Hausdorff dimension of the uniform measure of Galton–Watson trees without the $X\log X$ condition

Elie Aïdékon

Summary. We consider a Galton–Watson tree with offspring distribution ν of finite mean. The uniform measure on the boundary of the tree is obtained by putting mass 1 on each vertex of the n-th generation and taking the limit $n \to \infty$. In the case $E[\nu \log(\nu)] < \infty$, this measure has been well studied, and it is known that the Hausdorff dimension of the measure is equal to $\log(m)$ ([3], [14]). When $E[\nu \log(\nu)] = \infty$, we show that the dimension drops to 0. This answers a question of Lyons, Pemantle and Peres [15].

Résumé. Nous considérons un arbre de Galton–Watson dont le nombre d’enfants ν a une moyenne finie. La mesure uniforme sur la frontière de l’arbre s’obtient en chargeant chaque sommet de la n-ième génération avec une masse 1, puis en prenant la limite $n \to \infty$. Dans le cas $E[\nu \log(\nu)] < \infty$, cette mesure est bien étudiée, et l’on sait que la dimension de Hausdorff de la mesure est égale à $\log(m)$ ([3], [14]). Lorsque $E[\nu \log(\nu)] = \infty$, nous montrons que la dimension est 0. Cela répond à une question posée par Lyons, Pemantle et Peres [15].

Keywords: Galton–Watson tree, Hausdorff dimension.

AMS subject classifications: 60J80, 28A78.

1 Introduction

Let T be a Galton–Watson tree of root e, associated to the offspring distribution $q := (q_k, k \geq 0)$. We denote by GW the distribution of T on the space of rooted trees, and ν a generic random variable on \mathbb{N} with distribution q. We suppose that $m := \sum_{k \geq 0} kq_k \in (1, \infty)$: the tree has a positive probability of survival, denoted by ρ. We let GW^* be the Galton–Watson

1LPMA, Université Paris 6, 4, place Jussieu, 75005 Paris, France. Email: elie.aidekon@upmc.fr
measure conditionally on T being infinite. For any vertex u, we write $|u|$ for the height of vertex u ($|e| = 0$), $\nu(u)$ for the number of children of u, and Z_n is the population at height n. We define ∂T as the set of all infinite self-avoiding paths of T starting from the root and we define a metric on ∂T by $d(r, r') := e^{-|r \wedge r'|}$ where $r \wedge r'$ is the highest vertex belonging to r and r'. The space ∂T is called boundary of the tree, and elements of ∂T are called rays. The metric space $(\partial T, d)$ is a random compact ultra-metric space.

When $E[\nu \log(\nu)] < \infty$ (with $0 \log(0) := 0$), it is well-known that the martingale $m^{-n} Z_n$ converges in L^1 and almost surely to a limit which is positive GW*-a.s. ([6]). Seneta [17] and Heyde [4] proved that in the general case (i.e allowing $E[\nu \log(\nu)]$ to be infinite), there exist constants $(c_n)_{n \geq 0}$ such that

(a) $W_\infty := \lim_{n \to \infty} \frac{Z_n}{c_n}$ exists a.s.

(b) $W_\infty > 0$ GW*-a.s.

(c) $\lim_{n \to \infty} \frac{c_{n+1}}{c_n} = m$.

In particular, for each vertex $u \in T$, if $Z_k(u)$ stands for the number of descendants v of u such that $|v| = |u| + k$, we can define

$$W_\infty(u) := \lim_{k \to \infty} \frac{Z_k(u)}{c_k}$$

and we notice that $m^{-n} \sum_{|v|=n} W_\infty(u) = W_\infty(e)$. Notice that the variables $W_\infty(u)$ depend on the choice of the constants $(c_n)_n$. We refer to Section 2 for our choice of the constants $(c_n)_n$.

Definition. On the event $\partial T \neq \emptyset$, the uniform measure (also called branching measure) is the unique Borel measure on ∂T such that

$$\text{UNIF}(\{r \in \partial T, r_n = u}\}) := \frac{m^{-n} W_\infty(u)}{W_\infty(e)}$$

for any integer n and any vertex u of height n.

We observe that, for any vertex u of height n,

$$\text{UNIF}(\{r \in \partial T, r_n = u\}) = \lim_{k \to \infty} \frac{Z_k(u)}{Z_{n+k}}.$$
In particular, it does not depend on the particular choice of the constants \((c_n)_n\). The uniform measure can be seen informally as the probability distribution of a ray taken uniformly in the boundary. This paper is interested in the Hausdorff dimension of \(\text{UNIF} \), defined by

\[
\dim(\text{UNIF}) := \min\{\dim(E), \text{UNIF}(E) = 1\}
\]

where the minimum is taken over all subsets \(E \subset \partial T\) of \(\text{UNIF}\)-measure 1 and \(\dim(E)\) is the Hausdorff dimension of set \(E\). The case \(E[\nu \log(\nu)] < \infty\) has been well studied. In the seminal but flawed paper [5], then in [3] and in [14] for a simple proof, it is shown that \(\dim(\text{UNIF}) = \log(m)\) \(GW^*\)-almost surely. Exact Hausdorff and packing measures are given in [7],[8],[19],[20],[2]. A description of the multifractal spectrum is available in [9],[16],[18]. The case \(E[\nu \log(\nu)] = \infty\) presented as Question 3.1 in [15] was left open. This case is proved to display an extreme behaviour.

Theorem 1.1. If \(E[\nu \log(\nu)] = \infty\), then \(\dim(\text{UNIF}) = 0\) for \(GW^*-a.e\) tree \(T\).

It is known (see [11]) that the Hausdorff dimension of \(\partial T\) is \(\log m\) as soon as \(m \in (1, \infty)\). Therefore the theorem tells us that the uniform measure is concentrated on a thin part of the boundary. Indeed we will see that for \(\text{UNIF}\)-a.e. ray \(r\), the number of children of \(r_n\) is greater than \((m - o(1))^n\) for infinitely many \(n\), and it is easy to see that the Hausdorff dimension of the set of such rays is zero. The proof relies on the construction of a particular measure \(Q\), under which the distribution of the number of children of a uniformly chosen ray is more tractable. Using a size-biased measure to gain information on the uniform ray already appears in the paper of Duquesne [2], see Lemma 3.1 there.

Section 2 contains the description of the new measure in terms of a spine decomposition. Then we prove Theorem 1.1 in Section 3. Section 4 contains some open questions.

2 A spine decomposition

For \(k \geq 1\) and \(s \in (0,1)\), we call \(\phi_k(s)\) the probability generating function of \(Z_k\)

\[
\phi_k(s) := E[s^{Z_k}].
\]

We denote by \(\phi_k^{-1}(s)\) the inverse map on \((q_0,1)\). Recall that \(\rho\) is the survival probability hence the unique solution in \([0,1)\) of \(\phi(s) = s\). Let \(s \in (\rho,1)\). Then \(M_n := \phi_n^{-1}(s)Z_n\) defines
a martingale and converges in L^1 to some $M_\infty > 0$ a.s ([4]). Therefore we can take for the Seneta-Heyde norming in (a)
\[c_n := \frac{-1}{\log(\phi_n^{-1}(s))} \]
which we will do from now on. Hence we can rewrite equivalently $M_n = e^{-Z_n/c_n}$ and $M_\infty = e^{-W_\infty(c)}$. Notice that M_n depends on our choice of s. In [10], Lynch introduces the so-called derivative martingale (because it is the martingale obtained by differentiating with respect to s)
\[D_n := e^{1/c_n} \frac{Z_n}{\phi_n'(\phi_n^{-1}(s))} M_n. \]
(2.1)
The fact that it is a martingale is straightforward by differentiation. It is nonnegative hence converges almost surely to some D_∞. Let us follow the argument of Lynch (restricted to our case $E[\nu] < \infty$) to give some properties of this martingale. Since $(M_n)_n$ is a martingale, $(-M_n \log(M_n))_n$ defines a (nonnegative) supermartingale. Therefore its expectation is nonincreasing. Notice that
\[-M_n \log(M_n) = \phi_n'(\phi_n^{-1}(s)) \frac{1}{c_n} e^{-1/c_n} D_n \]
Taking the expectation implies that $\phi_n'(\phi_n^{-1}(s)) \frac{1}{c_n} e^{-1/c_n}$ is nonincreasing hence converges. We show now that the limit is nonzero. In view of (2.1), since D_n and M_n converge almost surely (and c_n goes to $+\infty$), $\frac{Z_n}{\phi_n'(\phi_n^{-1}(s))}$ converges almost surely. Since Z_n/c_n converges almost surely to a nondegenerate random variable, the limit of $\phi_n'(\phi_n^{-1}(s))/c_n$ is nonzero indeed. From (2.2), we see that D_∞ is positive GW^*-almost surely and $(D_n)_n$ is bounded. In particular, it converges in L^1.

We proved that $\phi_n'(\phi_n^{-1}(s))/c_n$ converges to some positive constant. It follows from (c) that
\[\lim_{n \to \infty} \frac{\phi_{n+1}'(\phi_n^{-1}(s))}{\phi_n'(\phi_n^{-1}(s))} = m. \]

We are interested in the probability measure Q on the space of rooted trees defined by
\[\frac{dQ}{dGW} := D_\infty. \]
Let us describe this change of measure. We call a marked tree a couple (T, r) where T is a rooted tree and r a ray of the tree T. Let (\mathbb{T}, ξ) be a random variable in the space of all marked trees (equipped with some probability $\mathbb{P}(\cdot)$), whose distribution is given by the following rules. Conditionally on the tree up to level k and on the location of the ray at level k, (which we denote respectively by \mathbb{T}_k and ξ_k),
• the number of children of the vertices at generation \(k \) are independent

• the vertex \(\xi_k \) has a number \(\nu(\xi_k) \) of children such that for any \(\ell \)

\[{2.4} \quad \mathbb{P}(\nu(\xi_k) = \ell) = \tilde{q}_\ell := q_\ell \ell \exp \left(-\frac{\ell - 1}{c_{k+1}} \right) \frac{\phi_k'(\phi_k^{-1}(s))}{\phi_{k+1}'(\phi_k^{-1}(s))} \]

• the number of children of a vertex \(u \neq \xi_k \) at generation \(k \) verifies for any \(\ell \)

\[{2.5} \quad \mathbb{P}(\nu(u) = \ell) = \tilde{q}_\ell := q_\ell e^{1/c_k} \exp \left(-\frac{\ell}{c_{k+1}} \right) \]

• the vertex \(\xi_{k+1} \) is chosen uniformly among the children of \(\xi_k \)

We call the ray \(\xi \) the spine. We refer to [13], [12] for motivation on spine decompositions. In our case, we can see \(T \) as a Galton-Watson tree in varying environment and with immigration.

The fact that (2.4) and (2.5) define probabilities come from the equations (remember that by definition \(e^{-1/c_k} = \phi_k^{-1}(s) \))

\[
E \left[(\phi_{k+1}^{-1}(s))^\nu \right] = \phi_k^{-1}(s), \quad E \left[\nu(\phi_{k+1}^{-1}(s))^\nu-1 \right] = \frac{\phi_{k+1}'(\phi_k^{-1}(s))}{\phi_k'(\phi_k^{-1}(s))}.
\]

When \(s = 1 \), equations (2.4) and (2.5) become \(\mathbb{P}(\nu(\xi_k) = \ell) = \ell q_\ell / m \) and \(\mathbb{P}(\nu(u) = \ell) = q_\ell \), which is the size-biased Galton–Watson tree of [13].

Proposition 2.1. Under \(Q \), the tree \(T \) has the distribution of \(T \). Besides, for \(\mathbb{P} \)-almost every tree \(T \), the distribution of \(\xi \) conditionally on \(T \) is the uniform measure \(\text{UNIF} \). In other words, for any nonnegative measurable function \(F \),

\[
E \left[D_{\infty} \int_{\partial T} \text{UNIF}(dr)F(T, r) \right] = E_{\phi} \left[F(T, \xi) \right].
\]

Proof. For any tree \(T \), we define \(T_n \) the tree \(T \) obtained by keeping only the \(n \) first generations. Let \(T \) be a tree. We will prove by induction that, for any integer \(n \) and any vertex \(u \) at generation \(n \),

\[{2.6} \quad \mathbb{P}(T_n = T_n, \xi_n = u) = \frac{D_n}{Z_n} \text{GW}(T_n = T_n). \]
For \(n = 0 \), it is straightforward since \(T_0 \) and \(T_n \) are reduced to the root. We suppose that this is true for \(n - 1 \), and we prove it for \(n \). Let \(\hat{u} \) denote the parent of \(u \), and, for any vertex \(v \) at height \(n - 1 \), let \(k(v) \) denote the number of children of \(v \) in the tree \(T \). We have

\[
\begin{align*}
\mathbb{P}(T_n = T_n, \xi_n = u | T_{n-1} = T_{n-1}, \xi_{n-1} = \hat{u}) &= \frac{1}{k(u)} \prod_{v=\hat{u}} \tilde{q}_k(v) \\
&= \frac{e^{1/c_n} \phi_n'(\phi_n^{-1}(s)) e^{Z_{n-1}/c_n}}{e^{1/c_{n-1}} \phi_n'(\phi_n^{-1}(s)) e^{Z_{n}/c_n}} \prod_{v=\hat{u}} q_k(v) \\
&= \frac{e^{1/c_n} \phi_n'(\phi_n^{-1}(s)) e^{Z_{n-1}/c_n}}{e^{1/c_{n-1}} \phi_n'(\phi_n^{-1}(s)) e^{Z_{n}/c_n}} \text{GW}(T_n = T_n \mid T_{n-1} = T_{n-1}).
\end{align*}
\]

We use the induction assumption to get

\[
\mathbb{P}(T_n = T_n, \xi_n = u) = e^{1/c_n} \frac{1}{\phi_n'(\phi_n^{-1}(s))} e^{-\frac{Z_n}{c_n}} \text{GW}(T_n = T_n)
\]

which proves (2.6). Summing over the \(n \)-th generation of \(T \) gives

\[
\mathbb{P}(T_n = T_n) = D_n \text{GW}(T_n = T_n) = Q(T = T_n).
\]

This computation also shows that \(\mathbb{P}(\xi_n = u \mid T_n) = 1/Z_n \) which implies that \(\xi \) is uniformly distributed on the boundary \(\partial T \). \(\square \)

3 Proof of Theorem 1.1

Proposition 3.1. Suppose that \(E[\nu \log(\nu)] = \infty \). Then we have \(\mathbb{P} \)-a.s.

\[
\limsup_{n \to \infty} \frac{1}{n} \log(\nu(\xi_n)) = \log(m).
\]

Proof. Let \(1 < a < b < m \) and \(n \geq 0 \). We get from (2.4)

\[
\begin{align*}
\mathbb{P}(\nu(\xi_n) \in (a^n, b^n)) &= \frac{\phi_n'(\phi_n^{-1}(s))}{\phi_n'(\phi_n^{-1}(s))} E\left[\nu e^{-\nu^{-1}/c_{n+1}}, \nu \in (a^n, b^n)\right] \\
&\geq \frac{\phi_n'(\phi_n^{-1}(s))}{\phi_n'(\phi_n^{-1}(s))} e^{-b^n/c_n} E\left[\nu, \nu \in (a^n, b^n)\right].
\end{align*}
\]

From (c) and (2.3), we deduce that for \(n \) large enough, we have

\[
\begin{align*}
\mathbb{P}(\nu(\xi_n) \in (a^n, b^n)) \geq \frac{1}{2m} E\left[\nu, \nu \in (a^n, b^n)\right].
\end{align*}
\]
Therefore, under the condition \(E[\nu \log(\nu)] = \infty \), we have

\[
\sum_{n \geq 0} \mathbb{P}(\nu(\xi_n) \in (a^n, b^n)) = \infty.
\]

(3.1)

We use the standard converse of the Borel-Cantelli lemma to see that \(\nu(\xi_n) > a^n \) infinitely often. Then let \(a \) go to \(m \) to prove the lower bound of the proposition. The upper bound is easy since \(\nu(\xi_m) \leq Z_{m+1} \), and we know that \(\frac{Z_n}{m^n} \) goes to 0 almost surely. \(\square \)

We turn to the proof of the theorem.

Proof of Theorem 1.1. By Proposition 3.1, we have

\[
\mathbb{P}
\left(\limsup_{n \to \infty} \frac{1}{n} \log(\nu(\xi_n)) = \log(m)\right) = 1.
\]

In particular, for \(\mathbb{P} \)-a.e. \(T \),

\[
\mathbb{P}
\left(\limsup_{n \to \infty} \frac{1}{n} \log(\nu(\xi_n)) = \log(m) \mid T\right) = 1.
\]

By Proposition 2.1, the distribution of \(\xi \) given \(T \) is \(\text{UNIF} \). Therefore, for \(\mathbb{P} \)-a.e. \(T \),

\[
\text{UNIF}
\left(r \in \partial T : \limsup_{n \to \infty} \frac{1}{n} \log(\nu(r_n)) = \log(m)\right) = 1.
\]

(3.2)

Again by Proposition 2.1, the distribution of \(T \) is the one of \(\mathcal{T} \) under \(Q \). We deduce that (3.2) holds for \(Q \)-a.e. tree \(\mathcal{T} \). Since \(Q \) and \(GW^* \) are equivalent, equation (3.2) holds for \(GW^* \)-a.e. tree \(\mathcal{T} \). To finish the proof, we just need to prove that the set \(F := \{ r \in \partial \mathcal{T} : \limsup_{n \to \infty} \frac{1}{n} \log(\nu(r_n)) = \log(m)\} \) has Hausdorff dimension 0. Let \(\alpha > 0 \). For a vertex \(u \), let \(B_u \) be the set of rays \(r \) such that \(u \in r \). Then \(B_u \) is a ball in the metric space \((\partial \mathcal{T}, d)\) with diameter \(\text{diam}(B_u) = e^{-|u|} \). For any integer \(k \geq 1 \), notice that we can cover \(F \) with a countable number of balls \(B_{u_i} \), where \((u_i)_i\) are vertices of height greater than \(k \) such that \(\nu(u_i) \geq m |u_i| e^{-|u_i|\alpha/2} \). Finally, observe that

\[
\sum_{i} (\text{diam}(B_{u_i}))^\alpha = \sum_{\ell \geq 0} e^{-\ell \alpha} \sum_{i} 1_{\{|u_i| = \ell\}}.
\]

For any \(\ell \), \(Z_{\ell+1} \geq \sum_{i} 1_{\{|u_i| = \ell\}} \nu(u_i) \geq m^\ell e^{-\ell \alpha/2} \sum_{i} 1_{\{|u_i| = \ell\}} \). Therefore

\[
\sum_{i} (\text{diam}(B_{u_i}))^\alpha \leq \sum_{\ell \geq 0} e^{-\ell \alpha/2} \frac{Z_{\ell+1}}{m^\ell} < \infty.
\]

It yields that the Hausdorff dimension of \(F \) is smaller than \(\alpha \), which completes the proof by letting \(\alpha \to 0 \). \(\square \)
4 Questions

These questions concern the case $E[\nu \log(\nu)] = \infty$.

Question 1. What is the packing dimension of UNIF?

Question 2. Can we give an exact Hausdorff measure for the boundary ∂T? This question is answered in the case $E[\nu \log(\nu)] < \infty$ by Liu [7] and Watanabe [20] in great generality. See also Duquesne [2] for an elementary proof.

Question 3. We know from [11] that the Hausdorff dimension of the boundary is $\log(m)$. What would be a “natural” measure on the boundary ∂T with Hausdorff dimension $\log(m)$?

We saw that the measure UNIF was putting its mass on exceptional rays. Therefore, one could thing of removing “bad” rays in order to construct a well spread out measure. This is the goal of the last question.

Question 4. Let $(a_n)_n$ be a sequence of integers going to ∞, such that $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a \in [1, m]$. Consider the Galton–Watson process in varying environment, with offspring distribution at generation n given by $\nu 1_{\{\nu \leq a_n\}}$. It is associated with a uniform measure (see Theorem 3 of [1]). What is the Haudorff dimension of this measure?

Acknowledgements. The author thanks Russell Lyons for useful comments on the work, and an anonymous referee for the suggestions on open questions. This work was supported in part by the Netherlands Organisation for Scientific Research (NWO).

References

