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High-dimensional data sets are commonly collected in many con-
temporary applications arising in various fields of scientific research.
We present two views of finite samples in high dimensions: a proba-
bilistic one and a non-probabilistic one. With the probabilistic view,
we establish the concentration property and robust spark bound
for large random design matrix generated from elliptical distribu-
tions, with the former related to the sure screening property and the
latter related to sparse model identifiability. An interesting concen-
tration phenomenon in high dimensions is revealed. With the non-
probabilistic view, we derive general bounds on dimensionality with
some distance constraint on sparse models. These results provide new
insights into the impacts of high dimensionality in finite samples.

1. Introduction. Thanks to the advances of information technologies,
large-scale data sets with a large number of variables or dimensions are com-
monly collected in many contemporary applications that arise in different
fields of sciences, engineering, and humanities. Examples include market-
ing data in business, panel data in economics and finance, genomics data
in heath sciences, and brain imaging data in neuroscience, among many
others. The emergence of a large amount of information contained in high-
dimensional data sets provides opportunities, as well as unprecedented chal-
lenges, for developing new statistical methods and theory. See, for example,
Hall (2006) and Fan and Li (2006) for insights and discussions on the statis-
tical challenges associated with high dimensionality, and Fan and Lv (2010)
for a brief review of some recent developments in high-dimensional sparse
modeling with variable selection. The approach of variable selection aims to
effectively identify important variables and efficiently estimate their effects
on a response variable of interest.

For the purpose of prediction and variable selection, it is important to
understand and characterize the impacts of high dimensionality in finite
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samples. Hall, Marron and Neeman (2005) investigated this problem under
the asymptotic framework of fixed sample size n and diverging dimensional-
ity p, and revealed an interesting geometric representation of high dimension,
low sample size data. When viewed in the diverging p-dimensional Euclidean
space, the randomness in the data vectors can be asymptotically squeezed
into random rotation, with the shape of the rescaled n-polyhedron approach-
ing deterministic, modulo the orientation. Such concentration phenomenon
of random design matrix in high dimensions is also shared by the concen-
tration property in Fan and Lv (2008) (see Definition 1), in the asymptotic
setting of both n and p diverging. Geometrically, this property means that
the configuration of the n sub-data vectors, modulo the orientation, becomes
close to regular asymptotically. Such a property is key to establishing the
sure screening property, which means that all important variables are re-
tained in the reduced feature space with asymptotic probability one, of the
sure independence screening (SIS) method introduced in Fan and Lv (2008).

The SIS uses the idea of independence learning by applying component-
wise regression. Techniques of independence learning have been widely used
for variable ranking and screening. Recent work on variable screening in-
cludes Fan and Fan (2008), Hall, Titterington and Xue (2009), Fan, Feng
and Song (2011), Xue and Zou (2011), Zhu et al. (2011), Delaigle and Hall
(2012), Li, Zhong and Zhu (2012), Mai and Zou (2012), and Bühlmann and
Mandozzi (2012), among others. The utility of these methods is character-
ized by the sure screening property. In particular, Fan and Lv (2008) proved
that the concentration property holds when the design matrix is generated
from Gaussian distribution, and conjectured that it may well hold for a wide
class of elliptical distributions. Samworth (2008) presented some simulation
studies investigating such a property for non-Gaussian distributions. The
first major contribution of our paper is to provide an affirmative answer to
the conjecture posed in Fan and Lv (2008).

To ensure model identifiability and stability for reliable prediction and
variable selection, it is practically important to control the collinearity for
sparse models. Since it is well known that the level of collinearity among
covariates typically increases with the model dimensionality, bounding the
sparse model size can be effective in controlling model collinearity. Such
a bound is characterized by the concept of robust spark (see Definition 2).
Another contribution of the paper is to establish a lower bound on the robust
spark in the setting of large random design matrix generated from the family
of elliptical distributions.

In addition to the above probabilistic view of finite samples in high di-
mensions, we also present a non-probabilistic high-dimensional geometric
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view. Both views are concerned with how much information finite sample
contains. A fundamental question is what the impact of high dimensionality
on differentiating the subspaces spanned by different sets of predictors is.
Such a question is tied to the issue of model identifiability. In this paper,
we intend to derive general bounds on dimensionality with some distance
constraint on sparse models.

The rest of the paper is organized as follows. Section 2 establishes the
concentration property and robust spark bound for large random design
matrix generated from elliptical distributions. We investigate general bounds
on dimensionality with distance constraint from a non-probabilistic point of
view in Section 3. Section 4 presents two numerical examples to illustrate
the theoretical results. We provide some discussions of our results and their
implications in Section 5. All technical details are relegated to the Appendix.

2. Concentration property and robust spark bound of large ran-

dom design matrix. In this section, we focus on the case of large ran-
dom design matrix observed in a high-dimensional problem, in which each
column vector contains the information of a particular covariate. In high-
dimensional sparse modeling, a common practice is to assume that only a
faction of all covariates, the so-called true or important covariates, contribute
to the regression or classification problem, whereas the other covariates, the
so-called noise covariates, are simply noise information. The inclusion of
noise covariates can deteriorate the performance of the estimated model due
to the well-known phenomenon of noise accumulation in high dimensional
prediction (Fan and Fan, 2008; Fan and Lv, 2010). A crucial issue behind
high-dimensional inference is to characterize the distance between the true
underlying sparse model and other sparse models, under some discrepancy
measure. Intuitively, such a distance can become smaller as the dimensional-
ity increases, making it more difficult to distinguish the true model from the
others. Therefore, it is a fundamental problem to characterize the impacts
of high dimensionality in finite samples.

2.1. Concentration property. We start with the task of dimensionality
reduction, particularly variable screening, which is useful in analyzing ultra-
high dimensional data sets. With the idea of independence learning, Fan
and Lv (2008) introduced the SIS method to reduce the dimensionality of
the feature space from the ultra-high scale to a moderate scale, such as
below sample size. They introduced an asymptotic framework under which
the SIS enjoys the sure screening property even when the dimensionality
can grow exponentially with the sample size; see their Theorem 1. The sure
screening property means that the true model is contained in the much re-
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duced model after variable screening with asymptotic probability one. In
particular, a key ingredient of their asymptotic analysis is the so-called con-
centration property in Condition 2 of Fan and Lv (2008). They verified such
property for random design matrix generated from Gaussian distribution,
and conjectured that it may also hold for a wide class of elliptical distribu-
tions. To show that SIS is widely applicable, it is crucial to establish the
concentration property for classes of non-Gaussian distributions.

The class of elliptical distributions, which is a wide family of distribu-
tions generalizing the multivariate normal distribution, has been broadly
used in real applications. Examples of non-normal elliptical distributions in-
clude the Laplace distribution, t-distribution, Cauchy distribution, logistic
distribution, and symmetric stable distribution. In particular, an important
subclass of elliptical distributions is the family of mixtures of normal dis-
tributions. Mixture distributions provide a useful tool for describing hetero-
geneous populations. Elliptical distributions also play an important role in
the theory of portfolio choice (Chamberlain, 1983; Owen and Rabinovitch,
1983). This is due to important properties that any affine transformation
of elliptically distributed random variables still has an elliptical distribu-
tion and each elliptical distribution is uniquely determined by its location
and scale parameters. An implication in portfolio theory is that if all asset
returns jointly follow an elliptical distribution, then all portfolios are charac-
terized fully by their location and scale parameters. We refer to Fang, Kotz
and Ng (1990) for a comprehensive account of elliptical distributions.

Assume that x = (X1, · · · ,Xp)
T is a p-dimensional random covariate

vector having an elliptical distribution νp with mean 0 and nonsingular co-
variance matrix Σ, and that we have a sample (xi)

n
i=1 of i.i.d. covariate

vectors from this distribution. Then we have an n×p random design matrix
X = (x1, · · · ,xn)

T . By the definition of elliptical distribution (see Muir-
head, 1982 or Fang, Kotz and Ng, 1990), the transformed p-dimensional
random vector z = (Z1, · · · , Zp)

T = Σ−1/2x has a spherical distribution µp

with mean 0 and covariance matrix Ip. Similarly, we define the transformed
covariate vectors and transformed random design matrix as

(1) zi = Σ−1/2xi and Z = XΣ−1/2,

where i = 1, · · · , n. Clearly, z1, · · · , zn are n i.i.d. copies of the transformed
random covariate vector z. We denote by λmax(·) and λmin(·) the largest
and smallest eigenvalue of a given matrix, respectively. In high-dimensional
problems, we often face the situation of p ≫ n, so it is desirable to reduce the
dimensionality of the feature space from p to a moderate one such as below
sample size n. The SIS is capable of doing so when the random design matrix



IMPACTS OF HIGH DIMENSIONALITY IN FINITE SAMPLES 5

X satisfies the following property, as introduced in Fan and Lv (2008).

Definition 1 (Concentration property). The random design matrix X

is said to satisfy the concentration property if there exist some positive con-
stants c1, C1 such that the deviation probability bound

(2) P
{
λmax(p̃

−1Z̃Z̃
T
) > c1 or λmin(p̃

−1Z̃Z̃
T
) < c−1

1

}
≤ exp(−C1n)

holds for each n × p̃ submatrix Z̃ of Z with cn < p̃ ≤ p and c > 1 some
positive constant.

As mentioned in the Introduction, the above concentration property shows
a similar concentration phenomenon of large random design matrix to that
in Hall, Marron and Neeman (2005). When the distribution νp of the co-
variate vector x is p-variate Gaussian, Fan and Lv (2008) proved that the
random design matrix X satisfies the concentration property. We now con-
sider a more general class of distributions including Gaussian distributions,
the family of elliptical distributions. Assume that P (z = 0) = 0. Then it
follows from Theorem 1.5.6 in Muirhead (1982) that the p-variate spher-
ical distribution µp has a density function with respect to the Lebesgue
measure that is spherically symmetric on R

p. We will work with the family
of log-concave spherical distributions on R

p that satisfy the following two
conditions.

Condition 1. The density function exp{−Up(v)} of the p-variate log-
concave spherical distribution µp satisfies that for some positive constant
c2,

(3) ∇2Up(v) ≥ c2Ip uniformly in v ∈ R
p,

where ∇2Up denotes the Hessian matrix and A ≥ B means that A − B is
positive semidefinite for any symmetric matrices A and B.

Condition 2. There exists some positive constant c3 ≤ 1 such that
E|Z1| ≥ c3.

Condition 1 puts a constraint on the curvature of the log-density of dis-
tribution µp, and Condition 2 requires that the mean E|Z1| needs to be
bounded from below. Clearly, log-concave spherical distributions satisfying
Conditions 1–2 comprise a wide class containing Gaussian distributions. As
seen in Lemma 2 later, Condition 1 entails that the corresponding spher-
ical distribution is light-tailed, which is important for variable screening.
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For heavy-tailed data sets, Delaigle and Hall (2012) showed that effective
variable selection with untransformed data requires slower growth of dimen-
sionality. In particular, they exploited variable transformation methods to
transform the original data into light-tailed data and demonstrated their
effectiveness and advantages. So in the presence of heavy-tailed data, one
may work with the assumption of elliptical distributions on the transformed
data.

The assumption of elliptical distributions is commonly used in dimension
reduction and has also been used for variable screening. See, for example,
Zhu et al. (2011). This assumption facilitates our technical analysis. Similar
results may hold for more general family of distributions by resorting to
techniques in random matrix theory. Some other variable screening methods
such as in Mai and Zou (2012) require no such an assumption.

Theorem 1 (Concentration property). Under Conditions 1–2, the ran-
dom design matrix X satisfies the concentration property (2).

Theorem 1 shows that the concentration property holds not only for Gaus-
sian distributions, but also for a wide class of elliptical distributions, as
conjectured by Fan and Lv (2008) (see their Section 5.1). This provides an
affirmative answer to their conjecture, showing that the SIS indeed enjoys
the sure screening property for the random design matrix generated from a
wide class of elliptical distributions. The proof of Theorem 1 relies on the
following three lemmas that are of independent interest.

Lemma 1. Under Condition 1, each q-variate marginal distribution µ̃q

of µp with 1 ≤ q ≤ p satisfies the logarithmic Sobolev inequality

(4) Eµ̃q

{
f2 log f2

}
≤ 2C2Eµ̃q

‖∇f‖22

for any smooth function f on R
q with Eµ̃q

f2 = 1, where C2 = c−1
2 and ∇f

denotes the gradient of function f .

Lemma 2. Let zq be an arbitrary q-dimensional subvector of z with 1 ≤
q ≤ p. Then we have

a) Under Condition 1, it holds for any r ∈ (0,∞) that

(5) P {|‖zq‖2 − E‖zq‖2| > r} ≤ 2 exp{−C−1
2 r2/2};

b) It holds that

(6)
√
qE|Z1| ≤ E‖zq‖2 ≤

√
q.
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Lemma 3. Assume that Conditions 1–2 hold, zq is a q-dimensional sub-
vector of z with n ≤ q ≤ p, and w ∼ N(0, Iq). Then there exist some positive
constants c4 < 1, c5 > 1, and C3 such that

(7) P

{‖zq‖2
‖w‖2

< c4 or
‖zq‖2
‖w‖2

> c5

}
≤ 4 exp{−C3n}.

Lemma 1 shows that each marginal distribution of µp satisfies the loga-
rithmic Sobolev inequality, which is an important tool for proving the con-
centration probability inequality for measures. Lemma 2 establishes that
for each q-dimensional subvector zq of z, its L2-norm ‖zq‖2 concentrates
around the mean E‖zq‖2 with significant probability, which is in turn sand-
wiched between two quantities

√
qE|Z1| and

√
q. Lemma 3 demonstrates an

interesting phenomenon of measure concentration in high dimensions.

2.2. Robust spark bound. As is well-known in high-dimensional sparse
modeling, controlling the level of collinearity for sparse models is essential
for model identifiability and stable estimation. For a given n× p design ma-
trix X, there may exist another p-vector β1 that is different from the true
regression coefficient vector β0 such that Xβ1 is (nearly) identical to Xβ0,
when the dimensionality p is large compared with the sample size n. This
indicates that model identifiability is generally not guaranteed in high di-
mensions when no additional constraint is imposed on the model parameter.
In addition, the subdesign matrix corresponding to a sparse model should
be well-conditioned to ensure reliable estimation of model parameters and
nice convergence rates as in such as the least-squares or maximum likeli-
hood estimation. As an example, the covariance matrix of the least-squares
estimator is proportional to the inverse Gram matrix given by the design
matrix.

Since the collinearity among the covariates increases with the dimension-
ality as evident from the geometric point of view, a natural and effective
way to ensure model identifiability and reduce model instability is to con-
trol the size of sparse models. Such an idea has been adopted in Donoho
and Elad (2003) for the problem of sparse recovery, which is the noiseless
case of linear regression. In particular, they introduced the concept of spark
as a bound on sparse model size to characterize model identifiability. The
spark κ of the design matrix X is defined as the smallest possible positive
integer such that there exists a singular n×κ submatrix of X. This concept
plays an important role in the problem of sparse recovery; see also Lv and
Fan (2009). An implication is that the true model parameter vector β0 is
uniquely defined as long as ‖β0‖0 < κ/2, which provides a basic condition
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for model identifiability. For the problem of variable selection in the pres-
ence of noise, a stronger condition than provided by the spark is generally
needed. For this purpose, the concept of spark was generalized in Zheng,
Fan and Lv (2012) by introducing the concept of robust spark, as follows.

Definition 2 (Robust spark). The robust spark κc of the n× p design
matrix X is defined as the smallest possible positive integer such that there
exists an n × κc submatrix of n−1/2X having a singular value less than a
given positive constant c.

It is easy to see that the robust spark κc approaches the spark of X

as c → 0+. The robust spark provides a natural bound on model size for
effectively controlling the collinearity level of sparse models, which is referred
to as the robust spark condition. For each sparse model with size d < κc, the
corresponding n× d submatrix of n−1/2X have all singular values bounded
from below by c. The robust spark κc is always a positive integer no larger
than n+ 1. It is practically important in high-dimensional sparse modeling
to show that the robust spark can be some large number diverging with the
sample size n. We intend to build a lower bound on the robust spark for the
case of random design matrix, following the setting in Section 2.1.

Theorem 2 (Robust spark bound). Assume that the rows of the n× p
random design matrix X are i.i.d. as νp having mean 0 and covariance
matrix Σ and satisfying Conditions 1–2, with λmin(Σ) bounded from be-
low by some positive constant. Then with asymptotic probability one, κc ≥
c̃n/(log p) for sufficiently small constant c and some positive constant c̃ de-
pending only on c.

Theorem 2 formally characterizes the order of the robust spark κc when
the design matrix X is generated from the family of elliptical distributions.
We see that sparse linear models of size as large as of order O {n/(log p)}
can still be well separated from each other. On the other hand, when the
true model size is beyond such an order, the true underlying sparse model
may be indistinguishable from others in finite sample. Theorem 2 also jus-
tifies the range of the true sparse model size under which the problem of
variable selection is meaningful. The deflation factor of log p represents the
general price one has to pay for the search of important covariates in high
dimensions.

The concept of robust spark shares a similar spirit as the restricted eigen-
value condition on the design matrix in Bickel, Ritov and Tsybakov (2009),
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in the sense that both are sparse eigenvalue type conditions. Instead of con-
straining the sparse model size, the restricted eigenvalue condition uses an
L1-norm constraint on the parameter vector. As discussed in Zheng, Fan
and Lv (2012), the robust spark condition can be weaker than the restricted
eigenvalue condition, since the L0-norm constraint can define a smaller sub-
set than the L1-norm constraint. Many other conditions have also been in-
troduced to characterize the properties of variable selection methods such
as the Lasso. See, for example, van de Geer and Bühlmann (2009) for a
comprehensive comparison and discussions on these conditions.

In particular, the robust spark condition is weaker than the partial orthog-
onality condition, which requires that true covariates and noise covariates
are essentially uncorrelated, with absolute correlation of the order O(n−1/2).
In contrast, the robust spark condition can allow for much stronger correla-
tion between true covariates and noise covariates. The robust spark condi-
tion can also be weaker than the irrepresentable condition. To see this, let
us consider the simple example constructed in Lv and Fan (2009). In their
Example 1, the irrepresentable condition becomes the constraint that the
maximum absolute correlation between the response and all noise covariates
is bounded from above by s−1/2, where s denotes the true model size. Since
the response is a linear combination of true covariates in that example, this
indicates that the irrepresentable condition can be stronger than the robust
spark condition when the true model size grows.

3. General bounds on dimensionality with distance constraint.

We have provided in Section 2 a probabilistic view of finite samples in high
dimensions, with focus on large random design matrix generated from the
family of elliptical distributions. It is also important to understand how
the dimensionality plays an role in deterministic finite samples. For such a
purpose, we take a high-dimensional geometric view of finite samples and
derive general bounds on dimensionality using non-probabilistic arguments.
With a slight abuse of notation, we now denote by xj an n-dimensional
vector of observations from the j-th covariate, and consider a collection of
p covariates {xj : j = 1, · · · , p}. Assume that each covariate vector xj is
rescaled to have L2-norm n1/2. Then all vectors n−1/2xj, j = 1, · · · , p, lie
on the unit sphere Sn−1 in the n-dimensional Euclidean space R

n. We are
interested in a natural question that how many variables there can be if the
maximum collinearity of sparse models is controlled.

For each positive integer s, denote by As the set of all subspaces spanned
by s of covariates xj ’s. Assume that s is less than half of the spark κ of the n×
p design matrixX = (x1, · · · ,xp). Then each subspace inAs is s-dimensional
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and |As| =
(
p
s

)
. To control the collinearity among the variables, it is desirable

to bound the distances between s-dimensional subspaces in As away from
zero, under some discrepancy measure. When each pair of subspaces in As

has a positive distance, intuitively there cannot be too many of them. The
geometry of the space of all s-dimensional subspaces of R

n is characterized
by the Grassmann manifold Gn,s. To facilitate our presentation, we list in
Appendix B some necessary background and terminology on the geometry
and invariant measure of Grassmann manifold. In particular, Gn,s admits
an invariant measure which under a change of variable and symmetrization
can be represented as a probability measure ν on [0, 1]s with density given
in (43).

With the aid of the measure ν, we can calculate the volumes of various
shapes of neighborhoods in the Grassmann manifold, which are typically
given in terms of the principal angles θi between an s-dimensional subspace
of R

n and a fixed s-dimensional subspace with generator matrix (Is 0). The
principal angles between subspaces are natural extensions of the concept of
angle between lines. Let V1, V2 be two subspaces in Gn,s having a set of prin-
cipal angles (θ1, · · · , θs), with π/2 ≥ θ1 ≥ · · · ≥ θs ≥ 0 and corresponding
s pairs of unit vectors (v1i, v2i). If Vi is spanned by s of xj’s, then putting
ri = cos θi and reversing the order give the canonical correlations (rs, · · · , r1)
and corresponding pairs of canonical variables (v1i, v2i), for the two groups
of variables.

There are three frequently used distances between subspaces V1 and V2 on
the Grassmann manifoldGn,s: the geodesic distance dg(V1, V2) = (

∑s
i=1 θ

2
i )

1/2

(Wong, 1967), the chordal distance dc(V1, V2) = (
∑s

i=1 sin
2 θi)

1/2 (Conway,
Hardin and Sloane, 1996), and the maximum chordal distance (Edelman,
Arias and Smith, 1998)

(8) dm(V1, V2) = sin θ1 = maxsi=1 sin θi.

In view of the probability measure ν in (43), it seems natural to consider
the latter two distances, which is indeed the case. To see this, let Bi be an
s× n orthonormal generator matrix for Vi. Then Vi is uniquely determined
by the projection matrix Pi = BT

i Bi, which corresponds to the projection
onto the s-dimensional subspace Vi. It is known that

dc(V1, V2) = 2−1/2‖P1 − P2‖F and dm(V1, V2) = ‖P1 − P2‖2,

where ‖ · ‖F and ‖ · ‖2 denote the Frobenius norm and spectral norm (or
operator norm) of a given matrix, respectively. These two matrix norms are
commonly used in large covariance matrix estimation and other multivariate
analysis problems.
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We now bound the size of the set As ⊂ Gn,s of all subspaces spanned
by s of covariates xj ’s under some distance constraint, which in turn gives
bounds on the dimensionality p. The probability measure ν on [0, 1]s defined
in (43) is a key ingredient in our analysis. When all the subspaces in As

have distance at least 2δ > 0 under any distance d, it is easy to see that(p
s

)
= |As| ≤ 1/ν(Bδ,d), where Bδ,d denotes a ball of radius δ in Grassmann

manifold Gn,s under distance d. In particular, we focus on the maximum
chordal distance defined in (8). Equivalently, the maximum chordal distance
constraint gives the maximum principal angle constraint. Since the sample
size n is usually small or moderate in many contemporary applications, we
adopt the asymptotic framework of s/n → γ ∈ (0, 1) as n → ∞ for deriving
asymptotic bounds on the dimensionality p.

Theorem 3. Assume that all subspaces spanned by s of covariates xj’s
have maximum chordal distance at least a fixed constant 2δ ∈ (0, 1), and
s/n → γ ∈ (0, 1/2) as n → ∞. Then we have

(9) log p . (log δ−1)(1− γ)n+ 2 log n+O(1),

where . denotes asymptotic dominance.

Theorem 3 gives a general asymptotic bound on the dimensionality p un-
der the maximum chordal distance constraint, or equivalently, the maximum
principal angle constraint. We see that finite sample can allow for a large
number of variables, in which sparse models with size much smaller than
sample size n can still be distinguishable from each other. The leading order
in the bound for log p is proportional to sample size n, with factors log δ−1

and 1 − γ. This result is reasonable because larger δ means bigger separa-
tion of all s-dimensional subspaces spanned by covariates xj ’s, and large γ
means more such subspaces separated from each other, both cases leading
to tighter constraint on the growth of dimensionality p. It is interesting that
there are only two terms O(log n) and O(1) following the leading order in
the above bound on dimensionality.

The general bound on dimensionality with distance constraint in Theo-
rem 3 also shares some similarity with the lower bound O {n/(log p)} on
the robust spark in Theorem 2, although the former uses non-probabilistic
arguments with no distributional assumption and the latter applies prob-
abilistic arguments. The robust spark provides a natural bound on sparse
model size to control collinearity for sparse models. Intuitively, when the
dimensionality p grows with the sample size n, one expects tighter control
on the robust spark through a deflation factor of log p. Similarly, the upper
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bound on the logarithmic dimensionality log p in Theorem 3 decreases with
the minimum maximum chordal distance 2δ between sparse models through
the factor log δ−1. As mentioned in Section 2.2, these sparse eigenvalue type
conditions play an important role in characterizing the variable selection
properties including the model selection consistency for various regulariza-
tion methods. Although the result in Theorem 3 can be viewed as the bound
for the worst case scenario, it provides us caution and guidance on the growth
of dimensionality in real applications, particularly when variable selection is
an important goal in the studies.

In general, the robust spark κc provides a stronger measure on collinearity
than the maximum chordal distance. To see this, assume that s < κc/2 and
let V1, V2 be two subspaces spanned by two different sets of s of covariates
xj ’s. Then the maximum principal angle θ1 between V1 and V2 is the angle
between two vectors vi ∈ Vi, where vi is a linear combination of the corre-
sponding set of covariate vectors n−1/2xj for each i = 1, 2. Since the union of
these two sets of covariates has cardinality bounded from above by 2s < κc,
it follows from the definition of the robust spark that the angle θ1 between
v1 and v2 is bounded from zero, which entails that the maximum chordal
distance between V1 and V2 is also bounded from zero. Conversely, when
two s-dimensional subspaces V1 and V2 has the maximum chordal distance
bounded from zero, the subdesign matrix corresponding to covariates in the
sets can still be singular.

We next consider a stronger distance constraint than in Theorem 3, where
in addition, all disjoint subspaces in As have minimum principal angles at
least arcsin δ1 for some δ1 ∈ (0, δ], with δ given in Theorem 3. Such disjoint
subspaces are spanned by disjoint sets of s of covariates xj’s. In this case, it
is natural to expect a tighter bound on the dimensionality p.

Theorem 4. Assume that conditions of Theorem 3 hold and all disjoint
subspaces have minimum principal angles at least a fixed constant arcsin δ1
with δ1 ∈ (0, δ]. Then we have
(10)
log(p−s) .

[
(log δ−1)(1− γ)− cδ1 − γ − 2−1 log(1− 2γ)

]
n+2 log n+O(1),

where cδ1 = 2−1
[
log(1− δ21)

−1
]
(1− γ)− 2−1(1− δ21)

−1δ21(1− 2γ).

Compared to the bound in Theorem 3, Theorem 4 indeed provides a
tighter bound on the dimensionality p due to the additional distance con-
straint involving δ1. We are interested in the asymptotic bound on the di-
mensionality when δ1 is near zero. In this case, we have cδ1 ∼ δ21γ/2. Observe
that γ+2−1 log(1− 2γ) ≤ 0 and is of order O(γ2). It is generally difficult to
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derive tight bounds over the whole ranges of δ1 and γ. This is essentially due
to the challenge of obtaining a globally tight function bounding the func-
tion f1 defined in (32) from above, while retaining analytical tractability of
evaluating the resulting integral.

We finally revisit the marginal correlation ranking, a widely used tech-
nique for analyzing large-scale data sets, from a non-probabilistic point of
view. Given a sample of size n, the maximum correlation of noise covari-
ates with the response variable can exceed the maximum correlation of true
covariates with the response variable when the dimensionality p is high.
Here the correlation between two n-vectors v1 and v2 is referred to as
cos θ = vT

1 v2/(‖v1‖2‖v2‖2), where θ is the angle between them. It is im-
portant to understand the limit on the dimensionality p under which the
above undesired phenomenon can happen.

Theorem 5. Let r ∈ (0, 1) be the maximum absolute correlation between
s true predictors xj and response vector y in R

n and assume that all p − s
noise predictors xj have absolute correlations bounded by δ ∈ (0, 1). Then
there exists a noise predictor having absolute correlation with y larger than
r if log(p− s) ≥ 2−1

{
log[4/(1 − δ2)]

}
(n− 1) + 2−1 log n+O(1).

It is an interesting result that the above asymptotic bound on the dimen-
sionality p depends only on δ ∈ (0, 1), and is independent of the specific
value of r ∈ (0, 1). The condition on the dimensionality is sufficient but not
necessary in general, since one can always add an additional noise predictor
having absolute correlation with y larger than r. Nevertheless, Theorem 5
gives us a general limit on dimensionality even when one believes that a ma-
jority of noise predictors have weak correlation with the response variable.

Meanwhile, we also see from Theorem 5 that the dimensionality p gen-
erally needs to be large compared to the sample size n such that a noise
predictor may have the highest correlation with the response variable. This
result is reflected in a common feature of many variable selection procedures
including commonly used greedy algorithms, that is, initially selecting one
predictor with the highest correlation with the response variable. See, for
example, the LARS algorithm in Efron et al. (2004) and the LLA algorithm
in Zou and Li (2008). Such a variable, which gives a sparse model with
size one, commonly appears on the solution paths of many regularization
methods for high-dimensional variable selection.

4. Numerical examples. In this section we provide two simulation
examples to illustrate the theoretical results in Section 2, obtained through
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Fig 1. Distributions of the condition number of p̃−1
XX

T in different scenarios of distri-

butions of X with p̃ = 3n and n = 100 and 1000, based on 100 simulations.

probabilistic arguments. The first simulation example examines the concen-
tration property for large random design matrix. Let X be an n× p̃ random
design matrix with p̃ = cn for some constant c > 1. We set n = 100 and 1000,
and c = 3. We considered three scenarios of distributions: 1) each entry of X
is sampled independently from N(0, 1), 2) each entry of X is sampled inde-
pendently from the Laplace distribution with mean 0 and variance 1, and 3)
each row of X is sampled independently from the multivariate t-distribution
with 10 degrees of freedom and then rescaled to have unit variances. In
view of Definition 1, the concentration property of X is characterized by the
distribution of the condition number of p̃−1XXT . In each case, 100 Monte
Carlo simulations were used to obtain the distribution of such condition
number. Figure 1 depicts these distributions in different scenarios. We see
that in scenarios 1 and 2, the condition number concentrates in the range
of relatively small numbers, indicating the associated concentration prop-
erty as shown in Theorem 1. In scenario 3 with multivariate t-distribution,
one still observes the concentration phenomenon. However, since this dis-
tribution is relatively more heavy-tailed, we see that the distribution of the
condition number becomes more spread out and shifts toward the range of
large numbers.

The second simulation example investigates the robust spark bound for
large n× p random design matrix X. We adopted the same three scenarios
of distributions as in the first simulation example, except that n = 100, and
p = 1000 and 5000. In light of Theorem 2, we sampled randomly 1000 n× k
submatrices of n−1/2X each with k = ⌈2n/(log p)⌉ columns and calculated
the minimum of those 1000 smallest singular values. Similarly, in each case
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Fig 2. Distributions of the minimum singular value over 1000 submatrices of n−1/2
X each

with ⌈2n/(log p)⌉ columns, in different scenarios of distributions of X with n = 100, and
p = 1000 and 5000, based on 100 simulations.

100 Monte Carlo simulations were used to obtain the distribution of such
minimum singular value which is tied to the robust spark bound of X. These
distributions are shown in Figure 2. In particular, we see that the distribu-
tion of the minimum singular value concentrates clearly away from zero in
each of the three scenarios of distributions. These numerical results indicate
that the robust spark of random design matrix can indeed be at least of
order O {n/(log p)}, as shown in Theorem 2.

5. Discussions. We have investigated the impacts of high dimension-
ality in finite samples from two different perspectives: a probabilistic one
and a non-probabilistic one. An interesting concentration phenomenon for
large random design matrix has been revealed, as shown previously in Hall,
Marron and Neeman (2005). We have shown that the concentration prop-
erty, which is important in characterizing the sure screening property of the
SIS, holds for a wide class of elliptical distributions, as conjectured by Fan
and Lv (2008). We have also established a lower bound on the robust spark
which is important in ensuring model identifiability and stable estimation.
The high-dimensional geometric view of finite samples has lead to general
bounds on dimensionality with distance constraint on sparse models, using
non-probabilistic arguments.

Both probabilistic and non-probabilistic views provide understandings on
how the dimensionality interacts with the sample size for large-scale data
sets. Characterizing the limit of the dimensionality with respect to the sam-
ple size is key to the success of high-dimensional inference goals such as
prediction and variable selection. We have focused on the family of ellipti-
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cal distributions. It would be interesting to consider a more general class of
distributions for future research.

Acknowledgments. The author sincerely thanks the Co-Editor, Asso-
ciate Editor, and two referees for their valuable comments that improved
significantly the paper.

APPENDIX A: PROOFS OF MAIN RESULTS

For notational simplicity, we use C to denote a generic positive constant,
whose value may change from line to line.

A.1. Proof of Lemma 1. By Theorem 5.2 in Ledoux (2001), we know
that Condition 1 entails the logarithmic Sobolev inequality (4) when µ̃q =
µp. It remains to prove the logarithmic Sobolev inequality for any marginal
distribution of µp. Let 1 ≤ q < p and µ̃q be a q-variate marginal distribution
of µp. By the spherical symmetry of µp, without loss of generality we can
assume that µ̃q is concentrated on R

q = {v = (v1, · · · , vp)T ∈ R
p : vq+1 =

· · · = vp = 0}. For any smooth function f̃ on R
q with Eµ̃q

f̃2 = 1, define
f : R

p → R by

(11) f(v1, · · · , vq, vq+1, · · · , vp) = f̃(v1, · · · , vq).

Clearly f is a smooth function on R
p and

∇f(v1, · · · , vq, vq+1, · · · , vp) =
[
∇f̃(v1, · · · , vq)

0

]
,

which shows that

(12) ‖∇f(v1, · · · , vq, vq+1, · · · , vp)‖22 =
∥∥∥∇f̃(v1, · · · , vq)

∥∥∥
2

2
.

In view of (11), it follows from Fubini’s theorem that

Eµpf
2 = Eµ̃q

f̃2 = 1.

Thus by (11), (12), and Fubini’s theorem, applying the logarithmic Sobolev
inequality (4) for µp to the smooth function f yields

Eµ̃q

{
f̃2 log f̃2

}
= Eµp

{
f2 log f2

}
≤ 2C2Eµp‖∇f‖22 = 2C2Eµ̃q‖∇f̃‖22,

which completes the proof.
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A.2. Proof of Lemma 2. We first prove part a). By Lemma 1, the
distribution of zq satisfies the logarithmic Sobolev inequality (4). Observe
that by the triangle inequality, the Euclidean norm ‖ · ‖2 is 1-Lipschitz with
respect to the metric induced by itself. Therefore the classical Herbst argu-
ment applies to prove the concentration inequality (5) (see, e.g., Theorem
5.3 in Ledoux, 2001). It remains to show part b). Note that EZ2

1 = 1. By
the spherical symmetry of µp, Hölder’s inequality, and the Cauchy-Schwarz
inequality, we have

E‖zq‖2 ≤
√

E‖zq‖22 =
√

qEZ2
1 =

√
q

and
E‖zq‖2 ≥ E

(
q−1/2‖zq‖1

)
=

√
qE|Z1|.

This concludes the proof.

A.3. Proof of Lemma 3. We first make a simple observation. The
standard Gaussian distributions are special cases of spherical distributions.
Recall that the q-variate standard Gaussian distribution γq has density func-

tion 1
(2π)q/2

e−‖v‖2
2
/2, v ∈ R

q. Thus it is easy to check that γq satisfies Con-

dition 1 with c2 = 1. Let w = (W1, · · · ,Wq)
T ∼ N(0, Iq). Then it follows

immediately from Lemma 2 that for any r ∈ (0,∞),

(13) P (|‖w‖2 − E‖w‖2| > r) ≤ 2e−r2/2.

Note that

(14) E|W1| = 2

∫ ∞

0
u

1√
2π

e−u2/2du =

√
2

π

∫ ∞

0
e−u2/2d

(
u2

2

)
=

√
2

π
.

By (6), (13), and (14), we have for any r1 ∈ (0,
√

2
π ),

(15)

P

(
q−1/2‖w‖2 > 1 + r1 or q−1/2‖w‖2 <

√
2

π
− r1

)
≤ 2e−qr2

1
/2 ≤ 2e−nr2

1
/2

since q ≥ n.
Now we get back to zq. It follows from (5) and (6) in Lemma 2 and

Condition 2 that for any r2 ∈ (0, c3),
(16)

P
(
q−1/2‖zq‖2 > 1 + r2 or q−1/2‖zq‖2 < c3 − r2

)
≤ 2e−C−1

2
qr2

2
/2 ≤ 2e−C−1

2
nr2

2
/2
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since q ≥ n. Let

c4 =
c3 − r2
1 + r1

and c5 =
1 + r2√
2
π − r1

.

Then combining (15) and (16) along with Bonferroni’s inequality yields

P

(‖zq‖2
‖w‖2

< c4 or
‖zq‖2
‖w‖2

> c5

)
≤ 2e−nr2

1
/2 + 2e−C−1

2
nr2

2
/2

≤ 4e−C3n,

where C3 = min(r21/2, C
−1
2 r22/2). This completes the proof.

A.4. Proof of Theorem 1. In Section A.7, Fan and Lv (2008) proved
that Gaussian distributions satisfy the concentration property (2), that is,
for Z ∼ N(0, In ⊗ Ip) = N(0, In×p). We now consider the general situation
where n rows of the n× p random matrix Z = (z1, · · · , zn)T are i.i.d. copies
from the spherical distribution µp. Fix an arbitrary n× p̃ submatrix Z̃ of Z
with cn < p̃ ≤ p, where c ∈ (1,∞). We aim to prove deviation inequality in
(2) with different constants c1 ∈ (1,∞) and C1 ∈ (0,∞).

By the spherical symmetry, without loss of generality we can assume that
Z̃ consists of the first p̃ columns of Z. Let

z̃ = (Z1, · · · , Zp̃)
T and Z̃ = (z̃1, · · · , z̃n)T .

Clearly z̃1, · · · , z̃n are n i.i.d. copies of z̃. Take an n× p̃ random matrix

W = (w1, · · · ,wn)
T ∼ N(0, In ⊗ Ip̃),

which is independent of Z̃. Then for each i = 1, · · · , n, wi has the p̃-variate
standard Gaussian distribution. It is well-known thatwi/‖wi‖2 has the Haar
distribution on the unit sphere Sp̃−1 in p̃-dimensional Euclidean space R

p̃,
i.e., the uniform distribution on Sp̃−1.

Since the distribution of z̃ is a marginal distribution of µp, the spherical
symmetry of µp entails that of the distribution of z̃. It follows easily from
the assumption of P (z = 0) = 0 that P (z̃ = 0) = 0. Thus by Theorem
1.5.6 in Muirhead (1982), z̃/‖z̃‖2 is uniformly distributed on Sp̃−1 and is
independent of ‖z̃‖2. This along with the above fact shows that for each
i = 1, · · · , n,

(17) z̃i
(d)
== ‖z̃i‖2

(
wi

‖wi‖2

)
=

( ‖z̃i‖2
‖wi‖2

)
wi,
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where we use the symbol
(d)
== to denote being identical in distribution. Here-

after, for notational simplicity we do not distinguish z̃i and
(

‖z̃i‖2
‖wi‖2

)
wi.

Define the n× n diagonal matrix

Q = diag

{ ‖z̃1‖2
‖w1‖2

, · · · , ‖z̃n‖2‖wn‖2

}
.

Then we have
p̃−1Z̃Z̃

T
= Q

(
p̃−1WWT

)
Q,

which entails

minni=1

‖z̃i‖22
‖wi‖22

λmin(p̃
−1WWT )In ≤ minni=1

‖z̃i‖22
‖wi‖22

(
p̃−1WWT

)
≤ Q

(
p̃−1WWT

)
Q

= p̃−1Z̃Z̃
T ≤ maxni=1

‖z̃i‖22
‖wi‖22

(
p̃−1WWT

)

≤ maxni=1

‖z̃i‖22
‖wi‖22

λmax(p̃
−1WWT )In.

This shows that

(18) λmin(p̃
−1Z̃Z̃

T
) ≥ minni=1

‖z̃i‖22
‖wi‖22

λmin(p̃
−1WWT )

and

(19) λmax(p̃
−1Z̃Z̃

T
) ≤ maxni=1

‖z̃i‖22
‖wi‖22

λmax(p̃
−1WWT ).

As mentioned before, we have for some c1 ∈ (1,∞) and C1 ∈ (0,∞),

(20) P
(
λmax(p̃

−1WWT ) > c1 or λmin(p̃
−1WWT ) < 1/c1

)
≤ e−C1n.

Note that p̃ > n. Thus by (7) in Lemma 3, an application of Bonferroni’s
inequality gives

(21) P

(
minni=1

‖z̃i‖22
‖wi‖22

< c4 or maxni=1

‖z̃i‖22
‖wi‖22

> c5

)
≤ 4ne−C3n,

where c4 ∈ (0, 1), c5 ∈ (1,∞), and C3 ∈ (0,∞). Therefore by Bonferroni’s
inequality, combining (20) and (21) proves the deviation inequality in (2)
by appropriately changing the constants c1 ∈ (1,∞) and C1 ∈ (0,∞). This
concludes the proof.
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A.5. Proof of Theorem 2. Using the similar arguments as in the
proof of Theorem 1, we can prove that there exist some universal positive
constants c6, C such that the deviation probability bound

(22) P
{
λmin(n

−1Z̃
T
Z̃) < c6

}
≤ exp(−Cn)

holds for each n× p̃ submatrix Z̃ of Z with p̃ = c7n and c7 < 1 some positive
constant. This is because Lemmas 1-2 are free of the dimension q of the
marginal distribution, and Lemma 3 still holds with the choice of q = p̃.
We should also note that the deviation probability bound (22) holds when
Z̃ ∼ N(0, In⊗Ip̃), which is entailed by the concentration property (2) proved
in Fan and Lv (2008) for Gaussian distributions.

For each set α ⊂ {1, · · · , p} with |α| = p̃, denote by Σα,α the principal
submatrix of Σ corresponding to variables in α, and Xα a submatrix of the
design matrix X consisting of columns with indices in α. It follows easily

from the representation of elliptical distributions that X̃α = XαΣ
−1/2
α,α has

the same distribution as Zα. Since λmin(Σ) is bounded from below by some
positive constant, we have

λmin

(
n−1XT

αXα

)
≥ λmin

(
n−1X̃

T

αX̃α

)
λmin(Σα,α) ≥ Cλmin

(
n−1X̃

T

αX̃α

)
,

where C is some positive constant. Therefore, combining the above results
yields

(23) P
{
λmin

(
n−1XT

αXα

)
< c6

}
≤ exp(−Cn)

with a possibly different positive constant c6. Note that the positive con-
stants involved are universal ones. We choose a positive integerK = 2−1Cn/(log p) ≤
p̃. Then an application of the Bonferroni inequality together with (23) gives

P

{
min
|α|=K

λmin

(
n−1XT

αXα

)
< c6

}
≤
∑

|α|=K

exp(−Cn) ≤ pK exp(−Cn) → 0

as n → ∞. This shows that with asymptotic probability one, the robust
spark κc ≥ K for any c ≤ c6, which completes the proof.

A.6. Proof of Theorem 3. For the maximum chordal distance dm, by
noting that xi = sin2 θi, we have a simple representation of the neighborhood
Bδ,dm = {(x1, · · · , xs) ∈ [0, 1]s : maxsi=1 xi ≤ δ2} for δ ∈ (0, 1/2). We need to
calculate its volume under the probability measure ν given in (43). In light
of (43), a change of variable yi = δ−2xi gives

(24) dν = δs(n−s)Kn,sf(y1, · · · , ys)
∏

1≤i<j≤s

|yi − yj|
s∏

i=1

yα−1
i dy1 · · · dys,
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where f(y1, · · · , ys) =
∏s

i=1(1 − δ2yi)
−1/2 over [0, 1]s. Observe that with-

out the term f in (24), ν(Bδ,dm) would become Selberg’s integral which is
a generalization of the beta integral (Mehta, 2004). We will evaluate this
integral by sandwiching the function f between two functions of the same
form. Since the function (1 − δ2y)−1/2 is increasing and convex on [0, 1],
it follows that 1 + c1y ≤ (1 − δ2y)−1/2 ≤ 1 + c2y, where c1 = δ2/2 and
c2 = δ2(1− δ2)−3/2/2. This shows that

s∏

i=1

(1 + c1yi) ≤ f(y1, · · · , ys) ≤
s∏

i=1

(1 + c2yi).

Thus, we obtain a useful representation of the volume of the neighborhood

(25) ν(Bδ,dm) = δs(n−s)Kn,sI(c),

where I(c) with some c ∈ [c1, c2] is an integral given in the following lemma.

Lemma 4. For each c > 0, we have

I(c) ≡
∫

[0,1]s

s∏

i=1

(1 + cyi)
∏

1≤i<j≤s

|yi − yj|
s∏

i=1

yα−1
i dy1 · · · dys

= 2sπ−s/2
s∑

m=0

(
s

m

)
cm

s−1∏

i=s−m

α+ 2−1i

α+ 2−1(s+ i+ 1)

·
s−1∏

i=0

Γ(α+ 2−1i)Γ(1 + 2−1(i+ 1))Γ(1 + 2−1i)

Γ(α+ 2−1(s+ i+ 1))
,(26)

where the factor containing m equals 1 when m = 0.

Proof of Lemma 4. Observe that the integrand in (26) is symmetric in
y1, · · · , ys. Thus an expansion of

∏s
i=1(1 + cyi) gives

∫

[0,1]s

s∏

i=1

(1 + cyi)
∏

1≤i<j≤s

|yi − yj|
s∏

i=1

yα−1
i dy1 · · · dys

=

s∑

m=0

(
s

m

)
cm
∫

[0,1]s

m∏

i=1

yi
∏

1≤i<j≤s

|yi − yj|
s∏

i=1

yα−1
i dy1 · · · dys,

where
∏m

i=1 yi = 1 when m = 0. The above integrals are exactly Aomoto’s
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extension of Selberg’s integral (Mehta, 2004) and can be calculated as

∫

[0,1]s

m∏

i=1

yi
∏

1≤i<j≤s

|yi − yj|
s∏

i=1

yα−1
i dy1 · · · dys

= 2sπ−s/2
s−1∏

i=s−m

α+ 2−1i

α+ 2−1(s+ i+ 1)

s−1∏

i=0

Γ(α+ 2−1i)Γ(1 + 2−1(i+ 1))Γ(1 + 2−1i)

Γ(α+ 2−1(s+ i+ 1))
,

where the factor containing m equals 1 when m = 0. This completes the
proof of Lemma 4.

Let us continue with the proof of Theorem 3. By assumption, s ∼ γn as
n → ∞, so δs(n−s)π−s/2 ∼ δγ(1−γ)n2

π−γn/2. Applying Stirling’s formula for
large factorials gives s! ∼ (2πγn)1/2(γ/e)γnnγn. Thus by omitting O(n) and
smaller order terms,

(27) log[δs(n−s)π−s/2/s!] ∼ (log δ)γ(1 − γ)n2 − γn log n.

Using Stirling’s formula for the Gamma function Γ(t + 1) ∼ (2πt)1/2(t/e)t

as t → ∞ and noting that Aj = 2πj/2/Γ(j/2) and α = (n − 2s + 1)/2, we
derive

s−1∏

i=0

An−s−i

An−i

s−1∏

i=0

Γ(α+ 2−1i)

Γ(α+ 2−1(s + i+ 1))
∼ π−s2/2(2e)s/2(n−s−1)(n−s−1)/2(n−1)−(n−1)/2,

which entails that
(28)

log

{
s−1∏

i=0

An−s−i

An−i

s−1∏

i=0

Γ(α+ 2−1i)

Γ(α+ 2−1(s + i+ 1))

}
∼ −(log π)γ2n2/2−γn(log n)/2.

Similarly, it follows from the identities Γ(t+ 1) = tΓ(t) and Γ(1) = 1 that

2−s
s−1∏

i=0

A2
s−i

s−1∏

i=0

Γ(1 + 2−1(i+ 1))Γ(1 + 2−1i) = s!πs(s+1)/2/Γ(s/2).

This shows that
(29)

log

{
2−s

s−1∏

i=0

A2
s−i

s−1∏

i=0

Γ(1 + 2−1(i+ 1))Γ(1 + 2−1i)

}
∼ (log π)γ2n2/2+γn(log n)/2.
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It remains to consider the last term. Note that

s−1∏

i=s−m

α+ 2−1i

α+ 2−1(s+ i+ 1)
=

(n− s)!

(n+ 1)!

(n−m+ 1)!

(n −m− s)!

∼
(
n−m+ 1

n+ 1

)s+1(n− s

n+ 1

)n−s+1/2(n−m+ 1

n−m− s

)n−m−s+1/2

∼ eO(n),

which entails that
(30)

log

{
s∑

m=0

(
s

m

)
cm

s−1∏

i=s−m

α+ 2−1i

α+ 2−1(s + i+ 1)

}
∼ log[eO(n)(1 + c)s] = O(n).

Thus combining (25) and (27)–(30) yields

(31) log(ν(Bδ,dm)) ∼ (log δ)γ(1 − γ)n2 − γn log n+O(n).

Since all the subspaces in As have maximum chordal distance at least 2δ, it
holds that

(p
s

)
= |As| ≤ 1/ν(Bδ,dm). Hence by (31),

log

(
p

s

)
. (log δ−1)γ(1 − γ)n2 + γn log n+O(n),

where. denotes asymptotic dominance. It is easy to derive log
(p
s

)
& γn log p−

γn log n. These two results lead to the claimed bound on log p, which con-
cludes the proof.

A.7. Proof of Theorem 4. Let us fix an arbitrary subset {xj1 , · · · ,xjs}
and denote by Ap−s

s the set of s-subspaces spanned by s of the remaining
p − s xj ’s. By assumption, Ap−s

s lies in a neighborhood in the Grassmann
manifold Gn,s that is characterized by the set Rδ1 = {(x1, · · · , xs) ∈ [0, 1]s :
minsi=1 xi ≥ δ21}, since xi = sin2 θi. In view of (43), a change of variable
yi = (1− δ21)

−1(1− xi) gives

(32) dν = (1−δ21)
s2/2Kn,sf1(y1, · · · , ys)

∏

1≤i<j≤s

|yi−yj|
s∏

i=1

y
−1/2
i dy1 · · · dys,

where f1(y1, · · · , ys) =
∏s

i=1[1− (1− δ21)yi]
α−1 over [0, 1]s. Clearly [1− (1−

δ21)yi]
α−1 ≥ (1− yi)

α−1 for α ≥ 1, which together with (43) and (32) entails
that (1− δ21)

s2/2 is a lower bound on the integral ν(Rδ1). However, we need
an upper bound on it. The idea is to bound the function f1 by an exponential
function.
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We are more interested in the asymptotic behavior of ν(Rδ1) when δ1 is
near zero. Using the inequality log(1 + t) ≤ t, we derive

1− (1− δ21)y = (1− δ21)[1 + (1− δ21)
−1δ21 − y] ≤ (1− δ21)e

(1−δ2
1
)−1δ2

1e−y.

This leads to

f1(y1, · · · , ys) ≤ [(1− δ21)e
(1−δ2

1
)−1δ2

1 ]s(α−1)
s∏

i=1

e−(α−1)yi .

Thus we have

(33) ν(Rδ1) ≤ (1− δ21)
2−1s2+s(α−1)e(1−δ2

1
)−1δ2

1
s(α−1)Kn,sBα,

where Bα =
∫
[0,1]s

∏
1≤i<j≤s |yi − yj|

∏s
i=1 y

−1/2
i e−(α−1)yidy1 · · · dys. Since

α− 1 = (n− 2s− 1)/2 → ∞ as n → ∞, a change of variable zi = (α− 1)yi
gives

Bα = (α− 1)−s2/2

∫

[0,α−1]s

∏

1≤i<j≤s

|zi − zj |
s∏

i=1

z
−1/2
i e−zidz1 · · · dzs

≤ (α− 1)−s2/2

∫

[0,∞)s

∏

1≤i<j≤s

|zi − zj |
s∏

i=1

z
−1/2
i e−zidz1 · · · dzs.

Note that the last integral is a Selberg type integral related to the Laguerre
polynomials (Mehta, 2004), which can be calculated exactly. This along with
the identities Γ(t+ 1) = tΓ(t) and Γ(3/2) = π1/2/2 yields

Bα . (α− 1)−s2/2s!π−s/2
s∏

i=1

Γ2(i/2).

By assumption, s ∼ γn as n → ∞. It is easy to show that

(34) log[(1 − δ21)
2−1s2+s(α−1)e(1−δ2

1
)−1δ2

1
s(α−1)] ∼ −cδ1γn

2 +O(n),

where cδ1 = 2−1
[
log(1− δ21)

−1
]
(1−γ)−2−1(1− δ21)

−1δ21(1−2γ). It remains
to consider the term Kn,sBα. By (42), we have

2−sπ−s/2K̃n,s

s∏

i=1

Γ2(i/2) =

s−1∏

i=0

Γ((n− i)/2)

Γ((n − s− i)/2)

∼
s−1∏

i=0

(
n− i− 2

n− s− i− 2

)(n−s−i−1)/2 [ (n− 2)!

(n− s− 2)!

]s/2
(2e)−s2/2,
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where we used Stirling’s formula for the Gamma function in the last step.
It follows from s ∼ γn that

s−1∏

i=0

(
n− i− 2

n− s− i− 2

)(n−s−i−1)/2

.

(
1− γ

1− 2γ

)γ(1−γ)n2/2

,

and an application of Stirling’s formula for large factorials gives

[
(n− 2)!

(n − s− 2)!

]s/2
(2e)−s2/2 ∼

(
n− 2

n− s− 2

)s(n−s−3/2)/2

[(n − 2)/(2e2)]s
2/2

. (1− γ)−γ(1−γ)n2/2[n/(2e2)]γ
2n2/2.

Note that (α−1)−s2/2 ∼ [(1−2γ)n/2]−γ2n2/2. Combing these results together
yields

log(Kn,sBα) = log[(α− 1)−s2/22−sπ−s/2K̃n,s

s∏

i=1

Γ2(i/2)]

. −[2γ + log(1− 2γ)]γn2/2.(35)

It follows from (33)–(35) that

(36) log(ν(Rδ1)) . −cδ1γn
2 − [2γ + log(1− 2γ)]γn2/2 +O(n).

Finally we are ready to derive a bound on the dimensionality p. Since
Ap−s

s lies in a neighborhood in Gn,s characterized by the set Rδ1 and all
the subspaces in Ap−s

s have maximum chordal distance at least δ, it holds
that

(
p−s
s

)
= |Ap−s

s | ≤ ν(Rδ1)/ν(Bδ,dm). Aided by (31) and (36), a similar
argument as in the proof of Theorem 3 gives the claimed bound on log(p−s).
This completes the proof.

A.8. Proof of Theorem 5. To prove the conclusion, we use the ter-
minology introduced in Section 3. Note that the n-vectors xj and y can be
viewed as elements of Grassmannian manifold Gn,1, which consists of all one-
dimensional subspaces of R

n. The absolute correlation between two n-vectors
is given by cos θ1, where θ1 ∈ [0, π/2] is the principal angle between the
two corresponding one-dimensional subspaces. We use the parametrization
with local coordinate θ1 at the one-dimensional subspace L = {ty : t ∈ R}
spanned by y. Then the uniform distribution on the Grassmann manifold
Gn,1 can be expressed in local coordinate θ1 and gives a probability measure
ν in (43) with s = 1 on [0, 1] through a change of variable x1 = sin2 θ1,
where

∏
1≤i<j≤s |xi − xj| = 1 in this case. Consider the maximum chordal
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distance on Gn,1, which is defined as sin θ1. For any t > 0, denote by Bt,dm a
ball of radius t centered at L in Gn,1 under the maximum chordal distance,
i.e., Bt,dm = {x1 ∈ [0, 1] : x1 = sin2 θ1 ≤ t2} in local coordinate. We need to
calculate the volumes of Bt1,dm with t1 = 2−1 sin cos−1 δ = (1− δ2)1/2/2 and
Bc

t2,dm
, the complement of Bt2,dm with t2 = sin cos−1 r = (1− r2)1/2, under

the measure ν.
In view of (43), we have

(37) ν(Bt,dm) = ν([0, t2]) = Kn,1

∫ t2

0
x
(n−3)/2
1 (1− x1)

−1/2dx1,

where Kn,1 = K̃n,1/2 = A2
1An−1/(4An) with Aj = 2πj/2/Γ(j/2) the area of

the unit sphere Sj−1 ⊂ R
j. It follows from Stirling’s formula for the Gamma

function that

Kn,1 = π−1/2Γ(n/2)/Γ((n − 1)/2) ∼ π−1/2

(
n− 2

2e

)1/2 (n− 2

n− 3

)(n−2)/2

∼ (2π)−1/2n1/2.(38)

It remains to evaluate the integral in (37). Note that (1−x1)
−1/2 is bounded

between 1 and ∞ on [0, t2] for t bounded away from 1. Thus we have

(39)

∫ t2

0
x
(n−3)/2
1 (1− x1)

−1/2dx1 >

∫ t2

0
x
(n−3)/2
1 dx1 = 2(n − 1)−1tn−1,

where both sides have the same asymptotic order. Combining (37)–(39)
yields ν(Bt,dm) > cnt

n−1 with cn ∼ (2/π)1/2n−1/2, and ν(Bt,dm) ∼ (2/π)1/2n−1/2tn−1

for t bounded away from 1. Since all the p− s noise predictors xj have ab-
solute correlations bounded by δ ∈ (0, 1), we have

(40) p− s ≤ ν(Bc
t2,dm)/ν(Bt1,dm)

if there exists no noise predictor that has absolute correlation with y larger
than r ∈ (0, 1). The right hand side of (40) is [1 − ν(Bt2,dm)]/ν(Bt1,dm),
which is less than and has the same asymptotic order as 1/ν(Bt1,dm) <
c−1
n [4/(1 − δ2)](n−1)/2 ∼ (π/2)1/2n1/2[4/(1 − δ2)](n−1)/2. This together with
(40) concludes the proof.

APPENDIX B: GEOMETRY AND INVARIANT MEASURE OF
GRASSMANN MANIFOLD

We briefly introduce some necessary background and terminology on the
geometry and invariant measure of Grassmann manifold. Let V1 and V2
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be two s-dimensional subspaces of R
n and dg(·, ·) = arccos |〈·, ·〉| be the

geodesic distance on Sn−1, that is, the distance induced by the Euclidean
metric on R

n. It was shown by James (1954) that as v1 and v2 vary over
V1 ∩Sn−1 and V2 ∩Sn−1 respectively, dg(v1, v2) has a set of s critical values
∠(V1, V2) = (θ1, · · · , θs) with π/2 ≥ θ1 ≥ · · · ≥ θs ≥ 0, corresponding
to s pairs of unit vectors (v1i, v2i), i = 1, · · · , s. Each critical value θi is
exactly the angle between v1i and v2i, and v1i is orthogonal to v1j and v2j
if j 6= i. The principal angles θi are unique and if none of them are equal,
the principle vectors (v1i, v2i) are unique up to a simultaneous direction
reversal. In general, the dimensions of V1 and V2 can be different, in which
case s should be their minimum.

All s-dimensional subspaces of R
n form a space, the so-called Grassmann

manifold Gn,s. It is a compact Riemannian homogeneous space, of dimension
s(n − s), isomorphic to O(n)/(O(s) × O(n − s)), where O(j) denotes the
orthogonal group of order j. It is well known that Gn,s admits an invariant
measure µ. It can be constructed by viewing Gn,s as Vn,s/O(s), where Vn,s

∼=
O(n)/O(n−s) denotes the Stiefel manifold of all orthonormal s-frames (that
is, sets of s orthonormal vectors) in R

n. By deriving the exterior differential
forms on those manifolds (James, 1954), dµ(V ) can be expressed in local
coordinates, at the s-dimensional subspace with generator matrix (Is 0), as
a product of three independent densities

∏3
i=1 dµi, where

(41) dµ1 = K̃n,s

s∏

i=1

(sin θi)
n−2s

∏

1≤i<j≤s

(sin2 θi − sin2 θj)dθ1 · · · dθs

over Θ = {(θ1, · · · , θs) : π/2 > θ1 > · · · > θs > 0}, and dµ2 and dµ3 are
independent of parameters (θ1, · · · , θs). The normalization constant is given
by

(42) K̃n,s =

s−1∏

i=0

A2
s−iAn−s−i

2An−i
,

where Aj = 2πj/2/Γ(j/2) is the area of the unit sphere Sj−1. A change of
variable xi = sin2 θi and symmetrization in (41) yield a probability measure
ν on [0, 1]s with density

(43) dν = Kn,s

∏

1≤i<j≤s

|xi − xj |
s∏

i=1

xα−1
i

s∏

i=1

(1− xi)
−1/2dx1 · · · dxs,

where Kn,s = K̃n,s/(2
ss!) and α = (n− 2s + 1)/2.
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