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Abstract. Sparse estimation methods are aimed at using or obtaining
parsimonious representations of data or models. While naturally cast
as a combinatorial optimization problem, variable or feature selection
admits a convex relaxation through the regularization by the ℓ1-norm.
In this paper, we consider situations where we are not only interested in
sparsity, but where some structural prior knowledge is available as well.
We show that the ℓ1-norm can then be extended to structured norms
built on either disjoint or overlapping groups of variables, leading to a
flexible framework that can deal with various structures. We present
applications to unsupervised learning, for structured sparse principal
component analysis and hierarchical dictionary learning, and to super-
vised learning in the context of non-linear variable selection.
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1. INTRODUCTION

The concept of parsimony is central in many scientific domains. In the context
of statistics, signal processing or machine learning, it takes the form of variable
or feature selection problems, and is commonly used in two situations: First, to
make the model or the prediction more interpretable or cheaper to use, i.e., even
if the underlying problem does not admit sparse solutions, one looks for the best
sparse approximation. Second, sparsity can also be used given prior knowledge
that the model should be sparse.

Sparse linear models seek to predict an output by linearly combining a small
subset of the features describing the data. To simultaneously address variable
selection and model estimation, ℓ1-norm regularization has become a popular
tool, which benefits both from efficient algorithms (see, e.g., Efron et al., 2004a;
Beck and Teboulle, 2009; Yuan, 2010; Bach et al., 2012, and multiple references
therein) and a well-developed theory for generalization properties and variable
selection consistency (Zhao and Yu, 2006; Wainwright, 2009; Bickel et al., 2009;
Zhang, 2009).
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2 BACH ET AL.

When regularizing with the ℓ1-norm, each variable is selected individually, re-
gardless of its position in the input feature vector, so that existing relationships
and structures between the variables (e.g., spatial, hierarchical or related to the
physics of the problem at hand) are merely disregarded. However, in many prac-
tical situations the estimation can benefit from some type of prior knowledge,
potentially both for interpretability and to improve predictive performance.

This a priori can take various forms: in neuroimaging based on functional mag-
netic resonance (fMRI) or magnetoencephalography (MEG), sets of voxels allow-
ing to discriminate between different brain states are expected to form small
localized and connected areas (Gramfort and Kowalski, 2009; Xiang et al., 2009,
and references therein). Similarly, in face recognition, as shown in Section 4.4,
robustness to occlusions can be increased by considering as features, sets of pixels
that form small convex regions of the faces. Again, a plain ℓ1-norm regulariza-
tion fails to encode such specific spatial constraints (Jenatton et al., 2010). The
same rationale supports the use of structured sparsity for background subtrac-
tion (Cevher et al., 2008; Huang et al., 2011; Mairal et al., 2011).

Another example of the need for higher-order prior knowledge comes from
bioinformatics. Indeed, for the diagnosis of tumors, the profiles of array-based
comparative genomic hybridization (arrayCGH) can be used as inputs to feed
a classifier (Rapaport et al., 2008). These profiles are characterized by many
variables, but only a few observations of such profiles are available, prompting the
need for variable selection. Because of the specific spatial organization of bacterial
artificial chromosomes along the genome, the set of discriminative features is
expected to consist of specific contiguous patterns. Using this prior knowledge
in addition to standard sparsity leads to improvement in classification accuracy
(Rapaport et al., 2008). In the context of multi-task regression, a problem of
interest in genetics is to find a mapping between a small subset of loci presenting
single nucleotide polymorphisms (SNP’s) that have a phenotypic impact on a
given family of genes (Kim and Xing, 2010). This target family of genes has
its own structure, where some genes share common genetic characteristics, so
that these genes can be embedded into some underlying hierarchy. Exploiting
directly this hierarchical information in the regularization term outperforms the
unstructured approach with a standard ℓ1-norm (Kim and Xing, 2010).

These real world examples motivate the need for the design of sparsity-inducing
regularization schemes, capable of encoding more sophisticated prior knowledge
about the expected sparsity patterns. As mentioned above, the ℓ1-norm corre-
sponds only to a constraint on cardinality and is oblivious of any other informa-
tion available about the patterns of nonzero coefficients (“nonzero patterns” or
“supports”) induced in the solution, since they are all theoretically possible. In
this paper, we consider a family of sparsity-inducing norms that can address a
large variety of structured sparse problems: a simple change of norm will induce
new ways of selecting variables; moreover, as shown in Section 3.5 and Section 3.6,
algorithms to obtain estimators (e.g., convex optimization methods) and theoret-
ical analyses are easily extended in many situations. As shown in Section 3, the
norms we introduce generalize traditional “group ℓ1-norms”, that have been pop-
ular for selecting variables organized in non-overlapping groups (Turlach et al.,
2005; Yuan and Lin, 2006; Roth and Fischer, 2008; Huang and Zhang, 2010).
Other families for different types of structures are presented in Section 3.4.
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STRUCTURED SPARSITY THROUGH CONVEX OPTIMIZATION 3

The paper is organized as follows: we first review in Section 2 classical ℓ1-
norm regularization in supervised contexts. We then introduce several families of
norms in Section 3, and present applications to unsupervised learning in Section 4,
namely for sparse principal component analysis in Section 4.4 and hierarchical
dictionary learning in Section 4.5. We briefly show in Section 5 how these norms
can also be used for high-dimensional non-linear variable selection.

Notations. Throughout the paper, we shall denote vectors with bold lower
case letters, and matrices with bold upper case ones. For any integer j in the set
J1; pK , {1, . . . , p}, we denote the j-th coefficient of a p-dimensional vectorw ∈ R

p

by wj. Similarly, for any matrix W ∈ R
n×p, we refer to the entry on the i-th row

and j-th column as Wij , for any (i, j) ∈ J1;nK × J1; pK. We will need to refer to
sub-vectors of w ∈ R

p, and so, for any J ⊆ J1; pK, we denote by wJ ∈ R
|J | the

vector consisting of the entries of w indexed by J . Likewise, for any I ⊆ J1;nK,
J ⊆ J1; pK, we denote by WIJ ∈ R

|I|×|J | the sub-matrix of W formed by the
rows (respectively the columns) indexed by I (respectively by J). We extensively
manipulate norms in this paper. We thus define the ℓq-norm for any vectorw ∈ R

p

by ‖w‖qq ,
∑p

j=1 |wj|q for q ∈ [1,∞), and ‖w‖∞ , maxj∈J1;pK |wj|. For q ∈
(0, 1), we extend the definition above to ℓq pseudo-norms. Finally, for any matrix
W ∈ R

n×p, we define the Frobenius norm of W by ‖W‖2
F
,

∑n
i=1

∑p
j=1W

2
ij .

2. UNSTRUCTURED SPARSITY VIA THE ℓ1-NORM

Regularizing by the ℓ1-norm has been a topic of intensive research over the
last decade. This line of work has witnessed the development of nice theoretical
frameworks (Tibshirani, 1996; Chen et al., 1998; Mallat, 1999; Tropp, 2004, 2006;
Zhao and Yu, 2006; Zou, 2006; Wainwright, 2009; Bickel et al., 2009; Zhang, 2009;
Negahban et al., 2009) and the emergence of many efficient algorithms (Efron
et al., 2004a; Nesterov, 2007; Friedman et al., 2007; Wu and Lange, 2008; Beck
and Teboulle, 2009; Wright et al., 2009; Needell and Tropp, 2009; Yuan et al.,
2010). Moreover, this methodology has found quite a few applications, notably in
compressed sensing (Candès and Tao, 2005), for the estimation of the structure
of graphical models (Meinshausen and Bühlmann, 2006) or for several recon-
struction tasks involving natural images (e.g., see Mairal, 2010, for a review). In
this section, we focus on supervised learning and present the traditional estima-
tion problems associated with sparsity-inducing norms such as the ℓ1-norm (see
Section 4 for unsupervised learning).

In supervised learning, we predict (typically one-dimensional) outputs y in Y
from observations x in X ; these observations are usually represented by p-dimen-
sional vectors with X = R

p. M-estimation and in particular regularized empirical
risk minimization are well suited to this setting. Indeed, given n pairs of data
points {(x(i), y(i)) ∈ R

p×Y; i=1, . . . , n}, we consider the estimators solving the
following form of convex optimization problem

(2.1) min
w∈Rp

1

n

n
∑

i=1

ℓ(y(i),w⊤x(i)) + λΩ(w),

where ℓ is a loss function and Ω : Rp → R is a sparsity-inducing—typically non-
smooth and non-Euclidean—norm. Typical examples of differentiable loss func-
tions are the square loss for least squares regression, i.e., ℓ(y, ŷ) = 1

2(y−ŷ)2 with y
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4 BACH ET AL.

in R, and the logistic loss ℓ(y, ŷ) = log(1 + e−yŷ) for logistic regression, with y
in {−1, 1}. We refer the readers to Shawe-Taylor and Cristianini (2004) and to
Hastie et al. (2001) for more complete descriptions of loss functions.

Within the context of least-squares regression, ℓ1-norm regularization is known
as the Lasso (Tibshirani, 1996) in statistics and as basis pursuit in signal pro-
cessing (Chen et al., 1998). For the Lasso, formulation (2.1) takes the form

(2.2) min
w∈Rp

1

2n
‖y −Xw‖22 + λ‖w‖1,

and, equivalently, basis pursuit can be written1

(2.3) min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1.

These two equations are obviously identical but we write them both to show the
correspondence between notations used in statistics and in signal processing. In
statistical notations, we will use X ∈ R

n×p to denote a set of n observations de-
scribed by p variables (covariates), while y ∈ R

n represents the corresponding set
of n targets (responses) that we try to predict. For instance, y may have discrete
entries in the context of classification. With notations of signal processing, we will
consider an m-dimensional signal x ∈ R

m that we express as a linear combina-
tion of p dictionary elements composing the dictionary D , [d1, . . . ,dp] ∈ R

m×p.
While the design matrix X is usually assumed fixed and given beforehand, we
shall see in Section 4 that the dictionary D may correspond either to some pre-
defined basis (e.g., see Mallat, 1999, for wavelet bases) or to a representation that
is actually learned as well (Olshausen and Field, 1996).

Geometric intuitions for the ℓ1-norm ball. While we consider in (2.1) a regu-
larized formulation, we could have considered an equivalent constrained problem
of the form

(2.4) min
w∈Rp

1

n

n
∑

i=1

ℓ(y(i),w⊤x(i)) such that Ω(w) ≤ µ,

for some µ ∈ R+: It is indeed the case that the solutions to problem (2.4) obtained
when varying µ is the same as the solutions to problem (2.1), for some of λµ
depending on µ (e.g., see Section 3.2 in Borwein and Lewis, 2006).

At optimality, the opposite of the gradient of f : w 7→ 1
n

∑n
i=1 ℓ(y

(i),w⊤x(i))
evaluated at any solution ŵ of (2.4) must belong to the normal cone to B = {w ∈
R
p; Ω(w) ≤ µ} at ŵ (Borwein and Lewis, 2006). In other words, for sufficiently

small values of µ (i.e., ensuring that the constraint is active) the level set of f for
the value f(ŵ) is tangent to B. As a consequence, important properties of the
solutions ŵ follow from the geometry of the ball B. If Ω is taken to be the ℓ2-
norm, then the resulting ball B is the standard, isotropic, “round” ball that does
not favor any specific direction of the space. On the other hand, when Ω is the
ℓ1-norm, B corresponds to a diamond-shaped pattern in two dimensions, and to

1Note that the formulations which are typically encountered in signal processing are either
minα ‖α‖1 s.t. x = Dα, which corresponds to the limiting case of Eq. (2.3) where λ → 0 and
x is in the span of the dictionary D, or minα ‖α‖1 s.t. ‖x − Dα‖2 ≤ η which is a constrained
counterpart of Eq. (2.3) leading to the same set of solutions (see the explanation following
Eq. (2.4)).
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STRUCTURED SPARSITY THROUGH CONVEX OPTIMIZATION 5

a double pyramid in three dimensions. In particular, B is anisotropic and exhibits
some singular points due to the non-smoothness of Ω. Since these singular points
are located along axis-aligned linear subspaces in R

p, if the level set of f with the
smallest feasible value is tangent to B at one of those points, sparse solutions are
obtained. We display on Figure 1 the balls B for both the ℓ1- and ℓ2-norms. See
Section 3 and Figure 2 for extensions to structured norms.

(a) ℓ2-norm ball (b) ℓ1-norm ball

Fig 1: Comparison between the ℓ2-norm and ℓ1-norm balls in three dimensions,
respectively on the left and right figures. The ℓ1-norm ball presents some singular
points located along the axes of R3 and along the three axis-aligned planes going
through the origin.

3. STRUCTURED SPARSITY-INDUCING NORMS

In this section, we consider structured sparsity-inducing norms that induce
estimated vectors that are not only sparse, as for the ℓ1-norm, but whose support
also displays some structure known a priori that reflects potential relationships
between the variables.

3.1 Sparsity-Inducing Norms with Disjoint Groups of Variables

The most natural form of structured sparsity is arguably group sparsity, match-
ing the a priori knowledge that pre-specified disjoint blocks of variables should be
selected or ignored simultaneously. In that case, if G is a collection of groups of
variables, forming a partition of J1; pK, and dg is a positive scalar weight indexed
by group g, we define Ω as

(3.1) Ω(w) =
∑

g∈G

dg‖wg‖q for any q ∈ (1,∞].

This norm is usually referred to as a mixed ℓ1/ℓq-norm, and in practice, popular
choices for q are {2,∞}. As desired, regularizing with Ω leads variables in the same
group to be selected or set to zero simultaneously (see Figure 2 for a geometric
interpretation). In the context of least-squares regression, this regularization is
known as the group Lasso (Turlach et al., 2005; Yuan and Lin, 2006). It has
been shown to improve the prediction performance and/or interpretability of the
learned models when the block structure is relevant (Roth and Fischer, 2008;
Stojnic et al., 2009; Lounici et al., 2009; Huang and Zhang, 2010). Moreover,
applications of this regularization scheme arise also in the context of multi-task
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(a) ℓ1/ℓ2-norm ball without over-
laps: Ω(w) = ‖w{1,2}‖2 + |w3|

(b) ℓ1/ℓ2-norm ball with overlaps:
Ω(w) = ‖w{1,2,3}‖2 + |w1|+ |w2|

Fig 2: Comparison between two mixed ℓ1/ℓ2-norm balls in three dimensions (the
first two directions are horizontal, the third one is vertical), without and with
overlapping groups of variables, respectively on the left and right figures. The
singular points appearing on these balls describe the sparsity-inducing behavior
of the underlying norms Ω.

learning (Obozinski et al., 2010; Quattoni et al., 2009; Liu et al., 2009) to account
for features shared across tasks, and multiple kernel learning (Bach, 2008) for the
selection of different kernels (see also Section 5).

Choice of the weights. When the groups vary significantly in size, results can be
improved, in particular under high-dimensional scaling, by an appropriate choice
of the weights dg which compensate for the discrepancies of sizes between groups.
It is difficult to provide a unique choice for the weights. In general, they depend
on q and on the type of consistency desired. We refer the reader to Yuan and Lin
(2006); Bach (2008); Obozinski et al. (2011a); Lounici et al. (2011) for general
discussions.

It might seem that the case of groups that overlap would be unnecessarily
complex. It turns out, in reality, that appropriate collections of overlapping groups
allow to encode quite interesting forms of structured sparsity. In fact, the idea
of constructing sparsity-inducing norms from overlapping groups will be key. We
present two different constructions based on overlapping groups of variables that
are essentially complementary of each other in Sections 3.2 and 3.3.

3.2 Sparsity-Inducing Norms with Overlapping Groups of Variables

In this section, we consider a direct extension of the norm introduced in the
previous section to the case of overlapping groups; we give an informal overview
of the structures that it can encode and examples of relevant applied settings.
For more details see Jenatton et al. (2011a).

Starting from the definition of Ω in Eq. (3.1), it is natural to study what
happens when the set of groups G is allowed to contain elements that overlap.
In fact, and as shown by Jenatton et al. (2011a), the sparsity-inducing behavior
of Ω remains the same: when regularizing by Ω, some entire groups of variables g
in G are set to zero. This is reflected in the set of non-smooth extreme points
of the unit ball of the norm represented on Figure 2-(b). While the resulting
patterns of nonzero variables—also referred to as supports, or nonzero patterns—
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STRUCTURED SPARSITY THROUGH CONVEX OPTIMIZATION 7

were obvious in the non-overlapping case, it is interesting to understand here
the relationship that ties together the set of groups G and its associated set of
possible nonzero patterns. Let us denote by P the latter set. For any norm of
the form (3.1), it is still the case that variables belonging to a given group are
encouraged to be set simultaneously to zero; as a result, the possible zero patterns
for solutions of (2.1) are obtained by forming unions of the basic groups, which
means that the possible supports are obtained by taking the intersection of a
certain number of complements of the basic groups.

Moreover, under mild conditions (Jenatton et al., 2011a), given any intersection-
closed2 family of patterns P of variables (see examples below), it is possible to
build an ad-hoc set of groups G—and hence, a regularization norm Ω—that en-
forces the support of the solutions of (2.1) to belong to P.

These properties make it possible to design norms that are adapted to the
structure of the problem at hand, which we now illustrate with a few examples.

One-dimensional interval pattern. Given p variables organized in a sequence,
using the set of groups G of Figure 3, it is only possible to select contiguous
nonzero patterns. In this case, we have |G| = O(p). Imposing the contiguity of the
nonzero patterns can be relevant in the context of variable forming time series,
or for the diagnosis of tumors, based on the profiles of CGH arrays (Rapaport
et al., 2008), since an bacterial artificial chromosome will be inserted as a single
continuous block into the genome.

Fig 3: (Left) The set of blue groups to penalize in order to select contiguous
patterns in a sequence. (Right) In red, an example of such a nonzero pattern
with its corresponding zero pattern (hatched area).

Two-dimensional convex support. Similarly, assume now that the p variables
are organized on a two-dimensional grid. To constrain the allowed supports P to
be the set of all rectangles on this grid, a possible set of groups G to consider is
represented in the top of Figure 4. This set is relatively small since |G| = O(

√
p).

Groups corresponding to half planes with additional orientations (see Figure 4
bottom) may be added to “carve out” more general convex patterns. See an
illustration in Section 4.4.

Two-dimensional block structures on a grid. Using sparsity-inducing regular-
izations built upon groups which are composed of variables together with their
spatial neighbors leads to good performances for background subtraction (Cevher
et al., 2008; Baraniuk et al., 2010; Huang et al., 2011; Mairal et al., 2011), to-
pographic dictionary learning (Kavukcuoglu et al., 2009; Mairal et al., 2011),
wavelet-based denoising (Rao et al., 2011).

2A set A is said to be intersection-closed, if for any k ∈ N, and for any (a1, . . . , ak) ∈ Ak, we
have

⋂k

i=1
ai ∈ A.
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8 BACH ET AL.

Fig 4: Top: Vertical and horizontal groups: (Left) the set of blue and green groups
to penalize in order to select rectangles. (Right) In red, an example of nonzero
pattern recovered in this setting, with its corresponding zero pattern (hatched
area). Bottom: Groups with ±π/4 orientations: (Left) the set of blue and green
groups with their (not displayed) complements to penalize in order to select
diamond-shaped patterns.

Hierarchical structure. A fourth interesting example assumes that the variables
are organized in a hierarchy. Precisely, we assume that the p variables can be as-
signed to the nodes of a tree T (or a forest of trees), and that a given variable
may be selected only if all its ancestors in T have already been selected. This hi-
erarchical rule is exactly respected when using the family of groups displayed on
Figure 5. The corresponding penalty was first used by Zhao et al. (2009); one of it
simplest instance in the context of regression is the sparse group Lasso (Sprech-
mann et al., 2010; Friedman et al., 2010); it has found numerous applications, for
instance, wavelet-based denoising (Zhao et al., 2009; Baraniuk et al., 2010; Huang
et al., 2011; Jenatton et al., 2011b), hierarchical dictionary learning for both topic
modelling and image restoration (Jenatton et al., 2011b), log-linear models for
the selection of potential orders (Schmidt and Murphy, 2010), bioinformatics, to
exploit the tree structure of gene networks for multi-task regression (Kim and
Xing, 2010), and multi-scale mining of fMRI data for the prediction of simple
cognitive tasks (Jenatton et al., 2011c).

Extensions. Possible choices for the sets of groups G are not limited to the
aforementioned examples: more complicated topologies can be considered, for
example three-dimensional spaces discretized in cubes or spherical volumes dis-
cretized in slices (see an application to neuroimaging by Varoquaux et al. (2010)),
and more complicated hierarchical structures based on directed acyclic graphs can
be encoded as further developed in Section 5.

Choice of the weights. The choice of the weights dg is significantly more im-
portant in the overlapping case both theoretically and in practice. In addition to
compensating for the discrepancy in group sizes, the weights additionally have to
make up for the potential over-penalization of parameters contained in a larger
number of groups. For the case of one-dimensional interval patterns, Jenatton
et al. (2011a) showed that it was more efficient theoretically and in practice to
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STRUCTURED SPARSITY THROUGH CONVEX OPTIMIZATION 9

Fig 5: Left: set of groups G (dashed contours in red) corresponding to the tree T
with p = 6 nodes represented by black circles. Right: example of a sparsity pattern
induced by the tree-structured norm corresponding to G: the groups {2, 4}, {4}
and {6} are set to zero, so that the corresponding nodes (in gray) that form
subtrees of T are removed. The remaining nonzero variables {1, 3, 5} form a
rooted and connected subtree of T . This sparsity pattern obeys the two following
equivalent rules: (i) if a node is selected, the same goes for all its ancestors. (ii)
if a node is not selected, then its descendant are not selected.

actually weight each individual coefficient inside of a group as opposed to weight-
ing the group globally.

3.3 Norms for Overlapping Groups: a Latent Variable Formulation

The family of norms defined in Eq. (3.1) is adapted to intersection-closed sets
of nonzero patterns. However, some applications exhibit structures that can be
more naturally modelled by union-closed families of supports. This idea was
introduced in Jacob et al. (2009) and Obozinski et al. (2011a) who, given a set
of groups G, proposed the following norm

(3.2) Ωunion(w) , min
v∈Rp×|G|

∑

g∈G

dg‖vg‖q such that

{

∑

g∈G v
g = w,

∀g ∈ G, v
g
j = 0 if j /∈ g,

where again dg is a positive scalar weight associated with group g.
The norm we just defined provides a different generalization of the ℓ1/ℓq-norm

to the case of overlapping groups than the norm presented in Section 3.2. In fact,
it is easy to see that solving Eq. (2.1) with the norm Ωunion is equivalent to solving

(3.3) min
(vg∈R|g|)g∈G

n
∑

i=1

ℓ
(

y(i),
∑

g∈G

vg
g
⊤x(i)

g

)

+ λ
∑

g∈G

dg‖vg‖q,

and setting w =
∑

g∈G v
g. This last equation shows that using the norm Ωunion

can be interpreted as implicitly duplicating the variables belonging to several
groups and regularizing with a weighted ℓ1/ℓq norm for disjoint groups in the
expanded space. Again in this case a careful choice of the weights is important
(Obozinski et al., 2011a).

This latent variable formulation pushes some of the vectors vg to zero while
keeping others with no zero components, hence leading to a vector w with a
support which is in general the union of the selected groups. Interestingly, it
can be seen as a convex relaxation of a non-convex penalty encouraging similar
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10 BACH ET AL.

sparsity patterns which was introduced by Huang et al. (2011) and which we
present in Section 3.4.

Graph Lasso. One type of a priori knowledge commonly encountered takes the
form of graph defined on the set of input variables, which is such that connected
variables are more likely to be simultaneously relevant or irrelevant; this type
of prior is common in genomics where regulation, co-expression or interaction
networks between genes (or their expression level) used as predictors are often
available. To favor the selection of neighbors of a selected variable, it is possible
to consider the edges of the graph as groups in the previous formulation (see
Jacob et al., 2009; Rao et al., 2011).

Patterns consisting of a small number of intervals. A quite similar situation
occurs, when one knows a priori—typically for variables forming sequences (times
series, strings, polymers)—that the support should consist of a small number
of connected subsequences. In that case, one can consider the sets of variables
forming connected subsequences (or connected subsequences of length at most k)
as the overlapping groups.

(a) Unit ball for G =
{

{1, 3}, {2, 3}
}

(b) G =
{

{1, 3}, {2, 3}, {1, 2}
}

Fig 6: Two instances of unit balls of the latent group Lasso regularization Ωunion

for two or three groups of two variables. Their singular points lie on axis aligned
circles, corresponding to each group, and whose convex hull is exactly the unit
ball. It should be noted that the ball on the left is quite similar to the one of
Fig. 2b except that its “poles” are flatter, hence discouraging the selection of x3

without either x1 or x2.

3.4 Related Approaches to Structured Sparsity

Norm design through submodular functions. Another approach to structured
sparsity relies on submodular analysis (Bach, 2010a). Starting from a non-de-
creasing, submodular3 set-function F of the supports of the parameter vector
w—i.e., w 7→ F ({j ∈ J1; pK; wj 6= 0})—a structured sparsity-inducing norm
can be built by considering its convex envelope (tightest convex lower bound)
on the unit ℓ∞-norm ball. By selecting the appropriate set-function F , similar
structures to those described above can be obtained. This idea can be further

3Let S be a finite set. A function F : 2S → R is said to be submodular if for any subset
A,B ⊆ S, we have the inequality F (A ∩B) + F (A ∪B) ≤ F (A) + F (B); see Bach (2010a) and
references therein.
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STRUCTURED SPARSITY THROUGH CONVEX OPTIMIZATION 11

extended to symmetric, submodular set-functions of the level sets of w, that
is, w 7→ maxν∈R F ({j ∈ J1; pK; wj ≥ ν}), thus leading to different types of
structures (Bach, 2010b), allowing to shape the level sets of w rather than its
support. This approach can also be generalized to any set-function and other
priors on the the non-zero variables than the ℓ∞-norm (Obozinski and Bach,
2012).

Non-convex approaches. We mainly focus in this review on convex penalties
but in fact many non-convex approaches have been proposed as well. In the same
spirit as the norm (3.2), Huang et al. (2011) considered the penalty

ψ(w) , min
H⊆G

∑

g∈H

ωg, such that {j ∈ J1; pK; wj 6= 0} ⊆
⋃

g∈H

g,

where G is a given set of groups, and {ωg}g∈G is a set of positive weights which de-
fines a coding length. In other words, the penalty ψ measures from an information-
theoretic viewpoint, “how much it costs” to represent w. Finally, in the context
of compressed sensing, the work of Baraniuk et al. (2010) also focuses on union-
closed families of supports, although without information-theoretic considera-
tions. All of these non-convex approaches can in fact also be relaxed to convex
optimization problems (Obozinski and Bach, 2012).

Other forms of sparsity. We end this review by discussing sparse regulariza-
tion functions encoding other types of structures than the structured sparsity
penalties we have presented. We start with the total-variation penalty originally
introduced in the image processing community (Rudin et al., 1992), which encour-
ages piecewise constant signals. It can be found in the statistics literature under
the name of “fused lasso” (Tibshirani et al., 2005). For one-dimensional signals, it
can be seen as the ℓ1-norm of finite differences for a vector w in R

p: ΩTV-1D(w) ,
∑p−1

i=1 |wi+1 −wi|. Extensions have been proposed for multi-dimensional signals
and for recovering piecewise constant functions on graphs (Kim et al., 2009).

We remark that we have presented group-sparsity penalties in Section 3.1,
where the goal was to select a few groups of variables. A different approach
called “exclusive Lasso” consists instead of selecting a few variables inside each
group, with some applications in multitask learning (Zhou et al., 2010).

Finally, we would like to mention a few works on automatic feature group-
ing (Bondell and Reich, 2008; Shen and Huang, 2010; Zhong and Kwok, 2011),
which could be used when no a-priori group structure G is available. These penal-
ties are typically made of pairwise terms between all variables, and encourage
some coefficients to be similar, thereby forming “groups”.

3.5 Convex Optimization with Proximal Methods

In this section, we briefly review proximal methods which are convex optimiza-
tion methods particularly suited to the norms we have defined. They essentially
allow to solve the problem regularized with a new norm at low implementation
and computational costs. For a more complete presentation of optimization tech-
niques adapted to sparsity-inducing norms, see Bach et al. (2012).

Proximal methods constitute a class of first-order techniques typically designed
to solve problem (2.1) (Nesterov, 2007; Beck and Teboulle, 2009; Combettes and
Pesquet, 2010). They take advantage of the structure of (2.1) as the sum of two
convex terms. For simplicity, we will present here the proximal method known as
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12 BACH ET AL.

forward-backward splitting which assumes that at least one of these two terms,
is smooth. Thus, we will typically assume that the loss function ℓ is convex
differentiable, with Lipschitz-continuous gradients (such as the logistic or square
loss), while Ω will only be assumed convex.

Proximal methods have become increasingly popular over the past few years,
both in the signal processing (e.g., Becker et al., 2009; Wright et al., 2009; Com-
bettes and Pesquet, 2010, and numerous references therein) and in the machine
learning communities (e.g., Jenatton et al., 2011b; Chen et al., 2011; Bach et al.,
2012, and references therein). In a broad sense, these methods can be described
as providing a natural extension of gradient-based techniques when the objec-
tive function to minimize has a non-smooth part. Proximal methods are iterative
procedures. Their basic principle is to linearize, at each iteration, the function f
around the current estimate ŵ, and to update this estimate as the (unique, by
strong convexity) solution of the so-called proximal problem. Under the assump-
tion that f is a smooth function, it takes the form:

(3.4) min
w∈Rp

[

f(ŵ) + (w − ŵ)⊤∇f(ŵ) + λΩ(w) +
L

2
‖w − ŵ‖22

]

.

The role of the added quadratic term is to keep the update in a neighborhood of
ŵ where f stays close to its current linear approximation; L> 0 is a parameter
which is an upper bound on the Lipschitz constant of ∇f .

Provided that we can solve efficiently the proximal problem (3.4), this first iter-
ative scheme constitutes a simple way of solving problem (2.1). It appears under
various names in the literature: proximal-gradient techniques (Nesterov, 2007),
forward-backward splitting methods (Combettes and Pesquet, 2010), and itera-
tive shrinkage-thresholding algorithm (Beck and Teboulle, 2009). Furthermore,
it is possible to guarantee convergence rates for the function values (Nesterov,
2007; Beck and Teboulle, 2009), and after k iterations, the precision be shown to
be of order O(1/k), which should contrasted with rates for the subgradient case,
that are rather O(1/

√
k).

This first iterative scheme can actually be extended to “accelerated” ver-
sions (Nesterov, 2007; Beck and Teboulle, 2009). In that case, the update is
not taken to be exactly the result from (3.4); instead, it is obtained as the solu-
tion of the proximal problem applied to a well-chosen linear combination of the
previous estimates. In that case, the function values converge to the optimum
with a rate of O(1/k2), where k is the iteration number. From Nesterov (2004),
we know that this rate is optimal within the class of first-order techniques; in
other words, accelerated proximal-gradient methods can be as fast as without
non-smooth component.

We have so far given an overview of proximal methods, without specifying
how we precisely handle its core part, namely the computation of the proximal
problem, as defined in (3.4).

Proximal Problem. We first rewrite problem (3.4) as

min
w∈Rp

1

2

∥

∥

∥
w −

(

ŵ − 1

L
∇f(ŵ)

)

∥

∥

∥

2

2
+
λ

L
Ω(w).

Under this form, we can readily observe that when λ = 0, the solution of the prox-
imal problem is identical to the standard gradient update rule. The problem above
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STRUCTURED SPARSITY THROUGH CONVEX OPTIMIZATION 13

can be more generally viewed as an instance of the proximal operator (Moreau,
1962) associated with λΩ:

ProxλΩ : u ∈ R
p 7→ argmin

v∈Rp

1

2
‖u− v‖22 + λΩ(v).

For many choices of regularizers Ω, the proximal problem has a closed-form
solution, which makes proximal methods particularly efficient. It turns out that
for the norms defined in this paper, we can compute in a large number of cases the
proximal operator exactly and efficiently (see Bach et al., 2012). If Ω is chosen to
be the ℓ1-norm, the proximal operator is simply the soft-thresholding operator ap-
plied elementwise (Donoho and Johnstone, 1995). More formally, we have for all j
in J1; pK, Proxλ‖.‖1 [u]j = sign(uj)max(|uj |−λ, 0). For the group Lasso penalty of
Eq. (3.1) with q = 2, the proximal operator is a group-thresholding operator and
can be also computed in closed form: ProxλΩ[u]g = (ug/‖ug‖2)max(‖ug‖2−λ, 0)
for all g in G. For norms with hierarchical groups of variables (in the sense de-
fined in Section 3.2), the computation of the proximal operator can be obtained
by a composition of group-thresholding operators in a time linear in the num-
ber p of variables (Jenatton et al., 2011b). In other settings, e.g., general over-
lapping groups of ℓ∞-norms, the exact proximal operator implies a more expen-
sive polynomial dependency on p using network flow techniques (Mairal et al.,
2011), but approximate computation is possible without harming the convergence
speed (Schmidt et al., 2011). Most of these norms and the associated proximal
problems are implemented in the open-source software SPAMS4.

In summary, with proximal methods, generalizing algorithms from the ℓ1-norm
to a structured norm requires only to be able to compute the corresponding
proximal operator, which can be done efficiently in many cases.

3.6 Theoretical Analysis

Sparse methods are traditionally analyzed according to three different criteria;
it is often assumed that the data were generated by a sparse loading vector w∗.
Denoting ŵ a solution of the M -estimation problem in Eq. (2.1), traditional
statistical consistency results aim at showing that ‖w∗− ŵ‖ is small for a certain
norm ‖ · ‖; model consistency considers the estimation of the support of w∗ as
a criterion, while, prediction efficiency only cares about the prediction of the
model, i.e., with the square loss, the quantity ‖Xw∗ −Xŵ‖22 has to be as small
as possible.

A striking consequence of assuming that w∗ has many zero components is
that for the three criteria, consistency is achievable even when p is much larger
than n (Zhao and Yu, 2006; Wainwright, 2009; Bickel et al., 2009; Zhang, 2009).

However, to relax the often unrealistic assumption that the data are gener-
ated by a sparse loading vector, and also because a good predictor, especially in
the high-dimensional setting, can possibly be much sparser than any potential
true model generating the data, prediction efficiency is often formulated under
the form of oracle inequalities, where the performance of the estimator is upper
bounded by the performance of any function in a fixed complexity class, reflecting
approximation error, plus a complexity term characterizing the class and reflect-
ing the hardness of estimation in that class. We refer the reader to van de Geer

4http://www.di.ens.fr/willow/SPAMS/

imsart-sts ver. 2011/05/20 file: stat_science_structured_sparsity.tex date: March 16, 2012

http://www.di.ens.fr/willow/SPAMS/


14 BACH ET AL.

(2010) for a review and references on oracle results for the Lasso and the group
Lasso.

It should be noted that model selection consistency and prediction efficiency
are obtained in quite different regimes of regularization, so that it is not possi-
ble to obtain both types of consistency with the same Lasso estimator (Shalev-
Shwartz et al., 2010). For prediction consistency, the regularization parameter
is easily chosen by cross-validation on the prediction error. For model selection
consistency, the regularization coefficient should typically be much larger than for
prediction consistency; but rather than trying to select an optimal regularization
parameter in that case, it is more natural to consider the collection of models ob-
tained along the regularization path and to apply usual model selection methods
to choose the best model in the collection. One method that works reasonably
well in practice, sometimes called “OLS hybrid” for the least squares loss (Efron
et al., 2004b), consists in refitting the different models without regularization and
to choose the model with the best fit by cross-validation.

In structured sparse situations, such high-dimensional phenomena can also be
characterized. Essentially, if one can make the assumption that w∗ is compati-
ble with the additional prior knowledge on the sparsity pattern encoded in the
norm Ω, then, some of the assumptions required for consistency can sometimes be
relaxed (see Huang and Zhang, 2010; Jenatton et al., 2011a; Huang et al., 2011;
Bach, 2010a), and faster rates can sometimes be obtained (Huang and Zhang,
2010; Huang et al., 2011; Obozinski et al., 2011b; Negahban and Wainwright,
2011; Bach, 2009; Percival, 2011). However, one major difficulty that arises is
that some of the conditions for recovery or to obtain fast rates of convergence de-
pend on an intricate interaction between the sparsity pattern, the design matrix
and the noise covariance, which leads in each case to sufficient conditions that
are typically not directly comparable between different structured or unstruc-
tured cases (Jenatton et al., 2011a). Moreover, even if the sufficient conditions
are satisfied simultaneously for the norms to be compared, sharper bounds on
rates and sample complexities would still often be needed to characterize more
accurately the improvement resulting from having a stronger structural a priori.

4. SPARSE PRINCIPAL COMPONENT ANALYSIS AND DICTIONARY

LEARNING

Unsupervised learning aims at extracting latent representations of the data
that are useful for analysis, visualization, denoising or to extract relevant infor-
mation to solve subsequently a supervised learning problem. Sparsity or struc-
tured sparsity are essential to specify, on the representations, constraints that
improve their identifiability and interpretability.

4.1 Analysis and Synthesis Views of PCA

Depending on how the latent representation is extracted or constructed from
the data, it is useful to distinguish two points of view. This is illustrated well in
the case of PCA.

In the analysis view, PCA aims at finding sequentially a set of directions in
space that explain the largest fraction of the variance of the data. This can be
formulated as an iterative procedure in which a one-dimensional projection of
the data with maximal variance is found first, then the data are projected on
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STRUCTURED SPARSITY THROUGH CONVEX OPTIMIZATION 15

the orthogonal subspace (corresponding to a deflation of the covariance matrix),
and the process is iterated. In the synthesis view, PCA aims at finding a set
of vectors, or dictionary elements (in a terminology closer to signal processing)
such that all observed signals admit a linear decomposition on that set with low
reconstruction error. In the case of PCA, these two formulations lead to the same
solution (an eigenvalue problem). However, in extensions of PCA, in which either
the dictionary elements or the decompositions of signals are constrained to be
sparse or structured, they lead to different algorithms with different solutions.

The analysis interpretation leads to sequential formulations (d’Aspremont et al.,
2008; Moghaddam et al., 2006; Jolliffe et al., 2003) that consider components one
at a time and perform a deflation of the covariance matrix at each step (see
Mackey, 2009). The synthesis interpretation leads to non-convex global formula-
tions (see, e.g., Zou et al., 2006; Moghaddam et al., 2006; Aharon et al., 2006;
Mairal et al., 2010) which estimate simultaneously all principal components, typ-
ically do not require the orthogonality of the components, and are referred to
as matrix factorization problems (Singh and Gordon, 2008; Bach et al., 2008) in
machine learning, and dictionary learning in signal processing (Olshausen and
Field, 1996).

While we could also impose structured sparse priors in the analysis view, we
will consider from now on the synthesis view, that we will introduce with the
terminology of dictionary learning.

4.2 Dictionary Learning

Given a matrix X ∈ R
m×n of n columns corresponding to n observations in R

m,
the dictionary learning problem is to find a matrix D ∈ R

m×p, called dictionary,
such that each observation can be well approximated by a linear combination of
the p columns (dk)k∈J1;pK of D called the dictionary elements. If A ∈ R

p×n is
the matrix of the linear combination coefficients or decomposition coefficients (or
codes), with ak the k-th column of A being the coefficients for the k-th signal
xk, the matrix product DA is called a decomposition of X.

Learning simultaneously the dictionary D and the coefficients A corresponds
to a matrix factorization problem (see Witten et al., 2009, and reference therein).

As formulated by Bach et al. (2008) or Witten et al. (2009), it is natural, when
learning a decomposition, to penalize or constrain some norms or pseudo-norms
of A andD, say ΩA and ΩD respectively, to encode prior information — typically
sparsity — about the decomposition of X. While in general the penalties could
be defined globally on the matrices A and D, we assume that each column of D
and A is penalized separately. This can be written as

(4.1) min
A∈Rp×n,
D∈Rm×p

1

2nm

∥

∥X−DA
∥

∥

2

F
+ λ

p
∑

k=1

ΩD(dk), s.t. ΩA(a
i) ≤ 1, ∀ i ∈ J1;nK,

where the regularization parameter λ ≥ 0 controls to which extent the dictionary
is regularized. If we assume that both regularizations ΩA and ΩD are convex,
problem (4.1) is convex with respect to A for fixed D and vice versa. It is how-
ever not jointly convex in the pair (A,D), but alternating optimization schemes
generally lead to good performance in practice.
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4.3 Imposing Sparsity

The choice of the two norms ΩA and ΩD is crucial and heavily influences the
behavior of dictionary learning. Without regularization, any solution (D,A) is
such that DA is the best fixed-rank approximation of X, and the problem can
be solved exactly with a classical PCA. When ΩA is the ℓ1-norm and ΩD the
ℓ2-norm, we aim at finding a dictionary such that each signal xi admits a sparse
decomposition on the dictionary. In this context, we are essentially looking for
a basis where the data have sparse decompositions, a framework we refer to as
sparse dictionary learning. On the contrary, when ΩA is the ℓ2-norm and ΩD

the ℓ1-norm, the formulation induces sparse principal components, i.e., atoms
with many zeros, a framework we refer to as sparse PCA. In Section 4.4 and
Section 4.5, we replace the ℓ1-norm by structured norms introduced in Section 3,
leading to structured versions of the above estimation problems.

4.4 Adding Structures to Principal Components

One of PCA’s main shortcomings is that, even if it finds a small number of
important factors, the factor themselves typically involve all original variables.
In the last decade, several alternatives to PCA which find sparse and potentially
interpretable factors have been proposed, notably non-negative matrix factoriza-
tion (NMF) (Lee and Seung, 1999) and sparse PCA (SPCA) (Jolliffe et al., 2003;
Zou et al., 2006; Zass and Shashua, 2007; Witten et al., 2009).

However, in many applications, only constraining the size of the supports of the
factors does not seem appropriate because the considered factors are not only ex-
pected to be sparse but also to have a certain structure. In fact, the popularity of
NMF for face image analysis owes essentially to the fact that the method happens
to retrieve sets of variables that are partly localized on the face and capture some
features or parts of the face which seem intuitively meaningful given our a priori.
We might therefore gain in the quality of the factors induced by enforcing directly
this a priori in the matrix factorization constraints. More generally, it would be
desirable to encode higher-order information about the supports that reflects the
structure of the data. For example, in computer vision, features associated to the
pixels of an image are naturally organized on a grid and the supports of factors
explaining the variability of images could be expected to be localized, connected
or have some other regularity with respect to that grid. Similarly, in genomics,
factors explaining the gene expression patterns observed on a microarray could
be expected to involve groups of genes corresponding to biological pathways or
set of genes that are neighbors in a protein-protein interaction network.

Based on these remarks and with the norms presented earlier, sparse PCA is
readily extended to structured sparse PCA (SSPCA), which explains the variance
of the data by factors that are not only sparse but also respect some a priori struc-
tural constraints deemed relevant to model the data at hand: slight variants of
the regularization term defined in Section 3 (with the groups defined in Figure 4)
can be used successfully for ΩD.

Experiments on face recognition. By definition, dictionary learning belongs to
unsupervised learning; in that sense, our method may appear first as a tool for
exploratory data analysis, which leads us naturally to qualitatively analyze the
results of our decompositions (e.g., by visualizing the learned dictionaries). This
is obviously a difficult and subjective exercise, beyond the assessment of the
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consistency of the method in artificial examples where the “true” dictionary is
known. For quantitative results, see Jenatton et al. (2011a).5

We apply SSPCA on the cropped AR Face Database (Martinez and Kak, 2001)
that consists of 2600 face images, corresponding to 100 individuals (50 women
and 50 men). For each subject, there are 14 non-occluded poses and 12 occluded
ones (the occlusions are due to sunglasses and scarfs). We reduce the resolution
of the images from 165×120 pixels to 38×27 pixels for computational reasons.

Figure 7 shows examples of learned dictionaries (for p = 36 elements), for
NMF, unstructured sparse PCA (SPCA), and SSPCA. While NMF finds sparse
but spatially unconstrained patterns, SSPCA selects sparse convex areas that
correspond to a more natural segment of faces. For instance, meaningful parts
such as the mouth and the eyes are recovered by the dictionary.

4.5 Hierarchical Dictionary Learning

In this section, we consider sparse dictionary learning, where the structured
sparse prior knowledge is put on the decomposition coefficients, i.e., the matrix A

in Eq. (4.1), and present an application to text documents.
Text documents. The goal of probabilistic topic models is to find a low-dimen-

sional representation of a collection of documents, where the representation should
provide a semantic description of the collection. Approaching the problem in a
parametric Bayesian framework, latent Dirichlet allocation (LDA), Blei et al.
(2003) models documents, represented as vectors of word counts, as a mixture of
a predefined number of latent topics, defined as multinomial distributions over a
fixed vocabulary. The number of topics is usually small compared to the size of
the vocabulary (e.g., 100 against 10 000), so that the topic proportions of each
document provide a compact representation of the corpus.

In fact the problem addressed by LDA is fundamentally a matrix factorization
problem. For instance, Buntine (2002) argued that LDA can be interpreted as
a Dirichlet-multinomial counterpart of factor analysis. We can actually cast the
problem in the dictionary learning formulation that we presented before6. Indeed,
suppose that the signals X = [x1, . . . ,xn] in R

m×n are each the so-called bag-of-
word representation of each of n documents over a vocabulary of m words, i.e.,
xi is a vector whose k-th component is the empirical frequency in document i
of the k-th word of a fixed lexicon. If we constrain the entries of D and A

to be nonnegative, and the dictionary elements dj to have unit ℓ1-norm, the
decomposition (D,A) can be interpreted as the parameters of a topic-mixture
model. Sparsity here ensures that a document is described by a small number of
topics.

Switching to structured sparsity allows in this case to organize automatically
the dictionary of topics in the process of learning it. Assume that ΩA in Eq. (4.1)
is a tree-structured regularization, such as illustrated on Figure 5; in this case,
in the light of Section 3.2, if the decomposition of a document involves a certain
topic, then all ancestral topics in the tree are also present in the topic decompo-
sition. Since the hierarchy is shared by all documents, the topics close to the root
participate in every decomposition, and given that the dictionary is learned, this

5A Matlab toolbox implementing our method can be downloaded from
http://www.di.ens.fr/~jenatton/.

6Doing so we simply trade the multinomial likelihood with a least-square formulation.
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Fig 7: Top left, examples of faces in the datasets. The three remaining images rep-
resent learned dictionaries of faces with p=36: NMF (top right), SPCA (bottom
left) and SSPCA (bottom right). The dictionary elements are sorted in decreasing
order of explained variance. While NMF gives sparse spatially unconstrained pat-
terns, SSPCA finds convex areas that correspond to more natural face segments.
SSPCA captures the left/right illuminations and retrieves pairs of symmetric pat-
terns. Some displayed patterns do not seem to be convex, e.g., nonzero patterns
located at two opposite corners of the grid. However, a closer look at these dic-
tionary elements shows that convex shapes are indeed selected, and that small
numerical values (just as regularizing by ℓ2-norm may lead to) give the visual
impression of having zeroes in convex nonzero patterns. This also shows that if
a nonconvex pattern has to be selected, it will be, by considering its convex hull.

mechanism forces those topics to be quite generic—essentially gathering the lex-
icon which is common to all documents. Conversely, the deeper the topics in the
tree, the more specific they should be. It should be noted that such hierarchical
dictionaries can also be obtained with generative probabilistic models, typically
based on non-parametric Bayesian prior over trees or paths in trees, and which
extend the LDA model to topic hierarchies (Blei et al., 2010; Adams et al., 2010).
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Fig 8: Example of a topic hierarchy estimated from 1714 NIPS proceedings pa-
pers (from 1988 through 1999). Each node corresponds to a topic whose 5 most
important words are displayed. Single characters such as n, t, r are part of the
vocabulary and often appear in NIPS papers, and their place in the hierarchy is
semantically relevant to children topics.

Visualization of NIPS proceedings. We qualitatively illustrate our approach on
the NIPS proceedings from 1988 through 1999 (Griffiths and Steyvers, 2004).
After removing words appearing fewer than 10 times, the dataset is composed of
1714 articles, with a vocabulary of 8274 words. As explained above, we enforce
both the dictionary and the sparse coefficients to be non-negative, and constrain
the dictionary elements to have a unit ℓ1-norm. Figure 8 displays an example of
a learned dictionary with 13 topics, obtained by using a tree-structured penalty
(see Section 3.2) on the coefficients A and by selecting manually7 λ= 2−15. As
expected and similarly to Blei et al. (2010), we capture the stopwords at the root
of the tree, and topics reflecting the different subdomains of the conference such
as neurosciences, optimization or learning theory.

5. HIGH-DIMENSIONAL NON-LINEAR VARIABLE SELECTION

In this section, we show how structured sparsity-inducing norms may be used
to provide an efficient solution to the problem of high-dimensional non-linear
variable selection. Namely, given p variables x = (x1, . . . ,xp), our aim is to find
a non-linear function f(x1, . . . ,xp) which depends only on a few variables. First
approaches to the problem have considered restricted functional forms such as

7The regularization parameter striking a good compromise between sparsity and reconstruc-
tion of the data is chosen here by hand because (a) cross-validation would yield a significantly
less sparse dictionary and (b) model selection criteria would not apply without serious caveats
here since the dictionary is learned at the same time.
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f(x1, . . . ,xp) = f1(x1) + · · · + fp(xp), where each f1, . . . , fp are univariate non-
linear functions (Ravikumar et al., 2009; Bach, 2008). However, many non-linear
functions cannot be expressed as sums of functions of these forms. Additional
interactions have been added leading to functions of the form f(x1, . . . ,xp) =
∑

J⊂{1,...,p}, |J |62 fJ(xJ) (Lin and Zhang, 2006). While second-order interactions
make the class of functions larger, our aim in this section is to consider functions
which can be expressed as a sparse linear combination of the form f(x1, . . . ,xq) =
∑

J⊂{1,...,p} fJ(xJ), i.e., a combination of functions defined on potentially larger
subsets of variables.

The main difficulties associated with this problem are that (1) each function fJ
has to be estimated, leading to a non-parametric problem, and (2) there are expo-
nentially many such functions. We propose however an approach that overcomes
both difficulties in the next section, based on the ideas that estimating functions
rather than vectors can be tackled with estimators in reproducing kernel Hilbert
spaces (see Section 5.1), and that the complexity issues can be addressed by
imposing some structure among all the subsets J ⊂ {1, . . . , p} (see Section 5).

5.1 Multiple Kernel Learning: From Linear to Non-Linear Predictions

Reproducing kernel Hilbert spaces are arguably the simplest spaces for the
non-parametric estimation of non-linear functions since most learning algorithms
for linear models are directly ported to any RKHS via simple kernelization. We
therefore start by reviewing learning from a single and later multiple reproducing
kernels, since our approach will be based on combining functions from multiple
(actually a hierarchy) of RKHSes. For more details, see Bach (2008).

Single kernel learning. Let us assume that the n input data-points x(1), . . . ,x(n)

belong to a set X (not necessarily R
p), and consider predictors of the form

〈f,Φ(x)〉 where Φ : X → F is a map from the input space to a reproducing
kernel Hilbert space F (associated to the kernel function k), which we refer to as
the feature space. These predictors are linearly parameterized, but may depend
non-linearly on x. We consider the following estimation problem:

min
f∈F

1

n

n
∑

i=1

ℓ(y(i), 〈f ,Φ(x(i))〉) + λ

2
‖f‖2F ,

where ‖.‖F is the Hilbertian norm associated to F . The representer theorem (Kimel-
dorf and Wahba, 1971) states that, for all loss functions (potentially nonconvex),
the solution f admits the expansion f =

∑n
i=1 αiΦ(x

(i)), so that, replacing f by
its new expression, we can now minimize

min
α∈Rn

1

n

n
∑

i=1

ℓ(y(i), (Kα)i) +
λ

2
α

⊤Kα,

where K is the kernel matrix, an n × n matrix whose element (i, j) is equal to
〈Φ(x(i)),Φ(x(j))〉 = k(x(i),x(j)). This optimization problem involves the observa-
tions x(1), . . . ,x(n) only through the kernel matrix K, and can thus be solved, as
long as K can be evaluated efficiently. See Shawe-Taylor and Cristianini (2004)
for more details.
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Multiple kernel learning (MKL). We can now assume that we are given m
Hilbert spaces Fj, j = 1, . . . ,m, and look for predictors of the form f(x) = g1(x)+
· · ·+gm(x), where8 each gj ∈ Fj . In order to have many gj equal to zero, we can
penalize f using a sum of norms similar to the group Lasso penalties introduced
earlier, namely

∑m
j=1 ‖gj‖Fj

. This leads to selection of functions. Moreover, it
turns out that the optimization problems may be expressed also in terms of
the m kernel matrices, and it is equivalent to learn a sparse linear combination
K̂ =

∑m
j=1 ηjKj (with many η’s equal to zero) of kernel matrices with then α

solution of the single kernel learning problem for K̂. For more details, see Bach
(2008).

From MKL to sparse generalized additive models. As shown above, the MKL
framework is defined with any set of m RKHSes defined on the same base set X .
When the base set is itself defined as a cartesian product of p base sets, i.e., X =
X1×· · ·×Xp, then it is common to considerm = p RKHSes which are each of them
defined on a single Xi, leading to the desired functional form f1(x1)+ · · ·+ fp(xp).
To overcome the limitation of this functional form we need to consider a more
complex expansion.

5.2 Hierarchical Kernel Learning

In this section, we consider functional expansions with up to m = 2p terms
corresponding to different RKHSes, each defined on a cartesian product of a sub-
set of the p separate input spaces. Specifically, we consider functions of the form
f(x1, . . . ,xp) =

∑

J⊂{1,...,p} fJ(xJ ) with fJ chosen to live in a RKHS FJ defined
on variables xJ . Penalizing by the norm

∑

J⊂{1,...,p} ‖fJ‖FJ
would in theory lead

to an appropriate selection of functions from the various RKHSes (and to learn-
ing a sparse linear combination of the corresponding kernel matrices). However,
in practice, there are 2p such predictors, which is not algorithmically feasible.

This is where structured sparsity comes into play. In order to obtain polynomial-
time algorithms and theoretically controlled predictive performance, we may add
an extra constraint to the problem. Namely, we endow the power set of {1, . . . , p}
with the partial order of the inclusion of sets, and in this directed acyclic graph
(DAG), we require that predictors f select a subset only after all of its ances-
tors have been selected. This can be achieved in a convex formulation using a
structured-sparsity inducing norm of the type presented in Section 3.2, but de-
fined by a hierarchy of groups as follows

Ω
[

(fH
)

H⊂{1,...,p}
] =

∑

J⊂{1,...,p}

(

∑

H⊃J

‖fH‖22
)1/2

.

As illustrated in Figure 9, this norm corresponds to overlapping groups of vari-
ables defined on the directed acyclic graphs of all subsets of {1, . . . , p}. We will
explain briefly how introducing this norm may lead to polynomial time algo-
rithms and what theoretical guarantees are associated with it. Illustrations of
the application of hierarchical kernel learning to real data can be found in Bach
(2009).

Polynomial-time estimation algorithm. While we are, a priori, still facing an
estimation problem with 2p functions, it can be solved using an active set method,

8Notice that the function gj is not restricted to depend only on xj as before.
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Fig 9: Power set of the set {1, . . . , 4}: in blue, an authorized set of selected subsets.
In red, an example of a group used within the norm (a subset and all of its
descendants in the DAG).

which considers adding a component fJ ∈ FJ (resp. KJ) to the active set of
predictors (resp. kernels). The two crucial aspects are (1) to add the right kernel,
i.e., choose among the 2p which one to add, and (2) when to stop. As shown in
Bach (2009), these steps may be carried out efficiently for certain collections of
RKHSes FJ , in particular those for which we are able to compute efficiently (i.e.,
in polynomial time in p) the sum

∑

J⊂{1,...,p}KJ . This is the case, for example,

for Gaussian kernels kJ(xJ ,x
′
J) = exp(−γ‖xJ − x′

J‖2).
Theoretical analysis. Bach (2009) showed that under appropriate assumptions,

estimation under high-dimensional scaling, i.e., for p ≫ n but log p = O(n), is
possible in this situation, in spite of the fact that the number of terms in the
expansion is now potentially doubly exponential in n.

6. CONCLUSION

In this paper, we reviewed several approaches for structured sparsity, based
on convex optimization and the design of appropriate sparsity-inducing norms.
Analyses and algorithms for the traditional ℓ1-norm can readily be extended to
these new norms, making them an efficient and flexible tools for introducing prior
knowledge in high-dimensional statistical problems. We also presented several ap-
plications to supervised and unsupervised learning problems, where the proper
use of additional knowledge leads to improved interpretability of the sparse esti-
mates and/or increased predictive performance.
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