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COMPUTATION OF THE LEAVE-SUBJECT-OUT
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Although the leave-subject-out cross-validation (CV) has been
widely used in practice for tuning parameter selection for various
nonparametric and semiparametric models of longitudinal data, its
theoretical property is unknown and solving the associated optimiza-
tion problem is computationally expensive, especially when there are
multiple tuning parameters. In this paper, by focusing on the penal-
ized spline method, we show that the leave-subject-out CV is opti-
mal in the sense that it is asymptotically equivalent to the empirical
squared error loss function minimization. An efficient Newton-type
algorithm is developed to compute the penalty parameters that op-
timize the CV criterion. Simulated and real data are used to demon-
strate the effectiveness of the leave-subject-out CV in selecting both
the penalty parameters and the working correlation matrix.

1. Introduction. In recent years there have seen growing interests in
applying flexible statistical models for analyzing longitudinal data or the
more general cluster data. Various semiparametric (e.g., Zeger and Diggle,
1994; Zhang et al., 1998; Lin and Ying, 2001; Wang et al., 2005) and non-
parametric (e.g., Rice and Silverman, 1991; Wang, 1998; Fan and Zhang,
2000; Lin and Carroll, 2000; Welsh et al., 2002; Wang, 2003; Zhu et al., 2008)
models have been proposed and studied in the literature. All of these flexible,
semiparametric or nonparametric methods require specification of tuning pa-
rameters, such as the bandwidth for the local polynomial kernel methods,
the number of knots for regression splines, and the penalty parameter for
penalized splines and smoothing splines.

The “leave-subject-out cross-validation” (LsoCV) or more generally called
“leave-cluster-out cross-validation”, introduced by Rice and Silverman (1991),
has been widely used as the method for selecting tuning parameters in ana-
lyzing longitudinal data and clustered data; see, for example, Hoover et al.
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2 G.XU AND J.Z.HUANG

(1998); Huang et al. (2002); Wu and Zhang (2006); Wang et al. (2008). The
LsoCV is intuitively appealing since the within-subject dependence is pre-
served by leaving out all observations from the same subject together in
the cross-validation. In spite of its broad acceptance in practice, the use
of LsoCV still lacks a theoretical justification to date. Computationally,
the existing literature has focused on the grid search method for finding
the minimizer of the LsoCV criterion (LsoCV score) (Chiang et al., 2001;
Huang et al., 2002; Wang et al., 2008), which is rather inefficient and even
prohibitive with the existence of multiple tuning parameters. The goal of
this paper is twofold: First, we develop a theoretical justification of the
LsoCV by showing that the LsoCV criterion is asymptotically equivalent to
an appropriately defined loss function; second, we develop a computation-
ally efficient algorithm to optimize the LsoCV criterion for selecting multiple
penalty parameters for penalized splines.

We shall focus our presentation on longitudinal data, but all discussions
in this paper apply to clustered data analysis. Suppose we have n subjects
and each subject has a series of observations (yij ,xij), for j = 1, . . . , ni,
i = 1, . . . , n, with yij being the jth response from the ith subject and xij

being the corresponding vector of covariates. Denote yi = (yi1, · · · , yini)
T

and X̃i = (xi1, · · · ,xini). The marginal non- and semi-parametric regres-
sion model (Welsh et al., 2002; Zhu et al., 2008) assumes that the mean and
covariance matrix of the responses are given by

(1) µij = E(yij |X̃i) = xij0β0 +
m∑
k=1

fk(xijk), cov(yi|X̃i) = Σi,

where β0 is a vector of linear regression coefficients, fk, k = 1, . . . ,m, are
unknown smooth functions, and Σi’s are within-subject covariance matrices.
Denote µi = (µi1, · · · , µini)

T . By using a basis expansion to approximate
each fk, µi can be approximated by µi ≈ Xiβ for some matrix Xi and
unknown parameter vector β, which then can be estimated by minimizing
the penalized weighted least square loss function

(2) pl(β) =
n∑

i=1

(yi −Xiβ)
TW−1

i (yi −Xiβ) +
m∑
k=1

λkβ
TSkβ,

where Wi’s are working correlation matrices that are possibly misspecified,
Sk is a semi-positive definite matrix such that βTSkβ serves as a roughness
penalty for fk, and λ = (λ1, · · · , λm) is a vector of penalty parameters.

Methods for choosing basis functions, constructing the corresponding de-
sign matrices Xi, and defining the roughness penalty matrices are well es-
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LEAVE-SUBJECT-OUT CROSS-VALIDATION 3

tablished in the statistics literature. For example, B-spline basis and ba-
sis obtained from reproducing kernel Hilbert spaces are commonly used.
Roughness penalty matrices can be formed corresponding to the squared
second-difference penalty, the squared second derivative penalty, the thin-
plate splines penalty, or using directly the reproducing kernels. We refer to
the books by Green and Silverman (1994), Gu (2002), and Wood (2006) for
thorough treatments of this subject.

The idea of using working correlation for longitudinal data can be traced
back to the generalized estimating equations (GEE) of Liang and Zeger
(1986), where it is established that the mean function can be consistently
estimated with the correct inference even when the correlation structure
is misspecified. Liang and Zeger (1986) further demonstrated that using a
possibly misspecified working correlation structure W has the potential to
improve the estimation efficiency over methods that completely ignore the
within-subject correlation. Similarly results have been obtained in the non-
parametric setting in Welsh et al. (2002) and Zhu et al. (2008). Commonly
used working correlation structures include compound symmetry, autore-
gressive models; see Diggle et al. (2002) for a detailed discussion.

In the case of independent data, Li (1986) established the asymptotic
optimality of the generalized cross validation (GCV) (Craven and Wahba,
1979) for penalty parameter selection by showing that minimizing the GCV
criterion is asymptotically equivalent to minimizing a suitably defined loss
function. To understand the theoretical property of LsoCV, we ask the fol-
lowing question in this paper: What loss function does the LsoCV mimic
or estimate and how good is this estimation? We are able to show that the
unweighted mean squared error is the loss function that LsoCV is target-
ing. Specifically, we obtain that, up to a quantity that does not depend
on the penalty parameters, the LsoCV score is asymptotically equivalent
to the mean squared error loss. Our result provides the needed theoretical
justification of the wide use of LsoCV in practice.

In two related papers, Gu and Ma (2005) and Han and Gu (2008) devel-
oped modifications of GCV for dependent data under assumptions on the
correlation structure and established the optimality of the modified GCV.
Although their modified GCVs work well when the correlation structure is
correctly specified up to some parameters, they need not be suitable when
there is not enough prior knowledge to make such a specification or the
within-subject correlation is too complicated to be modeled nicely with a
simple structure. The main difference between LsoCV and these modified
GCVs is that LsoCV utilizes working correlation matrices in the estimating
equations and allows mis-specification of the correlation structure. More-
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4 G.XU AND J.Z.HUANG

over, since the LsoCV and the asymptotic equivalent squared error loss are
not attached to any specific correlation structure, LsoCV can be used to
select not only the penalty parameters but also the correlation structure.

Another contribution of this paper is the development of a fast algorithm
for optimizing the LsoCV criterion. To avoid computation of a large number
of matrix inversions, we first derive an asymptotically equivalent approx-
imation of the LsoCV criterion and then derive a Newton–Raphson type
algorithm to optimize this approximated criterion. The algorithm is partic-
ularly useful when we need to select multiple penalty parameters.

The rest of the paper is organized as follows. Section 2 presents the main
theoretical results. Section 3 proposes a computationally efficient algorithm
for optimizing the LosCV criterion. Results from some simulation studies
and a real data analysis are given in Sections 4 and 5. All technical proofs
and computational implementations are collected in the Appendix and in
the Supplementary materials.

2. Leave-subject-out Cross Validation. Let µ̂(·) denote the esti-
mate of the mean function obtained by using basis expansion of unknown
functions fk’s (k = 1, . . . ,m) and solving the minimization problem (2) for
β. Let µ̂[−i](·) be the estimate of the mean function µ(·) by the same method
but using all the data except observations from subject i, 1 ≤ i ≤ n. The
LsoCV criterion is defined as

(3) LsoCV(W,λ) =
1

n

n∑
i=1

{yi − µ̂[−i](Xi)}T {yi − µ̂[−i](Xi)}.

By leaving out together all observations from the same subject, the within-
subject correlation is preserved in LsoCV. Before giving the formal justifica-
tion of LsoCV, we review a heuristic justification in Section 2.1. Section 2.2
defines the suitable loss function. Section 2.3 lists the regularity conditions
and Section 2.4 provides an example illustrating how the regularity condi-
tions in Section 2.3 can be verified using more primitive conditions. Sec-
tion 2.5 presents the main theoretical result about the optimality of LsoCV.

2.1. Heuristic justification. The initial heuristic justification of LsoCV
by Rice and Silverman (1991) is that it mimics the mean squared predic-
tion error (MSPE). Consider some new observations (Xi,y

∗
i ), taken at the

same design points as the observed data. For a given estimator of the mean
function µ(·), denoted as µ̂(·), the MSPE is defined as

MSPE =
1

n

n∑
i=1

E∥y∗
i − µ̂(Xi)∥2 =

1

n
tr(Σ) +

1

n

n∑
i=1

E∥µ(Xi)− µ̂(Xi)∥2.
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LEAVE-SUBJECT-OUT CROSS-VALIDATION 5

Using the independence between µ̂[−i](·) and yi we obtain that

E{LsoCV(W,λ)} =
1

n
tr(Σ) +

1

n

n∑
i=1

E∥µ(Xi)− µ̂[−i](Xi)∥2,

where Σ = diag{Σ1, . . . ,Σn}. When n is large, µ̂[−i](·) should be close to
µ̂(·), the estimate that uses observations from all subjects. Thus, we would
expect that E{LsoCV(W,λ)} to be close to the MSPE.

2.2. Loss function. We shall provide a formal justification of LsoCV by
showing that the LsoCV is asymptotically equivalent to an appropriately
defined loss function. Denote Y = (yT

1 , · · · ,yT
n )

T , X = (XT
1 , · · · ,XT

n )
T ,

and W = diag{W1, · · · ,Wn}. Then, for a given choice of λ and W, the
minimizer of (2) has a closed-form expression

(4) β̂ =
(
XTW−1X+

m∑
k=1

λkSk

)−1
XTW−1Y .

The fitted mean function evaluated at the design points is given by

(5) µ̂(X|Y ,W,λ) = Xβ̂ = A(W,λ)Y ,

where A(W,λ) is the hat matrix defined as

(6) A(W,λ) = X
(
XTW−1X+

m∑
k=1

λkSk

)−1
XTW−1.

From now on, we shall use A for A(W,λ) without causing any confusion.
For a given estimator µ̂(·) of µ(·), define the mean squared error (MSE)

loss as the true loss function

(7) L(µ̂) =
1

n

n∑
i=1

{µ̂(Xi)− µ(Xi)}T {µ̂(Xi)− µ(Xi)}.

Using (5), we obtain that, for the estimator obtained by minimizing (2), the
true loss function (7) becomes

L(W,λ) =
1

n
(AY − µ)T (AY − µ)

=
1

n
µT (I−A)T (I−A)µ+

1

n
ϵTATAϵ− 2

n
µT (I−AT )Aϵ,

(8)

where µ = (µ(X1)
T , · · · , µ(Xn)

T )T , ϵ = Y −µ. Since E(ϵ|X̃1, . . . , X̃n) = 0
and V ar(ϵ|X̃1, . . . , X̃n) = Σ, the risk function can be derived as

(9) R(W,λ) = E{L(W,λ)} =
1

n
µT (I−A)T (I−A)µ+

1

n
tr(ATAΣ).
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6 G.XU AND J.Z.HUANG

2.3. Regularity conditions. This section states some regularity condi-
tions needed for our theoretical results. Noticing that unless W = I, A is
not symmetric. We define a symmetric version of A as Ã = W−1/2AW1/2.
Let Cii be the diagonal block of Ã2 corresponding to the ith subject. With
some abuse of notations (but clear from the context), denote by λmax(·) and
λmin(·) the largest and the smallest eigenvalues of a matrix. The regularity
conditions invovle the quantity ξ(Σ,W) = λmax(ΣW−1)λmax(W), which

takes the minimal value λmax(Σ) when W = I or W = Σ. Let ei = Σ
−1/2
i ϵi

and ui be ni × 1 vectors such that uT
i ui = 1, i = 1, · · · , n.

Condition 1. For some K > 0, E{(uT
i ei)

4} ≤ K, i = 1, . . . , n.
Condition 2.

(i) max1≤i≤n{tr(Aii)} = O(tr(A)/n) = o(1);

(ii) max1≤i≤n{tr(Cii)} = o(1).

Condition 3. ξ(Σ,W)/n = o(R(W,λ)).
Condition 4. ξ(Σ,W){n−1tr(A)}2/{n−1tr(ATAΣ)} = o(1).
Condition 5. λmax(W)λmax(W

−1)O(n−2tr(A)2) = o(1).

Condition 1 is a mild moment condition that requires that each component

of the standardized residual ei = Σ
−1/2
i ϵi has uniformly bounded fourth

moment. In particular, when ϵi’s are from the Gaussian distribution, the
condition holds with K = 3.

Condition 2 extends the usual condition on leverage points used in theo-
retical analysis of linear regression models. Note that {tr(Aii)} can be in-
terpreted as the leverage of subject i, measuring the contribution to the fit
from data of subject i and the average of the leverages is tr(A)/n. This
condition says that the maximum leverage can not be arbitrarily larger
than the average leverage, or in other words, there should not be any dom-
inant or extremely influential subjects. In the special case that all subjects
have the same design matrices, the condition automatically satisfies since
tr(Aii) = tr(A)/n for all i = 1, · · · , n. Condition 2 is likely to be violated
if the ni’s are very unbalanced. For example, if 10% of subjects have 20
observations and the rest of subjects only has 2 or 3 observations each, then
max1≤i≤n{tr(Aii)}/{n−1tr(A)} can be very large.

When ni’s are bounded, any reasonable choice of W would generally
yield a bounded value of the quantity ξ(Σ,W), and Condition 3 reduces to
nR(W,λ) → ∞, which simply says that the parametric rate of O(n−1) is not
achievable. This is a mild condition since we are considering nonparametric
estimation. When ni’s are not bounded, Condition 3’s verification should be
done on a case-by-case basis. As a special case, recent results for the longitu-
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LEAVE-SUBJECT-OUT CROSS-VALIDATION 7

dinal function estimation by Cai and Yuan (2011) indicate that Condition
3 would be satisfied in this particular setting if ξ(Σ,W)/n∗ = O(1) and
n∗/n1/2r → 0 or ξ(Σ,W)/n∗ = o(1) and n∗/n1/2r → ∞ for some r > 1,
where n∗ = ( 1n

∑n
i=1

1
ni
)−1 is the harmonic mean of n1, . . . , nn. This conclu-

sion holds for both fixed common designs and independent random designs.
Condition 4 essentially says that ξ(Σ,W){n−1tr(A)}2 = o(R(W,λ)). It

is straightforward to show that the left-hand side is bounded from above by
c(ΣW−1)c(W){tr(Ã)/n}2/{tr(Ã2)/n}, where c(M) = λmax(M)/λmin(M)
is the condition number of a matrix M. If ni’s are bounded, for choices
of W such that ΣW−1 and W are not singular, it suffices to guarantee
{tr(Ã)/n}2/{tr(Ã2)/n} = o(1). For regression splines (λ = 0), this condi-
tion holds if p/n → 0 where p is the number of basis functions used, since
tr(Ã2) = tr(Ã) = p. For penalized splines and smoothing splines, we provide
a more detailed discussion in Section 2.4.

If the working correlation matrix W is chosen to be well-conditioned
such that its condition number λmax(W)/λmin(W) is bounded, Condition 5
reduces to tr(A)/n → 0, which can be verified as Condition 4.

Conditions 3–5 all indicate that a bad choice of the working correlation
matrixWmay deteriorate the performance of the LsoCV method. For exam-
ple, Conditions 3–5 may be violated when Σ−1W or W is nearly singular.
Thus in practice, it is wise to avoid using working correlation W that is
nearly singular.

We do not make the assumption that ni’s are bounded. However, ni obvi-
ously can not grow too fast relative to the number of subjects n. In particu-
lar, if ni’s are too large, λmax(ΣW−1) can be fairly large unless W ≈ Σ, and
λmax(W) can be fairly large due to increase of dimensions of the working
correlation matrices for individual subjects. Thus, Conditions 3–5 implicitly
impose a limit to the growth rate of ni.

2.4. An example: penalized splines with B-spline basis functions. In this
section, we provide an example where Conditions 3–5 can be discussed in
a more specific manner. Consider Model (1) with only one nonparametric
covariate x and thus only one penalty parameter λ. We further assume
that all eigeinvalues of matrices W and ΣW−1 are bounded from below
and above, that is, there exist positive constants c1 and c2 such that c1 ≤
λmin(W) ≤ λmax(W) ≤ c2 and c1 ≤ λmin(ΣW−1) ≤ λmax(ΣW−1) ≤ c2.
Under this assumption, it is straightforward to show that Conditions 3–5
reduce to the following conditions.

Condition 3′. nR(W, λ) → ∞ as n → ∞.
Condition 4′. {n−1tr(A)}2/{n−1tr(Ã2)} = o(1).
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8 G.XU AND J.Z.HUANG

Condition 5′. tr(A)/n = o(1).

Using Lemmas 4.1 and 4.2 from Han and Gu (2008) and similar argu-
ments, we have the following three inequalities

(10) tr{Ã(c2λ, I)} ≤ tr{Ã(λ,W)} ≤ tr{Ã(c1λ, I)},

(11) tr{Ã2(c2λ, I)} ≤ tr{Ã2(λ,W)} ≤ tr{Ã2(c1λ, I)},

and

c1c
−1
3 {I− Ã(c2λ, I)}
≤ {I−A(λ,W)}T {I−A(λ,W)} ≤ c2c3{I− Ã(c2λ, I)},

(12)

where c3 = exp{c2(1 + (c−1
1 − c−1

2 )2 + (c−1
1 − c−1

2 ))}. These inequalities and
the definition of the risk function R(W, λ) imply that we need only to check
Conditions 3′–5′ for the case that W = I. In particular, (10)–(12) imply
that

c1c
−1
3 µT {I− Ã(c2λ, I)}2µ+ c21tr{Ã2(c2λ, I)}
≤ nR(W, λ) ≤ c2c3µ

T {I− Ã(c1λ, I)}2µ+ c22tr{Ã2(c1λ, I)},

and therefore to show Condition 3′, it suffices to show

(13) µT {I− Ã(λ, I)}2µ → ∞ or tr{Ã2(λ, I)} → ∞

as n → ∞.
We now use existing results from the literature to show how to verify

Conditions 3′–5′. Note that the notations used in the literature of penalized
splines and smoothing splines are not always consistent. To fix notation, we
denote for the rest of this section that λ∗ = λ/N and Ã∗(λ∗) = Ã(λ, I),
where N is the total number of observations from all subjects.

Let r denote the order of the B-splines and consider a sequence of knots
defined on the interval [a, b], a = t−(r−1) = · · · = t0 < t1 < · · · < tKn <
tKn+1 = · · · = tKn+r = b. Define B-spline basis functions recursively as

Bj,1(x) =

{
1, tj ≤ x < tj+1,

0, otherwise,

Bj,r(x) =
x− tj

tj+r−1 − tj
Bj,r−1(x) +

tj+r − x

tj+r − tj+1
Bj+1,r−1(x),
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LEAVE-SUBJECT-OUT CROSS-VALIDATION 9

for j = −(r−1), . . . ,Kn. When this B-spline basis is used for basis expansion,
the jth row ofXi isX

T
i(j) = (B−(r−1),r(xij), . . . , BKn,r(xij)), for j = 1, . . . , ni

and i = 1, . . . , n. When the penalty is the integrated squared qth derivative
of the spline function with q ≤ r− 1, i.e.,

∫
(f (q))2, the penalty term can be

written in terms of the spline coefficient vector β as λβT∆T
q R∆qβ, where R

is a (Kn+r−q)×(Kn+r−q) matrix with Rij =
∫ b
a Bj,r−q(x)Bi,r−q(x)dx and

∆q is a matrix of weighted qth order difference operator (Claeskens et al.,
2009).

We make the following assumptions: (a) δ = max0≤j≤Kn(tj+1 − tj) is
of the order O(K−1

n ) and δ/min0≤j≤Kn(tj+1 − tj) ≤ M for some constant
M > 0; (b) supx∈[a,b] |Qn(x) − Q(x)| = o(K−1

n ) where Qn and Q are em-
pirical and true distribution function of all design points {x1, . . . , xN}; (c)
Kn = o(N). Define quantityKq = (Kn+r−q)(λ∗c̃1)

1/(2q) with some constant
c̃1 > 0 depending on q and the design density. Claeskens et al. (2009) showed
that, under above assumptions, if Kq < 1, tr{Ã∗(λ∗)} and tr{Ã∗2(λ∗)} are
both of the order O(Kn) and µT {I− Ã∗(λ∗)}2µ = O(λ∗2NK2q

n +NK−2r
n );

If Kq ≥ 1, tr{Ã∗(λ∗)} and tr{Ã∗2(λ∗)} are of order O(λ∗−1/(2q)) and
µT {I − Ã∗(λ∗)}2µ = O(Nλ∗ + NK−2q

n ). Using these results and the re-
sults following inequalities (10)–(12), it is straightforward to show that if
λ∗ = 0 (for regression splines), letting Kn → ∞ and Kn/n → 0 is sufficient
to guarantee Conditions 3′–5′, and if λ∗ ̸= 0 (for penalized splines), further
assuming λ∗ → 0 and nλ∗1/(2q) → ∞ ensures the validity of Conditions
3′–5′.

It is noticeable that when Kq ≥ 1, the asymptotic property of the penal-
ized spline estimator is close to that of smoothing splines, where the number
of internal knots Kn = N . In fact, as discussed in Han and Gu (2008), for
smoothing splines, it typically holds that tr{Ã∗(λ∗)} and tr{Ã∗2(λ∗)} are
of order O(λ∗−1/d) and µT {I − Ã∗(λ∗)}2µ = O(Nλ∗) for some d > 1 as
N → ∞ and λ∗ → 0; see also Craven and Wahba (1979), Li (1986), Gu
(2002). Therefore, if one has λ∗ → 0 and nλ∗1/d → ∞, Conditions 3′–5′ can
be verified for smoothing splines.

2.5. Optimality of Leave-subject-out CV. In this subsection, we provide
a theoretical justification of using the minimizer of LosCV(W,λ) to select
the optimal value of the penalty parameters λ. We say that the working
correlation matrix W is pre-determined if it is determined by observation
times and/or some other covariates. One way to obtain such W is to use
some correlation function plugged in with estimated parameters. Naturally,
it is reasonable to consider the value of λ that minimizes the true loss
function L(W,λ) as the optimal value of the penalty parameters for a pre-
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10 G.XU AND J.Z.HUANG

determined W. However, L(W,λ) can not be evaluated using data alone
since the true mean function in the definition of L(W,λ) is unknown. One
idea is to use an unbiased estimate of the risk function R(W,λ) as a proxy
of L(W,λ). Define

(14) U(W,λ) =
1

n
YT (I−A)T (I−A)Y +

2

n
tr(AΣ).

It is easy to show that

(15) U(W,λ)−L(W,λ)− 1

n
ϵT ϵ =

2

n
µT (I−A)T ϵ− 2

n
{ϵTAϵ− tr(AΣ)},

which has expectation zero. Thus, if Σ is known, U(W,λ) − ϵT ϵ/n is an
unbiased estimate of the risk R(W,λ). Actually, the estimator is consistent,
as stated in the following theorem.

Theorem 2.1. Under Conditions 1–4, for a pre-determined W and a
non-random λ, as n → ∞,

L(W,λ)−R(W,λ) = op(R(W,λ))

and

U(W,λ)− L(W,λ)− 1

n
ϵT ϵ = op(L(W,λ)).

This theorem shows that, the function U(W,λ) − ϵT ϵ/n, the loss func-
tion L(W,λ), and the risk function R(W,λ) are asymptotically equivalent.
Thus, if Σ is known, U(W,λ)− ϵT ϵ/n is a consistent estimator of the risk
function and moreover, U(W,λ) can be used as a reasonable surrogate of
L(W,λ) for selecting the penalty parameters, since the ϵT ϵ/n term does
not depend on λ. However, U(W,λ) depends on knowledge of the true co-
variance matrix Σ, which is usually not available. The following result states
that the LsoCV score provides a good approximation of U(W,λ), without
the knowledge of Σ.

Theorem 2.2. Under Conditions 1–5, for a pre-determined W and a
non-random λ, as n → ∞,

LsoCV(W,λ)− U(W,λ) = op(L(W,λ)),

and therefore

LsoCV(W,λ)− L(W,λ)− 1

n
ϵT ϵ = op(L(W,λ)).
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LEAVE-SUBJECT-OUT CROSS-VALIDATION 11

This theorem suggests that minimizing LsoCV(W,λ) with respect to λ is
asymptotically equivalent to minimizing U(W,λ) and is also equivalent to
minimizing the true loss function L(W,λ). Unlike U(W,λ), LsoCV(W,λ)
can be evaluated using the data. The theorem provides the justification
of using LsoCV, as a consistent estimator of the loss or risk function, for
selecting the penalty parameters.

Remark 1. Although the results are presented for selection of the penalty
parameter λ for penalized splines, the results also hold for selection of knot
numbers (or number of basis functions)Kn for regression splines when λ = 0
and Kn is the tuning parameter to be selected.

Remark 2. Since the definition of the true loss function (7) does not
depend on the working correlation structureW, we can use this loss function
to compare performances of different choices of W, for example, compound
symmetry or autoregressive, and then choose the best one among several
candidates. Thus, the result in Theorem 2.2 also suggests and provides a
justification to use the LsoCV for selecting the working correlation matrix.
This suggestion is evaluated using a simulation study in Section 4.3. When
using the LsoCV to select the working correlation matrix, we recommend
to use regression splines, i.e. setting λ = 0, because this choice simplifies
computation and provides more stable finite sample performance.

3. Efficient computation. In this section, we develop a computation-
ally efficient Newton–Raphson-type algorithm to minimize the LsoCV score.

3.1. Shortcut formula. The definition of LsoCV would indicate that it
is necessary to solve n separate minimization problems in order to find the
LsoCV score. However, a computational shortcut is available that requires
solving only one minimization problem that involves all data. Recall that A
is the hat matrix. Let Aii denote the diagonal block of A corresponding to
the observations of subject i.

Lemma 3.1. (Shortcut Formula) The LsoCV score satisfies

(16) LsoCV(W,λ) =
1

n

n∑
i=1

(yi − ŷi)
T (Iii −Aii)

−T (Iii −Aii)
−1(yi − ŷi)

where Iii is a ni × ni identity matrix, and ŷi = µ̂(Xi).

This result, whose proof is given in the Supplementary Material, extends
a similar result for independent data (e.g., Green and Silverman, 1994, page
31). Indeed, if each subject has only one observation, then (16) reduces
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12 G.XU AND J.Z.HUANG

to LsoCV = (1/n)
∑n

i=1(yi − ŷi)
2/(1 − aii)

2, which is exactly the shortcut
formula for the ordinary cross-validation score.

3.2. An approximation of Leave-subject-out CV. A close inspection of
the short-cut formula of LsoCV(W,λ) given in (16) suggests that, the eval-
uation of LsoCV(W,λ) can still be computationally expensive because of
the requirement of matrix inversion and the formulation of the hat ma-
trix A. To further reduce the computational cost, using Taylor’s expan-
sion (Iii − Aii)

−1 ≈ Iii + Aii, we obtain the following approximation of
LsoCV(W,λ):

(17) LsoCV∗(W,λ) =
1

n
YT (I−A)T (I−A)Y +

2

n

n∑
i=1

êTi Aiiêi,

where ê = (I−A)Y. The next theorem shows that this approximation is a
good one in the sense that its minimization is asymptotically equivalent to
the minimization of the true loss function.

Theorem 3.1. Under Conditions 1–5, for a pre-determined W and a
non-random λ, as n → ∞, we have

LsoCV∗(W,λ)− L(W,λ)− 1

n
ϵT ϵ = op(L(W,λ)).

This result and Theorem 2.2 together imply that LsoCV∗(W,λ) and
LsoCV(W,λ) are asymptotically equivalent, that is, for a pre-determined
W and a non-random λ, LsoCV(W,λ) − LsoCV∗(W,λ) = op(L(W,λ)).
The proof of Theorem 3.1 is given in the Appendix.

We developed an efficient algorithm to minimizing LsoCV∗(W,λ) with
respect to λ for a pre-given W based on the works of Gu and Wahba (1991)
and Wood (2004). The idea is to optimize the log transform of λ using
the Newton–Raphson method. The detailed algorithm is described in the
Supplementary Material and it can be show that, for LsoCV∗(W,λ), the
overall computational cost for each Newton–Raphson iteration is O(Np),
which is much smaller than the cost of minimizing LsoCV(W,λ) (O(Np2))
when the total number of used basis functions p is large.

4. Simulation studies.

4.1. Function estimation. In this section, we illustrate the finite-sample
performance of LsoCV∗ in selecting the penalty parameters. In each simu-
lation run, we set n = 100 and ni = 5, i = 1, · · · , n. A random sample is
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generated from the model

(18) yij = f1(x1,i) + f2(x2,ij) + ϵij , j = 1, · · · , 5, i = 1, · · · , 100,

where x1 is a subject level covariate and x2 is an observational level covariate,
both of which are drawn from Uniform(−2, 2). Functions used here are from
Welsh et al. (2002):

f1(x) =
√
z(1− z) sin(2π

1 + 2−3/5

1 + z−3/5
),

f2(x) = sin(8z − 4) + 2 exp(−256(z − 0.5)2),

where z = (x+2)/4. The error term ϵij ’s are generated from a Gaussian dis-
tribution with zero mean, variance σ2, and the compound symmetry within-
subject correlation, that is

(19) Corr(ϵij , ϵkl) =


1, if i = j = k = l;

ρ, if i = k, j ̸= l,

0, otherwise;

j, l = 1, · · · , 5, i, k = 1, · · · , 100. In this subsection, we take σ = 1 and ρ =
0.8. A cubic splines with 10 equally spaced interior knots in [−2, 2] was used
for estimating each function. Functions were estimated by minimizing (2)
with two working correlations: the working independence (denoted as W1 =
I) and the compound symmetry with ρ = 0.8 (denoted as W2). Penalty
parameters were selected by minimizing LsoCV*. The top two panels of
Figure 1 show that the biases using W1 and W2 are almost the same,
which is consistent with the conclusion in Zhu et al. (2008) that the bias of
function estimation using regression splines does not depend on the choice
of the working correlation. The bottom two panels indicate that using the
true correlation structure W2 yields more efficient function estimation; the
message is more clear in the estimation of f2(x).

4.2. Comparison with an existing method. Assuming that the structure
of W is known up to a parameter γ and the true covariance matrix Σ is
attained at γ = γ0, Han and Gu (2008) proposed to simultaneously select γ
and λ by minimizing the following criterion
(20)

V∗(W,λ) = log{YTW1/2(I− Ã)2W1/2Y/N} − 1

N
log |W|+ 2tr(A)

N − tr(A)
,
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Fig 1. Simulation results for function estimation based on 200 Monte Carlo runs. Func-
tions are evaluted over 100 equally spaced grid points in [−2, 2]. Top panels: estimated
functions: solid—true functions; dashed—average of estimates using W1; dotted—average
of estimates using W2 (not distinguishable with dashed). Bottom panels: variance of esti-
mated functions: solid—estimates using W1; dashed—estimates using W2.

where N is the total number of observations. They proved that V* is asymp-
totically optimal in selecting both the penalty parameter λ and the correla-
tion parameter γ, provided that the within subject correlation structure is
correctly specified. In this section, we compare the finite sample performance
of LsoCV∗ and V* in selecting the penalty parameter when the working cor-
relation matrix W is given and fixed.

We generated data using (18) and (19) as in the previous subsection and
considered different parameters for the correlation matrix. In particular, we
fixed ρ = 0.8 and varied the noise standard deviation σ from 0.5 to 1, we also
fixed σ = 1 and varied ρ from −0.2 to 0.9. A cubic spline with 10 equally
spaced interior knots was used for each unknown regresssion function. For
each simulation run, to compare the effectiveness of two selection criteria for
a given working correlation matrix W, we calculated the ratio of true losses
at different choices of penalty parameters: L(W,λV*)/L(W,λLsoCV*) and
L(W,λOpt)/L(W,λLsoCV*), where λV ∗ and λLsoCV* are penalty parameters
selected by using V* and LsoCV*, respectively, and λOpt is obtained by
minimizing the true loss function defined in (7) assuming the mean function
µ(·) is known.
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In the first experiment, the true correlation matrix was used as the work-
ing correlation matrix, denoted as W1. This is the case that V* is expected
to work well according to Han and Gu (2008). Results in Figures 2 indicate
that performances of LsoCV* and V* are comparable for this case regard-
less of values of σ or ρ. In the second experiment, the working correlation
structure was chosen to be different from the true correlation structure.
Specifically, the working correlation matrix, denoted as W2, is a truncated
version of (19) where the correlation coefficient between ϵi,j1 and ϵi,j2 is set
to ρ if |j1 − j2| = 1 and 0 if |j1 − j2| ≥ 2. Results in Figures 3 show that
LsoCV* becomes more effective than V* in terms of minimizing the true loss
of estimating the true mean function µ̂(·) as σ or ρ increases. These results
are understandable since V* is applied to a situation that it is not designed
for and its asymptotic optimality does not hold. Moreover, from the right
two panels of Figures 2 and 3, we see that the minimum value of LsoCV*
is reasonably close to the true loss function assuming the knowledge of the
true function, as indicated by the conclusion of Theorem 3.1.
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Fig 2. Relative efficiency of LsoCV* to V* and to the true loss when the working corre-
lation matrix is the same as the true correlation matrix.

4.3. Correlation structure selection. In this subsection, we study the
performance of LsoCV* in selecting the working correlation matrix W.
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Fig 3. Relative efficiency of LsoCV* to V* and to the true loss when the working corre-
lation matrix is different from the true correlation matrix.

The data was generated using the model (18) with σ = 1, ni = 5 for all
i = 1, · · · , n. In this experiment, both x1 and x2 are set to be observational
level covariates drawn from Uniform(−2, 2). Four types of within-subject
correlation structures were considered: independence (IND), compound sym-
metry with correlation coefficient ρ (CS), AR(1) with lag-one correlation ρ
(AR), and unstructured correlation matrix with ρ12 = ρ23 = 0.8, ρ13 = 0.3
and 0 otherwise (UN). Data were generated using one of these correlation
structures and then the LsoCV* was used to select the best working correla-
tion from the four possible candidates. A cubic spline with 10 equally spaced
interior knots in [−2, 2] was used to model each unknown function and we
set the penalty parameter vector λ = 0. Simulation results based on 200
runs were summarized in Table 1, which show fairly good selection results
in the sense that the true correlation structure was selected in majority of
times.

5. A real data example. As a subset from the Multi-center AIDS
Cohort Study, the data set includes the repeated measurements of CD4 cell
counts and percentages on 283 homosexual men who became HIV-positive
between 1984 and 1991. All subjects were scheduled to take their measure-
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Table 1
Simulation results for working correlation structure selection.

Selected Structure
n ρ True Structure IND CS AR UN

50 0.3 IND 97.0 2.0 1.0 0
CS 8.5 78.0 13.5 0
AR 13.5 10.0 76.5 0
UN 1.5 1.5 21.5 75.5

0.5 IND 96.5 2.5 1.0 0
CS 3.0 78.5 18.5 0
AR 4.0 9.5 86.5 0
UN 3.5 4.0 11.5 81.0

0.8 IND 98.5 1.0 0.5 0
CS 3.5 74.0 22.0 0.5
AR 5.5 21.0 71.0 2.5
UN 5.5 1.0 8.5 85.0

100 0.3 IND 95.0 3.0 2.0 0
CS 2.0 84.5 13.5 0
AR 3.5 8.5 88.0 0
UN 0 1.0 13.5 85.5

0.5 IND 99.5 0.5 0 0
CS 2.5 81.0 16.5 0
AR 1.0 6.0 93.0 0
UN 2.0 0.5 10.0 87.5

0.8 IND 99.0 1.0 0 0
CS 2.5 73.5 24.0 0
AR 2.0 20.0 76.5 1.5
UN 5.5 2.0 9.0 83.5

150 0.3 IND 98.5 1.0 0.5 0
CS 2.0 85.0 13.0 0
AR 2.5 5.5 92.0 0
UN 0 0 16.5 83.5

0.5 IND 100 0 0 0
CS 1.0 81.5 17.5 0
AR 2.5 8.5 89.0 0
UN 0.5 0 12.0 87.5

0.8 IND 99.5 0.5 0 0
CS 1.0 78.0 20.0 1.0
AR 0.5 18.5 77.5 3.5
UN 1.0 2.0 6.5 90.5
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ments at semi-annual visits. However, since many subjects missed some of
their scheduled visits, there are unequal numbers of repeated measurements
and different measurement times per subject. Further details of the study
can be found in Kaslow et al. (1987).

Our goal is to do statistical analysis of the trend of mean CD4 percentage
depletion over time. Denote by tij the time in years of the jth measurement
of the ith individual after HIV infection, by yij the ith individual’s CD4

percentage at time tij and by X
(1)
i the ith individual’s smoking status with

values 1 or 0 for the ith individual ever or never smoked cigarettes, respec-
tively, after the HIV infection. To obtain a clear biological interpretation, we

define X
(2)
i to be the ith individual’s centered age at HIV infection, which

is obtained by the ith individual’s age at infection subtract the sample av-
erage age at infection. Similarly, the ith individual’s centered pre-infection

CD4 percentage, denoted by X
(3)
i , is computed by subtracting the average

pre-infection CD4 percentage of the sample from the ith individual’s ac-
tual pre-infection CD4 percentage. These covariates, except the time, are
time-invariant. Consider the varying-coefficient model

(21) yij = β0(tij) +X
(1)
i β1(tij) +X

(2)
i β2(tij) +X

(2)
i β2(tij),

where β0(t) represents the trend of mean CD4 percentage changing over
time after the infection for a non-smoker with average pre-infection CD4
percentage and average age at HIV infection, and β1(t), β2(t) and β3(t)
describe the time-varying effects for cigarette smoking, age at HIV infection,
and pre-infection CD4 percentage, respectively, on the post-infection CD4
percentage. Since the number observations are very uneven among subjects,
we only used subjects with at least 4 observations. A cubic spline with k = 10
equally spaced knots was used for modeling each function. We first used the
working independence W1 = I to fit the data and then use the residuals
from this model to estimate parameters in the correlation function

γ(u;α, θ) = α+ (1− α) exp(−θu),

where u is the lag in time and 0 < α < 1, θ > 0. This correlation func-
tion was considered previously in Zeger and Diggle (1994). The estimated
parameter values are (α̂, θ̂) = (0.40, 0.75). The second working correla-
tion matrix W2 considered was formed using γ(u; α̂, θ̂). We computed that
LsoCV(W1,0) = 881.88 and LsoCV(W2,0) = 880.33, which implies that
using W2 may be more desirable. This conclusion remains unchanged when
the number of knots varies. To visualize the gain in estimation efficiency
by using W2 instead of W1, we calculated the width of the 95% pointwise
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bootstrap confidence intervals based on 1000 bootstrap samples, which is
displayed in Figure 4. We can observe that the bootstrap intervals using
W2 is almost uniformly narrower than those using W1, indicating higher
estimation efficiency. The fitted coefficient functions (not shown to save
space) using W2 with λ selected by minimizing LsoCV*(W2,λ) are simi-
lar to those published in previous studies conducted on the same data set
(Wu and Chiang, 2000; Fan and Zhang, 2000; Huang et al., 2002).
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Fig 4. Width of the 95% pointwise bootstrap confidence intervals based on 1000 bootstrap
samples, using the working independence W1 (solid line) and the working correlation ma-
trix W2 (dashed line).

APPENDIX A: TECHNICAL PROOFS

This section is organized as follows. We first give three technical lemmas
(Lemma A.1-A.4) needed for the proof of Theorem 2.1. After proving The-
orem 2.1, we give another lemma (Lemma A.5) that facilitates proofs of
Theorem 2.2 and 3.1. We prove Theorem 3.1 first and then proceed to the
proof of Theorem 2.2.

Let λmax(M) = λ1(M) ≥ λ2(M) ≥ · · · ≥ λp(M) = λmin(M) be eigenval-
ues of the p× p symmetric matrix M. We present several useful lemmas.
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Lemma A.1. For any positive semi-definite matrices M1 and M2,

(22) λi(M1)λp(M2) ≤ λi(M1M2) ≤ λi(M1)λ1(M2), i = 1, · · · , p .

Proof . See Anderson and Gupta (1963) and Benasseni (2002).

Lemma A.2. For any positive semi-definite matrix M1, and M2,

(23) tr(M1M2) ≤ λmax(M1)tr(M2),

Proof . The proof is trivial, using the eigen decomposition of M1.

Lemma A.3. Eigenvalues of ATAΣ and (I−A)T (I−A)Σ are bounded
above by ξ(Σ,W) = λmax(ΣW−1)λmax(W).

Proof . Recall that Ã = W−1/2AW1/2. For AΣAT , by Lemma A.1,

λi(A
TAΣ) = λi(ÃWÃW−1/2ΣW−1/2)

≤ λi(ÃWÃ)λmax(ΣW−1)

≤ λi(Ã
2)λmax(W)λmax(ΣW−1) ≤ ξ(Σ,W).

The last inequality follows from the fact that maxi{λi(Ã
2)} ≤ 1. Similarly,

λi((I−A)T (I−A)Σ) ≤ ξ(Σ,W) follows from maxi{λi((I− Ã)2)} ≤ 1.

Denote e = (eT1 , · · · , eTn )T , where ei’s are independent random vectors
with length ni, E(ei) = 0 and V ar(e) = Ii for i = 1, · · · , n. For each i, define
zij = (uT

ijei)
2 where uT

ijuik = 1 if j = k and 0 otherwise, j, k = 1, · · · , ni.

Lemma A.4. If there exists a constant K such that E(z2ij) ≤ K holds
for all j = 1, · · · , ni, i = 1, · · · , n, then

(24) V ar(eTBe) ≤ 2tr(BBT ) +K
n∑

i=1

{tr(B∗
ii)}2,

where B is any N × N matrix (not necessarily symmetric), Bii is the ith
(ni × ni) diagonal block of B and B∗

ii is an “envelop” matrix such that
B∗

ii ± (Bii +BT
ii)/2 are positive semi-definite.

The proof is given in the Supplementary Material.
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Proof of Theorem 2.1. In light of (9) and (15), it suffices to show that

(25) L(W,λ)−R(W,λ) = op(R(W,λ)),

(26)
1

n
µT (I−A)T ϵ = op(R(W,λ)),

(27)
2

n

{
ϵTAϵ− tr(AΣ)

}
= op(R(W,λ))

because, combining (25)–(27), we have

U(W,λ)− L(W,λ)− 1

n
ϵT ϵ = op(L(W,λ)).

We first prove (25). By (8), we have

(28) V ar(L(W,λ)) =
1

n2
V ar

{
ϵTATAϵ− 2µT (I−A)TAϵ

}
.

Define B = Σ1/2ATAΣ1/2. Then ϵTATAϵ = (Σ−1/2ϵ)TB(Σ−1/2ϵ). Since
B is positive semi-definite, by applying Lemma A.4 with e = Σ−1/2ϵ, B =
Σ1/2ATAΣ1/2 and B∗

ii = Bii, we obtain

(29)
1

n2
V ar(ϵTATAϵ) ≤ 2

n2
tr(B2) +

K

n2

n∑
i=1

{tr(Bii)}2,

for some K > 0 as defined in Lemma A.4. By Lemma A.2 and Lemma A.3,
under Condition 3, we have

2

n2
tr(B2) ≤ 2λmax(A

TAΣ)

n2
tr(ATAΣ)

≤ 2ξ(Σ,W)

n

1

n
tr(ATAΣ) = o(R2(W,λ)).

(30)

Reall Cii is the ith diagonal block of Ã2. Then, under Condition 2(ii),
tr(Cii) ∼ o(1). Thus,

tr(Bii) = tr(LiΣ
1/2W−1/2ÃWÃW−1/2Σ1/2LT

i )

≤ λmax(W)tr(ÃW−1/2Σ1/2LT
i LiΣ

1/2W−1/2Ã)

= λmax(W)tr(CiiW
−1/2
i ΣiW

−1/2
i )

≤ λmax(W)λmax(ΣiW
−1
i )tr(Cii)

= o(1)ξ(Σ,W).

(31)
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Since
∑n

i=1{tr(Bii)} = tr(B) = tr(ATAΣ), under Condition 3,

K

n2

n∑
i=1

{tr(Bii)}2 = o(1)
Kξ(Σ,W)tr(B)

n2

= o(1)
Kξ(Σ,W)

n

1

n
tr(ATAΣ) = o(R2(W,λ)).

(32)

Combining (29)–(32), we obtain

1

n2
V ar(ϵTATAϵ) ∼ o(R2(W,λ)).

Since λmax(A
TAΣ) ≤ ξ(Σ,W) by Lemma A.3, under Condition 3,

1

n2
V ar

{
µT (I−A)TAϵ

}
=

1

n2
µT (I−A)TAΣAT (I−A)µ

≤ λmax(A
TAΣ)

n

1

n
µT (I−A)T (I−A)µ

≤ ξ(Σ,W)

n

1

n
µT (I−A)T (I−A)µ

= o(R2(W,λ)).

(33)

Combining (28)-(33) and using the Cauchy–Schwarz inequality, we obtain
V ar(L(W,λ)) = o(R2(W,λ)), which proves (25).

To show (26), by Lemma (A.3) and Condition 3, we have

1

n2
V ar

{
µT (I−A)T ϵ

}
=

1

n2
µT (I−A)TΣ(I−A)µ

≤ λmax(Σ)

n

1

n
µT (I−A)T (I−A)µ

≤ ξ(Σ,W)

n

1

n
µT (I−A)T (I−A)µ = o(R2(W,λ)).

The result follows from an application of the Chebyshev inequality.
To show (27), applying Lemma A.4 with e = Σ−1/2ϵ, B = Σ1/2AΣ1/2.

For each Bii = Σ
1/2
i AiiΣ

1/2
i , noticing that (W

1/2
i − αW

−1/2
i )Ãii(W

1/2
i −

αW
−1/2
i ) is positive semi-definite, we can define an “envelop” matrix as

B∗
ii =

1
2Σ

1/2
i (W

1/2
i ÃiiW

1/2
i /αi + αiW

−1/2
i ÃiiW

−1/2
i )Σ

1/2
i for any αi > 0.

Then by Lemma A.4, we obtain

2

n2
V ar(ϵTAϵ) =

2

n2
V ar(eTBe)

≤ 2

n2
tr(BBT ) +

K

n2

n∑
i=1

{tr(B∗
ii)}2,

(34)
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where K is as in Lemma A.4. By Lemma A.2, under Condition 3, we have

2

n2
tr(BBT ) =

2

n2
tr(ΣAΣAT ) ≤ 2λmax(Σ)

n

1

n
tr(ATAΣ)

≤ 2ξ(Σ,W)

n

1

n
tr(ATAΣ) = o(R2(W,λ)).

By using Lemma A.1 repeatedly and taking αi = λmax(Wi), we have

tr(B∗
ii) = tr(ÃiiΣ

1/2
i WiΣ

1/2
i )/(2αi) + αitr(ÃiiΣ

1/2
i W−1

i Σ
1/2
i )/2

≤ λmax(ΣiW
−1
i )λmax(Wi)tr(Ãii)

≤ ξ(Σ,W)tr(Ãii).

Under Conditions 2(i), 3 and 4, we have

K

n2

n∑
i=1

{tr(B∗
ii)}2 ≤

K

n2
ξ2(Σ,W)O(n−2tr(A)2) = o(R2(W,λ)).(35)

Therefore, combining (34)–(35) and noticing Conditions 1–4, we have

1

n2
V ar(ϵTAϵ) ∼ o(R2(W,λ)),

which leads to (27).

To prove Theorem 2.2, it is easier to prove Theorem 3.1 first. The following
lemma is useful for the proof of Theorem 3.1.

Lemma A.5. Let D = diag{D11, · · · ,Dnn} be a diagonal block matrix
and D∗ = diag{D∗

11, · · · ,D∗
nn} be a positive semi-definite matrix such that

D∗ ± (D + DT )/2 are positive semi-definte. In addition, Dii’s and D∗
ii’s

meet conditions: (i) max1≤i≤n{tr(D∗
iiWi)} ∼ λmax(W)O(n−1tr(A)); (ii)

max1≤i≤n{tr(DiiWiD
T
ii} ∼ λmax(W)O(n−2tr(A)2). Then, under Condi-

tions 1–5, we have

1

n2
V ar

{
YT (I−A)TD(I−A)Y

}
= o(R2(W,λ)).

The proof is given in the Supplementary Material.

Proof of Theorem 3.1. By Theorem 2.1, it suffices to show that

LsoCV*(W,λ)− U(W,λ) = op(R(W,λ)),
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which can be obtained by showing

(36) E
{
LsoCV*(W,λ)− U(W,λ)

}2
= op(R

2(W,λ)).

Hence, it suffices to show that

(37) E
{
LsoCV*(W,λ)− U(W,λ)

}
= o(R(W,λ)), and

(38) V ar
{
LsoCV*(W,λ)− U(W,λ)

}
= o(R2(W,λ)).

Denote Ad = diag{A11, · · · ,Ann} and Ãd = diag{Ã11, · · · , Ãnn}. It
follows that Ãd = W−1/2AdW

1/2 and n−1tr(Ã2
d) = O(n−2tr(A)2) by Con-

dition 2. Some algebra yields that

LsoCV*(W,λ)− U(W,λ) =
2

n
YT (I−A)TAd(I−A)Y − 2

n
tr(AΣ).

First consider (37). We have that

E
{
LsoCV*(W,λ)− U(W,λ)

}
=

1

n
µT (I−A)T (Ad +AT

d )(I−A)µ

+
1

n
tr
{
AT (Ad +AT

d )AΣ
}
− 2

n
tr(AT

dAdΣ)− 2

n
tr(A2

dΣ).

(39)

We shall show that each term in (39) is of the order o(R(W,λ)).
Condition 2 says that max1≤i≤n tr(Ãii) = O(n−1tr(A)) = o(1). Using

Conditions 2 and 5, we have

tr(Aii +AT
ii)

2 = 2tr(A2
ii +AiiA

T
ii)

= 2tr(Ã2
ii + ÃiiWiÃiiW

−1
i )

≤ 2tr(Ã2
ii)

{
1 + λmax(W

−1
i )λmax(Wi)

}
= λmax(W)λmax(W

−1)O(n−2tr(A)2) = o(1),

which implies that all eigenvalues of (Ad+AT
d ) are of order o(1), and hence

1

n
µT (I−A)T (Ad+AT

d )(I−A)µ = o(1)
1

n
µT (I−A)T (I−A)µ = o(R(W,λ)),

1

n
tr
{
AT (Ad +AT

d )AΣ
}
= o(1)

1

n
tr(ATAΣ) = o(R(W,λ)).
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Under Condition 4, the third term in (39) can be bounded as

1

n
tr(AT

dAdΣ) ≤ λmax(ΣW−1)
1

n
tr(Ã

1/2
d W1/2Ãd)

≤ ξ(Σ,W)
1

n
tr(Ã2

d)

= ξ(Σ,W)O(n−2tr(A)2) = o(R(W,λ)).

(40)

For the last term in equation (39), observe that (W
1/2
i −αiW

−1/2
i )Σ(W

1/2
i −

αiW
−1/2
i ) is positive semi-definite for any αi. Taking αi = λmax(Wi), we

have

2

n
tr(A2

dΣ) =
2

n
tr(Ã2

dW
−1/2ΣW1/2) ≤ max

1≤i≤n
tr
{
Ã2

ii(Σ
∗
i +Σ∗T

i )
}

≤ max
1≤i≤n

tr
{
Ã2

ii(W
1/2
i ΣiW

1/2
i /αi + αiW

−1/2
i ΣiW

−1/2
i )

}
≤ max

1≤i≤n
{λmax(ΣiW

−1
i )λmax(Wi)tr(Ã

2
ii)}

≤ ξ(Σ,W)O(n−2tr(A)2) = o(R(W,λ)),

where Σ∗
i = W

−1/2
i ΣiW

1/2
i . Equation (39) and thus (37) have been proved.

To prove (38), define D = Ad and the corresponding “envelop” matrix
D∗ = diag{D∗

11, · · · ,D∗
nn}, where the diagonal blocks are defined as D∗

ii =
1
2(W

1/2ÃiiW
1/2
i /αi+αiW

−1/2
i ÃiiW

−1/2
i ) with αi = λmax(Wi), then since

tr(AiiWiA
T
ii) = tr(Ã2

iiWi) ≤ λmax(Wi)
{
tr(Aii)

}2
, and

tr(D∗
iiWi) ≤ λmax(Wi)tr(Aii),

we have that max1≤i≤n tr(AiiWiA
T
ii) = λmax(W)O(n−2tr(A)2) and that

max1≤i≤n tr(D
∗
iiWi) = λmax(W)O(n−1tr(A)) by Condition 2. Under Con-

ditions 3–4, (38) follows from Lemma A.5.

Proof of Theorem 2.2. By Theorem 3.1, it suffices to show

LsoCV(W,λ)− LsoCV*(W,λ) = op(L(W,λ)),

which can be proved by showing that

E
{
LsoCV(W,λ)− LsoCV*(W,λ)

}2
= op(R

2(W,λ)).

It suffices to show

(41) E
{
LsoCV(W,λ)− LsoCV*(W,λ)

}
= o(R(W,λ)) and,
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(42) V ar
{
LsoCV(W,λ)− LsoCV*(W,λ)

}
= o(R2(W,λ)).

For each i = 1, . . . , n, consider the eigen-decomposition Ãii = PiΛiP
T
i ,

where Pi is a ni×ni orthogonal matrix and Λi = diag{λi1, · · · , λini}, λij ≥
0. Using this decomposition, we have

(Iii −Aii)
−1 = W

1/2
i PiΛ

∗
iP

T
i W

−1/2,

where Λ∗
i is a diagonal matrix with diagonal elements (1 − λij)

−1, j =
1, · · · , ni. Since under Condition 2, max1≤j≤ni{λij} ∼ o(1), we have (1 −
λij)

−1 =
∑∞

k=0 λ
k
ij , which leads to

(Iii − Ãii)
−1 =

∞∑
k=0

PiΛ
k
iP

T
i =

∞∑
k=0

Ãk
ii.

Define D̃(m) = diag{D̃(m)
11 , · · · , D̃(m)

nn }, where D̃(m)
ii =

∑∞
k=m Ãk

ii i = 1, · · · , n,
m = 1, 2, . . . . It follows that, for each i,

tr(D̃
(m)
ii ) =

∞∑
k=m

tr(Ãk
ii) ≤

∞∑
k=m

{
tr(Ãii)

}k
=

{
tr(Ãii)

}m
1− tr(Ãii)

.

Since Condition 2(i) gives max1≤i≤n tr(Aii) ∼ O(n−1tr(A)), we obtain that

(43) max
1≤i≤n

tr(D̃
(m)
ii ) = O(n−mtr(A)m), m = 1, 2, . . . .

Some algebra yields

LsoCV(W,λ)− LsoCV*(W,λ) =
1

n
YT (I−A)T (D(1) +D(2))1/2(I−A)Y

where D(1) = W−1/2D̃(1)WD̃(1)W−1/2 and D(2) = W1/2D̃(2)W−1/2.
To show (41), note that

E
{
LsoCV(W,λ)− LsoCV*(W,λ)

}
=

1

n
µT (I−A)TD(1)(I−A)µ+

1

n
tr
{
(I−A)TD(1)(I−A)Σ

}
+

1

n
µT (I−A)TD(2)(I−A)µ+

1

n
tr
{
(I−A)TD(2)(I−A)Σ

}
.

(44)

Using Lemma A.1 and A.2 repeatedly and Condition 5, we have

λmax(D
(1)) ≤ λmax(W)λmax(W

−1)O(n−2tr(A)2) = o(1).
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Thus, the first terms (44) can be bounded as

1

n
µT (I−A)TD(1)(I−A)µ = o(1)

1

n
µT (I−A)T (I−A)µ = o(R(W,λ)).

Using Lemma A.3, under Condition 4 and (43), the second term of (44) can
be bounded as

1

n
tr
{
(I−A)TD(1)(I−A)Σ

}
≤ ξ(Σ,W)

1

n
tr(D̃(1)2)

= ξ(Σ,W)O(n−2tr(A)2) = o(R(W,λ)).

Now consider the third term in (44). Under Condition 5 and (43),

tr
{
(D

(2)
ii +D

(2)T
ii )2

}
= 2tr(D̃

(2)2
ii ) + 2tr(D

(2)
ii D

(2)T
ii )

= 2tr(D̃
(2)2
ii ) + 2tr(D̃

(2)
ii W−1

i D̃
(2)
ii Wi)

≤ 2tr(D̃
(2)2
ii ) + 2λmax(W

−1
i )λmax(Wi)tr(D̃

(2)2
ii )

= o(n−2tr(A)2),

(45)

which implies that all eigenvalues ofD
(2)
ii +D

(2)T
ii are of the orderO(n−1tr(A)),

and thus o(1). Then, under Conditions 1–5, we have

1

n
µT (I−A)TD(2)(I−A)µ =

1

2n
µT (I−A)T (D(2) +D(2)T )(I−A)µ

= o(1)
1

n
µT (I−A)T (I−A)µ = o(R(W,λ)).

To study the the fourth term in (44), we have

1

n
tr
{
(I−A)TD(2)(I−A)Σ

}
=

1

n

n∑
i=1

tr
{
(Iii −Aii)

TD
(2)
ii (Iii −Aii)Σi

}
− 1

n

n∑
i=1

tr(AT
iiD

(2)
ii AiiΣi) +

1

n
tr(ATD(2)AΣ).

(46)

To bound the first term in (46), we note that

tr
{
(Iii −Aii)

TD
(2)
ii (Iii −Aii)Σi

}
=

1

2
tr
{
(Iii −Aii)

T (W
1/2
i D̃

(2)
ii W

−1/2
i +W

−1/2
i D̃

(2)
ii W

1/2
i )(Iii −Aii)Σi

}
,
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which is bounded by

1

2
tr
{
(Iii −Aii)

T (W
1/2
i D̃

(2)
ii W

1/2
i /αi + αiW

−1/2
i D̃

(2)
ii W

−1/2
i )(Iii −Aii)Σi

}
≤ 1

2
ξ(Σi,Wi)tr(D̃

(2)
ii ) +

αi

2
tr
{
(D̃

(2)
ii − 2D̃

(3)
ii )W

−1/2
i ΣiW

−1/2
i

}
+

αi

2
tr{D̃(2)

ii ÃiiW
−1/2
i ΣiW

−1/2
i Ãii}

≤ 1

2
ξ(Σ,W){2 + λmax(Ã

2
ii)}tr(D̃

(2)
ii )

= o(R(W,λ)),

where we take αi = λmax(Wi). The last equation follows from (43) and Con-
dition 4. Similarly, we can show that the second part of (46) is o(R(W,λ)).

Consider the third part of (46), 1
n tr(A

TD(2)AΣ) = o(1) 1n tr(A
TAΣ) =

o(R(W,λ)) since all eigenvalues of D
(2)
ii +D

(2)T
ii are of the order o(1) as is

shown in (45). Hence, (46) gives

1

n
tr{(I−A)TD(2)(I−A)Σ} = o(R(W,λ)).

Therefore, (41) has been proved.
Next, we proceed to prove (42). Define envelop matrices D(1)∗ = D(1)

and D(2)∗ = diag{D(2)∗

11 , . . . ,D
(2)∗
nn }, where D

(2)∗

ii = 1
2(W

1/2
i D̃

(2)
ii W

1/2
i /αi +

αiW
−1/2
i D̃

(2)
ii W

−1/2
i ) with αi = λmax(Wi). It is easy to check that D(1)∗

and D(2)∗ are valid envelops of D(1) and D(2), respectively. Since under
Condition 5, we have

tr(D
(1)
ii WiD

(1)T
ii ) ≤ λmax(W)λmax(W)λmax(W

−1)λ2
max(D̃

(1)
ii )tr(D̃

(1)2
ii )

=
{
λmax(W)λmax(W

−1)O(n−2tr(A)2)
}
λmax(W)O(n−2tr(A)2)

= λmax(W)O(n−2tr(A)2),

tr(D
(1)∗
ii Wi) ≤ λmax(Wi)tr(D̃

(1)2
ii ) = λmax(W)O(n−2tr(A)2),

and

tr(D
(2)
ii WiD

(2)T
ii ) ≤ λmax(Wi)tr(D̃

(2)2
ii ) = λmax(W)O(n−4tr(A)4)

= λmax(W)o(n−2tr(A)2),

tr(D
(2)∗
ii Wi) ≤ λmax(Wi)tr(D̃

(2)
ii ) = λmax(W)O(n−2tr(A)2).

By applying Lemma A.5, we have

1

n2
V ar

{
YT (I−A)TD(m)(I−A)Y

}
= op(R

2(W,λ)), m = 1, 2,

and (42) follows by the Cauchy–Schwarz inequality.
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SUPPLEMENTARY MATERIAL

Supplement A: Efficient algorithm and additional proofs
(http://lib.stat.cmu.edu/aoas/???/???). In the Supplementary Material, we
give a detailed description of the algorithm proposed in Section 3.2. In ad-
dition, proofs of some technical Lemmas are also included.
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