SCM methods. In particular, we assess the fit of the ASCM for each outcome.
separately using in-time placebos estimating placebo (i.e. null) effects for the pre-treatment period to assess the model fit. Taken holistically, these checks are used to evaluate the credibility and confidence in our estimates.

Before evaluating the impact of CSP in the post-treatment periods, we assess the ability of the ASCM to balance the trajectory of the pre-treatment outcome for the treated units and the synthetic control. During the pre-treatment period, CSP was not implemented and therefore the ASCM models should not detect a treatment effect for any outcome. Non-zero effects would indicate possible remaining confounding, calling into question causal inferences on that outcome. Any observed imbalance could also indicate the potential scale of bias in the estimated impact of CSP.

To ensure the placebo ASCM models are only evaluated on the pre-treatment period, we split the pre-treatment period into training and testing sets using roughly a 2/3 : 1/3 rule, with pseudo-implementation dates as 2010.5 and 2011. Therefore, these methods have 6 : 3 and 7 : 2 training to testing periods, respectively, and implement the Ridge ASCM with covariates model. While the results of this paper focus on the Jordan Downs, Nickerson Gardens, and Imperial Courts PHDs, the model specification approach described here severely limits the time frame for these regions. Therefore, we provide additional placebo checks using the in-time placebos on two additional PHDs with later implementation dates in Section S6 of the supplementary materials.

The results for these in-time, model evaluation placebos are shown in Table 3. The placebo effect for violent crime is estimated as 4.88 ($p = 0.71$) and 5.74 ($p = 0.45$), for the 2010.5 and 2011 pseudo-implementation dates, respectively. For reference, the pre-treatment semester average for this outcome in Jordan Downs, Nickerson Gardens, and Imperial Courts is 26.19 incidents. Therefore the ratio of the placebo estimate to the pre-treatment average is approximately 19% and 22%, respectively. Given only six and seven periods were used to train these pre-treatment models, respectively, this is a positive result suggesting the ASCM is able to capture unobserved confounding in the outcome and selection into treatment.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Pre-T Average</th>
<th>2010.5</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violent Crime Incidents</td>
<td>26.19</td>
<td>4.88 (0.71)</td>
<td>5.74 (0.45)</td>
</tr>
<tr>
<td>Part I Crime Incidents</td>
<td>48.22</td>
<td>0.03 (0.74)</td>
<td>-5.84 (0.88)</td>
</tr>
<tr>
<td>Shots Fired and Violent Crime Calls</td>
<td>38.33</td>
<td>-3.49 (0.87)</td>
<td>-2.48 (0.79)</td>
</tr>
</tbody>
</table>

TABLE 3

In-time Placebos: The estimated ATTs are provided for the pseudo-treatment implementation dates of 2010.5 and 2011. For comparison, the average counts of each violent crime outcome per semester are shown. The p-values for the joint null of no effect in any post-treatment period are provided in parentheses.

Part I crime incidents has an estimated pseudo-ATT of 0.03 ($p = 0.74$) and -5.84 ($p = 0.88$) for the two implementation dates, respectively, approximately 0% and 12% of the pre-treatment semester average of 48.22. The shots fired and violent crime calls-for-service estimates are -3.49 ($p = 0.87$) and -2.48 ($p = 0.79$) for the 2010.5 and 2011 treatment dates, approximately 9% and 6%, respectively, of the pre-treatment semester average of 38.33. We consider the proportionally small estimated bias in these outcomes a good indicator of our ability to construct appropriate synthetic control models for the Part I crime incidents and shots fired and violent crime calls-for-service outcomes.

6. Results. In this section, we evaluate the treatment effect of CSP on the reported violent crime incidents, reported Part I crime incidents, and shots fired and violent crime calls-for-service outcomes across the Jordan Downs, Nickerson Gardens, and Imperial Courts PHDs. Following Ben-Michael, Feller and Rothstein (2021), we report results across a suite
of models. We consider (1) standard SCM balancing on pre-treatment outcomes and covariates; (2) an SCM with intercept-shift model balancing on pre-treatment outcomes and covariates after removing unit-level pre-treatment means, (3) Ridge ASCM with Covariates, balancing on pre-treatment outcomes and pre-treatment covariates, and (4) Ridge ASCM with residualized outcomes, balancing on pre-treatment outcomes residualized against the pre-treatment covariates. 95% point-wise confidence intervals for each time period in the plots are computed via conformal inference (Chernozhukov, Wüthrich and Zhu, 2021).

From Section 5, we find evidence that these results pass several placebo tests, bolstering confidence in the fit of the ASCM models for these outcomes of interest. As presented in Table 4, CSP has an estimated impact of approximately 5.3 fewer reported violent crime incidents, with estimates of -5.51 (p = 0.48) and -5.04 (p = 0.52) for the unresidualized and residualized ridge ASCM covariate models, respectively, per semester per public housing development during the post-treatment period. Here, and subsequently, we present permutation-based conformal inference p-values for the joint null hypothesis of no effect in any post-treatment period in parentheses. The shots fired and violent crime calls-for-service outcome suggests an insignificant reduction of approximately 2.5, with estimates of -1.26 (p = 1) and -3.73 (p = 0.92) for the unresidualized and residualized covariate models, respectively. Compared to the pre-treatment semester averages, these PHDs experienced an average decrease of 19-21% and 3-10% in reported violent crime incidents and shots fired and violent crime calls-for-service per semester, respectively.

Additionally, CSP has an estimated reduction of approximately 10.8 reported Part I crime incidents per semester per housing development during the post-treatment period, with estimates of -10.36 (p = 0.58) and -11.26 (p = 0.93) for the unresidualized and residualized covariate models, respectively. Considering these covariate models, the ATT estimate corresponds to a decrease of 21-23% compared to the pre-treatment semester average.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>SCM</th>
<th>SCM + FE</th>
<th>ASCM Ridge</th>
<th>Residualized ASCM Ridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Violent Crime Incidents</td>
<td>-3.97 (0.96)</td>
<td>-8.86 (0.59)</td>
<td>-5.51 (0.48)</td>
<td>-5.04 (0.52)</td>
</tr>
<tr>
<td>Part I Crime Incidents</td>
<td>-7.51 (0.91)</td>
<td>-16.26 (0.77)</td>
<td>-10.36 (0.58)</td>
<td>-11.26 (0.93)</td>
</tr>
<tr>
<td>Shots Fired and Violent Crime Calls</td>
<td>2.02 (0.99)</td>
<td>-6.36 (0.99)</td>
<td>-1.26 (1)</td>
<td>-3.73 (0.92)</td>
</tr>
</tbody>
</table>

Table 4

Estimated impact of CSP for the Jordan Downs, Nickerson Gardens, and Imperial Courts PHDs. ATT estimates are provided with conformal inference p-values for the joint null that the effect is zero in every post-treatment period in parentheses across our four models.

Figure 2 provides the ATT estimates across time across the suite of models for each of our outcomes. Consistent with our results above, our point estimates generally indicate reductions in violent crimes and calls-for-service, but they are statistically insignificant.

We find that the results are robust to the type of SCM or ASCM model used. The estimates for SCM and Ridge ASCM without covariates are very similar for each outcome. For violent crime incidents (Figure 2a) and Part I crime incidents (Figure 2b), we see substantial improvement in model fit from including the augmentation step, as evidenced by the pre-treatment trends moving closer to zero. We still see some evidence of pre-treatment imbalance in the shots fired and violent crime calls (Figure 2c), even with the inclusion of the augmentation step, warranting some caution when interpreting results.

14 Abadie, Diamond and Hainmueller (2010) propose a permutation-based inference technique estimating the placebo effect for each control unit. While we rely on the conformal inference approach, we note that the p-values for our violent crime and Part I crime estimates are significant (both p = 0) while the shots fired and violent crime calls estimate is insignificant (p = 0.97) using this technique. See Section S3.2 for details.
Fig 2: The over time ATT_t ($t > T_0$) estimates for each outcome for each model, including (1) standard SCM; (2) SCM with fixed effects model; (3) Ridge ASCM; (4) Residualized Ridge ASCM. 95% point-wise conformal inference confidence intervals provided in gray.

In Section S3.1 we evaluate the similarities in the weights and residual covariate imbalances across model specification for each outcome. We note that the SCM and SCM with intercept shift models ascribe weights of zero or near-zero to most controls, with only a handful of donor units having non-zero weights. The ridge ASCM models have far less sparse weights, with many between -0.10 to 0.10 on these same donor units (Figure S9). This extrapolation, combined with the augmentation step, allows the ASCM to achieve better covariate...
balance and pre-treatment fit than SCM and SCM with intercept shift models (Figure S8),
boosting confidence in the ridge ASCM model estimates.

7. Discussion and Conclusions. This paper seeks to quantify the effect of the Community Safety Partnership (CSP) on reported crime incidents and calls-for-service in Jordan Downs, Nickerson Gardens, and Imperial Courts, three public housing developments in South Los Angeles. These housing developments experienced high levels of violent crime, entrenched multi-generational gangs, and policing focused on crime suppression before treatment implementation in 2011. Using the augmented synthetic control method, which allows us to construct counterfactuals for communities in which CSP was implemented, observed reductions in violent crime measures were not statistically significant. We estimate that CSP led to an average reduction of 5.51 \((p = 0.48)\) fewer violent crimes and 1.26 \((p = 1)\) fewer violent crime calls-for-service per semester per housing development between January 1, 2012 and December 31, 2017. The estimates reflect reductions of 21% and 3% in reported crime incidents and calls-for-service, respectively, compared to pre-intervention means. CSP led to an average decrease of 10.36 \((p = 0.58)\) Part I crime incidents per semester per housing development during this same period, corresponding to an average decrease of 21% in the Part I crime rate. Confidence bounds for these estimates are large, perhaps unsurprisingly, due to the nature of the synthetic control framework, which has few treated units, as well as the inherent noisiness of the crime data. Furthermore, preliminary analyses suggest CSP did not simply displace crime from Jordan Downs to neighboring regions, as discussed in Sections S2.3 and S2.3.1.

We report results using raw counts of crime and disorder outcomes. However, the population density of the PHDs we study is above that of the average control unit as shown in Table 2. We also analyze per-capita outcomes defined as crime counts per 1000 residents. The Census population vector is recorded by block so we can construct an exact estimate of population, in terms of perfectly matched spatial boundaries, for both the treated and control units. Ultimately, as seen in Section S4.2, the per-capita results are substantively similar to our analyses.

Our results are consistent with many in the broader literature. Community policing programs variously incorporate police organizational change, community engagement and problem-solving efforts (Skogan, 2006; Eck and Maguire, 2000). While the focal problems are supposed to be those that the community identifies as most important to them (e.g., abandoned cars, public intoxication), the responsibility for solving those problems has generally fallen on the police with (or without) help from partner agencies within the city. The heterogeneity in implementations has made evaluation of community policing difficult. Contextualizing our results, we note that many studies have found limited evidence that community policing reduces crime (Cordner, 1997; MacDonald, 2002; Eck and Maguire, 2000), and, as with our study, a number of studies have found statistically insignificant reductions in crimes (see the systematic review in (Blair et al., 2021)). A recent experimental study of community policing across six countries in the Southern Hemisphere found largely similar results (Blair et al., 2021). Partial implementation and declining model fidelity over time contribute to observed null effects (MacDonald, 2002). Overall, the point estimates for the impact of CSP appears at a similar level to other intervention strategies including both crime suppression, such as gang injunctions (Ridgeway et al., 2019; Grogger, 2002), focused deterrence approaches (Braga et al., 2001; Kennedy, Piehl and Braga, 1996; Kennedy, 1997), and community-led interventions, such as GRYD (Brantingham, Tita and Herz, 2021; Park et al., 2021). Evaluations of focused deterrence programs implemented in cities across the United States have documented reductions in crime and delinquency both larger than and comparable to that observed with CSP. See Braga and Weisburd (2012) for a comprehensive meta-study of focused deterrence strategies, which finds statistically significant overall effects.
There are several limitations to our work that are worth noting. First, CSP existed alongside other police and community-based approaches to crime and disorder. Gangs based in Nickerson Gardens and Jordan Downs were subject to gang injunctions starting in 2003 and 2005, respectively. Gangs based in Imperial Courts were not subject to an injunction, though the injunction in Nickerson Gardens covered Imperial Courts geographically. The two injunctions were in place continuously over the period of observation, and were only curtailed in 2018. The impact of injunctions are therefore expected to be part of both the pre-treatment and treatment periods at Nickerson Gardens and Jordan Downs, and may have also influenced Imperial Courts. The GRYD program, also in place during our period of study, covered the entire geographic region (the LAPD’s South Bureau) containing both our treated and donor control units. While these bundled interventions do not affect our underlying causal identification strategy since they were in existence throughout the entire time period of our study, they may impact our interpretation of the treatment provided by CSP, especially if the impact of such community policing programs are dependent on the context of existing policing interventions.

Second, it is important to recognize that our results here do not speak to the other major component of CSP, which was to restore trust and build lasting relationships between police and the communities they serve (Leap, 2020; Rice and Lee, 2015). Clearly ensuring the safety and security of community members is a necessary component of such a process, but there is more involved than simply low crime numbers. Future work will need to integrate evidence from the qualitative impact of CSP on people’s lives as the counterpart to this quantitative story.

Acknowledgements. The authors would like to thank LAPD Chief of Police Michel Moore, the CSP Research and Evaluation Advisory Committee, and the community residents and institutional partners that make CSP possible. This research was funded by the Balmer Group, The California Endowment, Caruso, Cindy Miscikowski, The Smidt Foundation, the Weingart Foundation, and an anonymous donor. We acknowledge Connie Rice as a co-creator of the CSP public safety model and a visionary regarding relationship-based policing. The fourth author serves on the board of PredPol.

We also thank Chad Hazlett, the UCLA Causality Reading Group, Avi Feller, and Eli Ben-Michael for thoughtful comments and discussion. We additionally thank Eli Ben-Michael for providing plot code from the Ben-Michael, Feller and Rothstein (2021) paper.

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1650604 and DGE-2034835. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

SUPPLEMENTARY MATERIAL

Supplementary Material: Impact Evaluation of the LAPD Community Safety Partnership. This supplementary document includes additional data descriptions, an extended discussion of identification assumptions and their validity in this context, nonviolent crime outcome models, additional robustness analyses, model specification checks, and preliminary analyses for Avalon Gardens and Gonzaque Village.

REFERENCES

LAPD NEWS RELEASE (2015). LAPD’s Community Safety Partnership Program NR15021SF.

STREETER, K. (2014). In Jordan Downs housing project, police are forging a new relationship.