Edgeworth expansion for Euler approximation of continuous diffusion processes

Mark Podolskij* Bezirgen Veliyev† Nakahiro Yoshida‡

September 1, 2019

Abstract

In this paper we present the Edgeworth expansion for the Euler approximation scheme of a continuous diffusion process driven by a Brownian motion. Our methodology is based upon a recent work [22], which establishes Edgeworth expansions associated with asymptotic mixed normality using elements of Malliavin calculus. Potential applications of our theoretical results include higher order expansions for weak and strong approximation errors associated to the Euler scheme, and for studentized version of the error process.

Keywords: diffusion processes, Edgeworth expansion, Euler scheme, limit theorems.

AMS 2000 subject classifications. 60F05, 60H10, 65C30.

1 Introduction

In this work we consider a one-dimensional continuous stochastic process \((X_t)_{t \in [0,1]}\) that satisfies the stochastic differential equation

\[dX_t = a(X_t)dt + b(X_t)dW_t \quad \text{with} \quad X_0 = x_0, \tag{1.1} \]

where \((W_t)_{t \in [0,1]}\) is a Brownian motion, defined on a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,1]}, \mathbb{P})\).

A simple and effective numerical scheme for the solution of (1.1) is the Euler approximation scheme, which is given as follows. Let \(\varphi_n : \mathbb{R}_+ \to \mathbb{R}_+\) be the function defined by \(\varphi_n(t) = i/n\) when \(t \in [i/n, (i+1)/n]\). The continuous Euler approximation scheme is described by

\[dX^n_t = a \left(X^n_{\varphi_n(t)} \right) dt + b \left(X^n_{\varphi_n(t)} \right) dW_t \quad \text{with} \quad X^n_0 = x_0. \tag{1.2} \]

*Department of Mathematics, Aarhus University, Ny Munkegade 118, 8000 Aarhus, Denmark, Email: mpodolskij@math.au.dk.
†CREATES, Department of Economics and Business Economics, Aarhus University, Fuglesangs Alle 4, 8210 Aarhus V, Denmark, Email: bveliyev@econ.au.dk
‡Graduate School of Mathematical Science, 3-8-1 Komaba, Meguro-ku, Tokyo 153, Japan, Email: nakahiro@ms.u-tokyo.ac.jp
The probabilistic properties of the Euler approximation scheme have been investigated in numerous papers. We refer to the classical work [3, 4, 9, 11, 12, 13] among many others. Asymptotic results in the framework of non-regular coefficients can be found in e.g. [2, 6, 8, 19].

In this paper we are aiming to derive an Edgeworth expansion for the error process

\[U^n = X^n - X. \]

(1.3)

Let us recall the classical convergence result for \((U^n_t)_{t \in [0,1]}\) from [9].

Theorem 1.1. [9, Theorem 1.2] Assume that the functions \(a, b\) are globally Lipschitz and \(a, b \in C^1(\mathbb{R})\). Then we obtain the stable convergence

\[V^n := \sqrt{n}U^n \overset{d^*}{\longrightarrow} V \quad \text{on } C([0,1]) \]

(1.4)

equipped with the uniform topology, where \(V = (V_t)_{t \in [0,1]}\) is the unique solution of the stochastic differential equation

\[dV_t = a'(X_t)V_t dt + b'(X_t)V_t dW_t - \frac{1}{\sqrt{2}}bb'(X_t)dB_t \quad \text{with} \quad V_0 = 0, \]

(1.5)

and \((B_t)_{t \in [0,1]}\) is a new Brownian motion defined on an extension of the probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,1]}, \mathbb{P})\) and independent of the \(\sigma\)-field \(\mathcal{F}\).

We will see later that the limiting process \(V\) is an \(\mathcal{F}\)-conditional Gaussian martingale with \(\mathcal{F}\)-conditional zero mean. In particular, for each \(t > 0\), \(V_t\) has a mixed normal distribution. The aim of this work is to derive an Edgeworth expansion associated with Theorem 1.1. More specifically, for any regular \(q\)-dimensional random variable \(F\) and any given times \(0 < T_1 < \ldots < T_k \leq 1\), we would like to determine the function \(p_n : \mathbb{R}^k \times \mathbb{R}^q \to \mathbb{R}\) such that it holds

\[\sup_{f \in C_{q,k}} \left| \mathbb{E}[f(V^n_{T_1}, \ldots, V^n_{T_k}, F)] - \int_{\mathbb{R}^k \times \mathbb{R}^q} f(z, x)p_n(z, x)dzdx \right| = o(1/\sqrt{n}) \]

(1.6)

for a large class of functions \(C_{q,k}\). The methodology is based upon the work of Yoshida [22], which applies Malliavin calculus and stable convergence to obtain the Edgeworth expansion associated with mixed normal limits. Another key ingredient in the derivation of (1.6) is the stochastic expansion of the error process \(U^n\) and a non-degeneracy condition, which turns out to be rather complex in the case \(k > 1\). Related articles include [7, 15, 16], which have studied Edgeworth expansions associated to covariance estimators, power variations and the pre-averaging estimator.

The paper is structured as follows. Section 2.1 presents various definitions and notation. Section 2.2 introduces the relevant framework for the Edgeworth expansion of multivariate weighted quadratic functionals, which plays a crucial role in the asymptotic analysis of the Euler scheme. In Section 3 we investigate the second order stochastic expansion of the standardised error process associated with the Euler approximation scheme and derive the relevant Edgeworth expansions. Section 4 is devoted to several applications.
of our theoretical results, including asymptotic expansion of the weak and strong approximation errors, and density expansion for the studentized version of the error process. In Section 5 we discuss some sufficient conditions for our main results. Proofs are presented in the Appendix.

2 Background

2.1 Definitions and notation

In this subsection we introduce basic notation, some elements of the Malliavin calculus and the definition of stable convergence in law.

All vectors \(x \in \mathbb{R}^k \) are understood as column vectors; \(\|x\| \) stands for Euclidean norm of \(x \) and \(x^t \) denotes the transpose of \(x \). For \(x \in \mathbb{R}^k \) and \(m \in \mathbb{Z}_+^k \) we set \(x^m := \prod_{j=1}^k x_j^{m_j} \) and \(|m| = \sum_{j=1}^k m_j \). For any function \(f : \mathbb{R} \to \mathbb{R} \) we denote by \(f^{(l)} \) its \(l \)th derivative; for a function \(f : \mathbb{R}^k \times \mathbb{R}^q \to \mathbb{R} \) and \(\alpha = (\alpha_1, \alpha_2) \in \mathbb{Z}_+^k \times \mathbb{Z}_+^q \) the operator \(d^\alpha \) is defined via \(d^\alpha = d^\alpha_{x_1}d^\alpha_{x_2} \) where \((x_1, x_2) \in \mathbb{R}^k \times \mathbb{R}^q \). The set \(C^l_p(\mathbb{R}^k) \) (resp. \(C^l_q(\mathbb{R}^k) \)) denotes the space of \(l \) times continuously differentiable functions \(f : \mathbb{R}^k \to \mathbb{R} \) such that all derivatives up to order \(l \) have at most polynomial growth (resp. are bounded). For a matrix \(A \in \mathbb{R}^{k \times k} \) and a vector \(x \in \mathbb{R}^k \) we write \(A[x^{\otimes 2}] \) to denote the quadratic form \(x^t A x \); similarly for \(x, y \in \mathbb{R}^k \) we write \(y[x] \) for the linear form \(y^t x \). The function \(\phi(\cdot; \mu, A) \) stands for the density of the normal distribution with mean \(\mu \in \mathbb{R}^k \) and covariance matrix \(A \in \mathbb{R}^{k \times k} \). Finally, \(\mathbb{I} := \sqrt{-1} \).

We now introduce some notions of Malliavin calculus (we refer to the books of Ikeda and Watanabe [18] and Nualart [14] for a detailed exposition of Malliavin calculus). The set \(\mathbb{L}^p \) denotes the space of random variables with finite \(p \)th moment and we use the notation \(\mathbb{L}_\infty = \cap_{0 < p} \mathbb{L}^p \); the corresponding \(\mathbb{L}^p \)-norms are denoted by \(\| \cdot \|_{\mathbb{L}^p} \). Define \(\mathbb{H} = \mathbb{L}^2([0, 1], dx) \) and let \(\langle \cdot , \cdot \rangle_\mathbb{H} \) denote the usual scalar product on \(\mathbb{H} \). We denote by \(D^l \) the \(l \)th Malliavin derivative operator and by \(d^l \) its unbounded adjoint (also called Skorokhod integral of order \(l \)). The space \(\mathbb{D}_{l,p} \) is the completion of the set of smooth random variables with respect to the norm

\[
\|Y\|_{l,p} := \left(\mathbb{E}[|Y|^p] + \sum_{m=1}^l \mathbb{E}[\|D^m Y\|_{\mathbb{H}^m}^p] \right)^{1/p}.
\]

For any smooth \(k \)-dimensional random variable \(Y = (Y_i)_{1 \leq i \leq k} \) the Malliavin matrix is defined via \(\sigma_Y := \langle D Y_i, D Y_j \rangle_{\mathbb{H}} \). We write \(\Delta_Y := \det \sigma_Y \) for the determinant of the Malliavin matrix. Finally, we set \(\mathbb{D}_{l,\infty} = \cap_{p \geq 2} \mathbb{D}_{l,p} \). We sometimes write \(\mathbb{D}_{l,p}(\mathbb{R}^k) \) to denote the space of all \(k \)-dimensional random variable \(Y \) such that \(Y_i \in \mathbb{D}_{l,p} \).

We use the notation \(Y_n \xrightarrow{d} Y \) to denote the stable convergence in law. We recall that a sequence of random variables \((Y_n)_{n \in \mathbb{N}} \) defined on \((\Omega, \mathcal{F}, \mathbb{P}) \) with values in a metric space \(E \) is said to converge stably with limit \(Y \), written \(Y_n \xrightarrow{d} Y \), where \(Y \) is defined on an extension \((\Omega, \mathcal{F}, \mathbb{P}) \) of the original probability space \((\Omega, \mathcal{F}, \mathbb{P}) \), iff for any bounded,
Edgeworth expansion for Euler approximation of SDEs

4 continuous function \(g \) and any bounded \(\mathcal{F} \)-measurable random variable \(Z \) it holds that

\[
E[g(Y_n)Z] \to E[g(Y)Z], \quad n \to \infty.
\] (2.1)

The notion of stable convergence is due to Renyi [17]. We also refer to [1] for properties of this mode of convergence.

Finally, for two vector fields \(V_0 \) and \(V_1 \) we denote by \(\text{Lie}[V_0; V_1] \) the Lie algebra generated by \(V_1 \) and \(V_0 \). That is, \(\text{Lie}[V_0; V_1] = \text{span} \left(\bigcup_{j=0}^{\infty} \Sigma_j \right) \), where \(\Sigma_0 = \{ V_1 \} \) and \(\Sigma_j = \{ [V, V_i]; V \in \Sigma_{j-1}, i = 0, 1 \} \) \((j \geq 1)\) with the Lie bracket \([\cdot, \cdot]\). \(\text{Lie}[V_0; V_1](x) \) stands for \(\text{Lie}[V_0; V_1] \) evaluated at \(x \).

2.2 Edgeworth expansion associated with mixed normal limits: The quadratic case

In this section we will present the framework of the (second order) Edgeworth expansions associated with mixed normal limits introduced in [22] in the context of certain quadratic functionals of Brownian motion. This setting is absolutely crucial for the treatment of the error process \(V^n \) as the dominating martingale term in the expansion of \(V^n \) turns out to have a quadratic form. One of our aims in this section is to study the sources of the coefficients of the desired function \(p_n \) (see (1.6)) without delving into technical details.

On a filtered Wiener space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,1]}, \mathbb{P}) \) we consider a \(k \)-dimensional random functional \(Z_n \), which admits the decomposition

\[
Z_n = M_n + n^{-1/2} N_n, \tag{2.2}
\]

where \(M_n \) and \(N_n \) are tight sequences of random variables. We assume that \(M_n \), which will have a quadratic form, converges stably in law to a mixed normal variable \(M \):

\[
M_n \xrightarrow{\text{dst}} M, \tag{2.3}
\]

where the random variable \(M \) is defined on an extension \((\overline{\Omega}, \overline{\mathcal{F}}, \overline{\mathbb{P}})\) of the original probability space \((\Omega, \mathcal{F}, \mathbb{P})\) and, conditionally on \(\mathcal{F} \), \(M \) has a normal law with mean 0 and conditional covariance matrix \(C \in \mathbb{R}^{k \times k} \). In this case we use the notation

\[
M \sim MN(0, C).
\]

For concrete applications it is often useful to consider the Edgeworth expansion for the pair \((Z_n, F_n)\), where \(F_n \) is another \(q \)-dimensional random functional satisfying the convergence in probability

\[
F_n \xrightarrow{\mathbb{P}} F.
\]

Obviously, such a framework is important when the statistic at hand does not only depend on the sequence \(Z_n \), but also on an external random variable \(F \) (in this case we may set \(F_n = F \)). In the statistical context the most useful application is the case where \(F_n \xrightarrow{\mathbb{P}} C \). In this situation we obtain by properties of stable convergence that

\[
F_n^{-1/2} Z_n \xrightarrow{d} \mathcal{N}_k(0, \text{id}_k)
\]
when $F_n \in \mathbb{R}^{k \times k}$ is positive definite and id_k denotes the identity matrix. Thus, the asymptotic expansion of the law of (Z_n, F_n) would imply the Edgeworth expansion for the studentized statistic $F_n^{-1/2} Z_n$.

In the next step we embed the previous static framework into a martingale setting. We assume that the leading term M_n is a terminal value of some continuous (\mathcal{F}_t)-martingale $(M^n_t)_{t \in [0,1]}$, that is $M_n = M^n_1$. We also consider stochastic processes $(M_t)_{t \in [0,1]}$ and $(C^n_t)_{t \in [0,1]}$ with values in \mathbb{R}^k and $\mathbb{R}^{k \times k}$ respectively, such that

$$M = M_1, \quad C_t = \langle M \rangle_t, \quad C^n_t = \langle M^n \rangle_t, \quad C_n = \langle M^n \rangle_1.$$ \hfill (2.4)

Here the process $(M_t)_{t \in [0,1]}$, defined on an extended probability space $(\Omega, \mathcal{F}, \mathbb{P})$, represents the stable limit of the continuous (\mathcal{F}_t)-martingale $(M^n_t)_{t \in [0,1]}$, while C^n denotes the quadratic covariation process associated with M^n. Denoting $\widehat{C}_n = \sqrt{n}(C_n - C)$, $\widehat{F}_n = \sqrt{n}(F_n - F)$, we also suppose that

$$(M^n, N_n, \widehat{C}_n, \widehat{F}_n) \overset{d}{\longrightarrow} (M, N, \widehat{C}, \widehat{F})$$ \hfill (2.5)

for a random vector $(M, N, \widehat{C}, \widehat{F})$ defined on an extension of $(\Omega, \mathcal{F}, \mathbb{P})$.

Now, we shall introduce a particular type of quadratic functionals. For a sequence of time points $(T_j)_{1 \leq j \leq k}$ not depending on n with $0 < T_1 < \ldots < T_k$, we consider a sequence of partitions $\pi^n = (\pi_i)_{i \leq m_n}$ of $[0,1]$ such that $0 = t_0 < t_1 < \ldots < t_{m_n}$ and that $\{T_j\}_{1 \leq j \leq k} \subset \{t_i\}_{1 \leq i \leq m_n}$ for every $n \in \mathbb{N}$. Here t_j may depend on n though we omit n for notational simplicity. Let $I_i = [t_{i-1}, t_i)$ and $|I_i| = t_i - t_{i-1}$. Suppose that $n^4 \sum_{i=1}^{m_n} |I_i|^6 = O(1)$ as $n \to \infty$. Next, we consider a càdlàg adapted stochastic kernel $K^n = (K^{n,j})_{1 \leq j \leq k} : [0,1] \to \mathbb{R}^k$ satisfying

$$K^{n,j}(t) = K^{n,j}(t_{i-1}) \text{ for } t \in I_i \quad \text{ and } \quad K^{n,j}(t) = 0 \text{ if } t \geq T_j.$$

The aforementioned sequence of quadratic type martingales $M^n = (M^{n,j})_{1 \leq j \leq k}$ is defined by

$$M_t^{n,j} = \sqrt{n} \sum_{i=1}^{m_n} K^{n,j}(t_{i-1}) \int_{t_{i-1}}^{t} \int_{t_{i-1}}^{s} dW_r dW_s, \quad t \in [0,1].$$ \hfill (2.6)

Let $K : \Omega \times [0,1] \to \mathbb{R}$ be a continuous adapted process and set

$$p_s^j = \frac{1}{2} \int_{T_{j-1}}^{T_j} K(r)^2 dr, \quad s \in (T_{j-1}, T_j].$$ \hfill (2.7)

In order to present the Edgeworth expansion for the pair (Z_n, F_n) we need to define two random symbols σ and $\bar{\sigma}$, which were introduced in [22]. Indeed, all coefficients of the the desired function p_n (see (1.6)) are contained in these two random symbols. We call σ the adaptive (or classical) random symbol and $\bar{\sigma}$ the anticipative random symbol. The adaptive random symbol σ is defined by

$$\sigma(z; iu, iv) = \sigma^1(z) [iuj^2] + \sigma^2(z) [iu] + \sigma^3(z) [iv],$$
where $\sigma^j, j = 1, 2, 3$, are measurable functions satisfying
\[
\sigma^1(M_1) = \frac{1}{2} \E[\hat{C}|F \vee \sigma(M_1)] , \quad \sigma^2(M_1) = \E[N|F \vee \sigma(M_1)] , \quad \sigma^3(M_1) = \E[\hat{F}|F \vee \sigma(M_1)]
\]

(2.8)

Let $\overline{K}(t) = (K(t)1_{t<T_j})_{1 \leq j \leq k}$. The anticipative random symbol σ is defined by
\[
\sigma(iu, iv) = \frac{1}{2} \int_0^1 \overline{K}(t)[iu] \sigma_t(iu, iv) dt
\]

(2.9)

where
\[
\sigma_t(iu, iv) = \left(- \frac{1}{2} D_t C[u \otimes^2] + D_t F[iv] \right)^2
\]
\[
+ \left(- \frac{1}{2} D_t D_t C[u \otimes^2] + D_t D_t F[iv] \right).
\]

The derivative D_tD_t stands for \(\lim_{s \to t} D_s D_t \). The full random symbol is defined by
\[
\sigma = \sigma + \sigma
\]

and has the form
\[
\sigma(z; iu, iv) = \sum_\alpha c_\alpha(z)(iu)^{\alpha_1}(iv)^{\alpha_2}
\]

(2.10)

where $\alpha = (\alpha_1, \alpha_2) \in \mathbb{Z}_+^k \times \mathbb{Z}_+^q$. In this case, we define the function p_n via
\[
p_n(z, x) = \E[\phi(z; 0, C)|F = x]p^F(x)
\]
\[
+ n^{-1/2} \sum_\alpha (-d_z)^{\alpha_1}(-d_x)^{\alpha_2} \left\{ \E[c_\alpha(z)\phi(z; 0, C)|F = x]p^F(x) \right\},
\]

which is the approximative density of (Z_n, F_n) in the quadratic setting. We now provide some heuristic arguments for the definition of the random symbols σ and σ. For the sake of simplicity, we will ignore integrability issues and refer the reader to Section 6.2.2 for precise details. As common in Edgeworth expansion theory, we are considering the second order expansion of the joint characteristic function
\[
\E[\exp \left(Z_n[iu] + F_n[iv] \right)]
\]

(2.12)

before applying Fourier inversion to obtain the formula (2.11). To this end, we introduce the following notations
\[
\Psi(u, v) = \exp \left(\frac{1}{2} C[(iu)^{\otimes 2}] + F[iv] \right), \quad e^\eta_n(u) = \exp \left(M^n[iu] - \frac{1}{2} C^n[(iu)^{\otimes 2}] \right),
\]
\[
\varepsilon_n(u, v) = \frac{1}{2}(C_n - C)[(iu)^{\otimes 2}] + (F_n - F)[iv] + n^{-1/2}N_n[iu].
\]
Due to the identity
\[
\exp \left(Z_n[iu] + F_n[iv] \right) = \Psi(u, v) \left(1 + \sqrt{n} \frac{\exp(e_n)}{\sqrt{n}} \right) \left(1 + \sqrt{n} \frac{\exp(e_n(u, v)) - 1}{\sqrt{n}} \right),
\]
we deduce the approximation
\[
\mathbb{E} \left[\exp \left(Z_n[iu] + F_n[iv] \right) \right] \approx \mathbb{E} \left[\Psi(u, v) \right] + n^{-1/2} \Psi_1^n(u, v) + n^{-1/2} \Psi_2^n(u, v) \quad (2.13)
\]
with
\[
\Psi_1^n(u, v) := n^{1/2} \mathbb{E} \left[\Psi(u, v) \left(\exp(e_n(u, v)) - 1 \right) \right] \quad \text{and} \quad \Psi_2^n(u, v) := n^{1/2} \mathbb{E} \left[\Psi(u, v)(e^n_1 - 1) \right].
\]
Due to the convergence in (2.5), we can link the quantity \(\Psi_1^n(u, v) \) to the random symbol \(\sigma \) defined in (2.8). On the other hand, the random symbol \(\sigma \) is implicitly defined via the convergence requirement
\[
\mathbb{E} \left[\Psi(u, v)\sigma(iu, iv) \right] := \lim_{n \to \infty} \Psi_2^n(u, v).
\]
In general it is not easy to recover the random symbol \(\sigma(iu, iv) \) from the above convergence. However, in the quadratic setting \(\sigma(iu, iv) \) can be explicitly computed as demonstrated in (2.9) by an application of the integration by parts formula of Malliavin calculus (cf. [22, Section 6]).

In the following discussion we will determine the function \(p_n \) in the framework of the error process associated with the Euler scheme.

3 Edgeworth expansion for Euler approximation

In this section, we will derive the Edgeworth expansion for the vector \((V^n_{T_1}, \ldots, V^n_{T_k})\) associated with the Euler approximation, where \(0 = T_0 < T_1 < \ldots < T_k \leq 1\) are fixed time points. Following the framework discussed in Section 2.2, we will first derive the stochastic decomposition as in (2.2) and show the central limit theorem as in (2.5). Finally, we obtain Edgeworth expansions under appropriate conditions.

3.1 Stochastic expansion of the error process

Here we derive explicit expressions for the first and second order approximation of the normalised error process \(V^n \). The following well known lemma, which is a straightforward consequence of Itô’s formula, will be a helpful tool.

Lemma 3.1. Assume that \((Y_t)_{t \in [0,1]}\) is the unique strong solution of the stochastic differential equation
\[
dY_t = (c_t + \hat{c}_t)dt + (d_t + \hat{d}_t)dW_t \quad \text{with} \quad Y_0 = y_0, \quad (3.1)
\]
where \((c_t)_{t \in [0,1]}, (\tilde{c}_t)_{t \in [0,1]}, (d_t)_{t \in [0,1]}, (\tilde{d}_t)_{t \in [0,1]}\) are predictable stochastic processes. Then the process \((Y_t)_{t \in [0,1]}\) exhibits an explicit solution given by

\[
Y_t = \Sigma_t \left[y_0 + \int_0^t \Sigma_s^{-1} \left((\tilde{c}_s - d_s\tilde{d}_s) ds + \tilde{d}_s dW_s \right) \right],
\]

(3.2)

\[
\Sigma_t = \exp \left(\int_0^t d_s dW_s + \int_0^t \left(c_s - \frac{1}{2} d_s^2 \right) ds \right).
\]

Applying the same argument, we deduce that the limiting process \(V\) introduced at (1.5) can be written explicitly as

\[
V_t = -\frac{1}{\sqrt{2}} \Sigma_t \int_0^t \Sigma_s^{-1} bb'(X_s) dB_s,
\]

where the process \((\Sigma_t)_{t \geq 0}\) is defined by

\[
\Sigma_t = \exp \left(\int_0^t b'(X_s) dW_s + \int_0^t \left(a' - \frac{1}{2} (b')^2 \right) (X_s) ds \right).
\]

(3.3)

Since the process \(\Sigma\) is \(\mathcal{F}\)-measurable, we see that \(V\) is an \(\mathcal{F}\)-conditional Gaussian martingale with \(\mathcal{F}\)-conditional mean zero.

In the first step we will obtain an explicit representation of the leading term of the normalised error process \(V^n\) defined at (1.4). This stochastic expansion can be also found in the proof of [9, Theorem 1.2]. Nevertheless, we will prove this result for the sake of completeness.

Theorem 3.2. Let us consider the process

\[
\overline{V}_t^n = -\sqrt{n} \Sigma_t \int_0^t \Sigma_s^{-1} bb'(X^n_s) (W_s - W_{\tilde{\varphi}_n(s)}) dW_s,
\]

(3.4)

where \(\Sigma\) is defined in (3.3). Then it holds that

\[
\sup_{t \in [0,1]} |V^n_t - \overline{V}_t^n| \rightarrow P 0.
\]

We remark at this stage that the process \((\Sigma_t^{-1}\overline{V}_t^n)_{t \in [0,1]}\) is a continuous martingale of quadratic form with random weights. Thus, second order Edgeworth expansion for the functional \(V^n_t\) can be deduced from the corresponding expansion for the pair \((\Sigma_t, \Sigma_t^{-1}\overline{V}_t^n)\).

In the next step we need to determine the second order stochastic expansion for the standardised error process \((\overline{V}_t^n)_{t \in [0,1]}\). Apart from rather complex approximation techniques, the result of Lemma 3.1 is crucial for the next theorem. We remark that this statement has an interest in its own right.
Theorem 3.3. Assume that the functions a, b are globally Lipschitz and $a, b \in C^2(\mathbb{R})$. Define the process $(R^n_t)_{t \geq 0}$ via

$$dR^n_t = \left(\frac{1}{2\sqrt{n}} a''(X_t)(V^n_t)^2 + \sqrt{n} b((b')^2 - a') (X^n_{\varphi_n(t)})(W_t - W_{\varphi_n(t)}) \right) dt$$

$$- \sqrt{n} a'b' (X^n_{\varphi_n(t)})(t - \varphi_n(t)) - \frac{\sqrt{n}}{2} b^2 a''(X^n_{\varphi_n(t)})(W_t - W_{\varphi_n(t)})^2 \right) dt$$

$$+ \left(\frac{1}{2\sqrt{n}} b''(X_t)(V^n_t)^2 + \sqrt{n} \left(b(b')^2 - \frac{b^2b''}{2}\right) (X^n_{\varphi_n(t)})(W_t - W_{\varphi_n(t)})^2 \right) dt$$

Then the process $\sqrt{n}R^n_t$ is tight and we have that

$$\sqrt{n} \sup_{t \in [0,1]} |V^n_t - \left(\overline{V^n}_t + \Sigma_t \int_0^t \Sigma^{-1}_s (dR^n_s - b'(X_s)R^n_s(2)ds) \right) | \overset{p}{\rightarrow} 0.$$

Theorem 3.3 implies that, for any fixed $t \in [0,1]$, we have the stochastic expansion $V^n_t = \Sigma_t(M^n_t + n^{-1/2}N^n_t)$ with

$$M^n_t = \Sigma^{-1}_t V^n_t, \quad N^n_t = \sqrt{n} \int_0^t \Sigma^{-1}_s (dR^n_s - b'(X_s)R^n_s(2)ds) + o_P(1).$$

The next proposition determines the function limit of the process $(M^n, N^n, \sqrt{n}(C^n - C))$.

Proposition 3.4. Assume that conditions of Theorem 3.3 are satisfied. Then we obtain the functional stable convergence

$$(M^n, N^n, \sqrt{n}(C^n - C)) \overset{d}{\rightarrow} (M, N, \tilde{C}) \quad \text{on } C([0,1]^3),$$

where the limit (M, N, \tilde{C}) is defined in (6.15).

We remark that the 3-dimensional limit (M, N, \tilde{C}) is an \mathcal{F}-conditional Gaussian process. This property will help us to compute the classical random symbol $\varphi(z,iu,iv)$ in the next section.

3.2 Multivariate Edgeworth expansion associated with the Euler scheme

In this section we will investigate the multivariate Edgeworth expansion for the vector $(V^n_{T_1}, \ldots, V^n_{T_k})$ applying the representation introduced at (3.6). According to the Edgeworth expansion theory demonstrated in Section 2, we will first derive the density expansion for the vector $(\Sigma_{T_j}, Z^n_j)_{1 \leq j \leq k}$ with $Z^n_j = M^n_{T_j} + n^{-1/2}N^n_{T_j}$. For this purpose we consider a $q := (k + q)$-dimensional random variable

$$G = (\Sigma_{T_1}, \ldots, \Sigma_{T_k}, F),$$
where F is a q-dimensional random functional.

We define the k-dimensional (\mathcal{F}_t)-martingale with components $M^{n,j} := (M^{n}_{\min(t,T_j)})_{t\in[0,1]}$, which obviously satisfies the terminal condition $M^{n,j}_t = M^n_j$ for $j = 1, \ldots, k$. Similarly, we set $N^{n,j} = N^n_{T_j}$. We introduce the set of increasing numbers $(t_i)_{0 \leq i \leq m_n}$ via \{j/n : \ j = 0, \ldots, n\} \cup \{T_1, \ldots, T_k\}. In the notation of Section 2.2 the martingale $M^{n,j}$ satisfies the representation (2.6) with

\[K^{n,j}(s) = -\Sigma^{-1}_s \varphi_n(s) \varphi_n(s) \varphi_n(s) 1_{[0,T_k]}(s) \quad \text{and} \quad K(s) = -\Sigma^{-1} \varphi_n(s). \quad (3.8) \]

The anticipative random symbol $\tilde{\sigma}$ is then defined through the identity (2.9). Now, we turn our attention to the adaptive random symbol $\tilde{\sigma}$. We introduce random variables $\tilde{M}_n, \tilde{N}_n \in \mathbb{R}^k$ and $\tilde{C}_n, \tilde{C} \in \mathbb{R}^{k \times k}$ via

\[
\tilde{M}_n = \left(M^{n,j}_1 \right)_{1 \leq j \leq k}, \quad \tilde{N}_n = \left(N^{n,j}_1 \right)_{1 \leq j \leq k}, \quad (3.9)
\]

\[
\tilde{C}_n = \left(M^{n,j}, M^{n,j'} \right)_{1 \leq j \leq k}, \quad \tilde{C} = \left(C_{T_j \wedge T_{j'}} \right)_{1 \leq j \leq k}. \]

From Proposition 3.4 we may deduce the stable convergence

\[
\left(\tilde{M}_n, \tilde{N}_n, \sqrt{n}(\tilde{C}_n - \tilde{C}) \right) \xrightarrow{d} \left(\tilde{M}, \tilde{N}, \tilde{C} \right), \quad (3.10)
\]

see (6.19). We now have the identity

\[
\tilde{\sigma}(z; iu, iv) = \tilde{\sigma}^1(z)[(iu)^{\otimes 2}] + \tilde{\sigma}^2(z)[iu], \quad z, u \in \mathbb{R}^k, \quad (3.11)
\]

where the quantities $\tilde{\sigma}^1(z)$ and $\tilde{\sigma}^2(z)$ are associated to the limit $(\tilde{M}, \tilde{N}, \tilde{C})$ via (2.8). Combining two random symbols, we end up with the approximative density

\[
p_n(Z_n, G)(z, y, x) = \mathbb{E}[\phi(z; 0, \tilde{C})|G = (y, x)]p^G(y, x) \quad (3.12)
\]

\[
+ n^{-1/2} \sum_{\alpha} (-d_x)^{\alpha_1} (-d_y)^{\alpha_2} (-d_y)^{\alpha_3} \left(\mathbb{E} \left[c_\alpha(z) \phi(z; 0, \tilde{C})|G = (y, x) \right] \right) p^G(y, x)
\]

with $(z, x, y) \in \mathbb{R}^k \times \mathbb{R}^k \times \mathbb{R}^g$ and $\alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{Z}_+^k \times \mathbb{Z}_+^k \times \mathbb{Z}_+^g$ (cf. (2.11)). The random coefficients $c_\alpha(z)$ are computed explicitly in Section 6.1.5.

We will assume the following condition:

(A) The functions a and b are in $C^\infty(\mathbb{R})$ and all their derivatives of positive order are bounded.

Recall that the variables \tilde{L}_i are defined by (2.7).

(C1) For every $p > 1$ and $j = 1, \ldots, k,$

\[
\sup_{s \in (T_{j-1}, T_j)} \left\| \frac{\tilde{L}_i^{j}}{T_j - s} \right\|^{-1}_{L^p} < \infty.
\]
We set $\ell = k + \bar{q} + 8$.

(C2) $F \in \mathbb{D}_{\ell+1,\infty}(\mathbb{R}^q)$, $\sup_{r_1, \ldots, r_m \in (0,1]} \| D_{r_1, \ldots, r_m} F \|_{L^p} < \infty$ for every $p > 1$ and $m = 1, \ldots, \ell + 1$. Moreover, $r \mapsto D_r F$ and $(r, s) \mapsto D_{r,s} F$ ($r \leq s$) are continuous a.s.

(C3) $\det \sigma_G \in \mathbb{L}_{\infty\infty}$.

Under the aforementioned conditions we obtain the following theorem, which is the main result of this paper.

Theorem 3.5. Suppose that conditions (A), (C1), (C2) and (C3) are fulfilled. Then, for every pair of positive numbers (K, γ),

$$\sup_{h \in \mathcal{E}_{k,q}(K,\gamma)} \left| \mathbb{E}[h(Z_n,G)] - \int_{\mathbb{R}^k \times \mathbb{R}^k \times \mathbb{R}^q} h(z,y,x)p_n^{(Z_n,G)}(z,y,x)dzdydx \right| = o(n^{-1/2}),$$

where $\mathcal{E}_{k,q}(K,\gamma)$ denotes the set of measurable functions $f : \mathbb{R}^k \times \mathbb{R}^k \times \mathbb{R}^q \to \mathbb{R}$ such that $|f(z,y,x)| \leq K(1 + \|z\| + \|y\| + \|x\|)^\gamma$ for all $z,y \in \mathbb{R}^k$ and $x \in \mathbb{R}^q$.

As a consequence of Theorem 3.5 we finally obtain the approximative density of the pair (V_n,F) for $V_n = (V_{n1,1}, \ldots, V_{nk,k})$ and an external q-dimensional random variable F.

Corollary 3.6. We set

$$p_n^{(V_n,F)}(z,x) = \int_{\mathbb{R}_+^k} \frac{1}{y_1 \cdots y_k} p_n^{(Z_n,G)}(z_1/y_1, \ldots, z_k/y_k, y_1, \ldots, y_k, x) dy. \quad (3.13)$$

Under the conditions of Theorem 3.5 we obtain that

$$\sup_{h \in \mathcal{E}_{k,q}(K,\gamma)} \left| \mathbb{E}[h(V_n,F)] - \int_{\mathbb{R}^k \times \mathbb{R}^q} h(z,x)p_n^{(V_n,F)}(z,x)dzdx \right| = o(n^{-1/2}).$$

Theorem 3.5 relies on the non-degeneracy of G (cf. (C3)). When $k \geq 2$, the non-degeneracy becomes a global problem and it is not so straightforward to consider the question in full generality. However, a localization method provides a practical solution. In Section 5 we will discuss some sufficient conditions to show the rather complex assumptions (C1) and (C3).

4 Applications

4.1 Strong and weak error expansions

As the first application of the density expansion introduced in (3.13) we study the strong and the weak approximation error associated with the Euler approximation scheme.

Proposition 4.1. (Weak and strong approximation errors) Suppose that conditions of Theorem 3.5 are satisfied.
(i) (Strong approximation error) Let \(p_n^{V_n}(z) \) be the marginal density of \(V_n \) obtained from \(p_n^{(V_n,F)}(z,x) \), defined at (3.13), by projection onto the first component and let \(U_n = (X^n_T,\ldots,X^n_T) - (X_T,\ldots,X_T) \). Then we obtain the following expansion for the \(L^p \)-norm of the approximation error

\[
E[\|U_n\|^p]^{1/p} = n^{-1/2} \left(\int_{\mathbb{R}^k} \|z\|^p p_n^{V_n}(z) dz \right)^{1/p} + o(n^{-1/2}).
\]

(ii) (Weak approximation error) Consider a function \(f \in C^2(\mathbb{R}^k) \) such that the second derivative of \(f \) has polynomial growth. Setting \(p_n^{(V_n,F)}(z,x) = p_1(z,x) + n^{-1/2} p_2(z,x) \) we deduce the asymptotic expansion

\[
E[f(X^n_T,\ldots,X^n_T) - f(X_T,\ldots,X_T)] = n^{-1} \int_{\mathbb{R}^k \times \mathbb{R}^k} \left(\langle \nabla f(x), z \rangle \cdot p_2(z,x) + \frac{1}{2} z^* \text{Hess} f(x) z \cdot p_1(z,x) \right) dz dx + o(n^{-1}).
\]

We remark that the weak error expansion of Proposition 4.1(ii) has been obtained in [3, 4] for \(k = 1 \) and the discrete Euler scheme. Furthermore, the authors proved that the error of the expansion in Proposition 4.1(ii) is \(O(n^{-2}) \), which is more precise than \(o(n^{-1}) \). We note however that the theory developed in [3, 4] is not sufficient to obtain the density expansion (3.13) of Corollary 3.6.

4.2 Studentized statistics

In this part we will apply results of Section 3.2 to derive the density of the studentized statistic. To avoid complex notations, we restrict our attention to the case \(k = 1 \).

To this end, let \(T \in [0,1] \). We note that \(V^n_T = \Sigma_T Z^n_T \) and \(V_T \sim MN(0,S_T) \) with \(S_T = \Sigma_T^2 C_T \). Then, the studentized statistic is

\[
\frac{V^n_T}{\sqrt{S_T}} = \frac{Z^n_T}{\sqrt{C_T}}.
\]

Hence, it suffices to derive the density of the studentized statistic \(Z^n_T/\sqrt{C_T} \).

We write (3.11) in the form (see also Section 6.1.5)

\[
\sigma(z,iv) = \mathcal{H}_1 z(iu)^2 + \mathcal{H}_2 + \mathcal{H}_3 z + \mathcal{H}_4 z^2(iu)
\]

Moreover, since \(F = C \) in \(\sigma_1(iu,iv) \) of (2.9), we may write (2.9) as

\[
\sigma(iu,iv) = \mathcal{H}_5 (iu)^3 + 2 \mathcal{H}_5 (iu)(iv) + \mathcal{H}_6 (iv)^5 + 4 \mathcal{H}_6 (iu)(iv)^2 + 4 \mathcal{H}_6 (iu)^3(iv). \tag{4.2}
\]
Applying the definitions (2.8) and (2.9) as well as (6.21) and (6.24), we get
\[
\mathcal{H}_1 = \frac{1}{2} \int_0^T u_s^{13} ds \left(\int_0^T u_s^{11} ds \right)^{-1},
\]
\[
\mathcal{H}_2 = \int_0^T v_s^2 dW_s + A_T(3) + \int_0^T \int_0^s u_r^{11} dr \left(1 - \int_0^s u_r^{11} dr \left(\int_0^T u_r^{11} dr \right)^{-1} \right) dh_s,
\]
\[
\mathcal{H}_3 = \int_0^T u_s^{12} ds \left(\int_0^T u_s^{11} ds \right)^{-1}, \quad \mathcal{H}_4 = \int_0^T \left(\int_0^s u_r^{11} dr \right)^2 dh_s \left(\int_0^T u_s^{11} ds \right)^{-2},
\]
\[
\mathcal{H}_5 = \frac{1}{4} \int_0^1 \overline{K}(t) D_t D_t C dt, \quad \mathcal{H}_6 = \frac{1}{8} \int_0^1 \overline{K}(t) D_t C dt,
\]
where \(dh_s = \Sigma_s ((a'' - b'b') (X_s)ds + b''(X_s)dW_s)/2 \), the processes \((u_s)_{s \in [0,1]}, (v_s)_{s \in [0,1]}\) have been introduced in Proposition 6.1 and \(A_T(3) \) is defined in (6.16). Adding the two random symbols, we obtain the full random symbol
\[
\sigma(z, iu, iv) = \sum_{j=1}^7 c_j(z)(iu)^m_j(iv)^n_j.
\]
where the components of \((m, n) = ((m_j, n_j))_{1 \leq j \leq 7}\) and \(c(z) = (c_j(z))_{1 \leq j \leq 7}\) are given by
\[
(m, n) = ((1,0), (2,0), (1,1), (3,0), (1,2), (3,1), (5,0))
\]
and
\[
c(z) = (\mathcal{H}_2 + \mathcal{H}_3z + \mathcal{H}_4z^2, \mathcal{H}_1z, 2\mathcal{H}_5, \mathcal{H}_5, 4\mathcal{H}_6, 4\mathcal{H}_6, \mathcal{H}_6).
\]
In view of Theorem 3.5 and denoting \(C = C_T, Z_n = Z^n_T \), we obtain that
\[
p_n(Z_n, C)(z, x) = \phi(z; 0, x) p^C(x) + n^{-1/2} \sum_{j=1}^7 p_j(z, x)
\]
where for each \(j\) we have
\[
p_j(z, x) = (-dz_m^j (-dz)^n_j \left(\phi(z; 0, x) p^C(x) \mathbb{E}[c_j(z)|C = x] \right).
\]
Note that, in this case, most of the terms are the same as in [15, Section 6]. Hence, adopting their derivations, which just use the integration by parts formula, we easily obtain the following identities:
\[
\int_{\mathbb{R}^2} g(z/\sqrt{x}) p_1(z, x) dxdz = \mathbb{E}[\mathcal{H}_2 C^{-1/2}] \int_{\mathbb{R}} g(y) y \phi(y; 0, 1) dy
\]
\[
+ \mathbb{E}[\mathcal{H}_3] \int_{\mathbb{R}} g(y)(y^2 - 1) \phi(y; 0, 1) dy
\]
\[
+ \mathbb{E}[\mathcal{H}_4 C^{1/2}] \int_{\mathbb{R}} g(y)(y^3 - 2y) \phi(y; 0, 1) dy,
\]
Edgeworth expansion for Euler approximation of SDEs

\[
\int_{\mathbb{R}^2} g(z/\sqrt{x})p_2(z, x)dzdx = \mathbb{E}[H_1C^{-1/2}] \int_{\mathbb{R}} g(y)H_3(y)\phi(y; 0, 1)dy, \\
\int_{\mathbb{R}^2} g(z/\sqrt{x})p_3(z, x)dzdx = -\mathbb{E}[H_5C^{-3/2}] \int_{\mathbb{R}} g(y)(y^3 - 2y)\phi(y; 0, 1)dy, \\
\int_{\mathbb{R}^2} g(z/\sqrt{x})p_4(z, x)dzdx = \mathbb{E}[H_5C^{-3/2}] \int_{\mathbb{R}} g(y)H_3(y)\phi(y; 0, 1)dy, \\
\int_{\mathbb{R}^2} g(z/\sqrt{x})p_5(z, x)dzdx = \mathbb{E}[H_5C^{-3/2}] \int_{\mathbb{R}} g(y)(y^3 - 4y^2)\phi(y; 0, 1)dy, \\
\int_{\mathbb{R}^2} g(z/\sqrt{x})p_6(z, x)dzdx = -2\mathbb{E}[H_6C^{-3/2}] \int_{\mathbb{R}} g(y)(y^5 - 7y^3 + 6y)\phi(y; 0, 1)dy, \\
\int_{\mathbb{R}^2} g(z/\sqrt{x})p_7(z, x)dzdx = \mathbb{E}[H_6C^{-3/2}] \int_{\mathbb{R}} g(y)H_5(y)\phi(y; 0, 1)dy,
\]

where \(H_3(y) = y^3 - 3y\) and \(H_5(y) = y^5 - 10y^3 + 15y\). We obtain the following result.

Corollary 4.2. Under conditions of Theorem 3.5, the second order Edgeworth expansion is

\[
p^{Z_n/\sqrt{C}}(y) = \phi(y; 0, 1) + n^{-1/2}\phi(y; 0, 1)(a_1y + a_2(y^2 - 1) + a_3y^3)
\]

where

\[
a_1 = \mathbb{E}[H_2C^{-1/2}] - 3\mathbb{E}[H_1C^{-1/2}] - \mathbb{E}[H_5C^{-3/2}] + 3\mathbb{E}[H_6C^{-3/2}] - 2\mathbb{E}[H_4C^{1/2}], \\
a_2 = \mathbb{E}[H_3], \\
a_3 = \mathbb{E}[H_1C^{-1/2}] + \mathbb{E}[H_4C^{1/2}].
\]

5 Some sufficient conditions

5.1 On condition \((C1)\)

In this section we will give a sufficient condition for \((C1)\). We are working in the setting of Section 3.2 imposing assumption \((A)\). We consider the following condition:

\((C1^\sharp)\) (i) \(\inf_{x \in \mathbb{R}} |b(x)| > 0\).

(ii) There exists a compact set \(B \subseteq \mathbb{R}\) such that

\(\begin{align*}
(a) & \ \inf_{x \in B^c} |b'(x)| > 0, \\
(b) & \ \sum_{j=1}^\infty |b^{(j)}(x)| \neq 0 \text{ for each } x \in B.
\end{align*}\)

For example, in the setting of null drift, if \(X_t\) visits the set \(\{x : b'(x) = 0\}\) after some time, then \(\Sigma_t\) does not diffuse there and we never get non-degeneracy of \(\Sigma_t\) thereafter. This explains the necessity of a global condition like \((C1^\sharp)(ii)(a)\). As a matter of fact, such a degenerate case is essentially in the scope of the classical expansion for a martingale with an exactly normal limit (cf. [20]). Now we have the following result.

Proposition 5.1. Condition \((C1)\) holds under \((A)\) and \((C1^\sharp)\).
5.2 On condition \((C3)\) for non-degeneracy of \(G\) in the case \(k = 1\)

The problem of non-degeneracy of \(\sigma_G\) can be reduced to local properties of the stochastic differential equations in the case \(k = 1\). Consider a system of stochastic differential equations in Stratonovich form
\[
dX_t = \nabla_0(X_t)dt + \nabla_1(X_t) \circ dW_t, \quad X_0 = (x_0, 1, f)
\]
for a \((2 + q)\)-dimensional process \(X_t = (\overline{X}_t^{(j)})_{j=1,2,3}\), where \(\nabla_i = (\overline{V}_i^{(j)})_{j=1,2,3} \) (i = 0, 1) are vector fields. The elements of \(\nabla_i\)'s are specified as follows:
\[
\overline{V}_0^{(1)}(\pi) = \bar{a}(x_1) := a(x_1) - \frac{1}{2}b(x_1)b'(x_1), \quad \overline{V}_1^{(1)}(\pi) = b(x_1),
\]
\[
\overline{V}_0^{(2)}(\pi) = \bar{a}'(x_1)x_2 = \left\{ a'(x_1) - \frac{1}{2}(b''(x_1)b(x_1) - (b'(x_1))^2) \right\}x_2,
\]
\[
\overline{V}_1^{(2)}(\pi) = b'(x_1)x_2.
\]

Suppose that the vector fields \(\overline{V}_i^{(3)} \) (i = 0, 1) are smooth and their derivatives of positive order are bounded, and that the \(q\)-dimensional random variable \(F\) is represented by the third element of \(X_T\) as \(F = \overline{X}_T^{(3)}, T \in (0, 1]\). In the case \(F = \emptyset\), \(X_t\) is \((\overline{X}_t^{(1)}, \overline{X}_t^{(2)})\) and \(\nabla_i\) are \((\overline{V}_i^{(1)}, \overline{V}_i^{(2)}) \) (i = 0, 1) respectively. By definition, \(\overline{X}_T^{(1)} = X_T\) and \(\overline{X}_T^{(2)} = \Sigma_T\).

The Lie algebra generated by \(\overline{V}_i\) (i = 0, 1) at \(\pi \in \mathbb{R}^{2+q}\) is denoted by \(\text{Lie}[\overline{V}_1, \overline{V}_0](\pi)\), namely, it is the linear span of the vectors in \(\cup_{i=0}^{\infty} V_i\) with \(V_0 = \{\overline{V}_1(\pi)\}, V_i = \{[\overline{V}_j (\pi), V]; V \in V_{i-1}\} \) (i \(\in\) \(\mathbb{N}\)), where \([V, W](x) = DV(x)W(x) - DW(x)V(x)\) with \(DV(x)\) being the derivative of \(V\) at \(x\). A simple criterion for non-degeneracy of \(\sigma_G\) is provided by the Hörmander condition (see Section 2.3.2 in [14] for details).

Proposition 5.2. Let \(k = 1\). For a constant \(X_0\), if \(\text{span Lie}[\overline{V}_1, \overline{V}_0](X_0) = \mathbb{R}^{2+q}\), then \((C3)\) holds.

A variation is the case where \(F\) has a component \(X_T\), that is, \(F = (X_T, F_1)\); \(F_1\) may be empty. If we have a representation \(F_1 = \overline{X}_T^{(3)}\), then Proposition 5.2 remains valid.

The non-degeneracy problem for \(\sigma_G\) becomes a global one when \(k > 1\) since we need non-degeneracy of \(\Sigma_{T_2} - \Sigma_{T_1}\), but the support of \(\Sigma_{T_1}\) is no longer compact. Though we could assume some strong condition that gives uniform non-degeneracy over the whole space, it would be a quite restrictive solution. Instead, in Section 5.3, we will consider a different way by slightly modifying Theorem 3.5, but such modification keeps the error bound of the approximation meaningful in practice.

5.3 Localization

To convey the idea simply, we shall only treat the case \(F = (X_{T_j})_{j=1,\ldots,k}\), while more general cases can be formulated in a similar manner.

Let us consider the situation of Section 5.2 with the system (5.5) of stochastic differential equations for \(X_t = (\overline{X}_t^{(1)}, \overline{X}_t^{(2)}) = (X_t, \Sigma_t)\).
(D) \(\text{Lie}[V_1, V_0](x, 1) = \mathbb{R}^2 \) for \(x \in I \).

For positive numbers \(K \) and \(\gamma \), let \(\mathcal{E}(K, \gamma, I) \) be the set of measurable functions \(h : \mathbb{R}^{3k} \to \mathbb{R} \) such that \(h(z, y, x) = 0 \) when \(x_j \in I^c \) for some \(j \in \{1, \ldots, k-1\} \), \(x = (x_j)_{j=1,\ldots,k} \), and that \(|h(z, y, x)| \leq M(1 + |z| + |y| + |x|)^\gamma \) for all \((z, y, x) \in \mathbb{R}^{3k} \).

Denote by \((X_t(s, x), \Sigma_t(s, (x, y)))\) the stochastic flow defined by

\[
\begin{align*}
 dX_t(s, x) &= \tilde{a}(X_t(s, x))dt + b(X_t(s, x)) \circ dW_t, \\
 d\Sigma_t(s, (x, y)) &= \tilde{a}'(X_t(s, x))\Sigma_t(s, (x, y))dt + b'(X_t(s, x))\Sigma_t(s, (x, y)) \circ dW_t
\end{align*}
\]

with \((X_s(s, x), \Sigma_s(s, (x, y))) = (x, y), 0 \leq s \leq t \leq 1 \). Assume conditions \((A), (C1)\) and \((D)\). Then by Proposition 5.2 and Theorem 3.5, for each \(x_{j-1} \in I \) and \(y_{j-1} > 0 \), there exists a density

\[
q_n^{(j)}(\zeta_j, \eta_j, x_j | y_{j-1}, x_{j-1}) = p_n \left(Y_{T_j}^{n} - Y_{T_{j-1}}^{n} \right) \Sigma_{T_j} \left((x_{j-1}, y_{j-1}), X_{T_j} \right) | y_{j-1}, x_{j-1}
\]

with initial value \((\Sigma_{T_{j-1}}, X_{T_{j-1}}) = (y_{j-1}, x_{j-1}) \) of the system starting at time \(T_{j-1} \) that gives the asymptotic expansion

\[
\mathbb{E}\left[h_j(Y_{T_j}^{n} - Y_{T_{j-1}}^{n}, y_{j-1}^{-1} \Sigma_{T_j}, X_{T_j}) | \Sigma_{T_{j-1}} = y_{j-1}, X_{T_{j-1}} = x_{j-1}\right]
\]

\[
- \int_{\mathbb{R}^3} h_j(\zeta_j, \eta_j, x_j) q_n^{(j)}(\zeta_j, \eta_j, x_j | y_{j-1}, x_{j-1}) \ dt \ d\eta_j \ dx_j
\]

\[
= o(n^{-1/2})
\]

uniformly in \(h_j \in \mathcal{E}(K, \gamma) \) for every \((K, \gamma) \in (0, \infty)^2\). Indeed, \(q_n^{(j)}(\zeta_j, \eta_j, x_j | y_{j-1}, x_{j-1}) \) is the density \(p_n(\zeta_j, \eta_j, x_j) \) in the one-step case starting from time \(T_{j-1} \) and the initial values \(X_0 = x_{j-1} \in I \) and \(\Sigma_0 = 1 \). Then we obtain a function \(q_n^{(Z_n, G)}(z, y, x) \) that approximates the distribution of \((Z_n, G)\) with \(G = ((\Sigma_{T_j})_{j=1,\ldots,k}, (X_{T_j})_{j=1,\ldots,k}):\n\]

\[
q_n^{(Z_n, G)}(z, y, x) = \prod_{j=1}^k q_n^{(j)}(z_j - z_{j-1}, y_{j-1}^{-1} y_j, x_j | y_{j-1}, x_{j-1}) y_{j-1}^{-1}
\]

for \((z, y, x) = ((z_j)_{j=1,\ldots,k}, (y_j)_{j=1,\ldots,k}, (x_j)_{j=1,\ldots,k}), (z_0, y_0) = (0, 1)\). We should remark that this function is defined only when \(x_{j-1} \in I \) for \(j = 1, \ldots, k \). Now we give a localized version of Theorem 3.5.

Theorem 5.3. Suppose that Conditions \((A), (C1)\) and \((D)\) are fulfilled for some finite closed interval \(I \). Let \(G = ((\Sigma_{T_j})_{j=1,\ldots,k}, (X_{T_j})_{j=1,\ldots,k}) \). Then, for every pair of positive numbers \((K, \gamma)\),

\[
\sup_{h \in \mathcal{E}(K, \gamma, I)} \left| \mathbb{E}[h(Z_n, G)] - \int_{\mathbb{R}^k \times \mathbb{R}^k \times \mathbb{R}^k} h(z, y, x) q_n^{(Z_n, G)}(z, y, x) dxdydz \right| = o(n^{-1/2})
\]

as \(n \to \infty \).
For a sketch of the proof of Theorem 5.3, we notice that the function h admits the estimate

$$|h(z, y, x)| \leq M_1 \prod_{j=1}^{k} (1 + |z_j| + |y_j| + |x_j|)^{\gamma_1}$$

for some $(M_1, \gamma_1) \in (0, \infty)^2$. Then repeated use of the approximation yields the desired error bound.

The asymptotic expansion for $(V_n, (X_{T_j})_{j=1,\ldots,k})$ as in Corollary 3.6 also follows under conditions of Theorem 5.3.

6 Appendix

6.1 Appendix A: Stochastic expansion and various limit theorems

Throughout this section all positive constants are denoted by C although they may change from line to line. Furthermore, due to a standard localisation procedure (see e.g. [5]) all continuous stochastic processes $(Y_t)_{t \in [0,1]}$ can be assumed to be uniformly bounded in (ω,t) when proving Theorems 3.2 and 3.3. In particular, it applies to stochastic processes $Y_t = a^{(l)}(X_t)$ and $Y_t = b^{(l)}(X_t)$ for $l = 0, 1, 2$. For a generic diffusion process $(Y_t)_{t \in [0,1]}$ of the form (1.1) with bounded coefficients we obtain the inequality

$$E[|Y_t - Y_s|^p] \leq C_p |t-s|^{p/2}$$

for any $p > 0$ and $t,s \in [0,1]$, \hspace{1cm} (6.1)

which holds due to the Burkholder-Davis-Gundy inequality. We will use the notation $Y^n \overset{u.c.p.}{\to} Y$ to denote the uniform convergence in probability $\sup_{t \in [0,1]} |Y^n_t - Y_t| \overset{P}{\to} 0$. In the proofs we will deal with sequences of stochastic processes of the form

$$Y^n_t = \sum_{i=1}^{[nt]} \xi^n_i,$$

where $\xi^n_i, i = 1, \ldots, n$, are $\mathcal{F}_{i/n}$-measurable random variables with $E[|\xi^n_i|^p] < \infty$ for any $p > 0$. The following statements trivially hold:

$$\sum_{i=1}^{[nt]} E[|\xi^n_i|] \to 0 \quad \Rightarrow \quad Y^n \overset{u.c.p.}{\to} 0$$

$$\sum_{i=1}^{[nt]} E[|\xi^n_i| \mathcal{F}_{(i-1)/n}] \overset{u.c.p.}{\to} Y_t \quad \text{and} \quad \sum_{i=1}^{[nt]} E[|\xi^n_i|^2 \mathcal{F}_{(i-1)/n}] \overset{P}{\to} 0 \quad \Rightarrow \quad Y^n \overset{u.c.p.}{\to} Y.$$ (6.3)
6.1.1 Proof of Theorem 3.2

We state the decompositions in the differential form for the ease of exposition. Applying Taylor expansion we conclude that

\[dV^n_t = \sqrt{n} \left(a(X^n_{\varphi_n(t)}) - a(X_t) \right) dt + \sqrt{n} \left(b(X^n_{\varphi_n(t)}) - b(X_t) \right) dW_t \]

(6.4)

\[= \sqrt{n} (a(X^n_t) - a(X_t)) dt + \sqrt{n} \left(a(X^n_{\varphi_n(t)}) - a(X^n_t) \right) dt \]

\[+ \sqrt{n} (b(X^n_t) - b(X_t)) dW_t + \sqrt{n} \left(b(X^n_{\varphi_n(t)}) - b(X^n_t) \right) dW_t \]

\[= \left((a'(X_t) + \tilde{a}^n_t) V^n_t + \tilde{a}^n_t \right) dt \]

\[+ \left(b'(X_t) + \tilde{b}^n_t \right) V^n_t - \sqrt{n}bb'(X^n_{\varphi_n(t)})(W_t - W_{\varphi_n(t)}) + \tilde{b}^n_t dW_t, \]

where the processes \(\tilde{a}^n, \tilde{a}^m, \tilde{b}^n, \tilde{b}^m \) are defined as

\[\tilde{a}^n_t = a'(\tilde{X}^n_t) - a'(X_t), \quad \tilde{a}^m_t = \sqrt{n} \left(a(X^n_{\varphi_n(t)}) - a(X^n_t) \right), \]

\[\tilde{b}^n_t = b'(\tilde{X}^n_t) - b'(X_t), \quad \tilde{b}^m_t = \sqrt{n} \left(b(X^n_{\varphi_n(t)}) - b(X^n_t) + bb'(X^n_{\varphi_n(t)})(W_t - W_{\varphi_n(t)}) \right), \]

and \(\tilde{X}^n_t, \tilde{X}^m_t \) are certain random variables with \(|\tilde{X}^n_t - X_t| \leq |X^n_t - X_t|, |\tilde{X}^m_t - X_t| \leq |X^n_t - X_t| \). In particular, it holds that \(\tilde{X}^n \stackrel{u.c.p.}{\longrightarrow} X \) and \(\tilde{X}^m \stackrel{u.c.p.}{\longrightarrow} X \). Using Lemma 3.1 we thus can write

\[V^n_t = \Sigma^n_t \left(\int_0^t (\Sigma^n_s)^{-1} \left(\tilde{a}^n_s - \left(b'(X_t) + \tilde{b}^n_t \right) \left(\tilde{b}^n_s - \sqrt{n}bb'(X^n_{\varphi_n(s)})(W_s - W_{\varphi_n(s)}) \right) \right) ds \right. \]

\[+ \left. \int_0^t (\Sigma^n_s)^{-1} \left(\tilde{b}^m_s - \sqrt{n}bb'(X^n_{\varphi_n(s)})(W_s - W_{\varphi_n(s)}) \right) dW_s \right), \]

where the process \(\Sigma^n \) is defined by

\[\Sigma^n_t = \exp \left(\int_0^t (b'(X_s) + \tilde{b}^n_s) dW_s \right. \]

(6.5)

\[+ \left. \int_0^t \left(a'(X_s) + \tilde{a}^n_s - \frac{1}{2} \left(b'(X_s) + \tilde{b}^n_s \right)^2 \right) ds \right) \]

Comparing the representation of \(V^n_t \) with (3.4), we just need to show that

\[\Sigma^n \overset{u.c.p.}{\longrightarrow} \Sigma, \]

(6.6)

\[\int_0^t \Sigma^{-1}_s \tilde{a}^n_s ds \overset{u.c.p.}{\longrightarrow} 0, \]

(6.7)

\[\int_0^t \Sigma^{-1}_s \tilde{b}^m_s dW_s \overset{u.c.p.}{\longrightarrow} 0, \]

(6.8)

\[\int_0^t \left(b'(X_t) + \tilde{b}^n_t \right) \left(\tilde{b}^m_s - \sqrt{n}bb'(X^n_{\varphi_n(s)})(W_s - W_{\varphi_n(s)}) \right) ds \overset{u.c.p.}{\longrightarrow} 0, \]

(6.9)
where the process Σ has been defined in (3.3). Since both \tilde{a}^n_s and \tilde{b}^n_s are bounded as assumed in the beginning of Section 6.1, and $\tilde{a}^n \overset{u.c.p.}{\to} 0$, $\tilde{b}^n \overset{u.c.p.}{\to} 0$ (because $X^n \overset{u.c.p.}{\to} X$, $X^n \overset{u.c.p.}{\to} X$ and $a, b \in C^2(\mathbb{R})$), we readily deduce the convergence at (6.6). To show the convergence at (6.7) we use the decomposition $\tilde{a}^n_s = \tilde{a}^{n,1}_s + \tilde{a}^{n,2}_s$ with

$$
\tilde{a}^{n,1}_s = -\sqrt{n}a'(X^n_{\varphi_n(s)}) \int_{\varphi_n(s)}^s b(X^n_{\varphi_n(u)}) dW_u,
$$

$$
\tilde{a}^{n,2}_s = \sqrt{n} \left(a'(X^n_s) - a'(X^n_{\varphi_n(s)}) \right) \left(X^n_{\varphi_n(s)} - X^n_s \right)
$$

$$
- \sqrt{n}a'(X^n_{\varphi_n(s)}) \int_{\varphi_n(s)}^s a(X^n_{\varphi_n(u)}) du,
$$

where X^n_s is a certain random variable with $|X^n_s - X^n_{\varphi_n(s)}| \leq |X^n - X^n_{\varphi_n(s)}|$. Since $X^n \overset{u.c.p.}{\to} X$ and all involved objects are assumed to be bounded, we conclude by (6.1) that

$$
E[|\tilde{a}^{n,2}_s|] \leq C \epsilon_n
$$

with $\epsilon_n \to 0$ as $n \to \infty$. Thus, we obtain

$$
\int_0^t \Sigma_s^{-1} \tilde{a}_s^{n,2} ds \overset{u.c.p.}{\to} 0
$$

by an application of (6.2). Now, we notice that $E[\tilde{a}_s^{n,1} | F_{(i-1)/n}] = 0$ and $E[|\tilde{a}_s^{n,1}|^2] \leq C$. Thus, we deduce that

$$
\int_0^t \Sigma_s^{-1} \tilde{a}_s^{n,1} ds = \int_0^t \Sigma_{\varphi_n(s)}^{-1} \tilde{a}_s^{n,1} ds + \int_0^t \left(\Sigma_s^{-1} - \Sigma_{\varphi_n(s)}^{-1} \right) \tilde{a}_s^{n,1} ds \overset{u.c.p.}{\to} 0,
$$

which follows by a combination of (6.2) and (6.3). Indeed, it holds that

$$
\int_0^t \Sigma_{\varphi_n(s)}^{-1} \tilde{a}_s^{n,1} ds = -\sqrt{n} \sum_{i=1}^{[nt]} \Sigma_{i-\frac{1}{n}}^{-1} a'(X^n_{i-\frac{1}{n}}) b'(X^n_{i-\frac{1}{n}}) \int_{i-\frac{1}{n}}^{i+\frac{1}{n}} (W_s - W_{i-\frac{1}{n}}) ds + o_p(1),
$$

and (6.3) can be applied to the last line. Consequently, we have (6.7). Finally, we show the convergence at (6.8). Observe the decomposition

$$
\tilde{b}_s^n = \sqrt{n} \left(b'(X^n_s) - b'(X^n_{\varphi_n(s)}) \right) \left(X^n_{\varphi_n(s)} - X^n_s \right)
$$

$$
- \sqrt{n}b'(X^n_{\varphi_n(s)}) \left(\int_{\varphi_n(s)}^s a(X^n_u) du + \int_{\varphi_n(s)}^s b(X^n_u) - b(X^n_{\varphi_n(s)}) dW_u \right).
$$

As for the term $\tilde{a}^{n,2}_s$ we deduce that $E[|\tilde{b}_s^n|] \leq C \epsilon_n$ with $\epsilon_n \to 0$ as $n \to \infty$. Hence, we obtain (6.8). The proof of (6.9) combines the proof methods of (6.7) and (6.8). Consequently,

$$
\sup_{t \in [0,1]} |V^n_t - \tilde{V}^n_t| \overset{\mathbb{P}}{\to} 0,
$$

which completes the proof of Theorem 3.2. □
6.1.2 Proof of Theorem 3.3

The derivation of the second order stochastic expansion is more involved than the expansion of Theorem 3.2, but the underlying methodology is similar. For simplicity of exposition we sometimes use the same notations as in the previous section although they might have a different meaning. Instead of the first order approximation in the last line of (6.4), we may further develop

\[
dV^n_t = a'(X_t)V^n_t dt + (b'(X_t)V^n_t - \sqrt{n}bb'(X^n_{\varphi_n(t)})(W_t - W_{\varphi_n(t)}))dW_t
gn\]

(6.10)

\[
+ \left(\frac{1}{2\sqrt{n}}a''(X_t)(V^n_t)^2 - \sqrt{n}ba'(X^n_{\varphi_n(t)})(W_t - W_{\varphi_n(t)}) \right) dt
\]

\[- \sqrt{n}a'(X^n_{\varphi_n(t)})(t - \varphi_n(t))dW_t + \frac{\sqrt{n}}{2}b^2(X^n_{\varphi_n(t)})(W_t - W_{\varphi_n(t)})^2 dt
\]

\[+ \left(\frac{1}{2\sqrt{n}}b'(X_t)(V^n_t)^2 - \frac{\sqrt{n}}{2}b2b'(X^n_{\varphi_n(t)})(W_t - W_{\varphi_n(t)}) \right) dt
\]

\[- \sqrt{n}a'b(X^n_{\varphi_n(t)})(t - \varphi_n(t))dW_t + \tilde{a}^n_t dt + \tilde{b}^n_t dW_t,
\]

where \(\tilde{a}^n_t\) and \(\tilde{b}^n_t\) are stochastic processes, whose negligibility in the involved asymptotic expansions is shown in exactly the same manner as in (6.6)-(6.9) (although these terms have a different meaning in this subsection).

Now, recall the definition of the first order approximation \(\nabla^n_t\) at (3.4). By Lemma 3.1 this process satisfies the stochastic differential equation

\[
d\nabla^n_t = a'(X_t)\nabla^n_t dt + b'(X_t)\nabla^n_t dW_t - \sqrt{n}\Sigma_t\Sigma_{-1}\varphi_n(t)b'(X^n_{\varphi_n(t)})(W_t - W_{\varphi_n(t)})dW_t
\]

\[- \sqrt{n}\Sigma_t\Sigma_{-1}\varphi_n(t)b'(X_t)b'(X^n_{\varphi_n(t)})(W_t - W_{\varphi_n(t)})dt.
\]

Observing the definition of the stochastic process \(dR^n_t = R^n_t(1)dt + R^n_t(2)dW_t\) at (3.5), we deduce by Lemma 3.1 and the negligibility of the terms \(\tilde{a}^n_t\), \(\tilde{b}^n_t\) the decomposition

\[
V^n_t - \nabla^n_t = \Sigma_t \int^t_0 \Sigma_{s-1} ((R^n_s(1) - b'(X_s)R^n_s(2)) \right) ds + R^n_s(2)dW_s + \sigma_t \sigma_t^{-1/2},
\]

where \(\Sigma\) has been defined in (3.3). This finishes the proof of Theorem 3.3.

\[\square\]

6.1.3 Some notations and an intermediate result

In this section we introduce several process, which are required to define the limit \((M, N, \hat{C})\) in Proposition 3.4. For this purpose we introduce the following notations:
Assume that the conditions of Theorem 3.3 are satisfied. Then it holds

\begin{equation}
A_t^n(1) = n \int_0^t \Sigma_s^{-1} b ((b')^2 - a') (X^n_{\varphi_n(s)}) (\varphi_n(s + n^{-1}) - s) \, dW_s
\end{equation}

\begin{equation}
- n \int_0^t \Sigma_s^{-1} ab' (X^n_{\varphi_n(s)}) (s - \varphi_n(s)) \, dW_s
\end{equation}

\begin{equation}
+ n \int_0^t \Sigma_s^{-1} \left(b(b')^2 - \frac{b^2b''}{2} \right) (X^n_{\varphi_n(s)}) (W_s - W_{\varphi_n(s)})^2 \, dW_s
\end{equation}

\begin{equation}
A_t^n(2) = 2n^{3/2} \int_0^t \left(\Sigma_s^{-1} bb' (X^n_{\varphi_n(s)}) \right)^2 (\varphi_n(s + n^{-1}) - s) (W_s - W_{\varphi_n(s)}) \, dW_s,
\end{equation}

\begin{equation}
A_t^n(3) = n \int_0^t \Sigma_s^{-1} a ((b')^2 - a') (X^n_{\varphi_n(s)}) (s - \varphi_n(s)) \, ds
\end{equation}

\begin{equation}
- \frac{n}{2} \int_0^t \Sigma_s^{-1} \left(b^2a'' + b^2b' - 2b(b')^3 \right) (X^n_{\varphi_n(s)}) (W_s - W_{\varphi_n(s)})^2 \, ds.
\end{equation}

Our first asymptotic result is the following stable central limit theorem.

Proposition 6.1. Assume that the conditions of Theorem 3.3 are satisfied. Then it holds that

\begin{equation}
L^n := (M^n, A^n(1), A^n(2)) \xrightarrow{d} L = \int_0^t v_s \, dW_s + \int_0^t (u_s - v_s^*)^{1/2} \, dB_s \quad \text{on} \quad C([0, 1]),
\end{equation}

where \((B_t)_{t \in [0,1]}\) is a 3-dimensional Brownian motion defined on an extension \((\overline{\Omega}, \overline{F}, \overline{P})\) of the original probability space and independent of \(F\), and the processes \(v_s = (v^1_s, v^2_s, v^3_s)\), \(u_s = (u^1_s)_{1 \leq i, j \leq 3}\) are defined by

\[v^1_s = v^3_s = 0, \quad v^2_s = \Sigma_s^{-1} \left(b(b')^2 - \frac{ab' + a'b}{2} - \frac{b^2b''}{4} \right) (X_s),\]

\[u^{12}_s = u^{21}_s = u^{23}_s = u^{32}_s = 0,\]

\[u^{11}_s = \frac{1}{2} \left(\Sigma_s^{-1} bb' (X_s) \right)^2, \quad u^{33}_s = \frac{1}{3} \left(\Sigma_s^{-1} bb' (X_s) \right)^4, \quad u^{13}_s = u^{31}_s = -\frac{1}{3} \left(\Sigma_s^{-1} bb' (X_s) \right)^3,\]

\[u^{22}_s = \frac{1}{3} \Sigma_s^{-2} \left[\left((b')^2 - a' \right)^2 + \left((b')^2 - \frac{3bb''}{2} \right) \left(4b'^2 - \frac{3bb''}{2} - a' \right) \right] + (ab')^2 - abb' \left(3(b')^2 - a' - bb'' \right) (X_s).\]

Proof. Note that \(L^n\) is a continuous martingale with mean zero. According to [10, Theorem IX.7.3], it is sufficient to prove that

\[\langle L^n_t \rangle_t \xrightarrow{P} \int_0^t u_s \, ds, \quad \langle L^n, W \rangle_t \xrightarrow{P} \int_0^t v_s \, ds, \quad \langle L^n, Q \rangle_t \xrightarrow{P} 0, \quad \forall t \in [0, 1],\]
Observing the definition (3.5) of the process R.
Recall the decomposition introduced in (3.6):

\[(W, Q) = 0. \]

The first two statements follow by a straightforward but tedious computation taking into account that $X^n_s \xrightarrow{P} X_s$ for any $s \in [0, 1]$, $\sup_{s \in [0, 1]} |\phi_n(s) - s| \to 0$ and the continuity of involved processes/functions. The third condition is a consequence of the formula $(\int_0^t w_s dW_s, Q) = \int_0^t w_s d(W, Q)_s = 0$ for any predictable process $(w_s)_{s \in [0, 1]}$.

Now we are in the position to define the limiting process (M, N, \hat{C}) introduced in Proposition 3.4:

\[
(M, N, \hat{C}) = \left(L^1, \frac{1}{2} \int_0^t \Sigma_s (L_s^1)^2 \left((a'' - b'b'')(X_s) ds + b''(X_s) dW_s \right) + L^2 + A(3), L^3 \right),
\]

where $L = (L^1, L^2, L^3)$ has been introduced in Proposition 6.1 and the process $(A_t(3))_{t \in [0, 1]}$ is defined as

\[
A_t(3) = \int_0^t \Sigma_s^{-1} \left(\frac{1}{2} a(b')^2 + \frac{1}{2} b(b')^3 - \frac{1}{2} a'd' - \frac{1}{4} a''b^2 - \frac{1}{4} b^2b'' \right) (X_s) ds.
\]

6.1.4 Proof of Proposition 3.4

First of all, it holds that $\sup_{t \in [0, 1]} |A^n_t(3) - A_t(3)| \xrightarrow{P} 0$, which is due to [9, Theorem 7.2.2]. Secondly, using the identities $(W_u - W_r)^2 - (u - r) = 2 \int_r^u (W_s - W_r) dW_s$ and

\[
\int_r^u (Y_s - Y_r) ds = \int_r^u (u - s) dY_s,
\]

which hold for any $b > a$ and any continuous semimartingale Y, we obtain that

\[
\sqrt{n}(C^n_t - C_t) = A^n_t(2) + o_P(1).
\]

Recall the decomposition introduced in (3.6):

\[
N^n_t = \sqrt{n} \int_0^t \Sigma_s^{-1} \left(dR_s^n - b'(X_s) R_s^n(2) ds \right) + o_P(1).
\]

Observing the definition (3.5) of the process R^n and applying (6.17) to the setting $r = (i - 1)/n$, $u = i/n$ and $Y_s = b((b')^2 - a')(X^n_{\varphi_n(s)}) W_s$, we deduce the identity

\[
dR^n_t - b'(X_t) R^n_t(2) dt = \left(\frac{1}{2 \sqrt{n}} a''(X_t) (V^n_t)^2 - \sqrt{n} a'(X^n_{\varphi_n(t)}) (t - \varphi_n(t)) \right)
\]

\[
- \frac{\sqrt{n}}{2} b^2 d''(X^n_{\varphi_n(t)}) (W_t - W^n_{\varphi_n(t)})^2
\]

\[
- b'(X_t) \left(\frac{1}{2 \sqrt{n}} b''(X_t) (V^n_t)^2 - \sqrt{n} a'b'(X^n_{\varphi_n(t)}) (t - \varphi_n(t)) \right)
\]

\[
+ \sqrt{n} \left(b(b')^2 - \frac{b^2 b''}{2} \right) (X^n_{\varphi_n(t)}) (W_t - W^n_{\varphi_n(t)})^2 \right) dt.
\]
\[
+ \left(\frac{1}{2\sqrt{n}} b''(X_t)(V^2_t) + \sqrt{n}(b(b')^2 - \frac{b^2b''}{2})(X^n_{\varphi_n(t)})(W_t - W_{\varphi_n(t)})^2
+ \sqrt{n}b \left((b')^2 - a' \right)(X^n_{\varphi_n(t)})(\varphi_n(t + n^{-1}) - t) - \sqrt{nab'}(X^n_{\varphi_n(t)})(t - \varphi_n(t)) \right)dW_t
\]

Hence, we obtain the decomposition

\[
N^n_t = \sqrt{n} \int_0^t \Sigma^{-1}_s (dR^n_s - b'(X_s)R^n_s(2)ds) + o_p(1)
= A^n_t(1) + A^n_t(3) + \frac{1}{2} \int_0^t \Sigma^{-1}_s (V^n_s)^2 \left((a'' - b'b'')(X_s)ds + b''(X_s)dW_s \right) + o_p(1).
\]

Now, due to convergence (6.14) in Proposition 6.1 and the properties of stable convergence we deduce that \((M^n, A^n(1), A^n(2), A^n(3), \Sigma, X, W) \xrightarrow{d^*} (L^1, L^2, L^3, A(3), \Sigma, X, W)\) on \(C([0, 1])^7\). Hence, by [10, Theorem VI.6.22] and continuous mapping theorem for stable convergence applied to the function \(H : C([0, 1])^7 \rightarrow C([0, 1])^3\)

\[
H(y) := \left(y_1, y_2 + y_4 + \frac{1}{2} \int_0^t y_5(s)^{-1}(y_1(s)y_5(s))^2 \left((a'' - b'b'')(y_6(s))ds + b''(y_6(s))dy_7(s) \right) , y_3 \right)
\]
we obtain that

\[
(M^n, N^n, \sqrt{n}(C^n - C)) \xrightarrow{d^*} (M, N, \tilde{C}) \text{ on } C([0, 1])^3.
\]
This completes the proof of Proposition 3.4. \(\square\)

6.1.5 Computation of the coefficients \(c_n\) in (3.12).

We start with the computation of the random symbol \(\sigma(z, iu, iv)\) introduced at (2.9) in its general form. Recall that in our the setting we have that

\[
\mathbf{K}(t) = \left(-\Sigma_t^{-1}bb'(X_t)1_{\{t < T_j\}} \right)_{1 \leq j \leq k} \quad \text{and} \quad C_t = \frac{1}{2} \int_0^t (\Sigma_s^{-1}bb'(X_s))^2 ds.
\]

We also recall that for diffusion models of the form (1.1) the Malliavin derivative \(D_sX_t\) is computed as the solution of the SDE

\[
D_sX_t = b(X_s) + \int_s^t a'(X_u)D_s(X_u)du + \int_s^t b'(X_u)D_s(X_u)dW_u
\]
if \(s \leq t\), and \(D_sX_t = 0\) if \(s > t\). According to the formula (2.9) we need to compute \(\sigma(iz, iv) = \frac{1}{2} \int_0^1 \mathbf{K}(t)[iu]\sigma_t(iu, iv)dt\) for \(u \in \mathbb{R}^k\) and \(v \in \mathbb{R}^{k+q}\), and

\[
\sigma_t(iu, iv) = \left(-\frac{1}{2} D_t \tilde{C} [u^{\otimes 2}] + D_t G[iv] \right)^2
+ \left(-\frac{1}{2} D_t D_t \tilde{C} [u^{\otimes 2}] + D_t D_t G[iv] \right),
\]
where the matrix \(\tilde{C} \in \mathbb{R}^{k \times k} \) has been defined in (3.9) (recall that \(G \in \mathbb{R}^{k+q} \)). Observing the above identity we obtain the decomposition

\[
\tilde{\sigma}(iu, iv) = \sum_{m=1}^{5} \tilde{\sigma}^m(iu, iv)
\]

with \((\alpha = (\alpha_1, \alpha_2, \alpha_3) \in \mathbb{Z}_+^k \times \mathbb{Z}_+^k \times \mathbb{Z}_+^q) \)

\[
\tilde{\sigma}^1(iu, iv) = \sum_{\alpha_1: |\alpha_1|=5} c_\alpha(iu)^{\alpha_1} := \frac{1}{8} \int_0^1 \sum_{j_1, \ldots, j_5=1}^k K(t)_{j_1}(D_t\tilde{C})_{j_2j_3}(D_t\tilde{C})_{j_4j_5} \prod_{r=1}^{5} (iv_{j_r}) dt
\]

\[
\tilde{\sigma}^2(iu, iv) = \sum_{\alpha_1: |\alpha_1|=3, (\alpha_2, \alpha_3)=1} c_\alpha(iu)^{\alpha_1}(iv)^{\alpha_2, \alpha_3} := \frac{1}{2} \int_0^1 \sum_{j_1, j_2, j_3=1}^k K(t)_{j_1}(D_t\tilde{C})_{j_2j_3} \times (D_tG)_{j_1}(iv_{j_1}) \prod_{r=2}^{3} (iv_{j_r}) dt
\]

\[
\tilde{\sigma}^3(iu, iv) = \sum_{\alpha_1: |\alpha_1|=1, (\alpha_2, \alpha_3)=2} c_\alpha(iu)^{\alpha_1}(iv)^{\alpha_2, \alpha_3} := \frac{1}{2} \int_0^1 \sum_{j_1=1}^k \sum_{j_2,j_3=1}^{k+q} K(t)_{j_1}(D_t\tilde{C})_{j_2j_3} \times (D_tG)_{j_1}(iv_{j_1}) \prod_{r=2}^{3} (iv_{j_r}) dt
\]

\[
\tilde{\sigma}^4(iu, iv) = \sum_{\alpha_1: |\alpha_1|=3} c_\alpha(iu)^{\alpha_1} := \frac{1}{4} \int_0^1 \sum_{j_1, \ldots, j_3=1}^k K(t)_{j_1}(D_tD_t\tilde{C})_{j_2j_3} \prod_{r=1}^{3} (iv_{j_r}) dt
\]

\[
\tilde{\sigma}^5(iu, iv) = \sum_{\alpha_1: |\alpha_1|=1, (\alpha_2, \alpha_3)=1} c_\alpha(iu)^{\alpha_1}(iv)^{\alpha_2, \alpha_3} := \frac{1}{2} \int_0^1 \sum_{j_1=1}^k \sum_{j_2,j_3=1}^{k+q} K(t)_{j_1} \times (D_tD_tG)_{j_2}(iv_{j_2}) (iv_{j_3}) dt
\]

To complete the computation we need to determine the quantities \(D_tD_t\tilde{C} \) and \(D_tD_tD_t\tilde{C} \) (the corresponding quantities for the random variable \(G \) are not computed since it is a general object). Applying the chain and the product rule for the Malliavin derivative we deduce that

\[
(D_tD_t\tilde{C})_{jj'} = 1_{\{t \leq T_j \wedge T_{j'}\}} \int_t^{T_j \wedge T_{j'}} \Sigma_s^{-2} \left((b(b')^3 + b^2b''')(X_s)D_tX_s - (bb'')^2(X_s)P_t^s \right) ds.
\]

with

\[
P_t^s := b'(X_t) + \int_t^s (a'' - b''')(X_u)D_tX_u du + \int_t^s b''(X_u)D_tD_u dW_u
\]

Similarly, we have that

\[
(D_tD_tD_t\tilde{C})_{jj'} = 1_{\{t \leq T_j \wedge T_{j'}\}} \int_t^{T_j \wedge T_{j'}} \Sigma_s^{-2} \left((b(b')^3 + b^2b''')(X_s)D_tD_tX_s + ((b')^4 + 5b(b')^2b'' + b^2(b'')^2 + b^3b''')(X_s)(D_tD_tX_s)^2 - (bb'')^2(X_s)D_tD_tP_t^s \right. - \left. 2P_t^s \left(2(b(b')^3 + b^2b''')(X_s)D_tX_s - (bb'')^2(X_s) \right) \right) ds.
\]
Now we turn our attention to the computation of random symbols $\sigma_1^1(z)$ and $\sigma_2^2(z)$ introduced at (3.11) (see also (2.8)). First of all, applying Proposition 3.4, we deduce that

$$\left(\tilde{M}_n, \tilde{N}_n, \sqrt{n} (\tilde{C}_n - \tilde{C})\right) \overset{d}{\rightarrow} \left(\tilde{M}, \tilde{N}, \tilde{C}\right) \overset{(6.19)}{\text{with}}$$

$$\tilde{M} = (M_{T_j})_{1 \leq j \leq k}, \quad \tilde{N} = (N_{T_j})_{1 \leq j \leq k}, \quad \tilde{C} = (\tilde{C}_{T_j \wedge T'_{j'}})_{1 \leq j, j' \leq k},$$

where the process (M, N, \tilde{C}) has been defined in (6.15). We start with the computation of the random symbol $\sigma_1^1(z)$. Due to Proposition 6.1 the limit (\tilde{M}, \tilde{C}) is \mathcal{F}-conditionally mean zero, i.e.

$$\left(\tilde{M}, \tilde{C}\right) \sim MN\left(0, \begin{pmatrix} \Theta_{11} & \Theta_{13} \\ \Theta_{31} & \Theta_{33} \end{pmatrix}\right) \overset{(6.20)}{\text{with}}$$

$$\Theta_{11} = \left(\int_0^{T_j \wedge T'_{j'}} u_{s}^{11} ds\right)_{1 \leq j, j' \leq k}, \quad \Theta_{13} = \left(\int_0^{T_j \wedge T'_{j'}} u_{s}^{13} ds\right)_{1 \leq i, i', j, j' \leq k},$$

$$\Theta_{31} = \left(\int_0^{T_{i'} \wedge T_j} u_{s}^{31} ds\right)_{1 \leq i, j \leq k}, \quad \Theta_{33} = \left(\int_0^{T_j \wedge T'_{j'}} u_{s}^{33} ds\right)_{1 \leq i, i', j, j' \leq k}.$$

Here we interpret Θ_{13} as an array $(\Theta_{i j' j}^{13})_{1 \leq i, j, j' \leq k}$ and for any vector $y \in \mathbb{R}^k$ we define $\Theta_{13} y = \sum_{i=1}^k \Theta_{i j' j}^{13} y_i \in \mathbb{R}^{k \times k}$. Since the vector (\tilde{M}, \tilde{C}) is \mathcal{F}-conditionally Gaussian we readily deduce that

$$\sigma_1^1(z) = \Theta_{31} \Theta_{11}^{-1} z, \quad u, z \in \mathbb{R}^k. \quad (6.21)$$

To compute the random symbol $\sigma_2^2(z)$ we first use the decomposition

$$N_t = N_t^1 + N_t^2$$

with

$$N_t^1 = \frac{1}{2} \int_0^t \Sigma_s(L_s)^2 \left((a'' - b'b'') (X_s)ds + +b''(X_s)dW_s\right), \quad N_t^2 = L_t^2 + A_t(3),$$

which follows from (6.15). Setting $\tilde{N}^i = (N^i_{T_j})_{1 \leq j \leq k}$, $i = 1, 2$, we deduce from Proposition 6.1 and (6.15) that

$$\left(\tilde{M}, \tilde{N}^2\right) \sim MN_{2k}\left(0, \mu, \begin{pmatrix} \Theta_{11} & 0_{k \times k} \\ 0_{k \times k} & \Theta_{22} \end{pmatrix}\right),$$

where $\mu = (\mu_j)_{1 \leq j \leq k}$ and

$$\mu_j := \int_0^{T_j} v_s^2 dW_s + A_{T_j}(3), \quad (0, \mu) \in \mathbb{R}^{2k}, \quad \Theta_{22} = \left(\int_0^{T_j \wedge T'_{j'}} (u_s^{22} - (v_s^2)^2) ds\right)_{1 \leq j, j' \leq k}.$$
Hence, we conclude that
\[\mathbb{E}[\tilde{N}^2 | \mathcal{F} \vee \sigma(\tilde{M})] = \mu. \] (6.22)

Let us now deal with the term \(\tilde{N}^1 \). Recall that \(M_t = L^1_t \). We use again Proposition 6.1 to conclude that
\[(M_s, M_{T_1}, \ldots, M_{T_k}) \sim MN_{k+1} \begin{pmatrix} 0, \left(\Theta_{11}^s, \Theta_{12}^s \right) \end{pmatrix}, \]
where
\[\Theta_{11}^s = \int_0^s u^1_t dr \in \mathbb{R}, \quad \Theta_{12}^s = \left(\int_0^{s \wedge T_j} u^1_t dr \right)_{1 \leq j \leq k} \in \mathbb{R}^{1 \times k}, \quad \Theta_{21}^s = (\Theta_{12}^s)^*, \]
and \(\Theta_{11} \) has been defined at (6.20). Hence, we deduce that, conditionally on \(\mathcal{F} \vee \sigma(\tilde{M}) \), \(M_s \) is normally distributed with mean \(\Theta_{12}^s \tilde{M} \) and variance \(\Theta_{12}^s \Theta_{11}^{-1} \Theta_{21}^s \). Setting \(dh_s = \Sigma_s ((a'' - b'b'') (X_s) ds + b''(X_s) dW_s) / 2 \), we then obtain the identity
\[\mathbb{E}[\tilde{N}^1 | \mathcal{F} \vee \sigma(\tilde{M})] = \left(\int_0^{T_j} \left((\Theta_{12}^s \tilde{M})^2 + \Theta_{12}^s - \Theta_{12}^s \Theta_{11}^{-1} \Theta_{21}^s \right) dh_s \right)_{1 \leq j \leq k}. \] (6.23)

Finally, from (6.22) and (6.23) we deduce the identity
\[\sigma^2(z) = \mu + \left(\int_0^{T_j} h_s ((\Theta_{12}^s \tilde{M})^2 + \Theta_{12}^s - \Theta_{12}^s \Theta_{11}^{-1} \Theta_{21}^s) ds \right)_{1 \leq j \leq k}. \] (6.24)

We conclude the computation by setting
\[\sigma(z; iu, iv) = \sigma^1(z)(iu)^2 + \sigma^2(z)[iu]. \]

6.1.6 Proof of Proposition 4.1

Part (i) of the statement is a direct consequence of Corollary 3.6 applied to the function \(h(z) = \|z\|^p \). Now, we set \(X^n = (X_{T_1}^n, \ldots, X_{T_k}^n) \) and \(X = (X_{T_1}, \ldots, X_{T_k}) \). To obtain part (ii) of Proposition 4.1 we apply Taylor expansion to conclude that
\[
\begin{align*}
f(X^n) - f(X) &= \langle \nabla f(X), X^n - X \rangle + \frac{1}{2} (X^n - X)^* \text{Hess} f(X) (X^n - X) + \frac{1}{2} (X^n - X)^* (\text{Hess} f(Y^n) - \text{Hess} f(X)) (X^n - X),
\end{align*}
\]
for some random vector \(Y^n \in \mathbb{R}^k \) with \(\|Y^n - X\| \leq \|X^n - X\| \). In particular, \(Y^n \overset{p}{\rightarrow} X \).

Observe that
\[\mathbb{E} [(X^n - X)^* (\text{Hess} f(Y^n) - \text{Hess} f(X)) (X^n - X)] = o(n^{-1}), \]
which is due to \(f \in C^2(\mathbb{R}^k) \). We deduce the expansion
\[\mathbb{E}[f(X_{T_1}^n, \ldots, X_{T_k}^n) - f(X_{T_1}, \ldots, X_{T_k})] \]
\[= n^{-1} \int_{\mathbb{R}^k \times \mathbb{R}^k} \left(\langle \nabla f(x), z \rangle \cdot p_2(z, x) + \frac{1}{2} z^* \text{Hess} f(x) z \cdot p_1(z, x) \right) dz dx + o(n^{-1}) \]
Edgeworth expansion for Euler approximation of SDEs

since, according to Theorem 3.5 and Corollary 3.6 applied to \(F = (X_{T_1}, \ldots, X_{T_k}) \), it holds that

\[
\int_{\mathbb{R}^k \times \mathbb{R}^k} \langle \nabla f(x), z \rangle \cdot p_1(z, x) dz dx = 0,
\]
because the \(dz \)-integral is taking over an odd function in \(z \). This completes the proof of Proposition 4.1. \(\square \)

6.2 Appendix B: General result for the Edgeworth expansion associated with mixed normal limits

In this part, we will build upon the quadratic functionals framework as in Section 2.2 and provide the corresponding Edgeworth expansion in this setting. We will use Theorem 6.2 below as an intermediate result for proving the main result involving Edgeworth expansions of Euler schemes (Theorem 3.5). The case of Theorem 6.2 is similar in spirit to [22, Theorem 4], but we will require quite different non-degeneracy arguments.

Before we proceed to the main result, we introduce some conditions. Following the notations of Section 2.2, our first set of conditions relates the kernel \(K^n \) to \(K \) and introduces some integrability assumptions, which are similar in spirit to assumptions imposed in [22]. Recall that \(F \in \mathbb{R}^q \), set \(\ell = k + q + 8 \) and let \(\frac{1}{3} < d < \frac{1}{2} \).

(B1) (i) \(K^n(t) \in \mathbb{D}_{\ell+1,\infty}(\mathbb{R}^k) \) and there exists a density \(D_{r_1,\ldots,r_m}K^n(t) \) representing each derivative such that

\[
\sup_{r_1,\ldots,r_m \in (0,1), t \in [0,1], n \in \mathbb{N}} \left\| D_{r_1,\ldots,r_m}K^n(t) \right\|_{L^p} < \infty
\]

for every \(p > 1 \) and \(m = 0, 1, \ldots, \ell + 1 \).

(ii) For every \(p > 1 \) and \(j = 1, \ldots, k \),

\[
\sup_{1 \leq i \leq m_n} \sup_{t \in (t_{i-1}, t_i)} \left\| K^{n,j}(t) - K(t)1_{\{t \leq T_j\}} \right\|_{L^p} = O(n^{-d})
\]
as \(n \to \infty \).

(iii) For every \(p > 1 \) and \(j = 1, \ldots, k \),

\[
\sup_{s \in (T_{j-1}, T_j)} \left\| \left[\frac{\mathbb{I}_s^j}{T_j - s} \right]^{-1} \right\|_{L^p} < \infty.
\]

From (B1)(i), (ii) we deduce that

\[
C^{n,j}_t = (M^{n,j})_t \quad \overset{p}{\to} \quad C^j_t = \frac{1}{2} \int_0^{t \wedge T_j} K(s)^2 ds.
\]

Furthermore, (B1)(iii) implies

\[
(C^j_{T_j} - C^j_{T_{j-1}})^{-1} \in \mathbb{L}^\infty
\]

(6.25)
for $j = 1, \ldots, k$. In particular, $\det C^{-1} \in L_{\infty}$ for $C = (C^{j_1,j_2})_{1 \leq j_1,j_2 \leq k}$.

Now, let us set

$$\hat{C}_n = \sqrt{n}(C_n - C), \quad \hat{F}_n = \sqrt{n}(F_n - F),$$

(6.26)

where $C_n = C^n_1$ with $C^n_i = ((M^n_{i,j_1}, M^n_{i,j_2})_{t})_{1 \leq j_1,j_2 \leq k}$. In the validation of the asymptotic expansion a truncation functional $s_n : \Omega \to \mathbb{R}^k$ will play an important role; see Section 6.2.4 for its explicit definition. We will assume that it satisfies conditions (B2)(i) and (B3) below. We set $\ell_* = 2[q/2] + 4$ and present the next set of assumptions that determines the asymptotic distribution of the vector $(M^n, N_n, \hat{C}_n, \hat{F}_n)$ along with some new integrability conditions.

(B2) (i) $F \in D_{\ell+1,\infty}(\mathbb{R}^q)$, $\sup_{r \leq m \in (0,1)} \|D_{r_1,\ldots,r_m} F\|_{L^p} < \infty$ for every $p > 1$ and $m = 1, \ldots, \ell + 1$. Moreover, $r \mapsto D_r F$ and $(r, s) \mapsto D_{r,s} F (r \leq s)$ are continuous a.s.

(ii) $F_n \in D_{\ell+1,\infty}(\mathbb{R}^q)$, $N_n \in D_{\ell+1,\infty}(\mathbb{R}^k)$ and $s_n = (s^n_j) \in D_{\ell,\infty}(\mathbb{R}^k)$. Moreover,

$$\sup_{n \in \mathbb{N}} \left\{ \|\hat{C}_n\|_{\ell,p} + \|\hat{F}_n\|_{\ell+1,p} + \|N_n\|_{\ell+1,p} + \|s_n\|_{\ell,p} \right\} < \infty$$

for every $p > 1$.

(iii) $(M^n, N_n, \hat{C}_n, \hat{F}_n) \overset{d}{\rightarrow} (M, N, \hat{C}, \hat{F})$ for a random vector (M, N, \hat{C}, \hat{F}) defined on an extension of (Ω, F, P).

(iv) For $u \in \mathbb{R}^k$ and $v \in \mathbb{R}^q$, the conditional expectations $\sigma^1(z), \sigma^2(z)$ and $\sigma^3(z)$ (cf. (2.8)) are in the polynomial ring $D_{\ell,\infty}(\mathbb{R})$ (the set of polynomials in z with coefficients in $D_{\ell,\infty}(\mathbb{R})$).

Finally, we will require a non-degeneracy condition on the pair (M^n_t, F). Let us introduce the process

$$\chi^n_j = (M^n_{1,j_1}, \ldots, M^n_{1,j_1-1}, M^n_{1,j_1}, F).$$

(B3) (i) For each $j = 1, \ldots, k$, there exists a sequence $(\tau^n_j)_{n \in \mathbb{N}} \subset (T_{j-1}, T_j)$ such that $\sup_n \tau^n_j < T_j$ and that

$$\sup_{t \in [\tau^n_j, T_j]} \mathbb{P}\left[\det \sigma_{\chi^n_j} < s^n_j \right] = O(n^{-\nu})$$

for some $\nu > \ell/6$.

(ii) $\limsup_{n \to \infty} \mathbb{E}\left[(s^n_j)^{-p} \right] < \infty$ for every $p > 1$ and $j = 1, \ldots, k$.

Under above conditions, the non-degeneracy of F is ensured and it has a differentiable density function p_F. Thus, the following function p_n is well defined:

$$p_n(z, x) = \mathbb{E}[\phi(z; 0, C)|F = x]p_F(x)$$

$$+ n^{-1/2} \sum_{\alpha} (-d_z)^{\alpha_1}(-d_x)^{\alpha_2} \left\{ \mathbb{E}[c_{\alpha}(z)\phi(z; 0, C)|F = x]p_F(x) \right\}.$$
The error of the approximation of the distribution of \((Z_n, F_n)\) by \(p_n\) is evaluated by the quantity
\[
\Delta_n(f) = \left| \mathbb{E}[f(Z_n, F_n)] - \int f(z, x)p_n(z, x)dzdx \right|
\]
for \(f \in \mathcal{E}_{k,q}(K, \gamma)\). The set \(\mathcal{E}_{k,q}(K, \gamma)\) is introduced in the same way as \(\mathcal{E}_{k,k,q}(K, \gamma)\) from Theorem 3.5 except that it deals with function defined on \(\mathbb{R}^k \times \mathbb{R}^q\). The main result of this section is the following.

Theorem 6.2. Suppose that \(Z_n\) is given by (2.2) with \(M_n\) defined by (2.6). Suppose that \((B1), (B2)\) and \((B3)\) are satisfied. Then
\[
\sup_{f \in \mathcal{E}_{k,q}(K, \gamma)} \Delta_n(f) = o(n^{-1/2}) \quad (6.28)
\]
as \(n \to \infty\) for any positive numbers \(K\) and \(\gamma\).

We will sketch the proof, basically following the ideas of [22, Theorem 4], but outlining the difference caused by the multiple stopping in the present situation. Note that as in [22, Theorem 4], it suffices to verify assumptions of [22, Theorem 1].

6.2.1 Construction of the truncation functional \(\psi_n\) from \(s_n\) and other variables

Let \(\tilde{d}\) satisfy the inequality \(1/3 < d < \tilde{d} < 1/2\), where the constant \(d\) has been introduced before assumption (B1), and define \(\xi_n\) by
\[
\xi_n = 10^{-1}n^{2d}|C_n - C|^2 + 2\left[1 + 4 \det \sigma_{(M_n,F)}(s_k^n)^{-1}\right]^{-1} + \int_{[0,1]^2} \left(\frac{|C^n_t - C^n_t - C^n_s + C_s|n^d}{|t-s|^{3/8}}\right)^8 dt ds.
\]
We define \(Q_n = (M_n, F)\), \(R_n = (N_n, \hat{F}_n)\) and set
\[
R'_n = \sigma^{-1}_{Q_n}\left(n^{-1/2}\langle DQ_n, DR_n \rangle_\mathcal{H} + n^{-1/2}\langle DR_n, DQ_n \rangle_\mathcal{H} + n^{-1}\langle DR_n, DR_n \rangle_\mathcal{H}\right).
\]
Let \(\psi \in C^\infty(\mathbb{R}; [0, 1])\) be a function such that \(\psi(x) = 1\) if \(|x| \leq 1/2\) and \(\psi(x) = 0\) if \(|x| \geq 1\). We introduce the random truncation
\[
\psi_n = \psi(\xi_n)\psi(n^{1/2}|R'_n|^2).
\]
Remark that \(\psi_n\) is well defined because so is \(\sigma^{-1}_{Q_n}\) under the truncation by \(\xi_n\). In fact, if \(\xi_n \leq 1\), then \(\det \sigma_{Q_n} \geq s_{k/n}^k/4\), that is nondegenerate thanks to \((B3)(ii)\). Therefore \(\sigma^{-1}_{Q_n}\) makes sense on the event \(\{\xi_n \leq 1\}\). We are defining \(\psi_n = 0\) on the event \(\{\xi_n > 1\}\) since \(\psi(\xi_n) = 0\) there. Thus, \(\psi_n\) is well-defined.
6.2.2 Characteristic function and its decomposition

Let $Z_n = (Z_n, F_n)$ and let $Z_n^\alpha = Z_n^{\alpha_1} F_n^{\alpha_2}$ for $\alpha = (\alpha_1, \alpha_2) \in \mathbb{Z}_+^k \times \mathbb{Z}_+^q$. Define

$$\hat{g}_n^\alpha(u,v) = \mathbb{E}[\psi_n Z_n^\alpha \exp (Z_n[iu] + F_n[iv])]$$

for $u \in \mathbb{R}^k$ and $v \in \mathbb{R}^q$ and let

$$g_n^\alpha(z,x) = (2\pi)^{-(k+q)} \int_{\mathbb{R}^{k+q}} \exp (-z[iu] - x[iv]) \hat{g}_n^\alpha(u,v) dudv. \quad (6.29)$$

The existence of the integral (6.29) can be verified by the nondegeneracy of the Malliavin covariance matrix of (Z_n, F_n) under the truncation by ψ_n. We define the quantities

$$\Psi(u,v) = \exp \left(-\frac{1}{2} C_{[u \otimes^2]} + i F[v] \right),$$

$$\varepsilon_n(u,v) = -\frac{1}{2} (C_n - C)[u \otimes^2] + i (F_n[v] - F[v]) + i n^{-1/2} N_n[u],$$

$$c_t^n(u) = \exp \left(i M_t^n[u] + \frac{1}{2} C_t^n[u \otimes^2] \right),$$

$$L_t^n(u) = e_t^n(u) - 1 \quad \text{and} \quad \varepsilon^\circ(x) = \int_0^1 e^{-xs} ds.$$

Finally, we introduce the functions

$$\Phi_{1,\alpha}^n(u,v) = \partial^\alpha \mathbb{E}[e_t^n(u) \Psi(u,v) \varepsilon_n(u,v) \varepsilon^\circ(\varepsilon_n(u,v)) \psi_n],$$

$$\Phi_{2,\alpha}^n(u,v) = \partial^\alpha \mathbb{E}[L_t^n(u) \Psi(u,v) \psi_n].$$

The existence of $\Phi_{1,\alpha}^n(u,v)$ and $\Phi_{2,\alpha}^n(u,v)$ involving $e_t^n(u)\Psi(u,v)$ is ensured by the truncation ψ_n. Let us set

$$\Phi_{0,\alpha}^n(u,v) = \partial^\alpha \mathbb{E}[\Psi(u,v) \psi_n].$$

Then $\hat{g}_n^\alpha(u,v)$ possess the decomposition

$$\hat{g}_n^\alpha(u,v) = \Phi_{0,\alpha}^n(u,v) + \Phi_{1,\alpha}^n(u,v) + \Phi_{2,\alpha}^n(u,v).$$

6.2.3 Error bound

We apply [22, Theorem 1] by verifying conditions $[B1]$, $[B2]_\ell$, $[B3]$ and $[B4]_{\ell,m,n}$ therein under our assumptions (B1), (B2), (B3). Remark that “ℓ” therein corresponds to $d + 8$, where $d = k + q$. Condition $[B1]$ follows from (B2)(iii) and a standard central limit theorem with a mixed normal limit. Condition $[B2]_\ell$ is verified by (B2)(i), (B1)(i)-(ii), (B2)(ii) and the definition of ξ_n.
Condition \([B3]\) is verified as follows. \(C_{n,j}^{n,j}\) and \(C_j^{j}\) are expressed as

\[
C_{n,j}^{n,j} = n \sum_{i=1}^{m_n} \int_{t_{i-1}}^{t_i} K^{n,j}(t_{j-1})^2 \int_{t_{i-1}}^{t_i} \left(\int_{t_{i-1}}^{s} dW_r \right)^2 ds
\]

and

\[
C_j^{j} = \frac{1}{2} \int_0^{t \wedge T_j} K(s)^2 ds.
\]

Routinely, we have

\[
\lim_{n \to \infty} \left\| n^d \sup_{t \in [0,1]} |C_{n,j}^{n,j} - C_j^{j}| \right\|_p = 0
\]

for every \(p > 1\) from \((B1)\)(i) and (ii). Therefore, \([B3](i)\) follows as

\[
\mathbb{P}[|\xi_n| > 1/2] \leq \mathbb{P}[n^d |C_1^n - C_1| \geq 1] + \mathbb{P}[\sigma_{\delta_1}^k \leq s_1^k]
\]

\[
+ \mathbb{P} \left[\int_{[0,1]^2} \left(\frac{|C_n - C_1 - C_0^n + C_s|n^d}{|t - s|^{3/8}} \right)^8 dtds \geq \frac{1}{10} \right]
\]

\[
\rightarrow 0
\]

as \(n \to \infty\) thanks to \((B3)(i)\) and \((B1)(ii)\). By the definition of \(\xi_n\), on the event \(|\xi_n| < 1\), \(n^{(1-a)/2}C_n - C_1 \leq 1\) for large \(n\), which is \([B3](ii)\). Moreover, \([B3](iii)\) follows from \((B3)(ii)\) since \(\limsup_{n \to \infty} \mathbb{E} \left[1_{|\xi_n| \leq 1} \det \sigma_{\delta_1}^{-1} \right] \leq \limsup_{n \to \infty} \mathbb{E} \left[4^p(s_n^{-1})^p \right] < \infty\).

Condition \([B4]_{\ell,m,n}(i)\) is rephrased as \((B2)(iv)\). The present \(\sigma\) is in \(\mathcal{S}(\delta + 3, 5, 2)\) in particular; see [22, p. 892] for the relevant definitions. Thus, [22, Theorem 1] gives the error bound

\[
\sup_{f \in \mathcal{E}_{k,q}(K,\gamma)} \Delta_n(f) = o(n^{-1/2})
\]

if the following two conditions are fulfilled:

\[
\lim_{n \to \infty} n^{1/2} \Phi_n^{2,\alpha}(u, v) = \partial^\alpha \mathbb{E} \left[\Psi(u, v) \sigma(1u, 1v) \right]
\]

(6.30)

for \(u \in \mathbb{R}^k, v \in \mathbb{R}^q\) and \(\alpha \in \mathbb{Z}_+^d\), and

\[
\sup_n \sup_{(u,v) \in \Lambda_0^d(d,\bar{d})} n^{1/2}|(u, v)|^{d+1-\varepsilon} \Phi_n^{2,\alpha}(u, v) < \infty
\]

(6.31)

for some \(\varepsilon = \varepsilon(\alpha) \in (0, 1)\) for every \(\alpha \in \mathbb{Z}_+^d\), where \(\Lambda_0^0(d, \bar{d}) = \{(u, v) \in \mathbb{R}^d : |(u, v)| \leq n^{d/2}\}\).

We obtain (6.30) as in [22, Eq. (41)], except for the parts concerning the derivation of [22, Eqs. (38) and (43)] by a non-degeneracy argument. We shall show (6.31). By using duality twice for the double stochastic integrals, we have

\[
n^{1/2} \Phi_n^{2,\alpha}(u, v) = \sum_{a_0, a_1 \in \mathbb{A}_0, \alpha_0 + \alpha_1 = \alpha} \int_{t_{i-1}}^{t_i} \int_{t_{i-1}}^{t_i} \mathbb{E} \left[\partial^{a_0} K^{a_1}(t_{j-1}) |1u| \partial^{a_1} D_r \left(c_n^{a_1}(u) D_s \psi_n \right) \right] dsdr
\]
for some constants c_{a_0, a_1}. We have
\[
D_r \left\{ e^n_s(a) D_s \left(\Psi(u, v) \psi_n \right) \right\} = e^n_s(a) \Psi(u, v) \sigma(n, r, s; iu, iv)
\]
\[
= \mathbb{F}^n_s g_s \mathbb{G}^n_s \sigma(n, r, s; iu, iv),
\]
where
\[
\mathbb{F}^n_s = \exp \left(M^n_s [iu] + F[iv] \right),
\]
\[
\mathbb{G}^n_s = \exp \left(-\frac{1}{2} (C_1 - C_s) [u^{\otimes 2}] \right),
\]
\[
\mathbb{H}^n_s = \exp \left(\frac{1}{2} (C^n_s - C_s) [u^{\otimes 2}] \right)
\]
and $\sigma(n, r, s; iu, iv)$ is a polynomial random symbol of fourth order in (u, v) with coefficients in $\mathbb{D}_{k-2, \infty}(\mathbb{R})$.

First, we will consider the case $\alpha = 0$, and estimate $n^{1/2} \Phi_0^2(u, v)$. Let $s \in (T_{j-1}, T_j)$. Then $M^n_s = (M^{n,1}_{T_1}, \ldots, M^{n,j-1}_{T_{j-1}}, M^{n,j}_s, \ldots, M^{n,k}_s)$. We will estimate the speed of the decay of the expectations of the components of $n^{1/2} \Phi_0^2(u, v)$ for $(u, v) \in \Lambda_0^0(d, d)$. Our strategy is as follows. For $s \in (T_n, T_j)$, we apply the integration-by-parts formula for $(M^{n,1}_{T_1}, \ldots, M^{n,j-1}_{T_{j-1}}, M^{n,j}_s, F)$ to obtain the decay $|\langle u_1, \ldots, u_j, v_1, \ldots, v_q \rangle|^{-(d+1-\varepsilon)}$, where $u = (u_1, \ldots, u_k)$ and $v = (v_1, \ldots, v_q)$. For that, we need to show that the D-derivatives of \mathbb{G}_s and \mathbb{H}_s up to ℓ-times are \mathbb{L}_p-bounded uniformly in $(u, v) \in \Lambda_0^0(d, d)$ and $n \in \mathbb{N}$, under the truncation by ψ_n. We see that this property holds for \mathbb{H}_s by (B1)(ii). For \mathbb{G}_s, we verify the property as follows. The multiple D-derivative of \mathbb{G}_s is a linear combination of terms of the form
\[
\left\{ \prod_{\alpha=1}^\hat{\alpha} D_{A_\alpha} \left(\sum_{i_1, i_2 = j}^k \| ^{i_1 \wedge i_2} u_{i_1} u_{i_2} \| \right) \right\} g_s \quad (A_{\alpha} = r_{a(\alpha-1)+1}, \ldots, r_{a(\alpha)}, 1 \leq a(1) \leq a(2) \leq \cdots)
\]
that is bounded by \mathbb{G}_s times a polynomial p of random variables
\[
\max_{i=2, \ldots, k} \left| \frac{D_{A_\alpha} \| ^{i_1 \wedge i_2} u_{i_1} u_{i_2} \|}{T_i - s} \right| \quad \max_{i=j, \ldots, k} \left[\frac{\| ^{i_1 \wedge T_{i-1}} u_{i_1} u_{i_2} \|}{T_i - (s \vee T_{i-1})} \right]^{-1} \quad \max_{i=j, \ldots, k} \left| \frac{\| ^{i_1 \wedge i_2} u_{i_1} u_{i_2} \|}{T_i - s} \right| \quad \left| (u_i)_{i=j, \ldots, k} \right|.
\]
Indeed,
\[
D_{A_\alpha} \left(\sum_{i_1, i_2 = j}^k \| ^{i_1 \wedge i_2} u_{i_1} u_{i_2} \| \right)
\]
\[
= \sum_{i_1, i_2 = j}^k D_{A_\alpha} \| ^{i_1 \wedge i_2} u_{i_1} u_{i_2} \| \left(\frac{(T_{i_1 \wedge i_2} - s) u_{i_1} u_{i_2}}{\| ^{i_1 \wedge i_2} u_{i_1} u_{i_2} \|} \right) \sum_{i_1, i_2 = j}^k \| ^{i_1 \wedge i_2} u_{i_1} u_{i_2} \|
\]
\[
\leq \left(\frac{D_{A_\alpha} \| ^{i_1 \wedge i_2} u_{i_1} u_{i_2} \|}{(T_{i_1 \wedge i_2} - s)} \right) \sum_{i_1, i_2 = j}^k \left(\frac{(T_{i_1 \wedge i_2} - s) u_{i_1} u_{i_2}}{\| ^{i_1 \wedge i_2} u_{i_1} u_{i_2} \|} \right)^{-1} \left(\frac{(T_{i_1 \wedge i_2} - s)}{T_{i_1 \wedge i_2} - s} \right)\right.
\]
\[
\times \sum_{i_1, i_2 = j}^k \| ^{i_1 \wedge i_2} u_{i_1} u_{i_2} \| \left((T_{i_1 \wedge i_2} - s) u_{i_1} u_{i_2} \right),
\]
where we used
\[|S^{-1/2}| \preceq \|S^{-1/2}\|_{op} = \left(\sup_{v:|v|=1} S^{-1}[v \otimes 2] \right)^{1/2} \leq |S^{-1}|^{1/2} \]
for any non-degenerate symmetric matrix \(S \). Moreover, the identity
\[\det \left(\frac{\mathbb{I}_{i_1 \wedge i_2} / (T_{i_1 \wedge i_2} - s)}{i_{i_1, i_2} = j, \ldots, k} \right) = \prod_{i=j, \ldots, k} \frac{\mathbb{I}_{i \vee T_{i-1}}}{T_i - (s \vee T_{i-1})} \]
can be used to estimate the inverse matrix in the above expression.

The term \(pG_s \) is \(L^1 \)-bounded due to (B1)(i), (iii) and
\[\sup_{u \in \mathbb{R}^k, \omega, s \in (T_{j+1}, T_j)} \left(\sum_{i_1, i_2 = j}^k \mathbb{I}_{i_1 \wedge i_2} u_{i_1} u_{i_2} \right)^m G_s < \infty \]
for every \(m \in \mathbb{N} \) and \(j = 1, \ldots, k \).

If \(j = k \), then this estimate is sufficient for our use. When \(j < k \), we also use the non-degeneracy of the matrix
\[\mathcal{M}(T_{j+1}, T_k) = \left(\frac{1}{2} \int_{T_j}^{T_{j+1}} K(t)^2 \ dt \right)_{i_1, i_2 = j+1, \ldots, k} \]
and the estimate
\[(C_1 - C_s)[u \otimes 2] \geq \mathcal{M}(T_{j+1}, T_k) \left[(u_{j+1}, \ldots, u_k) \otimes 2 \right] \]
in order to obtain the decay \(|(u_{j+1}, \ldots, u_k)|^{-(d+1-\epsilon)} \). For (6.32), we note that
\[\sum_{i_1, i_2 = 1}^k \int_s^{s \vee T_{i_1 \wedge i_2}} K(t)^2 dt \ u_{i_1} u_{i_2} = \int_s^1 \left(\sum_{i=1}^k 1_{[0, T_i]}(t) u_i \right)^2 K(t)^2 dt \]
\[\geq \int_{T_j}^1 \left(\sum_{i=1}^k 1_{[0, T_i]}(t) u_i \right)^2 K(t)^2 dt \]
\[= \sum_{i_1, i_2 = j+1}^k \int_{T_j}^{T_{i_1 \wedge i_2}} K(t)^2 dt \ u_{i_1} u_{i_2}. \]

By (6.25) we have
\[\det \mathcal{M}(T_{j+1}, T_k)^{-1} \in L_{\infty-}, \]
and hence (6.32) and (6.33) imply that
\[|(u_{j+1}, \ldots, u_k)|^m \exp \left(-\frac{1}{2} (C_1 - C_s)[u \otimes 2] \right) \leq C_m \left| \mathcal{M}(T_{j+1}, T_k)^{-1} \right|^m \]
is L_∞-bounded uniformly in $(u_{j+1},...,u_k)$ for every $m \in \mathbb{N}$. Finally, we may use one of
the above estimates of the decay, depending on $|(u_1,...,u_j,v_1,...,v_q)| \geq |(u_{j+1},...,u_k)|$ or not.

Following the proof of [22, Theorem 4], i.e. the procedure (a)-(g) therein with the
additional truncation
\[\psi_{n,s}^j = \psi\left(2\left[1 + 4\det\sigma(M_{n,1}^{s,1},...,M_{n,j-1}^{s,j-1},M_{n,j}^{s,j},F)(s^j_n)^{-1}\right]^{-1}\right), \]
we obtain the desired decay of
\[n\sum_{i=1}^m \int_{t_i-1}^{t_i} 1_{s \in (\tau_n, T_j)} \int_{t_i}^{t_i} \mathbb{E}\left[\partial^\alpha K^n(t_{i-1})[1u] \partial^\beta D_s \left\{ e_{n}^s(u) D_{s}(\Psi(u,v)\psi_n)\right\}\right] ds dr \]
for $\alpha = 0$. A similar estimate can be shown for a general α.

For $s \in (T_{j-1}, \tau_n^j)$, we apply the integration-by-parts formula for
\[(M_{T_1}^{n,1},...,M_{T_{j-1}}^{n,j-1},F) \]
we obtain the desired decay of
\[\left|(u_1,...,u_{j-1},v_1,...,v_q)\right|^{-(\ell+1-\varepsilon)}. \]
In order to obtain the decay $|(u_j,...,u_k)|^{-(\ell+1-\varepsilon)}$, we use the nondegeneracy of
\[\mathcal{M}^{j}(\tau_n^j, T_k) = \left(\frac{1}{2} \int_{\tau_n^j}^{T_{1\wedge 2}} K(t)^2 dt\right)_{i_1,i_2=j,...,k}. \]
Then we repeat a similar procedure as in the previous case to obtain the desired decay.

We deduce (6.31) by combining the above estimates.

6.2.4 Proof of Theorem 3.5

We will verify conditions (B1), (B2) and (B3) for Theorem 6.2 under (A), (C1), (C2) and
(C3). Recall that
\[K(s) = -\Sigma_a^{-1} b l'(X_s), \]
$\ell = 2k + q + 8$, $\ell_s = 2[q/2] + 4$ and we are assuming that a, b are in $C^{\infty}(\mathbb{R})$ and all
their derivatives of positive order are bounded. As mentioned just before assumption (A),
the functionals $c_\alpha(z)$ in the representation (2.10) of the full random symbol σ and also in
(3.12) are associated with σ of (3.11) and σ of (2.9).

Conditions (B1)(i), (ii) are obvious. Condition (B1)(iii) is assumed by (C1). In the
present situation, $F_n = 0$ since $F_n = F$. Condition (B2)(i) follows from (A) and (C2)(i).
(B2)(ii) will be checked later after constructing s_n. Condition (B2)(iii) is already obtained
in (3.10). The property (B2)(iv) has been observed to derive the expression (3.11).

We shall consider non-degeneracy of the Malliavin covariance matrix $\sigma(X_1,X_2)$ of (X_1, X_2), where
\[X_1 = (M_{S_1}^{n,1},...,M_{S_{j-1}}^{n,j-1},M_{S_j}^{n,j}) \quad \text{and} \quad X_2 = (\Sigma_{T_1},...,\Sigma_{T_k}) \]
for $S_1 = T_1, ..., S_{j-1} = T_{j-1}$ and S_j is either $s \in [(T_{j-1} + T_j)/2, T_j]$. We will estimate the Malliavin covariance matrix $\sigma_{(X_1, X_2)}$. Let $\theta = i/n$. Let

$$\eta_i(t) = \sqrt{n}(W(\theta_i \cap t) - W(\theta_{i-1} \cap t))$$

and

$$\xi_i(t) = n\left(W(\theta_i \cap t) - W(\theta_{i-1} \cap t)\right)^2 - (\theta_i \cap t - \theta_{i-1} \cap t).$$

Then, as in [21], we have

$$D_r M^n_{S_{\mu}} = \sum_{i=1}^{n} 2K(\theta_i - 1)\eta_i(S_{\mu}) 1_{(\theta_i - 1 \cap S_{\mu}, \theta_i \cap S_{\mu})}(r)$$

$$+n^{-1/2} \sum_{i=1}^{n-1} \left(\sum_{i'=i+1}^{n} D_r K(\theta_i - 1)\xi_i'(S_{\mu}) \right) 1_{(\theta_i - 1 \cap S_{\mu}, \theta_i \cap S_{\mu})}(r)$$

for $\mu = 1, ..., j$. Therefore,

$$\sigma(n, \mu_1, \mu_2) := \langle DM^n_{S_{\mu_1}}, DM^n_{S_{\mu_2}} \rangle_H$$

$$= \sum_{i=1}^{n} \int_{\theta_i - 1}^{\theta_i} \left[2K(\theta_i - 1)\eta_i(S_{\mu_1}) + n^{-1/2} \sum_{i'=i+1}^{n} D_r K(\theta_i - 1)\xi_i'(S_{\mu_1}) \right] 1_{[0, S_{\mu_1}]}(r)$$

$$\times \left[2K(\theta_i - 1)\eta_i(S_{\mu_2}) + n^{-1/2} \sum_{i'=i+1}^{n} D_r K(\theta_i - 1)\xi_i'(S_{\mu_2}) \right] 1_{[0, S_{\mu_2}]}(r) dr$$

$$+O_L(n^{-1/2})$$

$$= \tilde{\sigma}(n, \mu_1, \mu_2) + O_L(n^{-1/2})$$

for $\mu_1, \mu_2 = 1, ..., j$, where $\tilde{\sigma}(n, \mu_1, \mu_2) = \tilde{\sigma}_1(n, \mu_1, \mu_2) + \tilde{\sigma}_2(n, \mu_1, \mu_2)$ with

$$\tilde{\sigma}_1(n, \mu_1, \mu_2) = \sum_{i=1}^{n} \int_{\theta_i - 1}^{\theta_i} \left(2K(\theta_i - 1)\eta_i(S_{\mu_1}) \right) 1_{[0, S_{\mu_1}]}(r) \left(2K(\theta_i - 1)\eta_i(S_{\mu_2}) \right) 1_{[0, S_{\mu_2}]}(r) dr$$

and

$$\tilde{\sigma}_2(n, \mu_1, \mu_2) = \sum_{i=1}^{n} \int_{\theta_i - 1}^{\theta_i} \left(n^{-1/2} \sum_{i'=i+1}^{n} D_r K(\theta_i - 1)\xi_i'(S_{\mu_1}) \right) 1_{[0, S_{\mu_1}]}(r)$$

$$\times \left(n^{-1/2} \sum_{i'=i+1}^{n} D_r K(\theta_i - 1)\xi_i'(S_{\mu_2}) \right) 1_{[0, S_{\mu_2}]}(r) dr$$

for $\mu_1, \mu_2 = 1, ..., j$. Moreover, for $G = (G^\nu)_{\nu=1, ..., \tilde{\nu}}$,

$$\sigma(n, \mu, \nu) := \langle DM^n_{S_{\mu}}, DG^\nu \rangle_H$$

$$= \sum_{i=1}^{n} \int_{\theta_i - 1}^{\theta_i} \left[2K(\theta_i - 1)\eta_i(S_{\mu}) + n^{-1/2} \sum_{i'=i+1}^{n} D_r K(\theta_i - 1)\xi_i'(S_{\mu}) \right] 1_{[0, S_{\mu_1}]}(r)$$

$$\times D_r G^\nu dr + O_L(n^{-1/2})$$

$$= \tilde{\sigma}(n, \mu, \nu) + O_L(n^{-1/2}),$$
where
\[
\tilde{\sigma}(n, \mu, \nu) = \sum_{i=1}^{n} \int_{\theta_i}^{\theta_{i-1}} \left(n^{-1/2} \sum_{i'=i+1}^{n} D_r K(\theta_{i-1}) \xi_{i'}(S_{\mu}) \right) 1_{[0,S_{\mu}]}(r) D_r G^{\nu} dr
\]

Let
\[
\tilde{\sigma}(n, \nu_1, \nu_2) = \int_0^1 D_r G^{\nu_1} D_r G^{\nu_2} dr.
\]

Then it is easy to see that the matrix
\[
\begin{bmatrix}
(\tilde{\sigma}_2(n, \mu_1, \mu_2)) & (\tilde{\sigma}(n, \mu, \nu)) \\
(\tilde{\sigma}(n, \mu, \nu))^* & (\tilde{\sigma}(n, \nu_1, \nu_2))
\end{bmatrix}
\]
is nonnegative definite. As we will see, the matrix \((\tilde{\sigma}(n, \nu_1, \nu_2))\) is positive definite almost surely. Therefore,
\[
(\tilde{\sigma}_2(n, \mu_1, \mu_2)) - (\tilde{\sigma}(n, \mu, \nu))(\tilde{\sigma}(n, \nu_1, \nu_2))^{-1}(\tilde{\sigma}(n, \mu, \nu))^*
\]
is nonnegative definite, and hence
\[
\det \begin{bmatrix}
(\tilde{\sigma}(n, \mu_1, \mu_2)) & (\tilde{\sigma}(n, \mu, \nu)) \\
(\tilde{\sigma}(n, \mu, \nu))^* & (\tilde{\sigma}(n, \nu_1, \nu_2))
\end{bmatrix}
= \det \left[(\tilde{\sigma}(n, \mu_1, \mu_2)) - (\tilde{\sigma}(n, \mu, \nu))(\tilde{\sigma}(n, \nu_1, \nu_2))^{-1}(\tilde{\sigma}(n, \mu, \nu))^* \right]
\times \det (\tilde{\sigma}(n, \nu_1, \nu_2))
\geq \det (\tilde{\sigma}(n, \mu_1, \mu_2)) \det (\tilde{\sigma}(n, \nu_1, \nu_2)) =: M_n.
\]

Now \(M_n\) converges in \(L_{\infty-}\) to
\[
M_\infty := \det \left[\int_{0}^{S_{\mu_1} \wedge S_{\mu_2}} 4K(t)^2 dt \right]_{\mu_1, \mu_2=1,...,j} \times \det \left[\int_0^1 D_r G^{\nu_1} D_r G^{\nu_2} dr \right]_{\nu_1, \nu_2=1,...,q}
\]
with rate \(n^{-1/2}\). Define \(s^j_n\) by
\[
s^j_n := \frac{1}{2} M_\infty.
\]

Then \(\sup_{n \in \mathbb{N}} \| s^j_n \|_{\ell, p} < \infty\) for every \(p > 1\) and every \(j\), so that (B2)(ii) holds additionally by (A). But \(M_\infty\) is non-degenerate, i.e.
\[
M_\infty^{-1} \in L_{\infty-}
\]
due to (C1) and (C3). This shows (B3)(ii). Moreover, the estimate \(M_n - M_\infty = O_{L_{\infty-}}(n^{-1/2})\) and (6.35) proves (B3)(i). Hence, the proof of Theorem 3.5 is completed. □
6.2.5 Proof of Proposition 5.1

We need to show that

$$\sup_{s \in (T_{j-1}, T_j)} \left\| \frac{\mathbb{E}_s}{T_j - s} \right\|_p^{-1} < \infty$$ \hspace{1cm} (6.36)$$

for every \(p > 1 \) and \(j = 1, \ldots, k \). Let \(s \in (T_{j-1}, T_j) \). Recalling (2.7), we have

$$\frac{\mathbb{E}_s}{T_j - s} = \frac{1}{2} \int_{T_j}^s \frac{1}{T_j - s} \sum_{r^2} \{bb'(X_r)\}^2 dr \geq \frac{1}{2} \inf_{r \in [s, T_j]} \sum_{r^2} \frac{1}{T_j - s} \int_{T_j}^s \{bb'(X_r)\}^2 dr.$$

By (C1\(^2\)) and the compactness of \(B \), there exist a finite set \(\mathcal{N} \subset B \), a positive constant \(c \) and an integer \(m \geq 2 \) such that

$$\{bb'(x)\}^2 \geq \min_{z \in \mathcal{N}} c^{m/2}(1 \wedge |x - z|^m)$$ \hspace{1cm} (6.37)$$

for all \(x \in \mathbb{R} \). Indeed, by (C1\(^2\))(i) and (ii)(a), there exists a positive constant \(c' \) such that \(\inf_{x \in B}\{bb'(x)\}^2 \geq c' \). For each \(z \in B \), by (C1\(^2\))(ii)(b), there exists an integer \(j_z \geq 1 \) such that \(b^{(j_z)}(z) \neq 0 \) and \(b'(x) = ((j_z - 1))^{-1}b^{(j_z)}(z)(x - z)^{j_z - 1} \cdots \) for all \(x \) near \(z \). Therefore, from (C1\(^2\))(i), for each \(z \in B \), there exists a positive constant \(c_z \) and a neighborhood \(B_z \) such that \(\{bb'(x)\}^2 \geq c_z (1 \wedge |x - z|^m) \) for all \(x \in B_z \), with \(m_z = (j_z - 1)^2 \geq 0 \). Since \(B \) is compact, one can find a finite set \(\mathcal{N} \subset B \) such that \(B \subset \bigcup_{z \in \mathcal{N}} B_z \), and hence

$$\{bb'(x)\}^2 \geq \min_{z \in \mathcal{N}} \left(\min_{z' \in \mathcal{N}} c_{z'} \right) (1 \wedge |x - z|^{\max_{z' \in \mathcal{N}} m_{z'}})$$

for all \(x \in B \) since there exists \(z \) for each \(x \in B \) such that \(x \in B_z \). If we set \(c = \left(\min\{c', \min_{z \in \mathcal{N}} c_z\} \right)^{2/m} \) for \(m = \max\{2, \max_{z \in \mathcal{N}} m_z\} \) we obtain (6.37).

Let \(\delta > 0 \) and \(B_0 := \{ x : \text{dist} (x, \mathcal{N}) < 2\delta \} \). Let \(s_i = s + i(T_j - s)/n \). Then, there exists \(n_0 \in \mathbb{N} \) independent of \(s \) such that for \(n \geq n_0 \),

$$\mathbb{P} \left[\frac{1}{T_j - s} \int_{T_j}^s \{bb'(X_r)\}^2 dr \leq \frac{1}{n^{3m/2}} \right] \leq \mathbb{P} \left[c^{m/2} \int_{T_j}^s \min_{z \in \mathcal{N}} (1 \wedge |X_r - z|^m) dr \leq \frac{1}{n^{3m/2}} \right] \leq \mathbb{P} \left[\frac{c}{T_j - s} \int_{T_j}^s \min_{z \in \mathcal{N}} (1 \wedge |X_r - z|^2) dr \leq \frac{1}{n^2} \right] \leq \sum_{i=1}^n \mathbb{P} \left[\frac{c}{T_j - s} \int_{s_i}^{s_{i+1}} \min_{z \in \mathcal{N}} (1 \wedge |X_r - z|^2) dr \leq \frac{1}{n^2} \right] \leq \sum_{i=1}^n \mathbb{P} \left[\frac{c}{T_j - s} \int_{s_i}^{s_{i+1}} (1 \wedge |X_r - z|^2) dr \leq \frac{1}{n^2}, \inf_{r \in [s_{i-1}, s_i]} \min_{z \in \mathcal{N}} |X_r - z| < n^{-1/2} \right] \leq \sum_{z \in \mathcal{N}} \sum_{i=1}^n \mathbb{P} \left[\frac{c}{T_j - s} \int_{s_i}^{s_{i+1}} (1 \wedge |X_r - z|^2) dr \leq \frac{1}{n^2}, \sup_{u \in [s_{i-1}, s_i]} |X_r - z| < n^{-1/3} \right] + O(n^{-L}).
where L is any positive number independent of s; in fact, on the event \(\{ \inf_{r \in [s_{i-1}, s_i]} |X_r - z| < n^{-1/2} \} \) for $z \in \mathcal{N}$, the process X keeps $\sup_{r' \in [s_{i-1}, s_i]} |X_{r'} - z| < n^{-1/3}$ with probability $1 - O(n^{-L-1})$, and $\min_{r \in \mathcal{N}} |X_r - z| = |X_{r'} - z|$ for $n \geq n_0$ since the points in \mathcal{N} are isolated. The first term of the right-hand side of the above inequality is bounded by

$$\sum_{z \in \mathcal{N}} \sum_{i=1}^{n} \mathbb{P} \left[\frac{c}{T_j - s} \int_{s_{i-1}}^{s_i} |X_r - z|^2 dr \leq \frac{1}{n^4}, \ X_r \in B_0 \text{ for all } r \in [s_{i-1}, s_i] \right]$$

for large n. Since on the bounded set B_0, the process X_r behaves like a Brownian motion, the last probability is bounded by $c_1 n \exp(-c_1 n)$ for some positive constant c_1 independent of $s \in (T_{j-1}, T_j)$, which follows from a similar inequality to [18, Lemma 10.6]. Consequently, we obtain (6.36) by using the estimate

$$\sup_{s \in (T_{j-1}, T_j)} \mathbb{E} [\Gamma_s^p] = \sup_{s \in (T_{j-1}, T_j)} \int_0^\infty pt^{p-1} \mathbb{P} [\Gamma_s < t^{-1}] dt$$

$$\leq \sum_{n=0}^\infty p(n+1)^{3mp/2} \sup_{s \in (T_{j-1}, T_j)} \mathbb{P} [\Gamma_s < n^{-3m/2}] < \infty$$

for $\Gamma_s = (T_j - s)^{-1} \int_s^{T_j} \{bb'(X_r)\}^2 dr$ and $p > 1$. \hfill \(\square\)

Acknowledgment

Mark Podolskij and Bezirgen Veliyev acknowledge financial support from the project “Ambit fields: probabilistic properties and statistical inference” funded by Villum Fonden (No. 11745) and from CREATES funded by the Danish National Research Foundation. The research of Nakahiro Yoshida is supported in part by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research No. 17H01702 (Scientific Research), No. 26540011 (Challenging Exploratory Research); Japan Science and Technology Agency CREST JPMJCR14D7; and by a Cooperative Research Program of the Institute of Statistical Mathematics.

References

