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MULTIVARIATE DENSITY ESTIMATION UNDER SUP-NORM LOSS:
ORACLE APPROACH, ADAPTATION AND INDEPENDENCE STRUCTURE

By Oleg Lepski

Université Aix–Marseille

The paper deals with the density estimation on Rd under sup-
norm loss. We provide with fully data-driven estimation procedure
and establish for it so called sup-norm oracle inequality. The pro-
posed estimator allows to take into account not only approximation
properties of the underlying density but eventual independence struc-
ture as well. Our results contain, as a particular case, the complete
solution of the bandwidth selection problem in multivariate density
model. Usefulness of the developed approach is illustrated by appli-
cation to adaptive estimation over anisotropic Nikolskii classes.

1. Introduction. Let (Ω, A, P) be a complete probability space and let Xi =
(
X1,i, . . . Xd,i

)
,

i ≥ 1, be the sequence of Rd-valued i.i.d. random variables defined on (Ω, A, P) and having the
density f with respect to lebesgue measure. Furthermore, P(n)

f denotes the probability law of X(n) =
(
X1, . . . , Xn

)
, n ∈ N∗ and E(n)

f is the mathematical expectation with respect to P(n)
f .

The objective is to estimate the density f and the quality of any estimation procedure, i.e.
X(n)-measurable mapping f̂n : Rd → L∞(Rd), is measured by sup-norm risk given by

R(q)
n

(
f̂ , f

)
=

(
E(n)

f

∥∥f̂n − f
∥∥q

∞
) 1

q , q ≥ 1.

It is well-known that even asymptotically (n →∞) the quality of estimation given by R
(q)
n heavily

depends on the dimension d. However, this asymptotics can be essentially improved if the underlying
density possesses some special structure. Let us briefly discuss one of these possibilities which will
be exploited in the sequel.

Introduce the following notations. Let Id be the set of all subsets of {1, . . . , d}. For any I ∈ Id

denote xI = {xj ∈ R, j ∈ I}, Ī = {1, . . . , d} \ I and let |I| = card(I). Moreover for any function
g : R|I| → R we denote ‖g‖I,∞ = supxI∈R|I| |g(xI)|. Define also

fI

(
xI

)
=

∫

R|Ī|
f(x)dxĪ, xI ∈ R|I|.

In accordance with this definition we put fI ≡ 1, I = ∅. As we see fI is the marginal density of
XI,1 := {Xj,1, j ∈ I}. Denote by P the set of all partitions of {1, . . . , d} completed by empty set ∅
and we will use ∅̄ for {1, . . . , d}. For any density f let

P(f) =
{
P ∈ P : f(x) =

∏

I∈P
fI(xI), ∀x ∈ Rd

}
.
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First we note that f ≡ f∅̄ and, therefore P(f) is not empty since ∅̄ ∈ P(f) for any f . Next,
if P ∈ P(f) then {XI,1, I ∈ P} are independent random vectors. At last, if X1,1, . . . Xd,1, are
independent random variables then obviously P(f) = P.

Suppose now that there exists P 6= ∅̄ such that P ∈ P(f). If this partition is known we can
proceed as follows. For any I ∈ P basing on observation X

(n)
I we estimate first the marginal

densityfI by f̂I,n and then construct the estimator for joint density f as

f̂n(x) =
∏

I∈P
f̂I,n (xI) .

One can expect (and we will see that our conjecture is true) that quality of estimation provided by
this estimator will correspond not to the dimension d but to so-called effective dimension, which in
our case is defined as d(P) = supI∈P |I|. The main difficulty we meet trying to realize the latter
construction is that the knowledge of P is not available. Moreover, our structural hypothesis cannot
be true in general, that is expressed formally by P(f) =

{∅̄}. So, one of the problem we address in
the present paper consists in adaptation to unknown configuration P ∈ P(f).

We note however that even if P is known, for instance, P = ∅̄ the quality of an estimation
procedure depends often on approximation properties of f or {f̂I,n, I ∈ P}. So, our second goal
is to construct an estimator which would mimic an estimator corresponding to the minimal, and
therefore unknown, approximation error. Using modern statistical language our goal here is to
mimic an oracle. It is important to emphasize that we would like to solve both aforementioned
problem simultaneously. Let us now proceed with detailed consideration.

Collection of estimators. Let K : R→ R be a given function satisfying the following assumption.

Assumption 1.
∫

K = 1, ‖K‖∞ < ∞ , supp(K) ⊆ [−1/2, 1/2] , K is symmetric, and

∃L > 0 : |K(t)−K(s)| ≤ L|t− s|, ∀t, s ∈ R.

Put for I ∈ Id

KhI
(u) = V −1

hI

∏

j∈I

K
(
uj/hj

)
, VhI

=
∏

j∈I

hj .

For two vectors u, v here and later u/v denotes coordinate-vise division. We will use the notation
Vh =

∏d
j=1 hj instead of VhI

when I = {1, . . . , d}. Denote also km = ‖K‖m, m = {1,∞}.
For any p ≥ 1 let γp : N∗×R+ → R+ be the function whose explicit expression is given in Section

2.3 (it has quite cumbersome expression and it is not convenient for us to present it right now).
Introduce the notations (remind that q is the quantity involved in the definition of the risk)

Hn =
{
h ∈ (0, 1]d : nVh ≥ (a∗)−1 ln(n)

}
, a∗ = inf

I∈Id

[
2γ2q

(|I|, k∞
)]−2

and for any I ∈ Id and h ∈ Hn consider kernel estimator

f̃hI

(
xI

)
= n−1

n∑

i=1

KhI
(XI,i − xI) .

Introduce the family of estimators

F(P) =
{

f̂h,P(x) =
∏

I∈P
f̃hI

(
xI

)
, x ∈ Rd, P ∈ P, h ∈ Hn

}
.
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In particular, f̂h,∅̄(x) = n−1 ∑n
i=1 Kh (Xi − x) , x ∈ Rd, is the Parzen-Rosenblatt estimator (Rosen-

blatt (1956), Parzen (1962)) with kernel K and multi-bandwidth h. Our goal is to propose a
data-driven selection from the family F(P).

The estimation of a probability density is the subject of the vast literature. We do not pretend
here to provide with complete overview and only present the results relevant in context of the con-
sidered problems. Minimax and minimax adaptive density estimation with Ls–risks was considered
in Bretagnolle and Huber (1979), Ibragimov and Khasminskii (1980, 1981), Devroye and Györfi
(1985), Efroimovich (1986, 2008), Hasminskii and Ibragimov (1990), Donoho et al. (1996), Golubev
(1992), Kerkyacharian, Picard and Tribouley (1996), Juditsky and Lambert–Lacroix (2004), Rigol-
let (2006), Mason (2009), Reynaud-Bouret, Rivoirard and Tuleau-Malot (2011) and Akakpo (2012),
where further references can be found. Oracle inequalities for Ls–risks for s = 1 and s = 2 were
established in Devroye and Lugosi (1996, 1997, 2001), Massart (2007)[Chapter 7], Samarov and
Tsybakov (2007), Rigollet and Tsybakov (2007) and Birgé (2008). The last cited paper contains a
detailed discussion of recent developments in this area. Bandwidth selection problem in the density
estimation on Rd with Ls–risks for any 1 ≤ s < ∞ was studied in Goldenshluger and Lepski (2011).
The oracle inequalities obtained there were used for deriving adaptive minimax results over the
collection of anisotropic Nikolskii classes.

The adaptive estimation under sup-norm loss was initiated in Lepski (1991, 1992) and continued
in Tsybakov (1998) in the framework of gaussian white noise model. Then, it was developed for
anisotropic functional classes in Bertin (2005). The adaptive estimation of a probability density on
R in sup-norm was the subject of recent papers Giné and Nickl (2009, 2010) and Gach et al. (2013).

Organization of the paper. In Section 2 we present data-driven selection procedure from F(P) and
establish for it sup-norm oracle inequality. Section 3 is devoted to the adaptive estimation over the
collection of anisotropic Nikolskii classes of functions. The proof of main results are given in Section
4 and technical lemmas are proven in Appendix.

2. Oracle inequality. Let P ∈ P be fixed and define for any h, η ∈ Hn and any I ∈ P

(2.1) f̃hI,ηI

(
xI

)
= n−1

n∑

i=1

[
KhI

? KηI

]
(XI,i − xI) ,

where
[
KhI

? KηI

]
=

∏
j∈I

[
Khj

∗Kηj

]
and

[
Khj

∗Kηj

]
(z) =

∫
RKhj

(u− z)Kηj (u)du, z ∈ R.

As we see ” ? ” is the convolution operator on R|I|. Define

fn = sup
h∈Hn

sup
I∈Id

∥∥∥n−1
n∑

i=1

∣∣KhI
(XI,i − ·)

∣∣
∥∥∥
I,∞

, f̄n = 1 ∨ 2fn

Ân(h,P) =

√
f̄n ln(n)

nV (h,P)
, V (h,P) = inf

I∈P
VhI

.

Let us endow the set P with the operation ”¦” putting for any P,P ′ ∈ P

P ¦ P ′ = {
I ∩ I′ 6= ∅, I ∈ P, I′ ∈ P ′} ∈ P.

Introduce for any h, η ∈ Hn and any P,P ′ the estimator

f̂(h,P),(η,P ′)(x) =
∏

I¦∈P¦P ′
f̃hI¦ ,ηI¦

(
xI¦

)
, x ∈ Rd.

Set finally Λ = supP∈P supI∈P γ2q
(|I|, k∞

)
and let λ = Λd

(
f̄n

)d2/4.
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2.1. Selection procedure. Let P ⊆ P, satisfying ∅̄ = {1, . . . , d} ∈ P, and Hn ⊆ Hn be fixed.
Without further mentioning we will assume that either Hn = Hn or Hn is finite.

For any P ∈ P and h ∈ Hn set

(2.2) ∆̂n(h,P) = sup
η∈Hn

sup
P′∈P

[∥∥∥f̂(h,P),(η,P′) − f̂η,P ′
∥∥∥
∞
− λÂn

(
η,P ′)

]

+

,

and let ĥ and P̂ be defined as follows.

(2.3) ∆̂n
(
ĥ, P̂)

+ λÂn
(
ĥ, P̂)

= inf
h∈Hn

inf
P∈P

[
∆̂n

(
h,P)

+ λÂn
(
h,P)]

.

Our final estimator is f̂
ĥ,P̂(x), x ∈ Rd, and let us briefly discuss several issues related to its con-

struction.

Extra parameters P and Hn. The necessity to introduce these parameters is dictated only by
computational reasons (computation of fn, ∆̂n(h,P) and minimization led to ĥ and P̂) and their
optimal ”theoretical” choice is P = P and Hn = Hn (see discussion after Theorem 1). However,
the computational aspects of the choice of P and Hn are quite different. Typically, Hn can be
chosen as an appropriate greed in Hn, for instance diadic one, that is sufficient for proving adaptive
properties of the proposed estimator, see Theorem 3.

The choice of P is much more delicate. The reason of considering P instead of P is explained by
the fact that the cardinality of P (Bell number) grows as (d/ ln(d))d. Therefore, for large values of
d our procedure is not practically feasible in view of huge amount of comparisons to be done. On
the other hand if d is large the consideration of all partitions is not reasonable itself. Indeed, even
theoretically the best attainable trade-off between approximation and stochastic errors corresponds
to the effective dimension defined as d∗(f) = infP∈P(f) supI∈P |I|. Of course d∗(f) ≤ d but if
it is proportional for example to d then we will not win much for reasonable sample size. The
suitable strategy in the case of large dimension consists in considering only partitions satisfying
supI∈P |I| ≤ d0, where d0 is chosen in accordance with d and the number of observation. In particular
one can consider P containing only 2 elements namely ∅̄ and

({1}, {2}, . . . {d}). It corresponds to
the hypotheses that we observe vectors with independent components.

Existence and measurability. First, we note that all considered in the paper random fields have
continuous trajectories on Hn×Rd in the topology generated by supremum norm. It is guaranteed
by Assumption 1. Since Hn is totally bounded and Rd can be covered by a countable collection
of totally bounded sets, any supremum over Hn × Rd of considered random fields will be X(n)-
measurable. In particular, f̄n and

∆̂n(h,P,P ′) := sup
η∈Hn

[∥∥∥f̂(h,P),(η,P ′) − f̂η,P′
∥∥∥
∞
− λÂn

(
η,P ′)

]

+

, P,P ′ ∈ P, h ∈ Hn.

Since, P is finite, we conclude that ∆̂n(h,P) is X(n)-measurable for any P ∈ P and any h ∈ Hn.
Assumption 1 implies also that ∆̂n(·,P) and Ân

(·,P)
are continuous on Hn for any P. Since Hn

is a compact subset of Rd we conclude that ĥ(P) ∈ Hn and X(n)-measurable for any P ∈ P,
Jennrich (1969), where ĥ(P) = infh∈Hn

[
∆̂n

(
h,P)

+ λÂn
(
h,P)]

. Since P is finite we conclude that

(ĥ, P̂) ∈ Hn ×P is X(n)-measurable.
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Estimation construction. The adaptive and oracle approaches were not developed in the context
of multivariate density estimation in the supremum norm and, as a consequence, the selection rule
(2.2)–(2.3) led to the estimator f̂

ĥ,P̂(·) is new. However some elements of its construction have been
already exploited in previous works.

The idea to use a special estimator based on the convolution operator ”?”, led in the considered
case to the estimator (2.1), goes back to Lepski and Levit (1999). Further it was steadily used
in Goldenshluger and Lepski (2008, 2009, 2011). In particular, if P = {∅̄}, i.e. the independence
hypotheses is not taken into account, our selection rule, based on ∆̂n(h, ∅̄), is close to the selection
rule used in Goldenshluger and Lepski (2011), where the bandwidths selection problem was solved
under Ls-loss, 1 ≤ s < ∞. In this context, completely new element of our construction is the
adaptation to eventual independence configuration P ∈ P(f) which is obtained by the introduction
of the operation ”¦” on P and the criterion ∆̂n(h,P), h ∈ Hn, P ∈ P, based on it. Below we
discuss on informal way the basic facts led to the selection rule (2.2)–(2.3).

To simplify the presentation of our idea let us consider the case where Hn = {h} and h ∈ Hn

is a given vector. This means that we are not interested in bandwidth selection, for example, the
density to be estimated is supposed to belong a given set of smooth functions. If so, the special
estimator based on the convolution operator ”?” is not needed anymore and our selection rule can
be rewritten on much simpler way. The final estimator is now f̂

h,P̂ and

∆̂n(h,P) = sup
P′∈P

[∥∥∥f̂(h,P¦P ′) − f̂h,P ′
∥∥∥
∞
− λÂn

(
h,P ′)

]

+

,

∆̂n
( P̂)

+ λÂn
(
h, P̂)

= inf
P∈P

[
∆̂n

(
h,P)

+ λÂn
(
h,P)]

.

Remind that f̂h,P(x) =
∏

I∈P f̃hI

(
xI

)
and f̃hI

(
xI

)
is standard kernel estimator for the marginal

density fI

(
xI

)
.

Set ξhI

(
xI

)
= f̃hI

(
xI

)−Ef

{
f̃hI

(
xI

)}
and note that ξhI

(
xI

)
, xI ∈ R|I|, is the sum of i.i.d. bounded

and centered random variables and , therefore, is ”somehow small”.
If we admit the latter remark we can expect that

∥∥∥f̂(h,P¦P′) − f̂h,P′
∥∥∥
∞
≈

∥∥∥∥
∏

I∈P¦P ′
Ef

{
f̃hI

(·)
}
−

∏

I∈P ′
Ef

{
f̃hI

(·)
} ∥∥∥∥

∞
+ smaller order term.

The key observations in this context (explaining the introduction of ∆̂n(h,P)) are the following.

∏

I∈P¦P ′
Ef

{
f̃hI

(·)
}
≡

∏

I∈P ′
Ef

{
f̃hI

(·)
}

, ∀P ∈ P(f), ∀P ′ ∈ P,

and (smaller order term) < λÂn
(
h,P ′) ”with high probability”. Thus, ”with high probability”

∆̂n(h,P) = 0 for any P ∈ P(f).
It allows us to conclude that ”with high probability” our procedure select P̂ ∈ P(f), which,

moreover, minimizes V (h,P). For instance if
({1}, {2}, . . . {d}) =: P(optimal) ∈ P(f), i.e. the coor-

dinates of observable vector are independent random variables, then our procedure select P(optimal)

”with high probability”. It provides us with the estimator f̂h,P(optimal) those accuracy is dimension
free.
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2.2. Main result. Let f > 0 be a given number and introduce the following set of densities

F(f) =

{
f : sup

I∈Id

‖fI‖∞ ≤ f

}
.

With any density f ∈ F(f), any h ∈ (0, 1]d and I ∈ Id associate the quantity

bhI
:=

∥∥∥∥
∫

R|I|
KhI

(
tI − ·

)[
fI

(
tI

)− fI(·)
]
dtI

∥∥∥∥
I,∞

,

which can be view as the approximation error of fI measured in the supremum norm.
For any h ∈ Hn and P ∈ P set B

(
h,P)

= sup
P ′∈P

sup
I∈P¦P ′

‖bhI
‖I,∞ and introduce the quantity

Rn(f) = inf
h∈Hn

inf
P∈P(f)∩P

(
B

(
h,P)

+

√
ln(n)

nV (h,P)

)
.

Theorem 1. Let Assumption 1 be fulfilled. Then for any q ≥ 1 and any 0 < f < ∞ there exist
0 < C1 < ∞ and 0 < C2 < ∞ such that for any f ∈ F(f) and any n ≥ 3

(
Ef

∥∥f̂
ĥ,P̂ − f

∥∥q

∞
) 1

q ≤ C1Rn(f) + C2n
−1/2.

The explicit expression of C1 = C1
(
q, d,K, f

)
and C2 = C2

(
q, d,K, f

)
can be found in the proof

of the theorem.

Let us return to the discussion about extra parameters P and Hn. Their optimal choice is given
by P = P and Hn = Hn since it minimizes obviously the quantity Rn(f) for any f . But as it was
mentioned above this choice leads to intractable computations of the estimator in the case of large
dimension. On the other hand the consideration of P instead of P has a price to pay. It is possible
that P(f)∩P = ∅̄ although P(f) contains the elements besides ∅̄. However even in this case, where
structural hypothesis fails or is not taken into account (P = {∅̄}), our estimator solves completely
the bandwidths selection problem in multivariate density model under sup-norm loss. Moreover the
solution of the considered problem was not known for any d ≥ 2 and, therefore, our investigations
are not restricted by the study of large dimension. In this context, noting that |P| = 2, d = 2,
|P| = 5, d = 3, |P| = 12, d = 4 etc, we can conclude that in the case of ”small dimension” the
optimal choice P = P and Hn = Hn is always possible. We finish this discussion with the following
remark concerning the proof of Theorem 1.

Remark 1. Our selection rule is based on computation of upper functions for some special type
of random processes and the main ingredient of the proof of Theorem 1 is exponential inequality
related to them. Corresponding results may have an independent interest and Section 4.1 is devoted
to this topic. In particular the function γp involved in the construction of our selection rule and
which we present below comes from this consideration.

2.3. Quantity γp. For any a > 0, p ≥ 1 and s ∈ N∗ introduce

γp(s, a) = 4e
√

2sτp(s, a) [a + (3L/2)(a)s−1] + (16e/3)
(
s

[
a + (3L/2)as−1

]
∨ 8a

)
τp(s, a);

τp(s, a) = s
(
234sδ−2

∗ + 6.5p + 5.5
)
ln(2) + s(2p + 3) +

[
108sδ−2

∗
∣∣ log(a)

∣∣ + 36Cs + 1
]
[ln(3)]−1.
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Here δ∗ is the smallest solution of the equation 8π2δ
(
1 + [ln δ]2

)
= 1, Cs = C

(1)
s + C

(2)
s and

C(1)
s = s sup

δ>δ∗
δ−2

{[
1 + ln

(
9216(s + 1)δ2

[φ(δ)]2

)]

+

+ 1.5

[
log2

{(
4608(s + 1)δ2

[φ(δ)]2

)}]

+

}
;

C(2)
s = s sup

δ>δ∗
δ−1

{[
1 + ln

(
9216(s + 1)δ

φ(δ)

)]

+

+ 1.5
[
log2

{(
4608(s + 1)δ

φ(δ)

)}]

+

}
,

where φ(δ) = (6/π2)
(
1 + [ln δ]2

)−1
, δ > 0.

3. Adaptive Estimation. In this section we illustrate the use of the oracle inequality proved
in Theorem 1 for the derivation of adaptive rate optimal density estimators.

We start with the definition of the anisotropic Nikol’skii class of functions on Rs, s ≥ 1, and
later on e1, . . . es, denotes the canonical basis in Rs.

Definition 1. Let r = (r1, . . . , rs), ri ∈ [1,∞], α = (α1, . . . , αs), αi > 0, Q = (Q1, . . . , Qs),
Qi > 0. A function g : Rs → R belongs to the anisotropic Nikol’ski class Nr,s(α, Q) of functions if

‖Dk
i g‖ri ≤ Qi, ∀k = 0, bαic, ∀i = 1, s;

∥∥∥D
bαic
i g

( ·+tei
)−D

bαic
i g

( · )
∥∥∥

ri

≤ Qi|t|αi−bαic, ∀t ∈ R, ∀i = 1, s.

Here Dk
i f denotes the kth order partial derivative of f with respect to the variable ti, and bαic is

the largest integer strictly less than αi.

The functional classes Nr,s(α, Q) were considered in approximation theory by Nikol’skii; see,
e.g., Nikol’skii (1977). Minimax estimation of densities from the class Nr,s(α, Q) was considered
in Ibragimov and Khasminskii (1981). We refer also to Kerkyacharian, Lepski and Picard (2001,
2007), where the problem of adaptive estimation over a scale of classes Nr,s(α, Q) was treated for
the Gaussian white noise model.

Our goal now is to introduce the scale of functional classes of d-variate probability densities taking
into account the independence structure. It implies in particular that we will need to estimate not
only the density itself but all marginal densities as well. It is easily seen that if f ∈ Np,d(β,L) and
additionally f is compactly supported then fI ∈ NpI,|I|

(
βI,LI

)
for any I ∈ Id, where L = cL and

c > 0 is a numerical constant. However if supp(f) = Rd the latter assertion is not true in general.
The assumption f ∈ Np,d(β,L) does not even guarantee that fI is bounded on R|I|. It explains the
introduction of the following anisotropic classes of densities.

Let p = (p1, . . . , pd), pi ∈ [1,∞], β = (β1, . . . , βd), βi > 0, L = (L1, . . . ,Ld), Li > 0.

Definition 2. A probability density f : Rd → R+ belongs to the class Np,d

(
β,L)

if

fI ∈ NpI,|I|
(
βI,LI

)
, ∀I ∈ Id.

Introduce finally the collection of functional classes taking into account the smoothness of the
underlying density and the independence structure simultaneously.
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Let
(
β, p,P) ∈ (0,∞)d × [1,∞]d ×P and L ∈ (0,∞)d be fixed. Introduce

Np,d

(
β,L,P)

=
{

f(x) ∈ Np,d

(
β,L)

: f(x) =
∏

I∈P
fI

(
xI

)
, ∀x ∈ Rd

}
.

For any
(
β, p,P) ∈ (0,∞)d × [1,∞]d ×P define

Υ
(
β, p,P)

= inf
I∈P

γI(β, p), γI

(
β, p

)
=

1−∑
j∈I

1
βjpj∑

j∈I
1
βj

.

We will see that the quantity Υ
(
β, p,P)

can be view as ”effective smoothness index” related to
independence structure hypothesis and to the estimation under sup-norm loss.

Theorem 2. For any
(
β, p,P) ∈ (0,∞)d × [1,∞]d × P such that Υ

(
β, p,P)

> 0 and any
L ∈ (0,∞)d

lim inf
n→∞ inf

f̂n

sup
f∈Np,d

(
β,L,P

)
(
E(n)

f

[
ϕ−1

n (β, p,P)∥∥f̂n − f
∥∥
∞

]q) 1
q

> 0, ϕn(β, p,P)
=

(
ln n

n

) Υ
2Υ+1

.

where Υ = Υ
(
β, p,P)

and infimum is taken over all possible estimators.

Our goal is to prove that the estimation quality provided by f̂
ĥ,P̂ on Np,d

(
β,L,P)

coincides
up to numerical constant with optimal decay of minimax risk ϕn(β, p,P)

whatever the value of
nuisance parameter

{
β, p,P,L}

. It means that this estimator is optimally adaptive over the scale
of considered functional classes. We would like to emphasize that not only the couple (β,L) is
unknown that is typical in frameworks of adaptive estimation but also the index p of norms where
the smoothness is measured. At last, our estimator adapts automatically to unknown independence
structure. Note, however, that the range of adaptation with respect to the parameter P is limited
by the set where our procedure is running. It means that, if P is used in the selection rule, the
adaptation is possible only over the collection

{
N·,d

(·, ·,P)
, P ∈ P

}
. In this context the adaptation

over full collection of anisotropic Nikolskii classes is possible only if the selection rule (2.2)–(2.3)
runs P = P.

Remind that ∅̄ = {1, . . . , d} and, therefore, γ∅̄
(
β, p

)
=

(
1−∑d

j=1
1

βjpj

) (∑d
j=1

1
βj

)−1
. Let P ⊆ P

be fixed and let Hn be the diadic grid in Hn. Let finally f̂
ĥ,P̂(·) be the estimator obtained by the

selection rule (2.2)–(2.3).

Theorem 3. Let K satisfy Assumption 1 and suppose additionally that for some integer b ≥ 2

(3.1)
∫

R
umK(u)du = 0, ∀m = 2, b.

Then for any
(
β, p

) ∈ (0, b]d × [1,∞]d such that γ∅̄
(
β, p

)
> 0, any P ∈ P and any L ∈ (0,∞)d

lim sup
n→∞

sup
f∈Np,d

(
β,L,P

)
(
E(n)

f

[
ϕ−1

n (β, p,P)∥∥f̂
ĥ,P̂ − f

∥∥
∞

]q) 1
q

< ∞.
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Some remarks are in order.
10. We want to emphasize that the extra-parameter b can be arbitrary but a priory chosen. Note

also that the condition (3.1) of the theorem is fulfilled with m = 1 as well since K is symmetric.

20. Note that assumption γ∅̄
(
β, p

)
> 0 implies obviously γI

(
β, p

)
> 0 for any I ∈ Id. This

together with the definition of the class Np,d

(
β,L)

allows us to assert that one can find f = f
(
β, p

)

such that f ∈ Np,d

(
β,L)

implies that f ∈ F(f). It makes possible the application of Theorem 1.
The latter result follows from the embedding theorem for anisotropic Nikolskii classes which is
formulated in the proof of Lemma 4 below.

30. As it was recently proven in Goldenshluger and Lepski (2012), Theorem 3 (ii), the assumption
γ∅̄

(
β, p

)
> 0 is necessary for existence of a uniformly consistent estimator of the density f in the

supremum norm over anisotropic Nikolskii class Np,d(β,L). Since we consider only P containing ∅̄,
that means that the estimation of the entire density f is always supposed, the condition γ∅̄

(
β, p

)
> 0

is necessary for the application of the selection rule (2.2)–(2.3).

4. Proofs. We start this section with the computation of upper functions for kernel estimation
process being one of main tools in the proof of Theorem 1.

4.1. Upper functions for kernel estimation process . Let s ∈ N∗ and let Yj , j ≥ 1, be Rs-valued
i.i.d. random vectors defined on a complete probability space (Ω,A, P) and having the density g
with respect to the Lebesgue measure. Later on P(n)

g denotes the law of Y1, . . . , Yn, n ∈ N∗, and E(n)
g

is mathematical expectation with respect to P(n)
g .

Let M : R→ R be a given symmetric function and for any r ∈ (0, 1]s set as previously

Mr(·) =
s∏

l=1

r−1
l M(·/rl), Vr =

s∏

l=1

rl.

Denote also mm = ‖M‖m, m = {1,∞}. For any y ∈ Rs consider the family of random fields

χr(y) = n−1
n∑

j=1

{
Mr (Yj − y)− E(n)

g

[
Mr (Yj − y)

]}
, r ∈ R̃n(s) := {r ∈ (0, 1]s : nVr ≥ ln(n)} .

For any r ∈ (0, 1]s set G(r) = sup
y∈Rs

∫

Rs
|Mr(x− y)|g(x)dx and let Ḡ(r) = 1 ∨G(r).

Proposition 1. Let M satisfy Assumption 1. Then for any n ≥ 3 and any p ≥ 1

E(n)
g

{
sup

r∈R̃n(s)

[∥∥χr

∥∥
∞ − γp

(
s,m∞

)
√

Ḡ(r) ln(n)
nVr

]}p

+

≤ c1(p, s)
[
1 ∨ms

1‖g‖∞
] p

2 n−
p
2 + c2(p, s)n−p,

where c1(p, s) = 27p/2+53p+5s+4Γ(p + 1)πp
(
s,m∞

)
and c2(p, s) = 2p+135s.

The function π : N∗ × R+ :→ R is given by

π(s, a) =
(√

a ∨ a
) (√

2es [1 + (3L/2)as−2] ∨
[
(2e/3)

(
s

[
1 + (3L/2)as−2

]
∨ 8

)])
.
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In view of trivial inequality

∥∥χr

∥∥
∞ ≤ γp

(
s,m∞

)
√

Ḡ(r) ln(n)
nVr

+


∥∥χr

∥∥
∞ − γp

(
s,m∞

)
√

Ḡ(r) ln(n)
nVr




+

we come to the following corollary of Proposition 1.

Corollary 1. Let M satisfy Assumption 1. Then for any n ≥ 3 and any p ≥ 1
(
E(n)

g

{
sup

r∈R̃n(s)

∥∥χr

∥∥
∞

}p
) 1

p

≤ [
1 ∨ms

1‖g‖∞
] 1

2

[
γp

(
s,m∞

)
+

{
c1(p, s) + c2(p, s)

} 1
p n−1/2

]
.

Consider now the following family of random fields: for any y ∈ Rs set

Υr(y) = n−1
n∑

j=1

∣∣Mr (Yj − y)
∣∣, r ∈ R̃(a)

n (s) :=
{
r ∈ (0, 1]s : nVr ≥ a−1 ln(n)

}
,

where we have put a =
[
2γp

(
s,m∞

)]−2.

Proposition 2. Let M satisfy Assumption 1. Then for any n ≥ 3 and any p ≥ 1

E(n)
g

{
sup

r∈R(a)
n (s)

[
1 ∨ ‖Υr‖∞ − (3/2)Ḡ(r)

] }p

+

≤ c1(p, s)
[
1 ∨ms

1‖g‖∞
] p

2 n−
p
2 + c2(p, s)n−p;

E(n)
g

{
sup

r∈R(a)
n (s)

[
Ḡ(r)− 2 (1 ∨ ‖Υr(·)‖∞)

] }p

+

≤ c′1(p, s)
[
1 ∨ms

1‖g‖∞
] p

2 n−
p
2 + c′2(p, s)n−p,

where c′1(p, s) = 2pc1(p, s) and c′2(p, s) = 22p+135s.

4.2. Proof of Theorem 1. We start the proof of the theorem with auxiliary results used in the
sequel. Whose proofs are given in Appendix.

4.2.1. Auxiliary results. Introduce the following notations. For any I ∈ Id set

shI
(·) =

∫

R|I|
KhI

(
tI − ·

)
fI

(
tI

)
dtI, s∗hI,ηI

(·) =
∫

R|I|
[KhI

? KηI ]
(
tI − ·

)
fI

(
tI

)
dtI;

Lemma 1. For any I ∈ Id and any h, η ∈ (0, 1]|I| one has
∥∥∥s∗hI,ηI

− sηI

∥∥∥
I,∞ ≤ kd

1bhI
.

For any h ∈ (0, 1]d and any P ∈ P let

An(h,P) =

√
s̄n ln(n)
nV (h,P)

, s̄n = 1 ∨ sup
h∈Hn

sup
I∈Id

∥∥∥∥
∫

R|I|

∣∣KhI

(
tI − ·

)∣∣fI

(
tI

)
dtI

∥∥∥∥
I,∞

Put also ξhI
(·) = f̃hI

(·)− shI
(·) and let

ζ(h,P) = sup
I∈P

‖ξhI
‖I,∞ , ζn = sup

η∈Hn

sup
P∈P

[
ζ
(
η,P)− ΛAn(η,P)

]

+

,

Set, finally

f̄n = f̃nfn, f̃n = d
(
f̄n

)d2/4
, fn = 2dkd

1

[
max

{
f̄n, k2

1f
}]d−1

10



Lemma 2. For any p ≥ 1 there exist ci

(
p, d,K, f

)
, i = 1, 2, 3, 4, such that for any n ≥ 3

(i) sup
f∈F(f)

[
E(n)

f

(
ζn

)2q
] 1

2q ≤ c1
(
2q, d,K, f

)
n−1/2;

(ii) sup
f∈F(f)

[
E(n)

f

[
s̄n − f̄n

]2q
+

] 1
2q ≤ c2

(
2q, d,K, f

)
n−1/2;

(iii) sup
f∈F(f)

[
E(n)

f

[
f̄n − 3s̄n

]2q
+

] 1
2q ≤ c3

(
2q, d,K, f

)
n−1/2;

(iv) sup
f∈F(f)

[
E(n)

f

(̄
fn

)p
] 1

p ≤ c4
(
p, d,K, f

)
.

The explicit expression of ci

(
p, d,K, f

)
, i = 1, 2, 3, 4 can be found in the proof of the lemma.

4.2.2. Proof of Theorem 1. We break the proof on several steps.

10. Let h ∈ Hn and P ∈ P(f) ∩P be fixed. We have in view of triangle inequality

(4.1)
∥∥∥f̂

ĥ,P̂ − f
∥∥∥
∞
≤

∥∥∥f̂
ĥ,P̂ − f̂

(h,P)(̂h,P̂)

∥∥∥
∞

+
∥∥∥f̂

(h,P)(̂h,P̂)
− f̂h,P

∥∥∥
∞

+
∥∥∥f̂h,P − f

∥∥∥
∞

.

We have

(4.2)
∥∥∥f̂

ĥ,P̂ − f̂
(h,P)(̂h,P̂)

∥∥∥
∞
≤ ∆̂n(h, P) + λÂn

(
ĥ, P̂)

.

Noting that f̂
(h,P)(̂h,P̂)

≡ f̂
(̂h,P̂)(h,P)

we get

(4.3)
∥∥∥f̂

(h,P)(̂h,P̂)
− f̂h,P

∥∥∥
∞
≤ ∆̂n

(
ĥ, P̂)

+ λÂn
(
h, P)

.

To obtain (4.2), (4.3) we have also used that P̂, P ∈ P and ĥ,h ∈ Hn. We get from (4.2) and (4.3)
∥∥∥f̂

ĥ,P̂ − f̂
(h,P)(̂h,P̂)

∥∥∥
∞

+
∥∥∥f̂

(h,P)(̂h,P̂)
− f̂h,P

∥∥∥
∞

≤
[
∆̂n

(
ĥ, P̂)

+ λÂn
(
ĥ, P̂)]

+
[
∆̂n(h, P) + λÂn(h, P)

]
≤ 2

[
∆̂n(h,P) + λÂn(h, P)

]
.

To get the last inequality we have used the definition of (ĥ, P̂). Thus, we obtain from (4.1) that

(4.4)
∥∥∥f̂

ĥ,P̂ − f
∥∥∥
∞
≤ 2

[
∆̂n(h,P) + λÂn(h, P)

]
+

∥∥∥f̂h,P − f
∥∥∥
∞

.

We remark that (4.4) remains valid for an arbitrary P ∈ P, i.e. we did not use that P ∈ P(f).

20. Note that for any h, η ∈ Hn and any P ′ ∈ P

∥∥∥f̂(h,P),(η,P ′) − f̂η,P′
∥∥∥
∞

≤ |P ′| sup
I′∈P′

((
f̄n

)|I′|(|P ′|−1)
)

sup
I′∈P ′

∥∥∥∥
∏

I∈P: I∩I′ 6=∅
f̃hI∩I′ ,ηI∩I′ − f̃ηI′

∥∥∥∥
I′,∞

≤ d
(
f̄n

) d2

4 sup
I′∈P ′

∥∥∥∥
∏

I∈P: I∩I′ 6=∅
f̃hI∩I′ ,ηI∩I′ − f̃ηI′

∥∥∥∥
I′,∞

.(4.5)
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Here |P ′| = card(P ′) and the second inequality follows from |P ′| ≤ d + 1− supI′∈P′ |I′|. To get the
first bound we have used the trivial inequality: for any m ∈ N∗ and any aj , bj : Xj → R, j = 1,m,

(4.6)
∥∥∥∥

m∏

j=1

aj −
m∏

j=1

bj

∥∥∥∥
∞
≤ m

(
sup

j=1,m

‖aj − bj‖Xj ,∞
)[

sup
j=1,m

max
(‖aj‖Xj ,∞, ‖bj‖Xj ,∞

)]m−1

,

where ‖ · ‖Xj ,∞ and ‖ · ‖∞ denote the supremum norms on Xj and X1 × · · · × Xm respectively.
Introduce the following notation: for any h, η ∈ Hn and any I ∈ Id we set

ξ∗hI,ηI
(·) = f̃hI,ηI

(·)− s∗hI,ηI
(·).

We have in view of (4.6) (here and later the product and the supremum over empty set are assumed
equal to one and to zero respectively)

(4.7)
∥∥∥∥

∏

I∈P
f̃hI∩I′ ,ηI∩I′ −

∏

I∈P
s∗hI∩I′ ,ηI∩I′

∥∥∥∥
I′,∞

≤ d
[
max

{
f̄n, k2

1f
}]d−1

sup
I∈P

∥∥∥ξ∗hI∩I′ ,ηI∩I′

∥∥∥
I∩I′,∞ .

We remark that for any I ∈ Id, any h, η ∈ (0, 1]d and any zI ∈ R|I|

ξ∗hI,ηI

(
zI

)
=

∫

R|I|
Kηi

(
zI − uI

)
ξhI

(
uI

)
duI

and, therefore, ∥∥∥ξ∗hI,ηI

∥∥∥
I,∞ ≤ k1

|I| ‖ξhI
‖I,∞ ≤ k1

d ‖ξhI
‖I,∞ ,

since k1 ≥ 1 in view of Assumption 1. It yields together with (4.7)

(4.8)
∥∥∥∥

∏

I∈P
f̃hI∩I′ ,ηI∩I′ −

∏

I∈P
s∗hI∩I′ ,ηI∩I′

∥∥∥∥
I′,∞

≤ dk1
d

[
max

{
f̄n, k2

1f
}]d−1

sup
I∈P

∥∥∥ξhI∩I′

∥∥∥
I∩I′,∞ .

Note also that for any η ∈ Hn and I′ ∈ Id

sηI′ (·) =
∫

RI′
KηI′

(
tI′ − ·

)
fI′

(
tI′

)
dtI′ =

∫

RI′
KηI′

(
tI′ − ·

)[ ∏

I∈P
fI∩I′

(
tI∩I′

)]
dtI′ =

∏

I∈P
sηI∩I′ (·).

Here we have used that P ∈ P(f). Using once again (4.6) we obtain
∥∥∥∥

∏

I∈P
s∗hI∩I′ ,ηI∩I′ −

∏

I∈P
sηI∩I′

∥∥∥∥
I′,∞

≤ d
[
k2

1f
]d−1

sup
I∈P

∥∥∥s∗hI∩I′ ,ηI∩I′ − sηI∩I′

∥∥∥
I∩I′,∞ .

and, therefore, in view of Lemma 1
∥∥∥∥

∏

I∈P
s∗hI∩I′ ,ηI∩I′ − sηI′

∥∥∥∥
I′,∞

≤ dkd
1

[
k2

1f
]d−1

sup
I∈P

∥∥∥bhI∩I′

∥∥∥
I∩I′,∞ .(4.9)

Thus, we obtain from (4.8) and (4.9)
∥∥∥∥

∏

I∈P: I∩I′ 6=∅
f̃hI∩I′ ,ηI∩I′ − f̃ηI′

∥∥∥∥
I′,∞

≤ fn

[
sup
I∈P

∥∥∥ξhI∩I′

∥∥∥
I∩I′,∞ + sup

I∈P

∥∥∥bhI∩I′

∥∥∥
I∩I′,∞

]
+

∥∥∥ξηI′

∥∥∥
I′,∞ ,
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where, remind, fn = 2dkd
1

[
max

{
f̄n, k2

1f
}]d−1.

Therefore, we get from (4.5) for any h, η ∈ Hn and P ′ ∈ P

∥∥∥f̂(h,P),(η,P′) − f̂η,P′
∥∥∥
∞
≤ f̄n

{
ζ
(
h,P ¦ P ′) + sup

I∈P¦P ′
‖bhI

‖I,∞
}

+ f̃nζ
(
η,P ′).(4.10)

Here, remind, f̃n = d
(
f̄n

)d2/4 and f̄n = f̃nfn. Taking into account that

An
(
h,P ¦ P ′) ≤ An

(
h,P) ∧An

(
h,P ′), ∀h ∈ Hn, ∀P,P ′ ∈ P,

we get from (4.10)
∥∥∥f̂(h,P),(η,P′) − f̂η,P ′

∥∥∥
∞
≤ f̄n

{
ΛAn

(
h,P)

+ sup
I∈P¦P′

‖bhI
‖I,∞ + ζn

}
+ f̃nζ

(
η,P ′).(4.11)

Remembering that λ = f̃nΛ, we obtain from (4.11)

∆̂n(h, P) ≤ f̄n
{
ΛAn

(
h,P)

+ B
(
h,P)

+ ζn

}
+ f̃n

{
ζn + Λ sup

η∈Hn

sup
P∈P

[
An(η,P)− Ân(η,P)

]
+

}
,

where, remind B
(
h,P)

= supP ′∈P supI∈P¦P ′ ‖bhI
‖I,∞. Here we have also used that Hn ⊆ Hn and

P ⊆ P. Taking into account that f̄n ≥ f̃n, since fn ≥ 1, we finally get

∆̂n(h, P) ≤ f̄n
{
ΛAn

(
h, P)

+ B
(
h,P)

+ 2ζn + Λ sup
η∈Hn

sup
P∈P

[
An(η,P)− Ân(η,P)

]
+

}
.(4.12)

Note that the definition of Hn implies that
[
An(η,P)− Ân(η,P)

]
+
≤ a∗

[√
s̄n −

√
f̄n

]

+
≤ a∗

[
s̄n − f̄n

]
+ , ∀η ∈ Hn, ∀P ∈ P.

To get the last inequality we have also used that f̄n ≥ 1 and s̄n ≥ 1 by definition.
Putting Rn = a∗Λ

[
s̄n − f̄n

]
+ we obtain in view of (4.12)

∆̂n(h,P) ≤ f̄n
{
ΛAn

(
h,P)

+ B
(
h, P)

+ 2ζn + Rn

}
,(4.13)

Note also that the definition of Hn implies that
[
Ân(η,P)−

√
3An(η,P)

]
+
≤ a∗

[√
f̄n −

√
3s̄n

]

+
≤ a∗

[
f̄n − 3s̄n

]
+ , ∀η ∈ Hn, ∀P ∈ P.

Thus, denoting Rn = a∗Λ
[
f̄n − 3s̄n

]
+ we obtain using (4.13)

∆̂n(h,P) + λÂn
(
h, P) ≤ f̄n

{
3ΛAn

(
h, P)

+ B
(
h, P)

+ 2ζn + Rn +Rn

}
,(4.14)

where we have used also
√

3 < 2.
30. Note that in view of P ∈ P(f) and (4.6)
∥∥∥f̂h,P − f

∥∥∥
∞

=
∥∥∥∥

∏

I∈P
f̃hI

(
xI

)−
∏

I∈P
fI(xI)

∥∥∥∥
∞

≤ d
[
max

{
f̄n, k2

1f
}]d−1

sup
I∈P

∥∥∥f̃hI

(
xI

)− fI(xI)
∥∥∥

I,∞

≤ d
[
max

{
f̄n, k2

1f
}]d−1 [

B(h, P) + ζ(h, P)
]
≤ f̄n

[
B(h,P) + ΛAn(h, P) + ζn

]
.(4.15)
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Here we have also used that P ≡ P ¦ P. We obtain from (4.4), (4.14) and (4.15)
∥∥∥f̂

ĥ,P̂ − f
∥∥∥
∞
≤ f̄n

[
3B

(
h, P)

+ 7ΛAn(h, P) + 5ζn + 2Rn + 2Rn
]
,

and, therefore, for any h ∈ Hn, P ∈ P(f) ∩P and q ≥ 1

(
E(n)

f

∥∥f̂
ĥ,P̂ − f

∥∥
∞

) 1
q ≤ Eq

[
3B

(
h,P)

+ 7ΛAn(h,P)
]
+ E2q

[
5y1,n + 2Λa∗

(
y2,n + y3,n

)]
,(4.16)

where we have put for p ≥ 1

Ep =
[
E(n)

f

(̄
fn

)p
] 1

p , y1,n =
[
E(n)

f

(
ζn

)2q
] 1

2q , y2,n =
[
E(n)

f

[
s̄n − f̄n

]2q
+

] 1
2q , y3,n =

[
E(n)

f

[
f̄n − 3s̄n

]2q
+

] 1
2q .

Taking into account that the left hand side of (4.16) is independent of the choice h and P and that
the quantity s̄n ≤ 1 ∨ [k1f ] we get

(
E(n)

f

∥∥f̂
ĥ,P̂ − f

∥∥
∞

) 1
q ≤ 7ΛEq

(
inf

h∈Hn

inf
P∈P(f)∩P

[
B

(
h,P)

+ An(h, P)
])

+E2q

[
5y1,n + 2Λa∗

(
y2,n + y3,n

)]

= C1
(
q, d,K, f

)
Rn(f) + E2q

[
5y1,n + 2Λa∗

(
y2,n + y3,n

)]
.

where we have put C1
(
q, d,K, f

)
= 7ΛEq

√
1 ∨ [k1f ].

This inequality together with bounds found in Lemma 2 leads to the assertion of the theorem.

4.3. Proof of Theorem 2. The proof of Theorem 2 is relatively standard and based on the general
result established in Kerkyacharian, Lepski and Picard (2007), Proposition 7. For the convenience
we formulate this result not in full generality but its version reduced to the considered problem.
Let

(
β, p,P) ∈ (0,∞)d × [1,∞]d ×P such that Υ

(
β, p,P)

> 0 and L ∈ (0,∞)d be fixed.

Lemma 3. Assume that there exist f0 ∈ Np,d

(
β,L,P)

, ρn > 0, n ∈ N∗, and a finite set Jn such
that for any sufficiently large n ∈ N∗ one can find

{
f (j), j ∈ Jn

}
⊂ Np,d

(
β,L,P)

satisfying

‖f (j) − f0‖∞ = ρn, ∀j ∈ Jn;(4.17)

lim sup
n→∞

E(n)
f0

[
1
|Jn|

∑

j∈Jn

dP(n)

f (j)

dP(n)
f0

(
X(n)

)
− 1

]2

=: C < ∞.(4.18)

Then for r ≥ 1

lim inf
n→∞ inf

f̃
sup

f∈Np,d

(
β,L,P

) ρ−1
n

(
E(n)

f

∥∥f̃ − f
∥∥r

∞
) 1

r ≥ 2−1
[
1−

√
C/(C + 4)

]
,

where infimum is taken over all possible estimators.
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Proof of the theorem. Set N (x) =
∏d

i=1

(
[2π]−1/2 exp−{

x2
i /2

}
)

and let f0(x) = σ−dN (x/σ),

where σ > 0 is chosen in such a way that

(4.19) f0 ∈ Np,d

(
β,L/2

)

The product structure of f0 together with (4.19) allows us to assert that f0 ∈ Np,d

(
β,L/2,P)

for
any P ∈ P. Let I∗ ∈ {1, . . . , d} be defined from the relation

Υ
(
β, p,P)

:= inf
I∈P

γI(β, p) = γI∗(β, p),

and for the notation convenience the elements of I∗ will be denoted by i1, . . . , im and m = |I∗|.
Let g : R→ R be compactly supported on (−1/2, 1/2) function, satisfying g ∈ ∩i∈I∗Npi,1(βi, 1/2),

and such that
∫

g = 0. Suppose also that
∣∣g(0)

∣∣ = ‖g‖∞.
Let An → 0 and δl,n → 0, l = 1,m, n → ∞, be sequences whose choice will be done later and

set Jn :=
[
1, . . . , M1,n

]× · · · × [
1, . . . , Mm,n

] ⊂ Nm, where Ml,n =
⌊
δ
−1/2
l,n

⌋
, l = 1,m.

For any j =
(
j1, . . . jm

) ∈ Jn define Gj

(
xI) = An

∏m
l=1 g

(
δ−1
i,n

[
xil − x

(j)
il

])
. Here for any j ∈ Jn

we put x
(j)
il

= jlδl,n. The choice of g implies

(4.20) GjGj′ ≡ 0, ∀j, j′ ∈ Jn, j 6= j′.

Note also that the system of equations

(4.21) Anδ
−βik
k,n

( m∏

l=1

δl,n

)1/pik

=
Lik

ck
, k = 1,m,

implies that Gj ∈ NpI,d

(
βI,LI

/
2
)

for any j ∈ Jn. Here we have denoted ck =
(‖g‖pik

)m−1.

Introduce the family of functions
{
f (j), j ∈ Jn

}
as follows.

f (j)(x) =
d∏

i/∈I∗

( [
2πσ2

]−1/2
exp−{

x2
i /2σ2}

)( d∏

i∈I∗

[
2πσ2

]−1/2
exp−{

x2
i /2σ2} + Gj

(
xI)

)
.

First we remark that An → 0, n → ∞, implies that f (j) > 0 for all sufficiently large n. Next,
the assumption

∫
g = 0 implies that

∫
f (j) = 1. Thus, f (j) is a probability density for any j ∈ Jn

for all sufficiently large n. At last the choice of f0 together with (4.21) allows us to assert that
f (j) ∈ Np,d

(
β,L,P)

for any j ∈ Jn.
Thus, we conclude that Lemma 3 is applicable to the family

{
f (j), j ∈ Jn

}
. We remark also that

(4.22)
∥∥f (j) − f0

∥∥
∞ = c∗1An, ∀j ∈ Jn,

where we have put c∗1 = |g(0)|m
(
2πσ2

)(m−d)/2
. Here we have also used that

∣∣g(0)
∣∣ = ‖g‖∞. We

conclude that the assumption (4.17) is fulfilled with ρn = c∗1An.
Let us now proceed with the verification of the condition (4.18) of Lemma 3. Note first that

dP(n)

f (j)

dP(n)
f0

(
X(n)

)
=

n∏

k=1

f (j)(Xk)
f0(Xk)
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and, therefore,

(4.23)

[
1
|Jn|

∑

j∈Jn

dP(n)

f (j)

dP(n)
f0

(
X(n)

)]2

=
1

|Jn|2
{ ∑

j∈Jn

n∏

k=1

[
f (j)(Xk)
f0(Xk)

]2

+
∑

j,j′∈Jn:
j6=j′

n∏

k=1

f (j)(Xk)f (j′)(Xk)
f2
0 (Xk)

}
.

Since Xk, k = 1, n are i.i.d. random vectors, we have for any j 6= j′

E(n)
f0

{
n∏

k=1

f (j)(Xk)f (j′)(Xk)
f2
0 (Xk)

}
=

{ ∫

R|I∗|

[
1 +

Gj

(
xI∗

)

fI∗,0
(
xI∗

)
][

1 +
Gj′

(
xI∗)

fI∗,0
(
xI∗

)
]
fI∗,0

(
xI∗

)
dxI∗

}n

= 1.

To get the last equality we have used (4.20) and the fact that
∫
R|I∗| Gj

(
xI∗)dxI∗ = 0 since

∫
g = 0.

The latter result together with (4.23) yields

En := E(n)
f0

[
1
|Jn|

∑

j∈Jn

dP(n)

f (j)

dP(n)
f0

(
X(n)

)
− 1

]2

=
1

|Jn|2
∑

j∈Jn

{ ∫

R|I∗|

[
1 +

Gj

(
xI∗

)

fI∗,0
(
xI∗

)
]2

fI∗,0
(
xI∗

)
dxI∗

}n

− |Jn|−1

=
1

|Jn|2
∑

j∈Jn

{
1 +

∫

Rm

[ G2
j (y)

fI∗,0(y)

]
dy

}n

− |Jn|−1.(4.24)

Since, Gj(y) = 0 for any y /∈ [
0,

√
δ1,n

] × · × [
0,

√
δm,n

]
=: Yn we have for all n large enough

infy∈Yn fI∗,0(y) ≥ 2−1
(
2πσ2

)−m
. It yields together with (4.23), putting c∗2 = 2

(
2πσ2

)m
‖g‖2m

2 ,

En ≤ |Jn|−1
(

1 + c∗2A
2
n

m∏

l=1

δl,n

)n

.

If we choose An and δl,n, l = 1,m satisfying

c∗2nA2
n

m∏

l=1

δl,n ≤ (1/4) ln
( m∏

l=1

δ−1
l,n

)
≤ ln

(|Jn|
)
,(4.25)

for all n ≥ 1 large enough, then En ≤ 1 and, therefore, the condition (4.18) is fulfilled with C = 1.
Thus, we have to choose An and δl,n, l = 1,m satisfying (4.21) and (4.25). Let t > 0 be the

number whose choice will be done later. Consider instead of (4.25) the equation

nA2
n

m∏

l=1

δl,n = t2 ln(n).(4.26)

and solve (4.21) and (4.26). Straightforward computations yield

An = R(εt)

1−
∑m

l=1
1

βil
pil

1−
∑m

l=1

(
1

pil
− 1

2

)
1

βil , δl,n = A

1
βil
− 2

βil
pil

n
(
tε)

2
βil

pil
(
cl/Ll

) 1
βil ,
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where we have put R =
(∏m

l=1

(
cl/Ll

) 1
2βil

) 1

1−
∑m

l=1

(
1

pil
− 1

2

)
1

βil . Moreover we have in view of (4.26)

(
m∏

l=1

δl,n

)−1/2

= R(εt)−a, a =

∑m
l=1

1
βil

1−∑m
l=1

(
1

pil
− 1

2

)
1

βil

and, therefore, (1/4) ln
( ∏m

l=1 δ−1
l,n

)
³ (a/2) ln(n), n → ∞, Hence, choosing t as an arbitrary

number satisfying t2 < (2c∗2)−1a we guarantee that (4.26) implies (4.25) for all n large enough.
Thus, we conclude that Lemma 3 is applicable with

ρn = c∗1An = c∗1R
(

t ln(n)
n

)
1−

∑m

l=1
1

βil
pil

2

(
1−

∑m

l=1

[
1

pil
− 1

2

]
1

βil

)
.

It remains to note that the definition of I∗ implies that Υ
(
β, p,P)

=
1−

∑m

l=1
1

βil
pil∑m

l=1
1

βil

. We remark that

Υ
(
β, p,P)

2Υ
(
β, p,P)

+ 1
=

1−∑m
l=1

1
βil

pil

2
(
1−∑m

l=1

[
1

pil
− 1

2

]
1

βil

)

and the assertion of the theorem follows.

4.4. Proof of Theorem 3. The proof of the theorem is based on the application of Theorem 1 and
on Lemma 4 below that allows us to bound from above the quantity B(h,P). The assertion of the
lemma, whose proof is postponed to Appendix, is based on the embedding theorem for anisotropic
Nikolskii classes. For any function g : Rs → R and any η ∈ (0,∞)s set

Bη,g(z) =
∫

Rs
Kη(t− z)g(t)dt− g(z), z ∈ Rs.

Lemma 4. Let K satisfy Assumption 1 and (3.1). Let (α, r) ∈ (0, b]s × [1,∞]s be such that
κ = 1−∑s

l=1(αlrl)−1 > 0 and let Q ∈ (0,∞)s. Then there exists c = c
(
s, r, b

)
> 0 such that

sup
g∈Nr,s(α,Q)

‖Bη,g‖∞ ≤ cks
1

s∑

i=1

Qiη
αi
i , ∀η ∈ (0,∞)s.

Here α = (α1, . . . αs ), αi = καiκ−1
i and κi = 1−∑s

l=1

(
r−1
l − r−1

i

)
α−1

l .

Proof of Theorem 3. Let
(
β, p,P) ∈ (0, b]d× [1,∞]d×P and L ∈ (0,∞)d be fixed. For any I ∈ Id

and any i ∈ I define

βi(I) = τ(I)βiτ
−1
i (I), τ(I) = 1−

∑

l∈I

(βlpl)−1, τi(I) = 1−
∑

l∈I

(
p−1

l − p−1
i

)
β−1

l ,

and remark that the condition γ∅̄
(
β, p

)
> 0 implies that τ(I) > 0 for any I ∈ Id.

17



Let us first prove the following simple fact. Denote Ci(I) = {J ⊆ I : i ∈ J}, i ∈ I. Then

(4.27) βi(I) = inf
J∈Ci(I)

βi(J), ∀i ∈ I.

Indeed, we remark that τi(J) = 1−∑
l∈J

(
p−1

l − p−1
i

)
β−1

l = τ(J) + p−1
i

∑
l∈J β−1

l and, therefore,

βi(J) =
βiτ(J)

τ(J) + p−1
i β−1(J)

, β−1(J) =
∑

l∈J

β−1
l .

We obviously have τ(J) ≥ τ(I) and β−1(J) ≤ β−1(I) for any J ⊆ I. It remains to note that
x 7→ x/(x + a) is increasing on R+ for any a > 0 and (4.27) follows.

Let P ′ ∈ P be an arbitrary partition. Since f ∈ Np,d

(
β,L)

we have fJ ∈ NpJ,|J|
(
βJ,LJ

)
and,

therefore, in view of Lemma 4 we have for any h ∈ (0, 1]d and J ∈ P ¦ P ′

bhJ
≤ c

(|J|, pJ, b
)
k|J|1

∑

i∈J

Lih
βi(J)
i ≤ c1

∑

i∈I

Lih
βi(I)
i .

To get the last inequality we use (4.27), h ∈ (0, 1]d and we have put c1 = kd
1 supJ∈Id

c
(|J|, pJ, b

)
k|J|1 .

Noting that the right hand side of the latter inequality is independent on J we obtain

B
(
h,P) ≤ c1 sup

I∈P

∑

i∈I

Lih
βi(I)
i =: B̃

(
h,P)

, h ∈ (0, 1]d.

It remains to choose multi-bandwidth h. To do it it suffices to solve for any I ∈ P the following
system of equations.

Ljh
βj(I)

j = Lih
βi(I)
i =

√
ln(n)
nVhI

, i, j ∈ I.

The solution is given by

hi = L−
1

βi(I)

i

(
L(I) ln(n)

n

) γI(β,p)

βi(I)[2+γI(β,p)]

, L(I) =
∏

i∈I

L
1

βi(I)

i .

Here we have also used that 1/γI(β, p) =
∑

i∈I 1/βi(I).
It is easy to see that obtained solution belongs to Hn and let h∗ be its projection on Hn, which

is, remind, the diadic greed of Hn. It remains to note that B̃
(
h,P)

and B̃
(
h∗,P)

as well as V (h,P)
and V (h∗,P) differ from each other by numerical constants only and, therefore, the assertion of
the theorem follows now from Theorem 1.

5. Appendix.

5.1. Proof of Proposition 1. 10. Note that M(z) = M(|z|) since M is symmetric that implies

χr(y) = n−1
n∑

j=1

[
Mr

(
~ρ (Yj , y)

)− E(n)
g

{
Mr

(
~ρ(Yj , y)

)}]
,

where ~ρ : Rs × Rs → Rs is given by ~ρ
(
z, z′

)
=

(|z1 − z′1|, . . . , |zs − z′s|
)
.
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We conclude that considered family of random fields obeys the structural assumption introduced
in Section 4.4. of Lepski (2012), with d = s, Xd

1 = X̄d
1 = Rs and ρl : R× R→ R is given by |z − z′|

for any l = 1, s. It implies in particular that Rs is equipped with the metric %s generated by the
supremum norm, i.e. %s = maxl=1,s ρl. We remark also that in our case K(u) =

∏s
l=1 M(ul), u ∈

Rs, g ≡ 1 and γl = 1, l = 1, s.
To get the assertion of Proposition 1 we will apply Theorem 9 in Lepski (2012) on Rn(s) :=

[1/n, 1]s. Note that obviously R̃n ⊆ Rn(s). Thus, we have to check the assumptions of the latter
theorem and to match the notations used in the present paper and in Lepski (2012).

First we note that since M satisfies Assumption 1 Assumption 9 (i) is obviously fulfilled with
L1 = (3s/2)(m∞)s−1L. Moreover Assumption 9 (ii) holds because g ≡ 1.

Thus, Assumption 9 is checked.

Consider the collection of closed cubs B 1
2
(j) = {z ∈ Rs : %s(z, j) ≤ 1} , j ∈ Zs, and let Ej(δ), δ >

0 denote the metric entropy of B 1
2
(j) measured in the metric %s.

Obviously
{
B 1

2
(j), j ∈ Zd

}
is a countable cover of Rs and each member of this collection is totally

bounded (even compact) subset of Rs. It is easily seen that

card
({

k ∈ Zs : B 1
2
(j) ∩ B 1

2
(k) 6= ∅

})
≤ 3s, ∀j ∈ Zs.

Using the terminology of Lepski (2012) we can say that
{
B 1

2
(j), j ∈ Zd

}
is 3s-totally bounded cover

of Rs. Moreover, Ej(δ) = s
[
ln(1/δ)

]
+

for any δ > 0 and any j ∈ Zs. All saying above allows us to
assert that Assumption 7 (i) is fulfilled with I = Zs, Xj = B 1

2
(j), N = 1.5s and R = 1. It remains

to note that Assumption 7 (ii) is automatically fulfilled in our case since g ≡ 1.

Also we note that for any j,k ∈ Zs satisfying B 1
2
(j) ∩ B 1

2
(k) = ∅ one has

inf
x∈B 1

2
(j)

inf
y∈B 1

2
(k)

%s(x, y) ≥ 1

and, therefore, Assumption 11 is checked with t = 1. At last we have for any n ≥ 1

sup
r∈Rn(s)

sup
u/∈(0,1]s

∣∣∣∣
s∏

l=1

M(ul/rl)
∣∣∣∣ = 0,

since supp(M) ⊆ [−1/2, 1/2]. Hence, the condition (4.24) of Theorem 9 is fulfilled as well that
completes the verification of the assumptions of the theorem.

20. Let us match the notations. First, in our case n1 = n2 = n. Since Yj , j ≥ 1, are identically
distributed the quantity denoted Fn2

(
r, x̄(d)

)
is given now by G(r, y) =

∫
Rs |Mr(x− y)|g(x)dx and,

therefore, is independent on n. Here we have taken into account that x̄(d) ∈ Xd = Rs.
It is easily seen that

(5.1) Gn := sup
r∈[1/n,1]s

‖G(r, ·)‖∞ ≤ min
[
ms

1‖g‖∞,ms
∞ns

]
.

It yields, in particular, that Fn2 = Gn ≤ ms
1‖g‖∞ for any n ≥ 1.

Choosing in Theorem 9 q = p, v = 2p + 2, z = 1 and remembering that x̄(d) = y, we have

Û (v,z,p)(n, r, x̄(d)) ≤ γp
(
s,m∞

)
√

Ḡ(r) ln(n)
nVr

,
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for any x̄(d) = y ∈ Rs and any r ∈ R̃n(s) ⊆ Rn(s). To get this assertion we have used that
Gn ≤ (m∞n)s in view of (5.1).

At last, taking into account that the right hand side of the latter inequality is independent on
y, we deduce from Theorem 9 that for any p ≥ 1

E(n)
g

{
sup

r∈R̃n(s)

[∥∥χr

∥∥
∞ − γp

(
s,m∞

)
√

Ḡ(r) ln(n)
nVr

}p

+

≤ c1(p, s)
[
1 ∨ms

1‖g‖∞
] p

2 n−
p
2 + c2(p, s)n−p,

where c1(p, s) = 27p/2+53p+5s+4Γ(p + 1)πp
(
s,m∞

)
and c2(p, s) = 2p+135s. Here we have also used

that Gn ≤ ms
1‖g‖∞ in view of (5.1) that implies F̂n2 ≤ 1 ∨ms

1‖g‖∞.

5.2. Proof of Proposition 2. First, noting that γp
(
s,m∞

)√
a = 1/2 we obtain from Proposition

1 that

(5.2) E(n)
g

{
sup

r∈R̃(a)
n (s)

(∥∥χr

∥∥
∞ − 1

2

√
Ḡ(r)

)}p

+

≤ cn,

where we have put for brevity cn = c1(p, s)
[
1∨ms

1‖g‖∞
] p

2 n−
p
2 + c2(p, s)n−p. Next, putting χ̄r(y) =

Υr(y)− En
gΥr(y) we have in view if (5.2)

(5.3) E(n)
g

{
sup

r∈R̃(a)
n (s)

(∥∥χ̄r

∥∥
∞ − 1

2

√
Ḡ(r)

)}p

+

≤ cn.

To get the latter result we remarked that if M satisfies Assumption 1 then |M| satisfies it as well
and, therefore, Proposition 1 is applicable to the process χ̄r(·). It remains to note that the function
Ḡ(·) is the same for both processes χr(·) and χ̄r(·). We also note that

G(r) = sup
y∈Rs

{
E(n)

g Υr(y)
}

and, therefore, for any r ∈ (0, 1]s one has

(5.4) Ḡ(r) = 1 ∨
∥∥∥E(n)

g Υr

∥∥∥∞ ≤ 1 ∨ ‖Υr‖∞ + ‖χ̄r‖∞ ,

where we have used the obvious inequality
∣∣||x|| ∨ ||z|| − ||y|| ∨ ||z||∣∣ ≤ ||x − y|| being true for any

normed vector space.

Hence, putting ζn(a) = sup
r∈R(a)

n (s)

[
‖χ̄r‖∞ − 1

2

√
Ḡ(r)

]

+
we obtain for any r ∈ R(a)

n (s)

Ḡ(r) ≤ 1
2

√
Ḡ(r) + 1 ∨ ‖Υr‖∞ + ζn(a).

It yields
[
Ḡ(r)− 2 (1 ∨ ‖Υr‖∞)

]
+
≤ 2ζn(a) and we have in view of (5.3)

E(n)
g

{
sup

r∈R(a)
n (s)

[
Ḡ(r)− 2 (1 ∨ ‖Υr‖∞)

] }p

+

≤ 2pcn.
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Similarly to (5.4) we have

1 ∨ ‖Υr‖∞ ≤ Ḡ(r) + ‖χ̄r‖∞ ≤ (3/2)Ḡ(r) + ζn(a)

and, therefore
[
1 ∨ ‖Υr‖∞ − (3/2)Ḡ(r)

]
+ ≤ ζn(a). Thus, we get from (5.3)

E(n)
g

{
sup

r∈R(a)
n (s)

[
1 ∨ ‖Υr‖∞ − (3/2)Ḡ(r)

] }p

+

≤ cn.

5.3. Proof of Lemma 1. We have in view of Fubini theorem for any xI ∈ RI

s∗hI,ηI

(
xI

)
=

∫

R|I|
[KhI

? KηI ]
(
tI − xI

)
fI

(
tI

)
dtI

=
∫

R|I|

[∫

R|I|
KηI

(
yI

)
KhI

(
tI − xI − yI

)
dyI

]
fI

(
tI

)
dtI

=
∫

R|I|
KηI

(
zI − xI

) [∫

R|I|
KhI

(
tI − zI

)
fI

(
tI

)
dtI

]
dzI

= shI

(
xI

)
+

∫

R|I|
KηI

(
zI − xI

) [∫

R|I|
KhI

(
tI − zI

) {
fI

(
tI

)− fI

(
zI

)}
dtI

]
dzI.

Therefore,
∥∥∥s∗hI,ηI

− sηI

∥∥∥
I,∞ ≤ bhI

∫
R|I|

∣∣∣KηI

(
yI

)∣∣∣dyI ≤ kd
1bhI

.

5.4. Proof of Lemma 2. The proof of the lemma is completely based on application of Propo-
sitions 1–2 and Corollary 1.

Proof of (i). Remind that ζ(h,P) = sup
I∈P

‖ξhI
‖I,∞ and

ζn = sup
η∈Hn

sup
P∈P

[
ζ
(
η,P)− ΛAn(η,P)

]

+

.

Then, we have

(5.5)
[
E(n)

f

(
ζn

)2q
] 1

2q =
∑

P∈P

∑

I∈P

(
E(n)

f

{
sup

ηI∈H(ai)
n (|I|)

[
‖ξηI‖I,∞ − γ2q

(|I|, k∞
)
√

s̄n ln(n)
nVηI

]}2q

+

) 1
2q

,

where we have put H(ai)
n (|I|) =

{
ηI ∈ (0, 1]|I| : nVηI ≥ a−1

I ln(n)
}

and aI =
[
2γ2q

(
I, k∞

)]−2.

To get the latter result we have used first that An(η,P) = supI∈P
√

s̄n ln(n)
nVηI

and the trivial inequality
[
supi xi − supi yi

]
+
≤ supi[xi − yi]+. Next we have used that Λ = supP∈P supI∈P γ2q

(|I|, k∞
)
. At

last we have used that η ∈ Hn implies ηI ∈ H(ai)
n (|I|) for any I ∈ Id in view of the definition of a∗.

Note that for any for any I ∈ Id and any ηI ∈ (0, 1]|I|

s̄ ≥ 1 ∨
∥∥∥∥

∫

RI

∣∣KηI

(
tI − ·

)∣∣fI

(
tI

)
dtI

∥∥∥∥
I,∞

=: F̄I(η).
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We conclude that Proposition 1 is applicable with χr = ξηI , M = K, p = 2q, s = |I|, a = ai, Ḡ = F̄I

and the assertion (i) follows with

c1
(
2q, d,K, f

)
=

∑

P∈P

∑

I∈P

[
c1

(
2q, |I|)[1 ∨ k|I|1 f

]q + c2
(
2q, |I|)

]
.

Proof of (ii). Put for any h ∈ Hn and I ∈ Id

sI

(
hi

)
=

∥∥∥∥
∫

RI

∣∣KhI

(
tI − ·

)∣∣fI

(
tI

)
dtI

∥∥∥∥
I,∞

fI,n

(
hi

)
=

∥∥∥n−1
n∑

i=1

∣∣KhI
(XI,i − ·)

∣∣
∥∥∥
I,∞

.

We have similarly to (5.5)
[
s̄n − f̄n]+ ≤ sup

I∈Id

sup
hI∈H(ai)

n (|I|)

[
sI

(
hI

)− 2fI,n
(
hI

)
]+ and hence

[
E(n)

f

[
s̄n − f̄n

]2q
+

] 1
2q ≤

∑

I∈Id

(
E(n)

f

{
sup

hI∈H(ai)
n (|I|)

[
sI

(
hI

)− 2fI,n
(
hI

)]}2q

+

) 1
2q

,

The assertion (ii) follows now from the second statement of Proposition 2 with

c2
(
2q, d,K, f

)
=

∑

I∈Id

[
c′1

(
2q, |I|)[1 ∨ k|I|1 f

]q + c′2
(
2q, |I|)

]
.

Proof of (iii). We have
[
f̄n − 3s̄n]+ ≤ 2sup

I∈Id

sup
hI∈H(ai)

n (|I|)

[
fI,n

(
hI

)− (3/2)sI

(
hI

)
]+ and hence

[
E(n)

f

[
f̄n − 3s̄n

]2q
+

] 1
2q ≤ 2

∑

I∈Id

(
E(n)

f

{
sup

hI∈H(ai)
n (|I|)

[
fI,n

(
hI

)− (3/2)sI

(
hI

)]}2q

+

) 1
2q

,

The assertion (iii) follows now from the first assertion of Proposition 2 with

c3
(
2q, d,K, f

)
= 2

∑

I∈Id

[
c1

(
2q, |I|)[1 ∨ k|I|1 f

]q + c2
(
2q, |I|)

]
.

Proof of (iv). Note that

f̄n := 2d2kd
1

(
f̄n

)d2/4
[
max

{
f̄n, k2

1f
}]d−1

≤ β

[(
fn

)d2/4+d−1 +
(
1 + k2

1f
)d−1(fn

)d2/4 +
(
fn

)d−1 +
(
1 + k2

1f
)d−1

]
,(5.6)

where we have used k1 ≥ 1 and put β = 2d2kd
12

d2/4+d−1. Thus, to get the assertion (iv) it suffices
to bound from above Ef

(
fn

)p
, p ≥ 1. We obviously have

fn ≤
∑

I∈Id

sup
hI∈H(ai)

n (|I|)

∥∥∥n−1
n∑

i=1

∣∣KhI
(XI,i − ·)

∣∣
∥∥∥
I,∞

,

and using Corollary 1 we get for p ≥ 1
[
E(n)

f

(
fn

)p
] 1

p ≤
∑

I∈Id

[
1 ∨ k|I|1 f

] 1
2

[
γp

(|I|, k∞
)
+

{
c1(p, |I|) + c2(p, |I|)}

1
p

]
.(5.7)

The assertion (iv) follows now from (5.6) and (5.7).
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5.5. Proof of Lemma 4. The proof of the lemma is based on the embedding theorem for
anisotropic Nikolskii classes which we formulate below.

Let (α, r) ∈ (0,∞)s × [1,∞]s be such that κ = 1−∑s
l=1(αlrl)−1 > 0 and let Q ∈ (0,∞)s. Then

there exists c > 0 completely determined by α, r and s such that

(5.8) Nr,s
(
α, Q

) ⊆ N∞,s
(
α, cQ

)
,

where α = (α1, . . .αs ), αj = καjκ−1
j and κj = 1−∑s

l=1

(
r−1
l − r−1

j

)
α−1

l .
The inclusion (5.8) is a particular case of Theorem 6.9 in Nikol’skii (1977), with p′ = ∞. We

remark that N∞,s
(
α,Q)

is anisotropic Hölder class of functions.
Let Ei, i = 1, s be the family of s× s matrices where Ei = (e1, . . . , ei,0 . . . ,0) and let E0 is zero

matrix. Putting K(u) =
∏s

l=1 K(ul), ul ∈ R, we get for any η ∈ (0,∞)s and any z ∈ Rs

|Bη,g(z)| =
∣∣∣∣
∫

Rs
K(u) [g(z + uη)− g(z)] du

∣∣∣∣ ≤
s∑

i=1

∣∣∣∣
∫

Rs
K(u)

[
g
(
z + ηEiu

)− g
(
z + ηEi−1u

)]
du

∣∣∣∣ .

We note that the all components of the vectors z + ηEiu and z + ηEi−1u except i-th coordinate
coincide. Hence using Taylor expansion we obtain any η ∈ (0,∞)s and z ∈ Rs in view of (5.8)

∣∣∣∣
∫

Rs
K(u)

[
g
(
z + ηEiu

)− g
(
z + ηEi−1u

)]
du

∣∣∣∣ ≤ cQiη
αi
i ks−1

1

∫

R
|K(u)||u|αidu ≤ ks

1cQiη
αi
i .

To get the last inequality we have taken into account (3.1) and used that K is supported on
[−1/2, 1/2]. It is worth mentioning that c as a function of α is bounded on any bounded domain
of (0,∞)s. Since the right hand side of the latter inequality is independent of z we come to the
assertion of the lemma.
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