Exceptional times of the critical dynamical Erdős-Rényi graph

Matthew I. Roberts∗ and Batı Şengül†

University of Bath

August 8, 2017

Abstract

In this paper we introduce a network model which evolves in time, and study its largest connected component. We consider a process of graphs \((G_t : t \in [0, 1])\), where initially we start with a critical Erdős-Rényi graph \(\text{ER}(n, 1/n)\), and then evolve forwards in time by resampling each edge independently at rate 1. We show that the size of the largest connected component that appears during the time interval \([0, 1]\) is of order \(n^{2/3} \log^{1/3} n\) with high probability. This is in contrast to the largest component in the static critical Erdős-Rényi graph, which is of order \(n^{2/3}\).

1 Introduction and main result

An Erdős-Rényi graph \(\text{ER}(n, p)\) is a random graph on \(n\) vertices \(\{1, \ldots, n\}\), where each pair of vertices is connected by an edge with probability \(p\), independently of all other pairs of vertices. Erdős and Rényi [8] introduced this graph (or rather a very closely related graph) and examined the structure of its connected components. Since then, Erdős-Rényi graphs have been intensively studied and have become a cornerstone of probability and combinatorics: see for example [5, 7, 17] and references therein.

Let \(L_n\) denote the largest connected component of an Erdős-Rényi graph \(\text{ER}(n, p)\) with \(p = \mu/n\). We write \(|L_n|\) for the number of vertices in \(L_n\). This quantity exhibits a phase transition as \(\mu\) passes 1:

(i) if \(\mu < 1\), then \((\log n)^{-1}|L_n|\) converges in probability to \(1/\alpha(\mu)\) where \(\alpha(\mu) = \mu - 1 - \log \mu \in (0, \infty)\) (see [5, Corollaries 5.8 and 5.11]);

∗Email: mattiroberts@gmail.com
†Email: batisengul@gmail.com
(ii) if \(\mu = 1 \), then \(n^{-2/3}|L_n| \) converges in distribution to some non-trivial random variable as \(n \to \infty \) (see [2]);

(iii) if \(\mu > 1 \), then \(n^{-1}|L_n| \) converges in probability to \(\theta(\mu) \) where \(\theta(\mu) \in (0, 1) \) is the unique solution to \(\theta(\mu) = 1 - e^{-\mu\theta(\mu)} \) (see [17, Theorem 5.4]).

The model \(\text{ER}(n, 1/n) \) is therefore referred to as the critical Erdős-Rényi graph.

In this paper we study a dynamical version of the critical Erdős-Rényi graph, a process of random graphs \(\{G_t : t \in [0, 1]\} \) on the vertex set \{1, \ldots, n\}, constructed as follows. Initially \(G_0 \) is distributed as \(\text{ER}(n, 1/n) \). Then the presence of each edge \(vw \) between vertices \(v \neq w \) is resampled at rate 1, independently of all other edges. That is, at the times of a rate 1 Poisson process, we remove the edge \(vw \) if it exists, and then place an edge with probability \(1/n \), independently of everything else. Clearly \(\text{ER}(n, 1/n) \) is invariant for this process, so for each \(t \geq 0 \), \(G_t \) is a realisation of \(\text{ER}(n, 1/n) \). Let \(L_n(t) \) denote the largest connected component of \(G_t \). Then for each fixed \(t \in [0, 1] \), \(|L_n(t)| \) is of order \(n^{2/3} \) with high probability as \(n \to \infty \). Our main result gives a contrasting statement about the size of \(\sup_{t \in [0, 1]} |L_n(t)| \), showing that with high probability there are (rare) times when \(|L_n(t)| \) is of order \(n^{2/3} \log^{1/3} n \) (where we write \(\log^a n \) to mean \((\log n)^a \)).

Theorem 1.1. As \(n \to \infty \),

\[
\mathbb{P} \left(\frac{\sup_{t \in [0,1]} |L_n(t)|}{n^{2/3} \log^{1/3} n} > \beta \right) \to \begin{cases} 1 & \text{if } \beta < 2/3^{2/3} \\ 0 & \text{if } \beta \geq 2/3^{1/3}. \end{cases}
\]

We will also give a result on the noise sensitivity of component sizes in Proposition 2.2, once we have developed the required notation.

1.1 Further discussion around Theorem 1.1

It is not difficult to deduce from known results (see for example [5]) together with a first moment method (see Section 5) that for Erdős-Rényi graphs away from criticality, the size of the biggest component in the dynamical model is of the same order as in the static model. That is, for \(\text{ER}(n, \mu/n) \) with \(\mu < 1 \), \(\sup_{t \in [0,1]} |L_n(t)| \) is of order \(\log n \) with high probability; and for \(\text{ER}(n, \mu/n) \) with \(\mu > 1 \), \(\sup_{t \in [0,1]} |L_n(t)| \) is of order \(n \) with high probability. The critical graph \(\text{ER}(n, 1/n) \) is therefore the most interesting case.

Returning to \(\text{ER}(n, 1/n) \), the obvious open questions posed by Theorem 1.1 are:

- Does \(\sup_{t \in [0,1]} |L_n(t)|/(n^{2/3} \log^{1/3} n) \) converge in probability as \(n \to \infty \)? If so, what is its limit?

- What does the set of exceptional times, i.e. \(\{t \in [0, 1] : |L_n(t)| \geq \beta n^{2/3} \log^{1/3} n\} \), look like?

- What does the largest component look like at exceptional times?
• How does inf_{t\in[0,1]} |L_n(t)| behave?

• What if we resample each edge at rate n^\gamma for \gamma \neq 0?

For the first question we conjecture that sup_{t\in[0,1]} |L_n(t)|/(n^{2/3} \log^{1/3} n) \to 2/3^{1/3} in probability as n \to \infty. We hope to address this in future work, but substantial further technical estimates are required.

We can say a limited amount about the second question. On the one hand, it is easy to check that the Lebesgue measure of the set of times at which there is a component of size at least \beta n^{2/3} converges in probability to zero whenever \beta \to \infty, so certainly the Lebesgue measure of the set of exceptional times converges in probability to zero for any \beta > 0. On the other hand, let X_\beta(t) be 1 when the largest component is larger than \beta n^{2/3} \log^{1/3} n, and 0 at other times. For \delta > 0, let N_\beta(\delta) be the number of times in the interval [0, \delta] at which X_\beta(t) changes its value. Jonasson and Steif [18, Corollary 1.6] showed that if P(|L_n| \geq \beta n^{2/3} \log^{1/3} n) \to 0 but P(N_\beta(1) \geq 1) \to 1, then N_\beta(\delta) \to \infty in distribution as n \to \infty for any fixed \delta > 0. Theorem 1.1 tells us that these conditions hold for \beta < 2/3^{2/3}.

Going further than this, one might like to know whether the set of exceptional times \{t \in [0,1] : |L_n(t)| \geq \beta n^{2/3} \log^{1/3} n\} converges in distribution as n \to \infty, and if so, what the Hausdorff dimension of this limiting set is. We conjecture that the Hausdorff dimension is (1 - 3\beta^3/8) \lor 0. This conjecture follows naturally from a simple box counting argument using the sets \mathcal{E}_i from our upper bound in Section 5. Again, we hope to investigate this in future work.

For the third question, it is natural to guess—in analogy with work on dynamical planar lattice percolation by Hammond, Pete and Schramm [14]—that the largest component at “typical” exceptional times looks like a static component conditioned to have size at least \beta n^{2/3} \log^{1/3} n. Unfortunately our combinatorial method for estimating the probability that such a component exists (using results from [22]) gives little insight into its structure. Analysis using Brownian excursions, after Aldous [2] and Addario-Berry, Broutin and Goldschmidt [1], might shed more light on this problem.

The fourth question appears to be substantially different from Theorem 1.1 and would require a different approach.

For the fifth question, the most interesting case is \gamma = -1/3. If we rescale component sizes by n^{2/3} then, based on Aldous’ multiplicative coalescent [2], we expect to see something like a multiplicative fragmentation-coalescent process. Rossignol [23] has shown that this is indeed the case.

1.2 Background

Dynamical percolation was introduced by Häggström, Peres, and Steif [13]. Take a graph G = (V, E) and create a dynamical random graph (G_t, t \geq 0) as follows. Each edge e \in E is present at time 0 with probability p \in [0,1], independently of all others. Each edge is then rerandomized independently at the times of a rate 1 Poisson process. This model is known as dynamical bond percolation on G with parameter p. (Alternatively we may say that each
vertex is present with probability \(p \) and rerandomized at rate 1; this is known as dynamical site percolation.) The model that we investigate in this paper is then simply dynamical bond percolation when \(G \) is the complete graph on \(n \) vertices and \(p = 1/n \).

A question of particular interest for infinite graphs is whether there exists a time at which an infinite component appears. Schramm and Steif [24] were able to show that for critical (\(p = 1/2 \)) dynamical site percolation on the triangular lattice, almost surely, there are times in \([0, \infty)\) when an infinite component is present, even though at any fixed time \(t \) there is almost surely no infinite component. The times at which an infinite component exists are then known as exceptional times. Their proof relied on tools from Fourier analysis, randomized algorithms, and the theory of noise sensitivity of Boolean functions as introduced by Benjamini, Kalai and Schramm [3]. We will see similar methods appearing in our proof, although in each case there will be a non-standard approach required.

Since its introduction roughly 20 years ago, dynamical percolation has been studied intensively [4, 6, 10, 12, 14, 20] in various settings (see also [9, 11, 25] and references within). Most of the study has so far been restricted to infinite graphs and the question of existence of an infinite component. Of the very few results on finite graphs, Lubetzky and Steif [19] studied the noise sensitivity properties of various Boolean functions related to Erdős-Rényi graphs; and Jonasson and Steif [18] gained results about dynamical percolation on infinite spherically symmetric trees restricted to the first \(n \) levels, in the context of what they call the volatility of Boolean functions (which we mentioned using different notation in Section 1.1 in the discussion around the second open question).

The critical Erdős-Rényi graph is one of the simplest models of random networks. Several more complex random graph models, such as preferential attachment graphs, have since been introduced in an attempt to more realistically model the features seen in real-world networks such as the world-wide web; see [15] for an overview. The model we consider in this paper is known within the network science literature as a temporal network. The report [16] gives a good introduction to the subject. There is interest in comparing real networks with random models, and in order to do this for networks that change with time (temporal networks), [16] details several ways of constructing dynamical random graphs loosely based around the configuration model. Our dynamical Erdős-Rényi model is simpler, and we hope that it will lead to further progress in the probabilistic community in investigating other temporal network models.

1.3 Proof ideas for Theorem 1.1

The proof that if \(\beta > 2/3^{1/3} \) then there are no exceptional times (i.e. with high probability there are no times in \([0, 1]\) when there is a component of size bigger than \(\beta n^{2/3} \log^{1/3} n \)) uses a standard first moment method. We split \([0, 1]\) into many smaller intervals, use known asymptotics for the probability of seeing a large component for \(p \) slightly bigger than \(1/n \) to bound the probability of seeing an exceptional time on one of these small intervals, and then take a union bound. The main interest of this paper is therefore the result that there are exceptional times for \(\beta < 2/3^{2/3} \).

As discussed in [24], in order to see such times, the configuration must “change rapidly”
so that it has “many chances” to have a large component. By “change rapidly” we mean that the configurations must have small correlations over short time intervals. To quantify this we use a second moment method, and the key will be to estimate

$$\int_0^1 \int_0^1 P(|C_u(s)| > An^{2/3}, |C_v(t)| > An^{2/3}) \, dt \, ds$$

where $A = \beta \log^{1/3} n$ and $C_v(t)$ is the connected component containing vertex v at time t.

We will need different methods for estimating $P(|C_u(0)| > An^{2/3}, |C_v(t)| > An^{2/3})$, roughly depending on whether $|t - s|$ is less than or greater than $n^{-2/9}$. For small values of $|t - s|$ we will use a counting argument. For larger values of $|t - s|$ the correlations become harder to control and we will need to use tools from discrete Fourier analysis. A very interesting theory of noise sensitivity has been developed around this concept when P is a uniform product measure, i.e. when the probability that each edge (or vertex) is present is $1/2$: see [11]. Since our measure P is highly non-symmetric, we must redevelop some of the noise sensitivity tools in our non-standard setting. Even then there are complications and some twists on the theory are needed, which may be of interest in their own right.

The basic idea is to use the notion of randomized algorithms. We aim to design an algorithm which examines some of the edges $e \in E$ (i.e. looks at whether they are present or not), and decides whether or not there is a large component. If for any fixed e, the probability that the algorithm checks e is small, then the Fourier coefficients that we are interested in must also be small. This result is known in the uniform case [24], and the proof carries over to non-uniform P. The major complication here is that we are not able to construct an algorithm with the desired properties, essentially because of the lack of geometry in the graph. To check whether a particular vertex v is in a large component, we need to examine almost all the edges emanating from v. For each v, we are therefore forced to consider two classes of edges. For those edges e that do not have an endpoint at v, we can use a well-known exploration algorithm and use the lack of geometry to our advantage to bound the probability that e is examined. For the edges that do have an endpoint at v, we use a completely different method inspired by the spectral sample introduced in [3]. We bound the relevant Fourier coefficients by looking at the probability that the edge e is pivotal, i.e. that there is a large component when e is present and not if e is absent.

2 Fourier analysis of Boolean functions

In this section we give general results on the Fourier analysis of Boolean functions. Several of the results presented here are known in the case when P is a uniform product measure; see for example [11]. We also note that Talagrand [26] developed hypercontractivity results in the case we are considering, where P is a homogeneous but non-uniform product measure. We repeat some of his definitions below.
2.1 Definitions and first results

Let E be a finite set and define $\Omega := \{0, 1\}^E$. Let $P = P_p$ be a measure on Ω defined by

$$P(\omega) = p^\# \{ e : \omega(e) = 1 \} (1 - p)^\# \{ i : \omega(i) = 0 \}.$$

All of our results in this section apply to any finite set E and any $p \in [0, 1]$. We refer to the elements of E as bits. Of course we have in our minds the application where E is the edge set of the complete graph K_n and $p = 1/n$; and where for $\omega \in \Omega$ we say that edge e is present if and only if $\omega(e) = 1$.

For $\omega \in \Omega$ and $e \in E$ let

$$r_e(\omega) := \begin{cases} \sqrt{\frac{p}{1-p}} & \text{if } \omega(e) = 1 \\ -\sqrt{\frac{1-p}{1-p}} & \text{if } \omega(e) = 0. \end{cases}$$

For $S \subset E$ let

$$\chi_S(\omega) = \prod_{e \in S} r_e(\omega)$$

where we set $\chi_{\emptyset} \equiv 1$. Then for any function $f : \Omega \rightarrow \mathbb{R}$ and $S \subset E$ we define

$$\hat{f}(S) = \mathbb{E}[f \chi_S],$$

and call $\hat{f}(S)$, for $S \subset E$, the Fourier coefficients of f.

It is easy to check that $\{ \chi_S : S \subset E \}$ forms an orthonormal basis for $L^2(P)$, and therefore—just as in continuous Fourier analysis—the function \hat{f} encodes all of the information about f, in that $f(\omega) = \sum_{S \subset E} \hat{f}(S) \chi_S(\omega)$.

One simple consequence of the definition is that $\mathbb{E}[f] = \hat{f}(\emptyset)$. Another useful result is Plancherel’s identity, which states that for two functions $f, g : \Omega \rightarrow \mathbb{R}$,

$$\sum_S \hat{f}(S) \hat{g}(S) = \mathbb{E}[fg]. \quad (1)$$

This is easy to prove simply by writing out $f = \sum_S \hat{f}(S) \chi_S$ and $g = \sum_{S'} \hat{g}(S') \chi_{S'}$ and using orthonormality.

Recall from the introduction that we will be interested in bounding probabilities like $\mathbb{P}(|C_v(t)| > An^{2/3}, |C_v(t)| > An^{2/3})$, where $C_v(t)$ is the component containing v at time t in the dynamical Erdős-Rényi graph. We will therefore be applying our Fourier analysis to functions of the form $\mathbb{I}_{\{C_v(t) > An^{2/3}\}}$. The following lemma, which is already known (see [11, (4.2)] and [3, (2.2)]), will be very useful for this purpose. Given $\omega \in \Omega$ and $\varepsilon \in [0, 1]$, let ω_ε be the configuration obtained by rerandomizing each of the bits in ω independently with probability ε. That is, for each $e \in E$,

$$\omega_\varepsilon(e) = \omega(e) \mathbb{I}_{\{U_e > \varepsilon\}} + \mathbb{I}_{\{V_e < p\}} \mathbb{I}_{\{U_e \leq \varepsilon\}}$$

where U_e and V_e are independent uniform random variables on $(0, 1)$.

6
Lemma 2.1. For any \(\varepsilon \in [0,1] \) and any \(f, g : \Omega \to \mathbb{R} \),
\[
\mathbb{E}[f(\omega)g(\omega_\varepsilon)] = \sum_S \hat{f}(S)\hat{g}(S)(1 - \varepsilon)^{|S|}
\]
(where the expectation \(\mathbb{E} \) averages both over \(\omega \in \Omega \) and also over the randomness in the resampling required to create \(\omega_\varepsilon \)).

Proof. Note that
\[
\mathbb{E}[f(\omega)g(\omega_\varepsilon)] = \mathbb{E}\left[\sum_S \hat{f}(S)\chi_S(\omega)\sum_{S'} \hat{g}(S')\chi_{S'}(\omega_\varepsilon)\right] = \sum_{S,S'} \hat{f}(S)\hat{g}(S')\mathbb{E}[\chi_S(\omega)\chi_{S'}(\omega_\varepsilon)].
\]
It is easy to check that if \(S \neq S' \) then \(\mathbb{E}[\chi_S(\omega)\chi_{S'}(\omega_\varepsilon)] = 0 \), and on the other hand that
\[
\mathbb{E}[\chi_S(\omega)\chi_{S'}(\omega_\varepsilon)] = \prod_{e \in S} \mathbb{E}[r_e(\omega)r_e(\omega_\varepsilon)] = (1 - \varepsilon)^{|S|}.
\]

2.2 Noise sensitivity

At this point we veer from our main path for a while to state a result about the noise sensitivity of component sizes in Erdős-Rényi graphs. Following the notation from Section 2.1, suppose that we have a sequence of functions \(F_n : \Omega_n \to \mathbb{R} \), where \(\Omega_n = \{0,1\}^{E_n} \). Recall that for \(\omega \in \Omega_n \) and \(\varepsilon \in [0,1] \), we let \(\omega_\varepsilon \) be the configuration obtained by rerandomizing each of the bits in \(\omega \) independently with probability \(\varepsilon \).

We say that the sequence \((F_n)_{n \geq 1} \) is noise sensitive if
\[
\mathbb{E}[F_n(\omega)F_n(\omega_\varepsilon)] - \mathbb{E}[F_n(\omega)]^2 \to 0 \quad \text{as} \quad n \to \infty.
\]
For a sequence \((\varepsilon_n)_{n \geq 1} \), we say that \(F_n \) is quantitatively noise sensitive with scaling \(\varepsilon_n \) if
\[
\mathbb{E}[F_n(\omega)F_n(\omega_{\varepsilon_n})] - \mathbb{E}[F_n(\omega)]^2 \to 0 \quad \text{as} \quad n \to \infty.
\]

Proposition 2.2. For any fixed \(a \in (0,\infty) \) and any \((\varepsilon_n)_{n \geq 1} \) such that \(\lim_{n \to \infty} n^{1/6}\varepsilon_n = \infty \), the sequence of functions \(F_n = 1_{\{L_n \geq an^{2/3}\}} \) is quantitatively noise sensitive with scaling \(\varepsilon_n \).

Of course if \(F_n \to 0 \) with high probability (or if \(F_n \to 1 \) with high probability) then \(F_n \) is trivially noise sensitive. It is well known—see [2]—that \(F_n \) as in Proposition 2.2 is non-trivial in that sense, i.e. \(\lim_{n \to \infty} \mathbb{P}(F_n = 0) \in (0,1) \).

We believe that in fact the given sequence \(F_n \) is quantitatively noise sensitive with scaling \(\varepsilon_n \) whenever \(n^{1/3}\varepsilon_n \to \infty \), and that this is the best possible such scaling. A simple argument, similar to the union bound in Section 5, shows that the functions \(F_n(\omega) \) and \(F_n(\omega_{\varepsilon_n}) \) defined in Proposition 2.2 do not decorrelate when \(\varepsilon_n \) is of order \(n^{-1/3} \). More precisely, in \(\omega \), the total number of vertices in components of size at least \(an^{2/3}/2 \) is \(O(n^{2/3}) \) with high probability, so there are \(O(n^{4/3}) \) edges that would create a new component of size \(n^{2/3} \) simply by being switched on, and the probability that any of these edges is switched on under \(\omega_{n^{-1/3}} \) is bounded away from 1. Similarly, the total number of edges that would break a component
of size at least $an^{2/3}$ into two pieces of size $< an^{2/3}$ if switched off is $O(n^{1/3})$ with high probability, and the probability that any of these edges is switched off under $\omega_{n^{-1/3}}$ is again bounded away from 1. This argument provides a lower bound for the noise sensitivity threshold, but it also makes a persuasive case for $n^{-1/3}$ being the correct threshold, since rerandomising significantly more edges would change the status of a large number of pivotal edges (see Section 2.4).

Lubetzky and Steif [19] showed that $n^{-1/3}$ is the correct noise sensitivity threshold when F_n is instead the indicator that the critical Erdős-Rényi graph contains a cycle whose size is of order $n^{1/3}$. Roughly speaking, a cycle of order $n^{1/3}$ entails a component of order $n^{2/3}$, though it is possible to have components of order $n^{2/3}$ without having cycles of order $n^{1/3}$. Further, Rossignol [23] shows that the system of large components has a well-behaved scaling limit when edges are resampled at rate $n^{-1/3}$, which again suggests that faster rerandomization would break the correlation structure. Finally, this sensitivity threshold would also coincide with our conjecture for the existence of exceptional times for any $\beta < 2/3^{1/3}$.

A proof of Proposition 2.2 will follow almost as a byproduct of our proof of Theorem 1.1. We carry out the details in Section 6.

2.3 Randomized algorithms and revealment

Evaluating Fourier coefficients directly is often quite difficult and instead we concentrate on bounding sums such as the one on the right-hand side of Lemma 2.1. One approach that has proven fruitful in the past is to introduce a randomized revealment algorithm that attempts to decide the value of the function f by revealing $\omega(e)$ only for relatively few of the possible bits $e \in E$. If for any fixed e, the probability that the algorithm reveals $\omega(e)$ is small, then it turns out that the sum of the Fourier coefficients must be small [24, Theorem 1.8]. Our main result in this section is a generalization of [24, Theorem 1.8].

Let $f : \Omega = \{0,1\}^E \to \mathbb{R}$. A revealment algorithm, A, for f is a sequence of bits $e_1, e_2, \ldots, e_T \in E$, chosen one by one, with the choice of e_k possibly depending on the values of $\omega(e_1), \ldots, \omega(e_{k-1})$, and such that knowledge of $\omega(e_1), \ldots, \omega(e_T)$ determines the value of $f(w)$. A randomized revealment algorithm is a revealment algorithm that is also allowed to use auxiliary randomness in making choices. Given such an algorithm A, let J be the set of bits revealed by A.

For $U \subset E$, define the revealment of the algorithm A on U by

$$\mathcal{R}_U = \mathcal{R}_U(f, A) := \max_{e \in U^c} \mathbb{P}(e \in J).$$

Our main result in this section is the following generalization of [24, Theorem 1.8].

Theorem 2.3. Let A be an algorithm determining $f : \Omega \to \mathbb{R}$ and let $U \subset E$. Then for any $k \in \mathbb{N}$,

$$\sum_{|S| = k, S \cap U = \emptyset} \hat{f}(S)^2 \leq \mathcal{R}_U(f, A) \mathbb{E}[f(\omega)^2]k.$$
The result in [24], besides being stated for the uniform measure (i.e. \(p = 1/2 \)), only included the case \(U = \emptyset \). The reason that we need a generalization involves the geometry of the Erdős-Rényi graph. As far as we can tell, any algorithm to check whether there is an unusually large component must reveal almost all of the edges emanating from many of the vertices; similarly, any algorithm to check whether a particular vertex \(v \) is in an unusually large component must reveal almost all of the edges with an endpoint at \(v \).

To get around this problem we fix a vertex \(v \) and separate subsets \(S \) of edges into those which contain an edge with an endpoint at \(v \), and those which do not. We then use Theorem 2.3 to bound the Fourier coefficients of the latter sets, and take a different approach to the former. This different approach was inspired by the spectral sample introduced in [3], and will be carried out in Section 2.4.

Schramm and Steif [24] noted that it may be possible to improve their Theorem 1.8 for large \(k \), and we believe similarly that our Theorem 2.3 may not be optimal. They suggest that the sum over \(|S| = k \) might be changed to a sum over \(|S| \leq k \) with no change on the right-hand side, and such an improvement would allow us to give improved versions of Theorem 1.1 and Proposition 2.2 that are essentially best possible: convergence in probability of \(\sup_{t \in [0,1]} |L_n(t)|/(n^{2/3} \log^{1/3} n) \) to \(2/3^{1/3} \), and quantitative noise sensitivity for any \(\varepsilon \gg n^{-1/3} \).

For now we aim to prove Theorem 2.3. Our strategy is very much based on the proof in [24].

Let \(\tau \in \mathcal{T} \) represent the auxiliary randomness used by the algorithm, and let \(\tilde{P} \) be the canonical probability measure on the extended space \(\Omega \times \mathcal{T} \). Let \(\mathcal{A} \) be the smallest \(\sigma \)-algebra such that \(J \) and \(\{ \omega(e) : e \in J \} \) are measurable. Note that since \(A \) determines the value of \(f \), and \(A \) contains all the information revealed by \(A \), \(f \) is \(\mathcal{A} \)-measurable.

For a configuration \(\omega' \in \Omega \) define the configuration \(\omega'_{J,\omega,\tau} \) by setting

\[
\omega'_{J,\omega,\tau}(e) := \begin{cases}
\omega(e) & \text{if } e \in J(\omega, \tau) \\
\omega'(e) & \text{if } e \notin J(\omega, \tau).
\end{cases}
\]

Next, for any function \(h : \Omega \rightarrow \mathbb{R} \) and \((\omega, \tau) \in \Omega \times \mathcal{T} \), define \(h_{J,\omega,\tau} \) by

\[
h_{J,\omega,\tau} : \Omega \rightarrow \mathbb{R} \\
\omega' \mapsto h(\omega'_{J,\omega,\tau}).
\]

We now want to be able to take expectations over \(\omega' \in \Omega \), using our usual probability measure under which each bit of \(\omega' \) is 1 with probability \(p \) and 0 with probability \(1 - p \), while keeping \(\omega \) and \(\tau \) fixed. We write \(\mathbb{P}^{\omega,\tau} \) to emphasise that \(\omega \) and \(\tau \) are fixed. The notation \(\widehat{h}_J(S) \) will mean the Fourier coefficient with respect to \(\mathbb{P}^{\omega,\tau} \), i.e. \(\mathbb{E}^{\omega,\tau}[h_{J,\omega,\tau}(\omega')\chi_S(\omega')] \). The set \(J \) will always be a function of \(\omega \) and \(\tau \), \(J = J(\omega, \tau) \) (and not \(\omega' \)), though we will omit this from the notation for the sake of readability.

We start with a general lemma about any such function \(h \), before choosing a particular \(h \). We stress that these proofs are almost identical to those in [24], but fleshed out and adapted to our more general situation.
Lemma 2.4. For any $S \subset E$ and any function $h : \Omega \to \mathbb{R}$,

$$\mathbb{E}[h(\omega)|A] = \hat{h}_J(\emptyset).$$

Proof. Setting ω^S to be 1 on S and 0 off S, we have

$$\hat{h}_J(\emptyset) = \mathbb{E}^{\omega,\tau}[h_J(\omega')]$$
$$= \sum_{S \subset E} h_J(\omega^S)p^{|S|}(1-p)^{|E\setminus S|}$$
$$= \sum_{S \subset E} h(\omega^S)p^{|S|}(1-p)^{|E\setminus S|}$$
$$= \sum_{S \subset E} h(\omega^{S \cup J'})p^{|S|}(1-p)^{|J'\setminus S|}$$

where $J' = J'(\omega, \tau) = \{ e \in J(\omega, \tau) : \omega(e) = 1 \}$. But this last quantity is exactly $\mathbb{E}[h(\omega)|A]$. \qed

We now fix a function h by setting

$$h(\omega) = \sum_{|S| = k, \ S \cap J = \emptyset} \hat{f}(S)\chi_S(\omega). \quad (2)$$

Lemma 2.5. Suppose h is as defined in (2). Then for any $S \subset E$ with $|S| = k$,

$$\hat{h}_J(S) = \begin{cases} 0 & \text{if } S \cap J \neq \emptyset \\ \hat{h}(S) & \text{if } S \cap J = \emptyset. \end{cases}$$

Proof. Note that $h_J(\omega') = h(\omega'_J) = \sum_S \hat{h}(S)\chi_S(\omega'_J)$. Therefore

$$\hat{h}_J(S) = \mathbb{E}^{\omega,\tau}[h_J(\omega')\chi_S(\omega')] = \sum_{|S'| = k} \hat{h}(S')\mathbb{E}^{\omega,\tau}[\chi_{S'}(\omega'_J)\chi_S(\omega')].$$

If $S' \neq S$, then (since S' and S have the same size) we may take $e \in S \setminus S'$; changing the value of the bit e changes χ_S but not $\chi_{S'}$, so an easy calculation shows that in this case

$$\mathbb{E}^{\omega,\tau}[\chi_{S'}(\omega'_J)\chi_S(\omega')] = 0.$$

Thus

$$\hat{h}_J(S) = \mathbb{E}^{\omega,\tau}[h_J(\omega')\chi_S(\omega')] = \hat{h}(S)\mathbb{E}^{\omega,\tau}[\chi_{S'}(\omega'_J)\chi_S(\omega')].$$

Now if $S \cap J \neq \emptyset$, then we may take $e \in S \cap J$; since $e \in J$, the value of ω'_J remains constant when we change $\omega'(e)$. On the other hand, since $e \in S$, the value of $\chi_S(\omega')$ changes when we change $\omega'(e)$. Therefore another easy calculation gives that in this case also

$$\mathbb{E}^{\omega,\tau}[\chi_{S'}(\omega'_J)\chi_S(\omega')] = 0,$$

and thus $\hat{h}_J(S) = 0$ when $S \cap J \neq \emptyset$.

Finally, if $S \cap J = \emptyset$, then $\chi_S(\omega'_J) = \chi_S(\omega')$, so in this case by orthonormality we have

$$\mathbb{E}^{\omega,\tau}[\chi_{S'}(\omega'_J)\chi_S(\omega')] = 1$$

and $\hat{h}_J(S) = \hat{h}(S)$. This completes the proof. \qed
Lemma 2.6. For h defined in (2) we have that
\[\mathbb{E}[\hat{h}_J(\theta)^2] \leq \sum_{|S|=k; S^c \cap U = \emptyset} \hat{h}(S)^2 \mathbb{P}(J \cap S \neq \emptyset). \]

Proof. Using Plancherel’s identity on the function h_J, we have
\[\mathbb{E}[h_J(\omega')^2] = \sum_S \hat{h}_J(S)^2 \]
and therefore
\[\hat{h}_J(\theta)^2 = \mathbb{E}[h_J(\omega')^2] - \sum_{|S| > 0} \hat{h}_J(S)^2. \quad (3) \]

If we let $g = h^2$, then applying Lemma 2.4 to g and using Plancherel’s identity we see that
\[\mathbb{E}[\mathbb{E}[h_J(\omega')^2]] = \mathbb{E}[g_J(\theta)] = \mathbb{E}[\mathbb{E}[g(\omega)|\mathcal{A}]] = \mathbb{E}[g(\omega)] = \mathbb{E}[h(\omega)^2] = \sum_S \hat{h}(S)^2. \]

Therefore, taking expectations in (3), we get
\[\mathbb{E}[\hat{h}_J(\theta)^2] = \sum_S \hat{h}(S)^2 - \sum_{|S| > 0} \mathbb{E}[\hat{h}_J(S)^2]. \]

By Lemma 2.5, $\hat{h}_J(S)^2 = \hat{h}(S)^2 \mathbb{I}_{\{J \cap S = \emptyset\}}$ when $|S| = k$; and the same quantity is obviously non-negative when $|S| \neq k$, so
\[\mathbb{E}[\hat{h}_J(\theta)^2] \leq \sum_S \hat{h}(S)^2 - \sum_{|S| = k} \hat{h}(S)^2 \mathbb{P}(J \cap S = \emptyset). \]

Since $\hat{h}(S) = 0$ unless $|S| = k$ and $S \cap U = \emptyset$, the result follows. \qed

We can now prove Theorem 2.3.

Proof of Theorem 2.3. Suppose that h is as in (2). We claim first that
\[\mathbb{E}[h(\omega)^2]^2 \leq \mathbb{E}[f(\omega)^2] \mathbb{E}[\hat{h}_J(\theta)^2]. \quad (4) \]

To show this, note that by orthogonality,
\[\mathbb{E}[h(\omega)f(\omega)] = \mathbb{E}\left[\sum_{|S|=k; S^c \cap U = \emptyset} \hat{f}(S) \chi_S(\omega) \sum_{S' \subseteq E} \hat{f}(S') \chi_{S'}(\omega) \right] = \mathbb{E}\left[\sum_{|S|=k; S^c \cap U = \emptyset} \hat{f}(S) \chi_S(\omega) \sum_{|S'|=k; S' \cap U = \emptyset} \hat{f}(S') \chi_{S'}(\omega) \right] = \mathbb{E}[h(\omega)^2]. \]

On the other hand,
\[\mathbb{E}[h(\omega)f(\omega)] = \mathbb{E}[\mathbb{E}[h(\omega)f(\omega)|\mathcal{A}]] = \mathbb{E}[f(\omega)\mathbb{E}[h(\omega)|\mathcal{A}]] \leq \mathbb{E}[f(\omega)^{1/2}] \mathbb{E}[\mathbb{E}[h(\omega)|\mathcal{A}]^{1/2}] \]
where the second equality uses the fact that f is \mathcal{A}-measurable, and the last inequality uses Cauchy-Schwartz. Putting these two expressions for $\mathbb{E}[h(\omega)f(\omega)]$ together, and recalling from Lemma 2.4 that $\mathbb{E}[h(\omega)|\mathcal{A}] = \hat{h}(\emptyset)$, we get (4).

Now, combining (4) with Lemma 2.6,

$$\mathbb{E}[h(\omega)^2]^2 \leq \mathbb{E}[f(\omega)^2] \sum_{|S| = k; S \cap U = \emptyset} \hat{h}(S)^2 \mathbb{P}(J \cap S \neq \emptyset).$$

Taking a union bound, for any S with $|S| = k$ and $S \cap U = \emptyset$ we have $\mathbb{P}(J \cap S \neq \emptyset) \leq kR_U$, so

$$\mathbb{E}[h(\omega)^2]^2 \leq \mathbb{E}[f(\omega)^2] \sum_{|S| = k; S \cap U = \emptyset} \hat{h}(S)^2 kR_U.$$

By Plancherel’s identity and the definition of h,

$$\sum_{|S| = k; S \cap U = \emptyset} \hat{h}(S)^2 = \sum_{|S| = k} \hat{h}(S)^2 = \mathbb{E}[h(\omega)^2],$$

so

$$\mathbb{E}[h(\omega)^2]^2 \leq \mathbb{E}[f(\omega)^2] \mathbb{E}[h(\omega)^2] kR_U$$

and therefore $\mathbb{E}[h(\omega)^2] \leq \mathbb{E}[f(\omega)^2] kR_U$. Since $\hat{h}(S) = \hat{f}(S)$ for all S with $|S| = k$ and $S \cap U = \emptyset$, using (5) again we have

$$\sum_{|S| = k; S \cap U = \emptyset} \hat{f}(S)^2 = \mathbb{E}[h(\omega)^2] \leq \mathbb{E}[f(\omega)^2] kR_U.$$

2.4 Pivotality

In Section 2.3 we gave a method for bounding

$$\sum_{|S| = k; S \cap U = \emptyset} \hat{f}(S)^2,$$

which we will apply by fixing a vertex v and letting U be the set of edges that do not have an endpoint at v. In this section we will give a bound on the Fourier coefficients of sets that do contain a particular edge, using the notion of pivotality.

An edge $e \in E$ is said to be pivotal for f and $\omega \in \Omega$ if $f(\sigma_e(\omega)) \neq f(\omega)$, where $\sigma_e(\omega)$ is the configuration obtained from ω by switching the value of $\omega(e)$. Let $\mathcal{P}_f = \mathcal{P}_f(\omega)$ denote the set of pivotal edges. The next lemma allows us to control the Fourier coefficients by estimating the probability of being pivotal. Similar results are known in the case when \mathbb{P} is a uniform measure; see [11, Proposition 4.4 and Chapter 9]. The non-uniform case is somewhat more delicate.
We say that two functions \(f, g : \Omega \to \mathbb{R} \) are \textit{jointly monotone} if
\[
(f(\omega) - f(\sigma_e(\omega))) (g(\omega) - g(\sigma_e(\omega))) \geq 0 \quad \forall e \in E.
\]
In particular if \(f \) and \(g \) are both monotone increasing (or both monotone decreasing) then \(f \) and \(g \) are jointly monotone.

\textbf{Lemma 2.7.} Suppose that \(f, g : \Omega \to \{0, 1\} \) are jointly monotone. Then for any \(e \in E \),
\[
\sum_{S \in E} \hat{f}(S)\hat{g}(S) = p(1-p)\mathbb{P}(e \in P_f \cap P_g).
\]

\textit{Proof.} Fix \(e \in E \) and define an operator \(\nabla_e \) by setting
\[
\nabla_e f(\omega) = |r_e(\omega)|(f(\omega) - f(\sigma_e(\omega))).
\]
Since \(f(\omega) = \sum_{S} \hat{f}(S)\chi_S(\omega) \), from the definition of \(\chi_S \) we have that
\[
\nabla_e f(\omega) = |r_e(\omega)|(r_e(\omega) - r_e(\sigma_e(\omega))) \sum_{S \in \mathcal{E}} \hat{f}(S)\chi_{S \setminus \{e\}}(\omega).
\]
Now, if \(\omega(e) = 1 \), then \(r_e(\omega) = ((1-p)/p)^{1/2} \) and \(r_e(\sigma_e(\omega)) = -(p/(1-p))^{1/2} \) and so
\[
|r_e(\omega)|(r_e(\omega) - r_e(\sigma_e(\omega))) = \left(\frac{1-p}{p}\right)^{1/2} \left(\left(\frac{1-p}{p}\right)^{1/2} + \left(\frac{p}{1-p}\right)^{1/2}\right)
= 1/p
= \frac{r_e(\omega)}{p^{1/2}(1-p)^{1/2}}.
\]
On the other hand if \(\omega(e) = 0 \), then \(r_e(\omega) = -(p/(1-p))^{1/2} \) and \(r_e(\sigma_e(\omega)) = ((1-p)/p)^{1/2} \) so that
\[
|r_e(\omega)|(r_e(\omega) - r_e(\sigma_e(\omega))) = \left(\frac{p}{1-p}\right)^{1/2} \left(-\left(\frac{p}{1-p}\right)^{1/2} - \left(\frac{1-p}{p}\right)^{1/2}\right)
= -1/(1-p)
= \frac{r_e(\omega)}{p^{1/2}(1-p)^{1/2}}.
\]
Thus either way, we see that
\[
\nabla_e f(\omega) = \frac{1}{p^{1/2}(1-p)^{1/2}} \sum_{S \in \mathcal{E}} \hat{f}(S)\chi_S(\omega).
\]
It follows that
\[
\nabla_e f(S) = \begin{cases} p^{-1/2}(1-p)^{-1/2} \hat{f}(S) & \text{if } e \in S \\ 0 & \text{if } e \notin S \end{cases}
\]
and by Plancherel’s identity (1),

\[
\mathbb{E}[(\nabla_e f)(\nabla_e g)] = \sum_S \nabla_e f(S) \nabla_e g(S) = \frac{1}{p(1-p)} \sum_{S \in \mathcal{S}} \hat{f}(S) \hat{g}(S). \tag{6}
\]

Next we compute \(\mathbb{E}[(\nabla_e f)(\nabla_e g)]\) directly. Notice that since \(f\) and \(g\) are jointly monotone,

\[
\nabla_e f(\omega) \nabla_e g(\omega) = \begin{cases}
(1-p)/p & \text{if } e \in \mathcal{P}_f(\omega) \cap \mathcal{P}_g(\omega) \text{ and } \omega(e) = 1 \\
p/(1-p) & \text{if } e \in \mathcal{P}_f(\omega) \cap \mathcal{P}_g(\omega) \text{ and } \omega(e) = 0 \\
0 & \text{otherwise.}
\end{cases}
\]

Since the event \(\{e \in \mathcal{P}_f \cap \mathcal{P}_g\}\) is independent of \(\omega(e)\), we see that

\[
\mathbb{E}[(\nabla_e f)(\nabla_e g)] = p \frac{1-p}{p} \mathbb{P}(e \in \mathcal{P}_f \cap \mathcal{P}_g) + (1-p) \frac{p}{1-p} \mathbb{P}(e \in \mathcal{P}_f \cap \mathcal{P}_g) = \mathbb{P}(e \in \mathcal{P}_f \cap \mathcal{P}_g).
\]

The lemma now follows by combining this with (6). \(\square\)

3 Component sizes of Erdős-Rényi graphs

In this section we collect some preliminary results about component sizes for Erdős-Rényi graphs, which will be useful later on. We let \(P_{n,p}\) be the law of \(ER(n, p)\), \(C_v\) the connected component containing vertex \(v\), and \(L_n\) the size of the largest connected component.

We begin by presenting a result that gives the tail behaviour of the size of components. For a proof of Proposition 3.1, see [22]. Pittel [21, Proposition 2] proved part (b) when \(\lambda\) is fixed and \(k = an^{2/3}\) where \(a\) is large but does not depend on \(n\).

Proposition 3.1. Let \(G\) be an \(ER(n, 1/n - \lambda n^{-4/3})\) random graph. Write \(p = 1/n - \lambda n^{-4/3}\). Suppose that \((3\lambda \wedge 1) \leq A_n \ll n^{1/12}\) and \(|\lambda| \ll n^{1/12}\). Then as \(n \to \infty\),

(a) For any vertex \(v\), \(P_{n,p}(|C_v| \geq A_n n^{2/3}) = \frac{A_n^{3/2}}{(8\pi)^{1/2} n^{1/3} G_\lambda'(A_n)} e^{-G_\lambda(A_n)} (1 + O(\frac{1}{A_n}) + o(1))\);

(b) \(P_{n,p} \left(L_n \geq A_n n^{2/3} \right) = \frac{A_n^{1/2}}{(8\pi)^{1/2} G_\lambda'(A_n)} e^{-G_\lambda(A_n)} (1 + O(\frac{1}{A_n}) + o(1))\)

where \(G_\lambda(x) = x^3/8 - \lambda x^2/2 + \lambda^2 x/2\).

We will also need bounds on \(P_{n,p}(|C_v| = k)\). Again we refer to [22] for a proof.

Lemma 3.2. Let \(G = (V, E)\) be an \(ER(n, 1/n - \lambda n^{-4/3})\) random graph. Let \(p = 1/n - \lambda n^{-4/3}\) and fix \(M \in (0, \infty)\). There exist constants \(0 < c_1 \leq c_2 < \infty\) such that

(a) if \(k \leq M n^{2/3}\) and \(|\lambda| \leq n^{1/12}\), then for any vertex \(v\),

\[
\frac{c_1}{k^{3/2}} e^{-F_\lambda(k/n^{2/3})} \leq P_{n,p}(|C_v| = k) \leq \frac{c_2}{k^{3/2}} e^{-F_\lambda(k/n^{2/3})}
\]

where \(F_\lambda(x) = x^3/6 - \lambda x^2/2 + \lambda^2 x/2\);
(b) if \(n^{2/3} \leq k \leq n^{3/4} \) and \(|\lambda| \leq n^{1/12} \), then for any vertex \(v \),
\[
\frac{c_1 k^{3/2}}{n^2} e^{-G_\lambda(k/n^{2/3})} \leq P_{n,p}(|C_v| = k) \leq \frac{c_2 k^{3/2}}{n^2} e^{-G_\lambda(k/n^{2/3})}
\]
where \(G_\lambda(x) = x^3/8 - \lambda x^2/2 + \lambda^2 x/2 \).

Adapting these bounds for our particular purposes, we get the following.

Lemma 3.3. There exists a finite constant \(c \) such that whenever \(0 \leq k \ll n^{3/4} \), for any vertex \(v \),

(a) for any \(j \geq 1 \),
\[
P_{n-k,1/n}(|C_v| \geq j) \leq \frac{c}{j^{1/2}} \exp \left(-\frac{(k+j)^3}{8n^2} + \frac{k^3}{8n^2} \right);
\]

(b) if \((n-k)^{2/3} \leq j \ll (n-k)^{3/4}\) then
\[
P_{n-k,1/n}(|C_v| = j) \leq \frac{cj^{3/2}}{n^2} \exp \left(-\frac{(k+j)^3}{8n^2} + \frac{k^3}{8n^2} \right).
\]

Proof. Note that
\[
\frac{1}{n} = \frac{1}{n-k} - \frac{1}{(n-k)^{4/3}} \left(\frac{(n-k)^{1/3}k}{n} \right).
\]

Therefore, setting \(\lambda = -\frac{(n-k)^{2/3}}{n} \) and \(p = 1/(n-k) - \lambda(n-k)^{-4/3} \) and applying Lemma 3.2(b), for \(j \geq (n-k)^{2/3} \) we get
\[
P_{n-k,1/n}(|C_v| = j) = P_{n-k,p}(|C_v| = j) \leq \frac{cj^{3/2}}{(n-k)^2} e^{-G_\lambda(j/(n-k)^{2/3})}.
\]

Similarly, noting that for \(\lambda \leq 0 \) we have \(G_\lambda(x) \geq 3x^2/8 \), by Proposition 3.1(a), if \(j \geq (n-k)^{2/3} \) then
\[
P_{n-k,1/n}(|C_v| \geq j) \leq \frac{c'}{j^{1/2}} e^{-G_\lambda(j/(n-k)^{2/3})}.
\]

Thirdly, since \(F_\lambda(x) \geq G_\lambda(x) \) for all \(x \geq 0 \) and \(F_\lambda \) is increasing in \(x \), by Lemma 3.2(b), if \(j \leq (n-k)^{2/3} \) then
\[
\sum_{i=j}^{(n-k)^{2/3}} P_{n-k,1/n}(|C_v| = j) \leq \frac{c''}{j^{1/2}} e^{-F_\lambda(j/(n-k)^{2/3})} \leq \frac{c''}{j^{1/2}} e^{-G_\lambda(j/(n-k)^{2/3})}.
\]

It therefore remains to show that
\[
G_\lambda \left(\frac{j}{(n-k)^{2/3}} \right) \geq \frac{(k+j)^3}{8n^2} - \frac{k^3}{8n^2}.
\]

15
But indeed
\[
\frac{k^3}{8n^2} + G_{\lambda}\left(\frac{j}{(n-k)^2}\right) = \frac{k^3}{8n^2} + \frac{j^3}{8(n-k)^2} + \frac{j^2k}{2n(n-k)} + \frac{jk^2}{2n^2}
\]
\[
\geq \frac{k^3}{8n^2} + \frac{j^3}{8n^2} + \frac{j^2k}{2n^2} + \frac{jk^2}{2n^2}
\]
\[
\geq \frac{(k+j)^3}{8n^2}
\]
and the result follows.

We give two more lemmas, which follow fairly easily from those above, but are less obviously useful. We will see later that they are exactly the bounds we need to estimate the probability that two vertices have unusually large components at different times.

Lemma 3.4. Fix $M > 0$. There exists a finite constant c such that if $2n^{2/3} \leq N \ll n^{3/4}$ then
\[
P_{n,1/n}\left(|C_u \cup C_v| \geq N, |C_u| < N, |C_v| < N, C_u \cap C_v = \emptyset\right) \leq c \frac{N^2}{n^2} e^{-N^3/(8n^2)}.
\]

Proof. Clearly
\[
P_{n,1/n}\left(|C_u \cup C_v| \geq N, |C_u| < N, |C_v| < N, C_u \cap C_v = \emptyset\right)
\leq 2P_{n,1/n}\left(|C_u \cup C_v| \geq N, |C_v| \leq |C_u| < N, C_u \cap C_v = \emptyset\right)
\leq 2 \sum_{k=[N/2]}^{N-1} P_{n,1/n}\left(|C_u| = k\right)P_{n,1/n}\left(|C_v| \geq N - k, C_u \cap C_v = \emptyset \mid |C_u| = k\right)
\leq 2 \sum_{k=[N/2]}^{N-1} P_{n,1/n}\left(|C_u| = k\right)P_{n-k,1/n}\left(|C_v| \geq N - k\right).
\]

Applying Lemmas 3.2(b) and 3.3(a), for $2n^{2/3} \leq N \ll n^{3/4}$
\[
P_{n,1/n}\left(|C_u \cup C_v| \geq N, |C_u| < N, |C_v| < N, C_u \cap C_v = \emptyset\right)
\leq 2 \sum_{k=[N/2]}^{N-1} \frac{ck^{3/2}}{n^2} e^{-k^3/(8n^2)} \frac{c'}{(N-k)^{1/2}} e^{-N^3/(8n^2)+k^3/(8n^2)} \leq c'' \frac{N^2}{n^3} e^{-N^3/(8n^2)}.
\]

This completes the proof.

Lemma 3.5. There exists a finite constant c such that for any distinct vertices u, v and w, if $N \ll n^{3/4}$,
\[
P_{n,1/n}\left(|C_u \cup C_v| \geq N, |C_u| < N, C_u \cap C_v = \emptyset, w \in C_u\right) \leq c\left(\frac{1}{n^{2/3}N^{1/2}} + \frac{N^3}{n^3}\right) e^{-N^3/(8n^2)}.
\]
Write

In this section we aim to show that if \(\beta < 2 / 3 \) as required.

Proof. We begin by summing over the possible sizes for \(C_u \):

\[
P_{n,1/n}(|C_u \cup C_v| \geq N, |C_u| < N, C_u \cap C_v = \emptyset, w \in C_u)
\]

\[
= \sum_{j=2}^{N-1} P_{n,1/n}(|C_u| = j, |C_v| \geq N - j, C_u \cap C_v = \emptyset, w \in C_u)
\]

\[
\leq \sum_{j=2}^{N-1} \frac{j}{n} P_{n,1/n}(|C_u| = j) P_{n-j,1/n}(|C_v| \geq N - j).
\]

Write \(K = \lfloor n^{2/3} \rfloor \land (N - 1) \). For those values of \(j \) less than \(K \), by Lemmas 3.2(a) and 3.3(a),

\[
\sum_{j=2}^{K} \frac{j}{n} P_{n,1/n}(|C_u| = j) P_{n-j,1/n}(|C_v| \geq N - j) \leq c \sum_{j=2}^{K} \frac{j}{n^{3/2}} \frac{1}{(N - j)^{1/2}} e^{-N^3/(8n^2) + j^3/(8n^2)}
\]

\[
\leq c \frac{1}{n^{2/3} N^{1/2}} e^{-N^3/(8n^2)}.
\]

On the other hand, for those values of \(j \) between \(K \) and \(N - 1 \), by Lemmas 3.2(b) and 3.3(a),

\[
\sum_{j=K+1}^{N-1} \frac{j}{n} P_{n,1/n}(|C_u| = j) P_{n-j,1/n}(|C_v| \geq N - j)
\]

\[
\leq c \sum_{j=K+1}^{N-1} \frac{j^{5/2}}{n^3} e^{-j^3/(8n^2)} \frac{1}{(N - j)^{1/2}} e^{-N^3/(8n^2) + j^3/(8n^2)} \leq c \frac{N^3}{n^3} e^{-N^3/(8n^2)}
\]

as required. \(\square \)

4 Exceptional times exist for \(\beta < 2/3 \)

In this section we aim to show that if \(\beta < 2/3 \), then with high probability there exist times \(t \in [0, 1] \) when \(|L_n(t)| > \beta n^{2/3} \log^{1/3} n \). Let \(I = [\beta n^{2/3} \log^{1/3} n, 2\beta n^{2/3} \log^{1/3} n] \cap \mathbb{N} \) and for \(v \in \{1, \ldots, n\} \) let

\[
Z_v := \int_0^1 1_{(|C_v(t)| \in I)} dt.
\]

Then by Cauchy-Schwarz and symmetry we have that

\[
\mathbb{P} \left(\sup_{t \in [0,1]} |L_n(t)| \geq \beta n^{2/3} \log^{1/3} n \right) \geq \mathbb{P} \left(\sum_{v=1}^{n} Z_v > 0 \right)
\]

\[
\geq \frac{\mathbb{E} \left(\sum_{v=1}^{n} Z_v \right)^2}{\mathbb{E} \left(\sum_{v=1}^{n} Z_v^2 \right)}
\]

\[
= \frac{n^2 \mathbb{E}[Z_1]^2}{n \mathbb{E}[Z_1^2] + n(n-1) \mathbb{E}[Z_1 Z_2]}.
\]

We begin with a lemma which ensures that the term \(n \mathbb{E}[Z_1^2] \) in the denominator of (7) does not contribute substantially when \(\beta \) is small.
Lemma 4.1. If $\beta^3 < 16/3$, then

$$\lim_{n \to \infty} \frac{E[Z_1^2]}{nE[Z_1]^2} = 0.$$

Proof. By Fubini’s theorem, the stationarity in distribution of $C_1(t)$, and Proposition 3.1(a) with $\lambda = 0$,

$$E[Z_1] = \int_0^1 P(|C_1(t)| \in I) dt = P(|C_1(0)| \in I) = (1 + o(1)) \frac{n^{-\beta^3/8-1/3}}{(9\pi/8)\beta \log n}^{1/2}. \quad (8)$$

Clearly $Z_1 \leq 1$ so $E[Z_1^2] \leq E[Z_1]$, so by (8),

$$\frac{E[Z_1^2]}{nE[Z_1]} \leq \frac{1}{nE[Z_1]} \leq C n^{-\beta^3/8+2/3} \beta^{1/2} \log^{1/2} n$$

for some constant C. The lemma follows. \square

Now using Lemma 4.1 with (7), it remains to show that

$$\limsup_{n \to \infty} \frac{E[Z_1 Z_2]}{E[Z_1]^2} \leq 1.$$

Notice that by Fubini’s theorem,

$$E[Z_1 Z_2] = \int_0^1 \int_0^1 P(|C_1(s)| \in I; |C_2(t)| \in I) dt ds. \quad (9)$$

We will estimate the double integral on the right hand side of (9) by splitting it into two pieces. We begin with an estimate for when $|t - s|$ is small.

4.1 Small $|t - s|$: a combinatorial method

Lemma 4.2. Let $P = P(|C_v| \geq \beta n^{2/3} \log^{1/3} n)$. Then for any $\delta > 0$,

$$\int_0^1 \int_0^1 P(|C_1(s)| \in I; |C_2(t)| \in I) 1_{\{|t-s| \leq \delta\}} dt ds \leq 2\delta P^2 + \frac{4\beta \log^{1/3} n}{n^{1/3}} \delta P + 2\delta^2 P.$$

Proof. First note that, by stationarity,

$$\int_0^1 \int_0^1 P(|C_1(s)| \in I; |C_2(t)| \in I) 1_{\{|t-s| \leq \delta\}} dt ds \leq 2 \int_0^\delta P(|C_1(0)| \in I; |C_2(t)| \in I) dt. \quad (10)$$

Now fix $\delta \in [0, 1]$ and let $t \in [0, \delta]$. We partition $P(|C_1(0)| \in I; |C_2(t)| \in I)$ into three cases and analyse each case separately. Recall that $P_{n,p}$ denotes the law of an Erdős-Rényi graph $ER(n, p)$.

18
First consider the case when $|\mathcal{C}_1(0) \cap \mathcal{C}_2(t)| = 0$. Then
\[
\mathbb{P}(|\mathcal{C}_1(0)| \in I; |\mathcal{C}_2(t)| \in I; |\mathcal{C}_1(0) \cap \mathcal{C}_2(t)| = 0) = \sum_{k \in I} \mathbb{P}(|\mathcal{C}_1(0)| = k; |\mathcal{C}_1(0) \cap \mathcal{C}_2(t)| = 0) \mathbb{P}(|\mathcal{C}_2(t)| \in I \mid |\mathcal{C}_1(0)| = k; |\mathcal{C}_1(0) \cap \mathcal{C}_2(t)| = 0) \\
\leq \sum_{k \in I} \mathbb{P}_{n,1/n}(|\mathcal{C}_1| = k) \mathbb{P}_{n-k,1/n}(|\mathcal{C}_2| \in I) \\
\leq \sum_{k \geq n^{2/3} \log^3 n} \mathbb{P}_{n,1/n}(|\mathcal{C}_1| = k) \mathbb{P}_{n-k,1/n}(|\mathcal{C}_2| \geq \beta n^{2/3} \log^{1/3} n) \\
\leq P^2
\] (11)

where in the final inequality we have used the monotonicity of the event $\{|\mathcal{C}_2| \geq \beta n^{2/3} \log^{1/3} n\}$ in the number of vertices of the graph.

The second case that we look at is when $2 \in \mathcal{C}_1(0)$. In this case
\[
\mathbb{P}(|\mathcal{C}_1(0)| \in I; |\mathcal{C}_2(t)| \in I; 2 \in \mathcal{C}_1(0)) \leq \mathbb{P}(|\mathcal{C}_1(0)| \in I \mid |\mathcal{C}_1(0)| \in I) \mathbb{P}(2 \in \mathcal{C}_1(0) \mid |\mathcal{C}_1(0)| \in I) \\
\leq P^{2 \beta n^{2/3} \log^{1/3} n} / n.
\] (12)

Finally we are left to estimate the probability of the event
\[
\mathcal{E} := \{|\mathcal{C}_1(0)| \in I; |\mathcal{C}_2(t)| \in I; |\mathcal{C}_1(0) \cap \mathcal{C}_2(t)| > 0; 2 \not\in \mathcal{C}_1(0)\}.
\]

Take $A \subset \{1, \ldots, n\}$ such that $|A| \in I$, and condition on $\mathcal{C}_1(0) = A$. On the event \mathcal{E}, there exists at least one open path at time t between A and the vertex 2. Let π be the shortest such path (chosen arbitrarily in the case of a tie). Then on \mathcal{E},

(i) π starts at a vertex $v \in A$ and ends at the vertex 2,

(ii) π first crosses an edge connecting A to A^c, and otherwise only uses edges with both end points in A^c,

(iii) all of the edges in π are open at time t.

We now estimate the probability of a path satisfying (i), (ii) and (iii) existing.

There are at most $2\beta n^{2/3} \log^{1/3} n$ vertices in A, and at most $n - \beta n^{2/3} \log^{1/3} n$ vertices in A^c, so the number of paths of length k satisfying (i) and (ii) is at most $(2\beta n^{2/3} \log^{1/3} n)(n - \beta n^{2/3} \log^{1/3} n)^{k-1}$. Under the conditioning $\mathcal{C}_1(0) = A$, every edge e with both end points lying in A^c is open at time t with probability $1/n$. Moreover, any edge e' with one end point in A and the other in A^c is open at time t with probability $(1 - e^{-t})/n$: we know that at time 0 the edge e' is closed (since A is not connected to A^c), and thus in order for it to be open at time t we must first resample the edge, and then open the edge at the resampling.
Thus in conclusion we see that the probability there exists a path π of length k satisfying (i), (ii) and (iii) is at most
\[
(2\beta n^{2/3} \log^{1/3} n)(n - \beta n^{2/3} \log^{1/3} n)^{k-1} \cdot \frac{1}{n^{k-1}} \cdot \frac{1 - e^{-t}}{n} \leq 2t(1 - \beta n^{-1/3} \log^{1/3} n)^{k-1} \beta n^{-1/3} \log^{1/3} n
\]
where for the inequality we have used the fact that $1 - e^{-t} \leq t$. Summing over k, we see that the probability there exists a path π satisfying (i), (ii) and (iii) is at most
\[
2t\beta n^{-1/3} \log^{1/3} n \sum_{k=1}^{\infty} (1 - \beta n^{-1/3} \log^{1/3} n)^{k-1} = 2t.
\]
Hence we obtain
\[
\mathbb{P}(|C_1(0)| \in I; |C_2(t)| \in I; |C_1(0) \cap C_2(t)| > 0; 2 \notin C_1(0)) \leq 2t. \tag{13}
\]
Putting together (11), (12) and (13) we get
\[
\mathbb{P}(|C_1(0)| \in I; |C_2(t)| \in I) \leq P^2 + P\frac{2\beta n^{2/3} \log^{1/3} n}{n} + 2t.
\]
Integrating over $t \in [0, \delta]$ and using (10) gives the desired result.

4.2 Large $|t - s|$: applying Fourier analysis

Fix $\delta > 0$. Our next aim is to estimate the integral
\[
\int_0^1 \int_0^1 \mathbb{P}(|C_1(s)| \in I; |C_2(t)| \in I) 1_{\{|t-s|>\delta\}} \, dt \, ds.
\]
To do this, we will use the Fourier analysis introduced in Section 2.

Fix $N \in \mathbb{N}$. For a vertex $v \in \{1, \ldots, n\}$, let $f_v : \Omega \to \{0, 1\}$ be the function given by
\[
f_v(\omega) = \begin{cases} 1 & \text{if the connected component of } v \text{ in } \omega \text{ has size at least } N \\ 0 & \text{otherwise.} \end{cases}
\]
We recall some notation from Section 2. For $\omega \in \Omega$ and $\varepsilon \in [0, 1]$, let ω_ε be the random configuration obtained from ω by resampling each edge in ω with probability ε. Lemma 2.1 told us that
\[
\mathbb{E}[f_1(\omega)f_2(\omega_\varepsilon)] = \sum_S \hat{f}_1(S)\hat{f}_2(S)(1 - \varepsilon)^{|S|}. \tag{14}
\]
In our setting of the dynamical Erdős-Rényi graph, the configuration at time $t > s$ can be obtained from the configuration at time s by resampling each edge with probability
Lemma 4.3. Let \(N = \lceil \beta n^{2/3} \log^{1/3} n \rceil \), then there exists a finite constant \(C \) such that

\[
\sum_{v \in V} \hat{f}_1(S) \hat{f}_2(S) \leq C(\beta^2 + \beta^{-1/2}) n^{-1-\beta^3/8} \log n.
\]

Proof. The two functions \(f_1 \) and \(f_2 \) are both increasing and therefore jointly monotone (see the definition before Lemma 2.7). Therefore, by Lemma 2.7, we have

\[
\sum_{S: S \cap (U_1 \cup U_2) \neq \emptyset} \hat{f}_1(S) \hat{f}_2(S)
\]

\[
\leq \sum_{S: (1,2) \in S} \hat{f}_1(S) \hat{f}_2(S) + \sum_{v=3}^{n} \sum_{S: (1,v) \in S} \hat{f}_1(S) \hat{f}_2(S) + \sum_{v=3}^{n} \sum_{S: (2,v) \in S} \hat{f}_1(S) \hat{f}_2(S)
\]

\[
\leq \frac{1}{n} \left(1 - \frac{1}{n} \right) \mathbb{P}((1,2) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) + 2(n-2) \cdot \frac{1}{n} \left(1 - \frac{1}{n} \right) \max_{u \in \{1,2\}, u \neq 1,2} \mathbb{P}((u,v) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2})
\]

\[
\leq \frac{1}{n} \mathbb{P}((1,2) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) + 2 \mathbb{P}((1,3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}).
\]

We first bound \(\mathbb{P}((1,2) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) \). Since the event that \((1,2)\) is closed is independent of the event that \((1,2)\) is pivotal for \(f_1 \) and \(f_2 \), without loss of generality we can assume that \((1,2)\) is closed. Then for \((1,2)\) to be pivotal for both \(f_1 \) and \(f_2 \), the connected components \(\mathcal{C}_1 \) and \(\mathcal{C}_2 \) must satisfy

(a) \(\mathcal{C}_1 \cap \mathcal{C}_2 = \emptyset \),
(b) $|C_1| < N$ and $|C_2| < N$,
(c) $|C_1 \cup C_2| \geq N$.

That is,

$$P((1, 2) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) \leq P(|C_1 \cup C_2| \geq N, |C_1| < N, |C_2| < N, C_1 \cap C_2 = \emptyset).$$

By Lemma 3.4, this is at most a constant times $N^2 e^{-N^3/(8n^2)}/n^2$.

We now move on to estimating $P((1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2})$. Note that

$$P((1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) = P(2 \in C_1, (1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) + P(2 \in C_3, (1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}).$$

Of course,

$$P(2 \in C_1, (1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) = P(2 \in C_1, (1, 3) \in \mathcal{P}_{f_1}).$$

Also

$$P(2 \in C_3, (1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) = P(2 \in C_3, (1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_3});$$

by symmetry, we can permute the roles of 1 and 3, so that

$$P(2 \in C_3, (1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) = P(2 \in C_1, (1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_3}) \leq P(2 \in C_1, (1, 3) \in \mathcal{P}_{f_1}).$$

and therefore, combining with (17) and (18),

$$P((1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) \leq 2P(2 \in C_1, (1, 3) \in \mathcal{P}_{f_1}).$$

Just as above, we may assume that (1, 3) is closed; and then for (1, 3) to be pivotal for f_1, the components must satisfy

(i) $C_1 \cap C_3 = \emptyset$,
(ii) $|C_1| < N$,
(iii) $|C_1 \cup C_3| \geq N$.

Thus

$$P((1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) \leq 2P(|C_1 \cup C_3| \geq N, |C_1| < N, C_1 \cap C_3 = \emptyset, 2 \in C_1).$$

Applying Lemma 3.5, we get

$$P((1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) \leq c\left(\frac{1}{n^{2/3}N^{1/2} + N^3/n^3}\right) e^{-N^3/(8n^2)}.$$

for some finite constant c.

22
Plugging these bounds back into (16), we have
\[\sum_{S: S \cap (U_1 \cup U_2) \neq \emptyset} \hat{f}_1(S) \hat{f}_2(S) \leq c \left(\frac{N^2}{n^3} + \frac{1}{N^{1/2}n^{2/3}} + \frac{N^3}{n^3} \right) e^{-N^3/(8n^2)}. \]

Recalling that \(N = \lceil \beta n^{2/3} \log^{1/3} n \rceil \) and simplifying, we get
\[\sum_{S: S \cap (U_1 \cup U_2) \neq \emptyset} \hat{f}_1(S) \hat{f}_2(S) \leq c' (\beta^2 + \beta^{-1/2}) n^{-1-\beta^3/8} \log n, \]
and the result follows. \(\square \)

Now we deal with the Fourier coefficients \(\hat{f}_1(S) \hat{f}_2(S) \) where \(S \cap (U_1 \cup U_2) = \emptyset \). Notice that by symmetry we have that if \(S \cap (U_1 \cup U_2) = \emptyset \), then \(\hat{f}_1(S) = \hat{f}_2(S) \) and so
\[\sum_{|S| > 0, S \cap (U_1 \cup U_2) = \emptyset} \frac{e^{-|S|}}{|S|} \hat{f}_1(S) \hat{f}_2(S) \leq \sum_{|S| > 0, S \cap U_1 = \emptyset} \frac{e^{-|S|}}{|S|} \hat{f}_1(S)^2. \] (19)

To estimate the sum on the right hand side we use a revealment algorithm, implementing Theorem 2.3. Any sensible algorithm will do; we can reveal all of the edges emanating from vertex 1 without concern, and thereafter the lack of geometry in the graph simplifies the problem.

The algorithm \(A \) that we choose to use is the breadth first search and is described as follows. At each step \(i \geq 0 \) we have an ordered list of vertices \(S_i \), which is the list of vertices that the algorithm already knows are in \(C_1 \). We begin from \(S_0 = \{1\} \). At each step \(i \), if \(|S_i| \geq N \) then we terminate and declare that \(f_1(\omega) = 1 \); or if \(|S_i| < i \) then we terminate the algorithm and declare that \(f_1(\omega) = 0 \). Otherwise we take the \(i \)th element \(v_i \) of \(S_i \), and reveal \(\omega((v_i, w)) \) for all \(w \notin S_i \). If \(\omega((v_i, w)) = 1 \) then we add \(w \) to the end of the list, and once we have revealed all such edges (in some arbitrary order), the resulting list is then \(S_{i+1} \).

Clearly the algorithm must terminate by step \(N \). Recall that \(R_{U_1} = \max_{e \notin U_1} \mathbb{P}(A \text{ reveals } \omega(e)) \).

Lemma 4.4. Let \(A \) be the breadth first search described above, and let \(N = \lceil \beta n^{2/3} \log^{1/3} n \rceil \). There exists a finite constant \(C \) such that
\[R_{U_1} \leq C \beta^{7/2} n^{-2/3} \log^{7/6} n. \]

Proof. Let \(\tau \) be the step at which the algorithm \(A \) terminates. For any edge \(e = (v, w) \notin U_1 \), the probability that we reveal \(\omega(e) \) is at most the probability that either \(v \) or \(w \) appears in \(S_{\tau-1} \). For any \(v, w \neq 1 \) we have \(\mathbb{P}(v \in S_{\tau-1}) = \mathbb{P}(w \in S_{\tau-1}) \), and thus
\[\mathbb{P}(A \text{ reveals } \omega(e)) \leq 2 \mathbb{P}(v \in S_{\tau-1}) \]
\[= \frac{2}{n-1} \mathbb{E} \left[\sum_{w \neq 1} 1_{\{w \in S_{\tau-1}\}} \right] = \frac{2(\mathbb{E}[|S_{\tau-1}|] - 1)}{n-1} \leq \frac{2}{n} \mathbb{E}[|S_{\tau-1}|]. \] (20)
It is easy to see from the description of the algorithm that we always have \(S_{\tau-1} \subseteq C_1 \) and \(|S_{\tau-1}| \leq N \). Combining this observation with (20), then applying Proposition 3.1(a) and Lemma 3.2 (both with \(\lambda = 0 \)), we get that

\[
\mathbb{P}(A \text{ reveals } \omega(e)) \leq \sum_{k=1}^{N} \frac{2k}{n} \mathbb{P}(|C_1| = k) + \frac{2N}{n} \mathbb{P}(|C_1| \geq N)
\]

\[
\leq c \sum_{k=1}^{\lfloor n^{2/3} \rfloor} \frac{k^{3/2}}{n} + c \sum_{k=\lfloor n^{2/3} \rfloor + 1}^{N} \frac{k^{3/2}}{n} + c \frac{N n^{-\beta^3/8}}{n^{1/3} \log^{1/6} n}
\]

\[
\leq c n^{-2/3} + c' \frac{N^{7/2}}{n^3} + c' n^{-\beta^3/8 - 2/3} \log^{1/6} n
\]

for some finite constants \(c, c' \). For large \(n \) this is at most a constant times \(\beta^7/2 n^{-2/3} \log^{7/6} n \).

Now we apply Theorem 2.3 and Lemma 4.4 to estimate the Fourier coefficients \(\hat{f}_1(S) \hat{f}_2(S) \) when \(S \cap (U_1 \cup U_2) = \emptyset \).

Lemma 4.5. Let \(N = \lfloor \beta n^{2/3} \log^{1/3} n \rfloor \). There exists a finite constant \(C \) such that for any \(\delta > 0 \),

\[
\sum_{|S| > 0; S \cap (U_1 \cup U_2) = \emptyset} e^{-\delta |S|} \frac{\hat{f}_1(S) \hat{f}_2(S)}{|S|} \leq C \delta^{-1} \mathbb{E}[f_1] \beta^{7/2} n^{-2/3} \log^{7/6} n.
\]

Proof. First recall that by (19) we have

\[
\sum_{|S| > 0; S \cap (U_1 \cup U_2) = \emptyset} e^{-\delta |S|} \frac{\hat{f}_1(S) \hat{f}_2(S)}{|S|} \leq \sum_{|S| > 0; S \cap \mathcal{U}_1 = \emptyset} e^{-\delta |S|} \frac{\hat{f}_1(S)^2}{|S|} = \sum_{k=1}^{\binom{n}{2}} e^{-\delta k} \sum_{|S| = k; S \cap \mathcal{U}_1 = \emptyset} \hat{f}_1(S)^2.
\]

By Theorem 2.3, this is at most

\[
\sum_{k=1}^{\binom{n}{2}} e^{-\delta k} \mathcal{R}_{U_1} \mathbb{E}[f_1^2].
\]

Since \(f_1 \) takes values in \(\{0, 1\} \), \(\mathbb{E}[f_1^2] = \mathbb{E}[f_1] \), and by Lemma 4.4, \(\mathcal{R}_{U_1} \leq C \beta^{7/2} n^{-2/3} \log^{7/6} n \). Finally, note that

\[
\sum_{k=1}^{\infty} e^{-\delta k} = \frac{e^{-\delta}}{1 - e^{-\delta}} \leq \delta^{-1}.
\]

Combining these three observations gives the desired result. \(\square \)
4.3 Completing the proof of Theorem 1.1 for small β

We begin by recalling our argument from the start of Section 4. We began by defining $Z_v = \int_0^1 \mathbb{1}_{\{|C_v(t)| \in I\}} dt$ where $I = [\beta n^{2/3} \log^{1/3} n, 2\beta n^{2/3} \log^{1/3} n] \cap \mathbb{N}$. From (7) we know that

$$\mathbb{P}\left(\sup_{t \in [0,1]} |L_n(t)| > \beta n^{2/3} \log^{1/3} n \right) \geq \frac{n^2 \mathbb{E}[Z_1]^2}{n \mathbb{E}[Z_1^2] + n(n-1) \mathbb{E}[Z_1 Z_2]}.$$

Lemma 4.1 told us that if $\beta^3 < 16/3$ then $\frac{\mathbb{E}[Z_1^2]}{n \mathbb{E}[Z_1]^2} \to 0$ as $n \to \infty$, in which case we get that

$$\liminf_{n \to \infty} \mathbb{P}\left(\sup_{t \in [0,1]} |L_n(t)| > n^{2/3} \log^{\beta} n \right) \geq \liminf_{n \to \infty} \frac{\mathbb{E}[Z_1]^2}{\mathbb{E}[Z_1 Z_2]}.$$ \hspace{1cm} (22)

We saw in (9) that

$$\mathbb{E}[Z_1 Z_2] = \int_0^1 \int_0^1 \mathbb{P}(|C_1(s)| \in I; |C_2(t)| \in I) dt ds.$$

Let $P = \mathbb{P}(|C_1| \geq \beta n^{2/3} \log^{1/3} n)$. Lemma 4.2 gives

$$\int_0^1 \int_0^1 \mathbb{P}(|C_1(s)| \in I; |C_2(t)| \in I) \mathbb{1}_{\{|t-s| \leq \delta\}} dt ds \leq 2\delta P^2 + \frac{4\beta \log^{1/3} n}{n^{1/3}} \delta P + 2\delta^2 P.$$

By Proposition 3.1(a) with $\lambda = 0$, we have $P \leq n^{-1/3-\beta^3/8}$ for large n, so (for large n)

$$\int_0^1 \int_0^1 \mathbb{P}(|C_1(s)| \in I; |C_2(t)| \in I) \mathbb{1}_{\{|t-s| \leq \delta\}} dt ds \leq 2\delta n^{-2/3-\beta^3/4} + 4\beta \delta (\log^{1/3} n)n^{-2/3-\beta^3/8} + 2\delta^2 n^{-1/3-\beta^3/8}$$

$$\leq 5\beta \delta (\log^{1/3} n)n^{-2/3-\beta^3/8} + 2\delta^2 n^{-1/3-\beta^3/8}$$ \hspace{1cm} (23)

To estimate the integral when $|t-s| > \delta$, we begin with (15), which says that

$$\int_0^1 \int_0^1 \mathbb{P}(|C_1(s)| \in I; |C_2(t)| \in I) \mathbb{1}_{\{|t-s| > \delta\}} dt ds \leq \mathbb{E}[Z_1]^2 + 2 \sum_{|S| > 0} \frac{e^{-|S|}}{|S|} \hat{f}_1(S) \hat{f}_2(S).$$

We now apply Lemmas 4.3 and 4.5, which tell us respectively that for large n,

$$\sum_{S: S \cap (U_1 \cup U_2) \neq \emptyset} \hat{f}_1(S) \hat{f}_2(S) \leq C(\beta^2 + \beta^{-1/2}) n^{-1-\beta^3/8} \log n$$

and

$$\sum_{S: |S| > 0; S \cap (U_1 \cup U_2) = \emptyset} \frac{e^{-|S|}}{|S|} \hat{f}_1(S) \hat{f}_2(S) \leq C \delta^{-1} \mathbb{E}[\hat{f}_1] \beta^{7/2} n^{-2/3} \log^{7/6} n.$$
for some finite constant C. Combining these three equations and noting that (by Proposition 3.1(a) with $\lambda = 0$) $\mathbb{E}[f_1] \leq n^{-1/3-\beta^{3}/8}$, we get

$$\int_0^1 \int_0^1 \mathbb{P}(|C_1(s)| \in I; |C_2(t)| \in I)\mathbf{1}_{[\|t-s\| > \delta]} \, dt \, ds \leq \mathbb{E}[Z_1]^2 + 2C(\beta^2 + \beta^{-1/2})n^{-1-\beta^{3}/8} \log n + 2C\delta^{-1}\beta^{7/2}n^{-1-\beta^{3}/8} \log^{7/6} n.$$ (24)

Combining (23) with (24) and plugging back into (9), we get

$$\mathbb{E}[Z_1 Z_2] \leq \mathbb{E}[Z_1]^2 + 5\beta\delta(\log^{1/3} n)n^{-2/3-\beta^{3}/8} + 2\delta^2 n^{-1/3-\beta^{3}/8} + 2C(\beta^2 + \beta^{-1/2})n^{-1-\beta^{3}/8} \log n + 2C\delta^{-1}\beta^{7/2}n^{-1-\beta^{3}/8} \log^{7/6} n.$$ Choosing $\delta = n^{-2/9}$, the biggest term above when n is large is the last one. Thus in this case there exists a finite constant C' depending on β such that

$$\mathbb{E}[Z_1 Z_2] \leq \mathbb{E}[Z_1]^2 + C' n^{-7/9-\beta^{3}/8} \log^{7/6} n.$$ By Proposition 3.1(a) (with $\lambda = 0$) we know that $\mathbb{E}[Z_1] \geq cn^{-\beta^{3}/8-1/3} \log^{-1/6} n$ for some constant $c > 0$, so we get

$$\frac{\mathbb{E}[Z_1 Z_2]}{\mathbb{E}[Z_1]^2} \leq 1 + c'n^{-1/9+\beta^{3}/8} \log^{3/2} n$$

for some finite constant c' (depending on β). For $\beta < 2/3^{2/3}$, the above quantity tends to 1 as $n \to \infty$, giving

$$\liminf_{n \to \infty} \frac{\mathbb{E}[Z_1]^2}{\mathbb{E}[Z_1 Z_2]} \geq 1.$$ Therefore by (22), for any $\beta < 2/3^{2/3}$,

$$\liminf_{n \to \infty} \mathbb{P}\left(\sup_{t \in [0,1]} |L_n(t)| > \beta n^{2/3} \log^{1/3} n\right) = 1.$$ We have shown that exceptional times exist with high probability for any $\beta < 2/3^{2/3}$, and to complete the proof of Theorem 1.1 it remains to show that with high probability there are no such times for any $\beta \geq 2/3^{1/3}$.

5 No exceptional times when $\beta \geq 2/3^{1/3}$

Fix $\beta > 0$. For $i \in \{0, \ldots, [n^{1/3}]\}$, consider the event

$$\mathcal{E}_i := \{ \exists t \in [in^{-1/3}, (i+1)n^{1/3}) : |L_n(t)| > \beta n^{2/3} \log^{1/3} n\}.$$ The probability that an edge e is turned on at any time in $[in^{-1/3}, (i+1)n^{1/3})$ is at most $1/n + (1 - e^{-n^{-1/3}})/n \leq (1 + n^{-1/3})/n$. Therefore for each i,

$$\mathbb{P}(\mathcal{E}_i) \leq \mathbb{P}_{n,n-1+n^{-4/3}}(|L_n| > \beta n^{2/3} \log^{1/3} n)$$
where we recall that $P_{n,p}$ is the law of an ER(n,p). Applying Proposition 3.1(b) with $\lambda = 1$, we get that for large n,
\[
\mathbb{P}(\mathcal{E}_i) \leq \beta^{-3/2}n^{-\beta^3/8}e^{\frac{1}{2}\beta^2 \log^{2/3} n} \log^{-1/2} n,
\]
so by a union bound,
\[
\mathbb{P}(\exists t \in [0, 1]: |L_n(t)| > \beta n^{2/3} \log^{1/3} n) \leq \beta^{-3/2}n^{1/3-\beta^3/8}e^{\frac{1}{2}\beta^2 \log^{2/3} n} \log^{-1/2} n.
\]
This tends to zero as $n \to \infty$ if $\beta \geq 2/3^{1/3}$, which shows that with high probability there are no exceptional times in this regime. This completes the proof of Theorem 1.1.

6 Proving noise sensitivity

In this section we prove Proposition 2.2. Throughout, let $\{\varepsilon_n\}_{n \in \mathbb{N}}$ be a sequence such that $\lim_{n \to \infty} n^{1/6} \varepsilon_n = \infty$, fix $a \in (0, \infty)$ and let $F_n = \mathbb{1}_{\{|L_n| \geq \alpha n^{2/3}\}}$. We will show that F_n is quantitatively noise sensitive with scaling ε_n. Our path will be similar to (but in some ways simpler than) the proof that exceptional times exist for small β. There is one complication: when $A_n \to \infty$, the probability that there is a component of size larger than $A_n n^{2/3}$ is approximately the expected number of vertices in such components divided by $A_n n^{2/3}$; but this is not true for $A_n = a$ fixed. To get around this small problem we will use the following lemma which is a consequence of the FKG inequality. We use the notation of Section 2. We recall that a function $f : \Omega \to \mathbb{R}$ is increasing if turning bits on can only increase the value of f.

Lemma 6.1. Suppose that $f, g : \Omega \to \mathbb{R}$ are functions such that $\mathbb{E}[f^2] < \infty$, $\mathbb{E}[g^2] < \infty$, and both f and $g - f$ are increasing. Then for any $\varepsilon \in [0, 1]$,
\[
\mathbb{E}[g(\omega)g(\omega_\varepsilon)] - \mathbb{E}[g(\omega)]^2 \geq \mathbb{E}[f(\omega)f(\omega_\varepsilon)] - \mathbb{E}[f(\omega)]^2.
\]

Proof. Let $h = g - f$. By applying Lemma 2.1 to h,
\[
\mathbb{E}[h(\omega)h(\omega_\varepsilon)] \geq \mathbb{E}[h(\omega)]^2.
\]

Expanding in terms of f and g, and rearranging, we get
\[
\begin{align*}
\mathbb{E}[g(\omega)g(\omega_\varepsilon)] - \mathbb{E}[g(\omega)]^2 &- \mathbb{E}[f(\omega)f(\omega_\varepsilon)] + \mathbb{E}[f(\omega)]^2 \\
&\geq \mathbb{E}[f(\omega)g(\omega_\varepsilon)] + \mathbb{E}[f(\omega_\varepsilon)g(\omega)] - 2\mathbb{E}[f(\omega)]\mathbb{E}[g(\omega)] - 2\mathbb{E}[f(\omega)f(\omega_\varepsilon)] + 2\mathbb{E}[f(\omega)]^2 \\
&= 2\left(\mathbb{E}[f(\omega)g(\omega_\varepsilon)] - \mathbb{E}[f(\omega_\varepsilon)]\mathbb{E}[g(\omega) - f(\omega)]\right) \\
&= 2\left(\mathbb{E}[f(\omega)h(\omega_\varepsilon)] - \mathbb{E}[f(\omega)]\mathbb{E}[h(\omega_\varepsilon)]\right).
\end{align*}
\]

Now applying the FKG inequality to the two increasing random variables $(\omega, \omega_\varepsilon) \mapsto f(\omega)$ and $(\omega, \omega_\varepsilon) \mapsto h(\omega_\varepsilon)$ shows that the last line is non-negative, and the result follows. \hfill \Box
We now follow the same strategy as in Section 4.2. We also use much of the same notation, just with a different value of \(N \). Recall that for a vertex \(v \in \{1, \ldots, n\} \),

\[
f_v = \mathbb{1}_{\{|C_v| \geq N\}}
\]

and \(U_v \) is the set of edges with an endpoint at \(v \). (Of course these objects also depend on \(n \), but we omit this from the notation.) Lemma 6.1 will allow us to relate the noise sensitivity of \(F_n \) to quantities involving the Fourier coefficients of \(f_1 \) and \(f_2 \), so we turn our attention to bounding those.

Our first lemma is the equivalent of Lemma 4.3, using pivotality estimates to bound the Fourier coefficients of \(f_1 \) and \(f_2 \) on sets that intersect \(U_1 \cup U_2 \).

Lemma 6.2. Let \(N = \lceil an^{2/3} \rceil \). Then there exists a finite constant \(C \) such that

\[
\sum_{S : S \cap (U_1 \cup U_2) \neq \emptyset} \hat{f}_1(S) \hat{f}_2(S) \leq \frac{C}{n}.
\]

Proof. Just as in the proof of Lemma 4.3, we have

\[
\sum_{S : S \cap (U_1 \cup U_2) \neq \emptyset} \hat{f}_1(S) \hat{f}_2(S) \leq \frac{1}{n} \mathbb{P}((1, 2) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) + 2 \mathbb{P}((1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}).
\]

(25)

The first term on the right-hand side is at most \(1/n \), so we can concentrate on the second term. Again following the argument to prove Lemma 4.3,

\[
\mathbb{P}((1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) \leq 2 \mathbb{P}(|\mathcal{C}_1 \cup \mathcal{C}_3| \geq N, |\mathcal{C}_1| < N, \mathcal{C}_1 \cap \mathcal{C}_3 = \emptyset, 2 \in \mathcal{C}_1).
\]

Applying Lemma 3.5 we get

\[
\mathbb{P}((1, 3) \in \mathcal{P}_{f_1} \cap \mathcal{P}_{f_2}) \leq \frac{c}{n}
\]

for some finite constant \(c \). Plugging this back into (25), we have

\[
\sum_{S : S \cap (U_1 \cup U_2) \neq \emptyset} \hat{f}_1(S) \hat{f}_2(S) \leq \frac{C}{n}
\]

for some finite constant \(C \). \(\square \)

Next we bound the revelation of the breadth first search algorithm seen in Section 4.2, similarly to Lemma 4.4.

Lemma 6.3. Let \(A \) be the breadth first search described above Lemma 4.4, and let \(N = \lceil an^{2/3} \rceil \). Then there exists a finite constant \(C \) such that

\[
\mathcal{R}_{\text{th}} \leq C n^{-2/3}.
\]
Proof. Just as in the proof of Lemma 4.4, for any edge $e = (v, w)$ with $v, w \neq 1$ we have
\[
\mathbb{P}(A \text{ reveals } \omega(e)) \leq \frac{2}{n} \mathbb{E}[|S_{\tau - 1}|]
\] (26)
and also $S_{\tau - 1} \subseteq C_1$ and $|S_{\tau - 1}| \leq N$. Combining these facts, then applying Proposition 3.1 and Lemma 3.2, we get that
\[
\mathbb{P}(A \text{ reveals } \omega(e)) \leq \frac{N}{n} \sum_{k=1}^{N / n^{2/3}} \frac{2k - c}{n} \cdot \frac{c}{k^{3/2}} + \frac{2N}{n} \cdot \frac{c}{n^{1/3}}
\]
for some finite constants c, c', as required.

Lemma 6.3 allows us to give a bound on the Fourier coefficients of f_1 and f_2 on sets that do not intersect U_1 or U_2.

Lemma 6.4. Let $N = [an^{2/3}]$. There exists a finite constant C such that for any $\varepsilon \in (0, 1)$,
\[
\sum_{S \cap (U_1 \cup U_2) = \emptyset} (1 - \varepsilon)^{|S|} \hat{f}_1(S) \hat{f}_2(S) \leq C \varepsilon^{-2} \mathbb{E}[f_1] n^{-2/3}.
\]

Proof. Following the proof of Lemma 4.5, we have
\[
\sum_{S \cap (U_1 \cup U_2) = \emptyset} (1 - \varepsilon)^{|S|} \hat{f}_1(S) \hat{f}_2(S) \leq \sum_{k=1}^{\binom{n}{2}} k (1 - \varepsilon)^k \mathcal{R}_{U_1} \mathbb{E}[f_1^2].
\]
Since f_1 takes values in $\{0, 1\}$, $\mathbb{E}[f_1^2] = \mathbb{E}[f_1]$, and by Lemma 6.3, $\mathcal{R}_{U_1} \leq C n^{-2/3}$. Finally, note that
\[
\sum_{k=1}^{\infty} k (1 - \varepsilon)^k = \frac{1 - \varepsilon}{\varepsilon^2} \leq \varepsilon^{-2}.
\]
Combining these three observations gives the desired result.

We now have the tools to prove our noise sensitivity result.

Proof of Proposition 2.2. Recall that $F_n = \mathbb{1}_{\{|L_n| \geq an^{2/3}\}}$ and suppose that $\lim_{n \to \infty} n^{1/6} \varepsilon_n = \infty$. Define
\[
G_n = \frac{1}{an^{2/3}} \sum_{v=1}^{n} \mathbb{1}_{\{|C_v| \geq an^{2/3}\}}.
\]
Then $F_n \leq G_n$ and both F_n and $G_n - F_n$ are increasing, so by Lemma 6.1 it suffices to show that
\[
\mathbb{E}[G_n(\omega)G_n(\omega_{\varepsilon_n})] - \mathbb{E}[G_n(\omega)]^2 \to 0.
\]
We know from Lemma 2.1 that this quantity is non-negative, so it suffices to give an upper bound. But if we set \(N = \lceil an^{2/3} \rceil \) then

\[
G_n = \frac{1}{an^{2/3}} \sum_v f_v,
\]

so

\[
\mathbb{E}[G_n(\omega)G_n(\omega_{\varepsilon_n})] - \mathbb{E}[G_n(\omega)]^2
= \frac{1}{a^2n^{4/3}} \sum_{u,v} \left(\mathbb{E}[f_u(\omega)f_v(\omega_{\varepsilon_n})] - \mathbb{E}[f_u(\omega)]\mathbb{E}[f_v(\omega)] \right)
= \frac{n}{a^2n^{4/3}} \left(\mathbb{E}[f_1(\omega)f_1(\omega_{\varepsilon_n})] - \mathbb{E}[f_1(\omega)]^2 \right) + \frac{n(n-1)}{a^2n^{4/3}} \left(\mathbb{E}[f_1(\omega)f_2(\omega_{\varepsilon_n})] - \mathbb{E}[f_1(\omega)]\mathbb{E}[f_2(\omega)] \right)
\leq \frac{1}{a^2n^{1/3}} + \frac{n^{2/3}}{a^2} \sum_{S \neq \emptyset} \hat{f}_1(S)\hat{f}_2(S)(1 - \varepsilon_n)^{|S|}
\]

(27)

where we used Lemma 2.1 to get the last line.

By Lemma 6.2 we have

\[
\sum_{S: S \cap \left(U_1 \cup U_2 \right) \neq \emptyset} \hat{f}_1(S)\hat{f}_2(S) \leq \frac{C}{n},
\]

and by Lemma 6.4 we have

\[
\sum_{|S| > 0; S \cap \left(U_1 \cup U_2 \right) = \emptyset} (1 - \varepsilon_n)^{|S|} \hat{f}_1(S)\hat{f}_2(S) \leq C\varepsilon_n^{-2}\mathbb{E}[f_1]n^{-2/3},
\]

for some finite constant \(C \). By Proposition 3.1 and Lemma 3.2,

\[
\mathbb{E}[f_1] \leq cn^{-1/3}
\]

for some finite constant \(c \), and so putting the above estimates together we get

\[
\sum_{S \neq \emptyset} (1 - \varepsilon_n)^{|S|} \hat{f}_1(S)\hat{f}_2(S) \leq \frac{C}{n} + \frac{C \cdot c}{\varepsilon_n^2n}. \]

Substituting this back into (27) gives

\[
\mathbb{E}[G_n(\omega)G_n(\omega_{\varepsilon_n})] - \mathbb{E}[G_n(\omega)]^2 \leq \frac{1}{a^2n^{1/3}} + \frac{n^{2/3}}{a^2} \left(\frac{C}{n} + \frac{C \cdot c}{\varepsilon_n^2n} \right)
\]

which tends to 0 since \(n^{1/3}\varepsilon_n^2 \to \infty \). \(\square \)
Acknowledgements

MR and BS are grateful for support from EPSRC grants EP/K007440/1, EP/H023348/1 and EP/L002442/1; and also thank an anonymous referee for some very useful comments and questions. MR would like to thank Jeffrey Steif for helpful conversations, and both Christophe Garban and Jeffrey Steif for their excellent lecture courses at the Clay Mathematics Summer School in 2010 and the Saint-Flour Summer School in Probability in 2012.

References

