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We study the problem of estimating the leading eigenvectors of a
high-dimensional population covariance matrix based on independent
Gaussian observations. We establish a lower bound on the minimax
risk of estimators under the l2 loss, in the joint limit as dimension
and sample size increase to infinity, under various models of sparsity
for the population eigenvectors. The lower bound on the risk points
to the existence of different regimes of sparsity of the eigenvectors.
We also propose a new method for estimating the eigenvectors by a
two-stage coordinate selection scheme.

1. Introduction. Principal components analysis (PCA) is a widely used
technique in reducing dimensionality of multivariate data. A traditional set-
ting where PCA is applicable involves repeated observations from a multi-
variate normal distribution. Two key theoretical questions are: i) what is
the relation between the sample eigenvectors and the population ones ? and
ii) how well can population eigenvectors be estimated under various sparsity
assumptions ? When the dimension N of the observations is fixed and the
sample size n increases to infinity, the asymptotic properties of the sample
eigenvalues and eigenvectors are well-known [2, 19]. Most of this asymp-
totic analysis is based on the fact that the sample covariance approximates
well the population covariance when the sample size is large. However, it
is increasingly common to encounter statistical problems where the dimen-
sionality of the observations is of the same order of magnitude as (or even
bigger than) the sample size. In such cases, the sample covariance matrix,
in general, is not a reliable estimate of the population covariance matrix.

To overcome this curse of dimensionality, several works studied the esti-
mation of the population covariance matrix, under various models of spar-
sity. These include the development of banding and thresholding schemes
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2 BIRNBAUM, JOHNSTONE, NADLER AND PAUL

[4, 5, 7, 12, 25], and analysis of their rate of convergence in the spectral
norm. More recent works, such as [8] and [9] established the minimax rate
of convergence under the matrix l1 norm and the spectral norm, and its
dependence on the assumed sparsity level.

In contrast to these works, that studied estimation of the population co-
variance matrix, in this paper we consider a related but different problem,
namely, the estimation of its leading eigenvectors. The interest in comparing
these two problems is partially due to the fact that, when the population
covariance is a low rank perturbation of the identity, which is a primary fo-
cus of this paper, sparsity of the eigenvectors corresponding to the non-unit
eigenvalues implies sparsity of the whole covariance. Note that consistency
of an estimator of the whole covariance matrix also implies convergence of
its leading eigenvalues to their population counterparts. If the gaps between
the neighboring distinct eigenvalues remain bounded away from zero, it also
implies convergence of the corresponding eigen-subspaces [12]. Moreover,
for population eigenvalues with multiplicity one and gaps with neighboring
eigenvalues bounded away from zero, the upper bounds for the whole covari-
ance estimation under the spectral norm, derived in [4] and [9], also yield
an upper bound on the rate of convergence of the corresponding eigenvec-
tors under the l2 loss. These works, however, did not study the following
fundamental problem, considered in this paper: How well can the leading
eigenvectors be estimated, namely, what are the minimax rates for eigenvec-
tor estimation ?

We formulate this eigenvector estimation problem under the well-studied
“spiked population model” which assumes that

(*) the eigenvalues of the population covariance matrix Σ are

λ1 + σ2, . . . , λM + σ2, σ2, . . . , σ2,

for some M ≥ 1, where σ2 > 0 and λ1 > λ2 > · · · > λM > 0.

This is a standard model in several scientific fields, including for example
array signal processing (e.g. see [29]) where the observations are modeled as
the sum of an M -dimensional random signal and an independent, isotropic
noise. It also arises as a latent variable model for multivariate data, for
example in factor analysis [15, 28]. The assumption that the leading M
eigenvalues are distinct is made to simplify the analysis, as it ensures that
the corresponding eigenvectors are identifiable up to a sign change. The
assumption that all remaining eigenvalues are equal is not crucial as our
analysis can be generalized to the case when these are only bounded by
σ2. Asymptotic properties of the eigenvalues and eigenvectors of the sample
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MINIMAX BOUNDS FOR SPARSE PCA 3

covariance matrix under this model, in the setting when N/n → c ∈ (0,∞)
as n → ∞, have been studied by [3], [20], [22] and [24], among others. A
conclusion of these studies is that when N/n → c > 0, the eigenvectors of
standard PCA are inconsistent estimators of the population eigenvectors.

In analogy to the sparse covariance estimation setting, several works con-
sidered various models of sparsity for the leading eigenvectors and developed
improved sparse estimators. For example [30] and [33], among others, im-
posed l1-type sparsity constraints directly on the eigenvector estimates and
proposed optimization procedures for obtaining them. [27] suggested a reg-
ularized low rank approach to sparse PCA. The consistency of the resulting
leading eigenvectors was recently proven in [26], using a formulation of spar-
sity in which the sample size n is fixed while N → ∞. [10] suggested a
semi-definite programming (SDP) problem as a relaxation to the l0-penalty
for sparse Σ. Assuming a single spike, [1] studied the asymptotic properties
of the leading eigenvector of the covariance estimator obtained by [10], in the
joint limit as both sample size and dimension tend to infinity. Specifically,
[1] considered a leading eigenvector with exactly k ¿ N nonzero entries all
of the form {−1/

√
k, 1/

√
k}. For this hardest subproblem in the k-sparse

l0-ball, [1] first derived information theoretic lower bounds, and then, under
the assumption that the SDP problem has a rank one solution, proved that
it attains the optimal rate of convergence.

In this paper, in contrast, following [14] we study the estimation of the
leading eigenvectors of Σ assuming that these are approximately sparse,
with a bounded lq norm. Under this model, [14] developed an estimation
procedure based on coordinate selection by thresholding the diagonal of the
sample covariance matrix, followed by the spectral decomposition of the sub-
matrix corresponding to the selected coordinates. [14] further proved con-
sistency of this estimator assuming dimension grows at most polynomially
with sample size, but did not study its convergence rate. Since this estima-
tion procedure is considerably simpler to implement and computationally
much faster than the l1 penalization procedures cited above, it is of inter-
est to understand its theoretical properties. More recently, [18] developed a
related scheme named ITSPCA (iterative thresholding sparse PCA) which
is based on repeated application of filtering, thresholding and orthogonal-
ization steps that result in sparse estimators of the subspaces spanned by
the leading eigenvectors. He also proved consistency and derived rates of
convergence of the proposed estimator under appropriate loss functions and
sparsity assumptions.

In this paper, which is partly based on the Ph.D. thesis [23], we study
the estimation of the leading eigenvectors of Σ within the framework of [14],
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4 BIRNBAUM, JOHNSTONE, NADLER AND PAUL

but with an arbitrary number of spikes (i.e., M ≥ 1) whose corresponding
eigenvectors all belong to appropriate lq spaces. Our analysis thus extends
the setting studied in [14] and complements the work of [1] that considered
the l0-sparsity setting. For simplicity, we assume Gaussian observations in
our analysis. However, up to multiplicative constants, the bounds on the
minimax rate reported in this paper continue to hold under a relaxed as-
sumption of sub-Gaussian tail behavior for the probability distributions of
the random variables.

The main contributions of this paper are as follows. First, we establish
lower bounds on the rate of convergence of the minimax risk for any eigen-
vector estimator under the l2 loss. This analysis points to three different
regimes of sparsity, which we denote as dense, sparse, and ultra-sparse, each
having a different rate of convergence. We show that in the “dense” setting
(as defined in Section 3), the standard PCA estimator attains the optimal
rate of convergence, whereas in sparse settings it is not even consistent.
Next, we show that while the diagonal thresholding scheme of [14] is con-
sistent under these sparsity assumptions, in general, it is not rate optimal.
This motivates us to propose a new method (Augmented Sparse PCA, or
ASPCA) for estimating the eigenvectors that is based on a two-stage coor-
dinate selection scheme, and is a refinement of the thresholding scheme of
[14]. While beyond the scope of this paper, it is possible to show that in the
ultra-sparse setting, both our ASPCA procedure, as well as the method of
[18] achieve the lower bound on the minimax risk obtained by us, and are
thus rate-optimal procedures. There is an intermediate region where a gap
exists between the current lower bound and the upper bound on the risk. It
is an open question whether the lower bound can be improved in this sce-
nario, or a better estimator can be derived. Table 1 provides a comparison
of the lower bounds and rates of convergence of various estimators.

The theoretical results also show that under comparable scenarios, the op-
timal rate of convergence for eigenvector estimation, O((log N/n)−(1−q/2))
(under squared-error loss) is faster than the optimal rate for covariance esti-
mation, O((log N/n)−(1−q)) (under squared operator norm loss), as obtained
by [4] and [9]. Finally, we emphasize that to obtain good finite-sample per-
formance for both our two-stage scheme, as well as for other thresholding
methods, the exact thresholds need to be carefully tuned. This issue and the
detailed theoretical analysis of the ASPCA estimator is beyond the scope of
this paper, and will be presented in a future publication.

The rest of the paper is organized as follows. In Section 2, we describe
the model for the eigenvectors and analyze the risk of the standard PCA
estimator. In Section 3, we present the lower bounds on the minimax risk of
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Estimator dense sparse ultra-sparse

Lower bound O(N/n) O(n−(1−q/2)) O((log N/n)1−q/2)

PCA rate optimal inconsistent inconsistent

D.T. inconsistent not rate optimal not rate optimal

ASPCA inconsistent ? rate optimal
Table 1

Comparison of Lower Bounds on eigenvector estimation and Worst Case Rates of
various procedures.

any eigenvector estimator. In Section 4, we derive a lower bound on the risk
of the diagonal thresholding estimator proposed by [14]. In Section 5, we
propose a new estimator named ASPCA (augmented sparse PCA) that is a
refinement of the diagonal thresholding estimator. In Section 6, we discuss
the question of attainment of the risk bounds. Proofs of the results are given
in Section A in the Appendix.

2. Problem setup. First we introduce certain notations. Throughout,
SN−1 denotes the unit sphere in RN centered at the origin, bxc denotes the
largest integer less than or equal to x ∈ R.

Let {Xi : i = 1, . . . , n} be a triangular array, where for each n, the N × 1
random vectors Xi := Xn

i , i = 1, . . . , n are independent and identically
distributed on a common probability space. Throughout we assume that
Xi’s are i.i.d. as N(0, Σ), where the population matrix Σ is a finite rank
perturbation of (a multiple of) the identity. In other words,

(2.1) Σ =
M∑

ν=1

λνθνθ
T
ν + σ2I,

where λ1 > λ2 > . . . > λM > 0, and the vectors θ1, . . . , θM are orthonormal,
which implies (*). θν is the eigenvector of Σ corresponding to the ν-th largest
eigenvalue, namely, λν + σ2. The term “finite rank” means that M remains
fixed even as n →∞. The asymptotic setting involves letting both n and N
grow to infinity simultaneously. For simplicity, we assume that the λν ’s are
fixed while the parameter space for the θν ’s varies with N .

The observations can be described in terms of the model

(2.2) Xik =
M∑

ν=1

√
λνvνiθνk + σZik, i = 1, . . . , n, k = 1, . . . , N.

Here, for each n, vνi, Zik are i.i.d. N(0, 1). Since the eigenvectors of Σ are
invariant to a scale change in the original observations, it is assumed that
σ = 1. Hence, λ1, . . . , λM in the asymptotic results should be replaced by
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6 BIRNBAUM, JOHNSTONE, NADLER AND PAUL

λ1/σ2, . . . , λM/σ2 when (2.1) holds with an arbitrary σ > 0. Since the main
focus of this paper is estimation of eigenvectors, without loss of generality
we consider the uncentered sample covariance matrix S := 1

nXXT , where
X = [X1 : . . . : Xn].

The following condition, termed Basic Assumption, will be used through-
out the asymptotic analysis, and will be referred to as BA.

BA (2.2) holds with σ = 1; N = N(n) →∞ as n →∞; λ1 > . . . > λM > 0
are fixed (do not vary with N), where M is unknown but fixed.

2.1. Eigenvector estimation with squared error loss. Given data {Xi}n
i=1,

the goal is to estimate M and the eigenvectors θ1, . . . , θM . For simplicity, to
derive the lower bounds, we first assume that M is known. In Section 5.2 we
derive an estimator of M , which can be shown to be consistent under the
assumed sparsity conditions. To assess the performance of any estimator,
a minimax risk analysis approach is proposed. The first task is to specify
a loss function L(θ̂ν , θν) between the estimated and true eigenvector. Since
the model is invariant to sign changes of each θν , we consider the following
loss function, also invariant to sign changes.

(2.3) L(a,b) := 2(1− |〈a,b〉|) =‖ a− sign(〈a,b〉)b ‖2,

where a and b are N×1 vectors with unit l2 norm. An estimator θ̂ν is called
consistent with respect to L, if L(θ̂ν , θν) → 0 in probability as n →∞.

2.2. Rate of convergence for ordinary PCA. We first consider the asymp-
totic risk of the leading eigenvectors of the sample covariance matrix (hence-
forth referred to as the standard PCA estimators) when the ratio N/n is
small. Specifically, it is assumed that N/n → 0 as n →∞.

For future use, we define

(2.4) h(λ) :=
λ2

1 + λ
λ > 0,

and

(2.5) g(λ, τ) =
(λ− τ)2

(1 + λ)(1 + τ)
, λ, τ > 0.

In [14] (Theorem 1) it was shown that under a single spike model, as N/n →
0, the standard PCA estimator of the leading eigenvector is consistent. The
following result, proven in the Appendix, is a refinement of that, as it also
provides the leading error term.
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Theorem 2.1. Let θ̂ν,PCA be the eigenvector corresponding to the ν-th
largest eigenvalue of S. Assume that BA holds and N, n → ∞ such that
N/n → 0, and moreover, log n = o(N). Then, for each ν = 1, . . . , M ,

(2.6) sup
θν∈SN−1

EL(θ̂ν,PCA, θν) =


N −M

nh(λν)
+

1
n

∑

µ6=ν

1
g(λµ, λν)


 (1 + o(1)).

Remark 2.1. Observe that Theorem 2.1 does not assume any special
structure (e.g., sparsity) for the eigenvectors. The first term on the RHS
of (2.6) is a nonparametric component which arises from the interaction of
the noise terms with the different coordinates, while the second term is a
parametric component which results from the interaction with the remaining
M − 1 eigenvectors corresponding to different eigenvalues. The second term
shows that the closer the successive eigenvalues are, the larger is the estima-
tion error. The upshot of (2.6) is that standard PCA provides a consistent
estimator of the leading eigenvectors of the population covariance matrix
when the dimension-to-sample-size ratio (N/n) is asymptotically negligible.

2.3. lq constraint on eigenvectors. As shown by various authors [20, 22,
24], when N/n → c ∈ (0,∞], standard PCA provides inconsistent estimators
for the population eigenvectors. In this subsection we consider the following
model for approximate sparsity of the eigenvectors. For each ν = 1, . . . ,M ,
we assume that θν belongs to an lq ball with radius C, for some q ∈ (0, 2).
Specifically, we assume that θν ∈ Θq(C), where

(2.7) Θq(C) := {a ∈ SN−1 :
N∑

k=1

|ak|q ≤ Cq}.

Note that our condition of sparsity is slightly different from that of [14].
Note that since 0 < q < 2, for Θq(C) to be nonempty, one needs C ≥ 1.

Further, if Cq ≥ N1−q/2, then the space Θq(C) is all of SN−1 because in this
case, the least sparse vector 1√

N
(1, 1, . . . , 1) is in the parameter space.

The parameter space for θ := [θ1 : . . . : θM ] is denoted by

(2.8) ΘM
q (C1, . . . , CM ) := {θ ∈

M∏

ν=1

Θq(Cν) : 〈θν , θν′〉 = 0, for ν 6= ν ′},

where Θq(C) is defined through (2.7), and Cν ≥ 1 for all ν = 1, . . . , M .

Remark 2.2. While our focus is on eigenvector sparsity, condition (2.8)
also implies sparsity of the covariance matrix itself. In particular, for q ∈
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8 BIRNBAUM, JOHNSTONE, NADLER AND PAUL

(0, 1), a spiked covariance matrix satisfying (2.8) also belongs to the class of
sparse covariance matrices analyzed by [4], [7] and [9]. Indeed, [9] obtained
the minimax rate of convergence for covariance matrix estimators under
the spectral norm when the rows of the population matrix satisfy a weak-lq
constraint. However, as we will show below, the minimax rate for estimation
of the leading eigenvectors is faster than that for covariance estimation.

3. Lower bounds on the minimax risk. We now derive lower bounds
on the minimax risk of estimating θν under the loss function (2.3). To aid
in describing and interpreting the lower bounds, we define the following two
auxiliary parameters. The first is an effective noise level per coordinate

(3.1) τ2
ν = 1/(nh(λν))

and the second is an effective dimension

(3.2) mν := Aq(C̄ν/τν)q

where aq := (2/9)1−q/2, c1 := log(9/8) and Aq := 1/(aqc
q/2
1 ) and C̄q

ν :=
Cq

ν − 1.
The phrase effective noise level per coordinate is motivated by the risk

bound in Theorem 2.1, since dividing both sides of (2.6) by N , the expected
“per coordinate” risk (or variance) of the PCA estimator is asymptotically
τ2
ν . Next, following [21], let us provide a different interpretation of τν . Con-

sider a sparse θν and an oracle that, regardless of the observed data, selects
a set Jτ of all coordinates of θν that are larger than τ in absolute value, and
then performs PCA on the sample covariance restricted to these coordinates.
Since θν ∈ Θq(Cν), the maximal squared-bias is

sup
θν∈Θq(Cν)

∑

k 6∈Jτ

|θνk|2 ³ sup{
N∑

k=1

x
2/q
k :

N∑

k=1

xk ≤ Cq
ν , max

k
xk < τ q,min

k
xk ≥ 0}

³ Cq
ντ2−q

which follows by the correspondence xk = |θνk|q, and the convexity of the
function

∑N
k=1 x

2/q
k . On the other hand, by Theorem 2.1, the maximal vari-

ance term of this oracle estimator is of the order kτ/(nh(λν)) where kτ is
the maximal number of coordinates of θν exceeding τ . Again, θν ∈ Θq(Cν)
implies that kτ ³ Cq

ντ−q. Thus, to balance the bias and variance terms, we
need τ ³ 1/

√
nh(λν) = τν . This heuristic analysis shows that τν can be

viewed as an oracle threshold for the coordinate selection scheme, i.e., the
best possible estimator of θν based on individual coordinate selection can
expect to recover only those coordinates that are above the threshold τν .
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To understand why mν is an effective dimension, consider the least sparse
vector θν ∈ Θq(Cν). This vector should have as many nonzero coordinates
of equal size as possible. If Cq

ν > N1−q/2 then the vector with coordinates
±N−1/2 does the job. Otherwise, we set the first coordinate of the vector
to be

√
1− r2 for some r ∈ (0, 1) and choose all the nonzero coordinates to

be of magnitude τν . Clearly, we must have r2 = mτ2
ν , where m + 1 is the

maximal number of nonzero coordinates, while the lq constraint implies that
(1 − r2)q/2 + mτ q

ν ≤ Cq
ν . The last inequality shows that the maximal m is

just a constant multiple of mν . This construction also constitutes the key
idea in the proof of Theorems 3.1 and 3.2. Finally, we set

(3.3) N ′ = c1(N −M),

where the origin of c1 = log(9/8) will be explained in the proof.

Theorem 3.1. Assume that BA holds, 0 < q < 2, and n,N → ∞.
Then, there exists a constant B1 > 0 such that for n sufficiently large,

(3.4) R∗
ν := inf

θ̂ν

sup
Θq(C)

EL(θ̂ν , θν) ≥ B1δn,

where δn is given by

δn =





τ2
ν N ′ if τ2

ν N ′ < 1 and N ′ < mν [dense setting]
τ2
ν mν if τ2

ν mν < 1 and mν < N ′ [sparse setting]
1 if τ2

ν ·min{N ′,mν} > 1 [weak signal].

We may think of mn := min{N ′,mν} as the effective dimension of the
least favorable configuration. In the sparse setting, mn = AqC̄

q
ν [nh(λν)]q/2 <

c1N (i.e., C̄q
νnq/2 < c′N for some c′ > 0), and the lower bound is of the order

(3.5) δn = c1AqC
q
ντ2−q

ν =
c1AqC

q
ν

[nh(λν)]1−q/2
³ Cq

ν

n1−q/2
.

On the other hand, in the dense setting, mn = c1(N −M). If N/n → c for
some c > 0, then δn = c1(N −M)/(nh(λν)) ³ 1, and so any estimator of
the eigenvector θν is inconsistent. If N/n → 0 then the lower bound is

(3.6) δn =
c1(N −M)

nh(λν)
³ N

n
.

Eq. (3.6) and Theorem 2.1 imply that in the dense setting with N/n → 0,
the standard PCA estimator θ̂ν,PCA attains the optimal rate of convergence.
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A sharper lower bound is possible in what we call an ultra-sparse setting
which happens if C̄q

νnq/2 = O(N1−α) for some α ∈ (0, 1). In this case the
dimension N is much larger than the quantity C̄q

νnq/2 measuring the effective
dimension. Hence, we define a modified effective noise level per-coordinate

τ̄2
ν =

α

9
log N

nh(λν)
,

and a modified effective dimension

m̄ν = a−1
q (C̄ν/τ̄ν)q.

Theorem 3.2. Assume that BA holds, 0 < q < 2, and n,N →∞ such
that m̄ν = O(N1−α) for some α ∈ (0, 1). Then, assuming that m̄ν τ̄

2
ν ≤ 1 for

n sufficiently large, the minimax bound (3.4) holds with

(3.7) δn = m̄ν τ̄
2
ν = a−1

q Cq
ν

( log N

nh(λν)

)1−q/2
. [ultra-sparse setting]

Note that in the ultra-sparse setting δn is larger by a factor of (log N)1−q/2

compared to the sparse setting, Eq. (3.5).

4. Risk of the diagonal thresholding estimator. In this section,
we analyze the convergence rate of the SPCA scheme (henceforth referred
to as the diagonal thresholding or D.T. scheme) proposed by [14]. In this
section and in Section 5, we assume for simplicity that N ≥ n. Let the
sample variance of the k-th coordinate (i.e., the k-th diagonal entry of S)
be denoted by Skk. Then the D.T. scheme consists of the following steps.

1. Define I = I(γn) to be the set of indices k ∈ {1, . . . , N} such that
Skk > γn for some threshold γn > 0.

2. Let SII be the submatrix of S corresponding to the coordinates I. Per-
form an eigen-analysis of SII . Denote the eigenvectors by f1, . . . , fmin{n,|I|}.

3. For ν = 1, . . . , M , estimate θν by the N × 1 vector f̃ν , obtained from
fν by augmenting zeros to all the coordinates in Ic := {1, . . . , N} \ I.

Assuming that θν ∈ Θq(Cν), [14] showed that the D.T. scheme with a
threshold of the form γn = 1 + γ

√
log N/n for some γ > 0 leads to a consis-

tent estimator of θν . The risk of this estimator, however, was not analyzed
in [14]. As we prove below, the risk of the D.T. estimator is not rate optimal.
This can be anticipated from the lower bound on the minimax risk (Theo-
rems 3.1 and 3.2) which indicate that to attain the optimal risk, a coordinate
selection scheme must select all coordinates of θν of size at least c

√
log N/n.
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With a threshold of the form γn above, however, only coordinates of size
(log N/n)1/4 are selected. As shown in the following theorem, even for the
case of a single signal (M = 1) this leads to a much larger lower bound.

Theorem 4.1. Suppose that BA holds with M = 1. Let C > 0, 0 < q <
2, and n,N →∞ be such that Cqnq/4 = o(max{√n,N}). Then the Diagonal
Thresholding estimator θ̂1,DT proposed by [14] satisfies, for any q ∈ (0, 2),

(4.1) sup
θ1∈Θq(C)

EL(θ̂1,DT , θ1) ≥ KqC̄
qn−

1
2
(1−q/2)

for a constant Kq > 0, where C̄q = Cq − 1.

Comparing (4.1) with the lower bound (3.5), shows the large gap between
the two rates, n−1/2(1−q/2) vs. n−(1−q/2). The reason for this difference is that
the D.T. scheme uses only the diagonal of the sample covariance matrix S,
ignoring the information in its off-diagonal entries. In the next section we
propose a refinement of the D.T. scheme, denoted ASPCA, that constructs
an improved eigenvector estimate using all entries of S.

5. A two stage coordinate selection scheme. As discussed above,
the DT scheme can reliably detect only those eigenvector coordinates |θν,k| =
O((log N/n)1/4), whereas to reach the lower bound one needs to detect those
coordinates of size |θν,k| = O((log N/n)1/2).

To motivate an improved coordinate selection scheme, consider a partition
of the N coordinates into two sets A and B, where the former contains all
those k such that |θ1k| is “large” (selected by the D.T. scheme), and the
latter contains the remaining smaller coordinates. Partition the matrix Σ as

Σ =

[
ΣAA ΣAB

ΣBA ΣBB

]
.

Observe that, ΣBA = λ1θ1,BθT
1,A. Let θ̃1 be a “preliminary” estimator of θ1

such that limn→∞ P(〈θ̃1,A, θ1,A〉 ≥ δ0) = 1 for some δ0 > 0 (e.g., θ̃1 could be
the D.T. estimator). Then we have the relationship,

ΣBAθ̃1,A = 〈θ̃1,A, θ1,A〉λ1θ1,B ≈ c(δ0)λ1θ1,B

for some c(δ0) bounded below by δ0/2, say. Thus, one possible strategy
is to additionally select all those coordinates of ΣBAθ̃1,A that are larger (in
absolute value) than some constant multiple of

√
log N/

√
nh(λ1). In practice

we do not know ΣBA or λ1 but we can use SBA as a surrogate for the former
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12 BIRNBAUM, JOHNSTONE, NADLER AND PAUL

and the largest eigenvalue of SAA to obtain an estimate for the latter. A
technical challenge is to show, that with probability tending to 1, such a
scheme indeed recovers all coordinates k with |θ1k| > c1

√
log N/

√
nh(λ1),

while discarding all coordinates k with |θ1k| < c2
√

log N/
√

nh(λ1) for some
constants c1 > c2 > 0. Figure 1 provides a pictorial description of the D.T.
and ASPCA coordinate coordinate selection schemes.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

γ
+
 (log N /n)1/4

γ
−
 (log N /n)1/4

γ (log N /n)1/4

γ
+
 (log N /n)1/2

γ
−
 (log N /n)1/2

γ (log N /n)1/2

Fig 1. Schematic diagram of the D.T. and ASPCA thresholding schemes under the single
component setting. The vertical lines depict the absolute values of the coordinates of the
first eigenvector. The threshold for the D.T. scheme is γ(log N/n)1/4 while the thresholds
for the ASPCA scheme is γ(log N/n)1/2. The schemes select the coordinates above the
upper limits (indicated by the multiplier γ+) and discard the coordinates below the lower
limits (indicated by multiplier γ−) with high probability. Here, γ+ > γ > γ− > 0 are
generic constants.

5.1. ASPCA scheme. Based on the ideas described above, we now present
the ASPCA algorithm. It first makes two stages of coordinate selection,
whereas the final stage consists of an eigen-analysis of the submatrix of S
corresponding to the selected coordinates. The algorithm is described below.
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MINIMAX BOUNDS FOR SPARSE PCA 13

For any γ > 0 define

(5.1) I(γ) = {k : Skk > 1 + γ}.

Let γi > 0 for i = 1, 2 and κ > 0 be constants to be specified later.

Stage 1
1o Let I = I(γ1,n) where γ1,n = γ1

√
log N/n.

2o Denote the eigenvalues and eigenvectors of SII by ̂̀
1 > . . . > ̂̀

m1 and
f1, . . . , fm1 respectively, where m1 = min{n, |I|},

3o Estimate M by M̂ defined in Section 5.2.
Stage 2

4o Let E = [̂̀−1/2
1 f1 · · · ̂̀−1/2

M̂
f
M̂

] and Q = SIcIE.

5o Let J = {k 6∈ I : (QQT )kk > γ2
2,n} for some γ2,n > 0. Define

K = I ∪ J .
Stage 3

6o For ν = 1, . . . , M̂ , denote by θ̂ν the ν-th eigenvector of SKK , aug-
mented with zeros in the coordinates Kc.

Remark 5.1. The ASPCA scheme is specified up to the choice of pa-
rameters γ1, γ2,n and κ, that determine its rate of convergence. It can be
shown that choosing γ1 = 4, κ =

√
2 + ε for some ε > 0, and γ2,n given by

(5.2) γ2,n = γ2




√
log N

n
+

1
κ

√
M̂

n




with γ2 = κ
√

3/2 results in an asymptotically optimal rate. Again, we note
that for finite N , n, the actual performance in terms of the risk of the result-
ing eigenvector estimate may have a strong dependence on the threshold. In
practice, a delicate choice of thresholds can be highly beneficial. This issue,
as well as the analysis of the risk of the ASPCA estimator, are beyond the
scope of this paper and will be studied in a separate publication.

5.2. Estimation of M . Estimation of the dimension of the signal sub-
space is a classical problem. If the signal eigenvalues are strong enough (i.e.,
λν > c

√
N/n for all ν = 1, . . . ,M , for some c > 1 independent of N, n), then

nonparametric methods that do not assume eigenvector sparsity can asymp-
totically estimate the correct M (see, e.g. [17]). When the eigenvectors are
sparse, we can detect much weaker signals, as we describe below.

We estimate M by thresholding the eigenvalues of the submatrix SĪ Ī

where Ī := I(γ̄
√

log N/n) for some γ̄ > 0. Let m̄ = min{n, |Ī|} and ¯̀
1 >
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14 BIRNBAUM, JOHNSTONE, NADLER AND PAUL

. . . > ¯̀
m̄ be the nonzero eigenvalues of SĪ Ī . Let αn > 0 be a user-defined

threshold. Then, define M̂ by

(5.3) M̂ := max{1 ≤ k ≤ m̄ : ¯̀
k > 1 + αn}.

It can be shown that under appropriate sparsity conditions, with a suitable
choice of threshold αn, M̂ is a consistent estimator of M .

6. Summary and Discussion. In this paper we derived lower bounds
on eigenvector estimates under three different sparsity regimes, denoted
dense, sparse, and ultra-sparse. In the dense setting, Theorems 2.1 and 3.1
show that when N/n → 0, the standard PCA estimator attains the optimal
rate of convergence. In the ultra-sparse setting, Theorem 3.1 of [18] shows
that the maximal risk of the ITSPCA estimator proposed by him attains
the same asymptotic rate as the corresponding lower bound of Theorem
3.2. This implies that in the ultra-sparse setting, the lower bound on the
minimax rate is indeed sharp. In a separate paper, we prove that in the
ultra-sparse regime, the ASPCA algorithm also attains the minimax rate.

Finally, our analysis leaves some open questions in the intermediate sparse
regime. According to Theorem 3.1, the lower bound in this regime is smaller
by a factor of (log N)1−q/2, as compared to the ultra-sparse setting. There-
fore, whether there exists an estimator (and in particular, one with low
complexity), that attains the current lower bound, or whether this lower
bound can be improved is an open question for future research.

APPENDIX A: PROOFS

A.1. Asymptotic risk of the standard PCA estimator. To prove
Theorem 2.1, on the risk of the PCA estimator, we use the following lemmas.

Deviation of extreme eigenvalues of Wishart matrices. In our analysis,
we shall need a probabilistic bound for deviations of ‖ 1

nZZT − I ‖. This is
given in the following lemma, proven in Section B.

Lemma A.1. Let tn = 8(Nn/n)
√

log Nn/Nn where Nn = max{n,N}.
Let Z be an N × n matrix with i.i.d. N(0, 1) entries. Then for any c > 0,
there exists nc ≥ 1 such that for all n ≥ nc,

(A.1) P


‖ 1

n
ZZT − IN ‖> N

n
+ 2

√
N

n
+ ctn


 ≤ 2N−c2

n .

imsart-aos ver. 2007/12/10 file: lbd_sparse_pca_020512.tex date: February 5, 2012



MINIMAX BOUNDS FOR SPARSE PCA 15

Deviation of quadratic forms. The following lemma is due to [13].

Lemma A.2. Let χ2
n denote a Chi-square random variable with n degrees

of freedom. Then,

P(χ2
n > n(1 + ε)) ≤ e−3nε2/16 (0 < ε <

1
2
),(A.2)

P(χ2
n < n(1− ε)) ≤ e−nε2/4 (0 < ε < 1),(A.3)

P(χ2
n > n(1 + ε)) ≤

√
2

ε
√

n
e−nε2/4 (0 < ε < 1/2, n ≥ 16).(A.4)

The following lemma is from [14].

Lemma A.3. Let y1i, y2i, i = 1, . . . , n be two sequences of mutually in-
dependent, i.i.d. N(0, 1) random variables. Then for large n and any b s.t.
0 < b ¿ √

n,

(A.5) P
(
| 1
n

n∑

i=1

y1iy2i| >
√

b/n

)
≤ 2 exp

{
−3b

2
+ O(n−1b2)

}
.

Perturbation of eigen-structure. The following lemma from [23] is conve-
nient for risk analysis of estimators of eigenvectors. Several variants of this
lemma appear in the literature, most based on the approach of [16].

Lemma A.4. Let A and B be two symmetric m ×m matrices. Let the
eigenvalues of matrix A be denoted by λ1(A) ≥ . . . ≥ λm(A). Set λ0(A) =
∞ and λm+1(A) = −∞. For any r ∈ {1, . . . , m}, if λr(A) is a unique
eigenvalue of A, i.e., if λr−1(A) > λr(A) > λr+1(A), then denoting by pr

the eigenvector associated with the r-th eigenvalue,

(A.6) pr(A + B)− sign(pr(A + B)Tpr(A))pr(A) = −Hr(A)Bpr(A) + Rr

where Hr(A) :=
∑

s 6=r
1

λs(A)−λr(A)PEs(A) and PEs(A) denotes the projection
matrix onto the eigenspace Es corresponding to eigenvalue λs(A) (possibly
multi-dimensional). Define ∆r and ∆r as

∆r :=
1
2
[‖ Hr(A)B ‖ +|λr(A + B)− λr(A)| ‖ Hr(A) ‖](A.7)

∆r =
‖ B ‖

min1≤j 6=r≤m |λj(A)− λr(A)| .(A.8)

imsart-aos ver. 2007/12/10 file: lbd_sparse_pca_020512.tex date: February 5, 2012



16 BIRNBAUM, JOHNSTONE, NADLER AND PAUL

Then, the residual term Rr can be bounded by

‖ Rr ‖ ≤ min
{
10∆2

r,(A.9)

‖ Hr(A)Bpr(A) ‖
[

2∆r(1 + 2∆r)
1− 2∆r(1 + 2∆r)

+
‖ Hr(A)Bpr(A) ‖

(1− 2∆r(1 + 2∆r))2

]}

where the second bound holds only if ∆r < (
√

5− 1)/4.

Remark A.1. We can simplify the bound on the perturbation in (A.9)
to show that if ∆r ≤ 1/4, then

(A.10) ‖ Rr ‖≤ C ‖ Hr(A)Bpr(A) ‖ ∆r

where we can take C = 30. To see this, note that |λr(A+B)−λr(A)| ≤‖ B ‖
and that ‖ Hr(A) ‖≤ [minj 6=r |λj(A)− λr(A)|]−1, so that,

∆r ≤‖ Hr(A) ‖‖ B ‖≤ ∆r.

Now, defining δ := 2∆r(1 + 2∆r) and β :=‖ Hr(A)Bpr(A) ‖, we have
10∆2

r ≤ (5/2)δ2, and the bound (A.9) may be expressed as

‖ Rr ‖≤ βδ

1− δ
min

{
5
2

δ(1− δ)
β

, 1 +
β

δ(1− δ)

}
.

For x > 0, the function x 7→ min{5x/2, 1+1/x} ≤ 5/2. Further, if ∆r < 1/4,
then δ < 3∆r < 3/4 and so we conclude that

‖ Rr ‖≤ 10βδ ≤ 30β∆r.

For notational simplicity, throughout this subsection, we write θ̂ν to mean
θ̂ν,PCA. Recall that the loss function L(θ̂ν , θν) =‖ θ̂ν − sign〈θ̂ν , θν〉θν ‖2.
Invoking Lemma A.4 with A = Σ and B = S− Σ we get

(A.11) θ̂ν − sign〈θ̂ν , θν〉θν = −HνSθν + Rν ,

where

(A.12) Hν ≡ Hν(Σ) :=
∑

1≤µ6=ν≤M

1
λµ − λν

θµθT
µ −

1
λµ

P⊥,

where P⊥ = I −∑M
µ=1 θµθT

µ . Note that Hνθν = 0 and that HνΣθν = 0. The
key quantity in bounding the error term Rν is

∆ν = max{(λν − λν+1)−1, (λν−1 − λν)−1} ‖ S− Σ ‖ .
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Indeed, from (A.10), when ∆ν < 1/4, we have, for some constant C > 0,

‖ Rν ‖≤ C ‖ HνSθν ‖ ∆ν .

Set δ′nν = C∆ν . We will show that as n → ∞, δ′nν → 0 with probability
approaching 1 and

(A.13) ‖ HνSθν ‖2 (1− δ′nν)
2 ≤ L(θ̂ν , θν) ≤‖ HνSθν ‖2 (1 + δ′nν)

2.

Theorem 2.1 then follows from an (exact, non-asymptotic) evaluation

(A.14) E ‖ HνSθν ‖2=
N −M

nh(λν)
+

1
n

∑

µ 6=ν

(1 + λµ)(1 + λν)
(λµ − λν)2

.

We begin with the evaluation of (A.14). First we derive a convenient repre-
sentation of HνSθν . In matrix form, model (2.2) becomes

(A.15) X =
M∑

µ=1

√
λµθµvT

µ + Z.

For ν = 1, . . . , M , define

(A.16) zν = ZT θν , wν = XT θν =
√

λνvν + zν .

Define

(A.17) 〈a,b〉n :=
1
n

n∑

i=1

aibi for arbitrary a,b ∈ Rn.

Then we have

Sθν =
1
n
Xwν =

M∑

µ=1

√
λµ〈vµ, wν〉nθµ +

1
n
Zwν .

Using (A.16),

HνZwν =
∑

µ6=ν

〈zµ, wν〉
λµ − λν

θµ − 1
λν

P⊥Zwν .

Using (A.12), Hνθµ = (λµ−λν)−1θµ for µ 6= ν, and we arrive at the desired
representation

(A.18) HνSθν =
∑

µ6=ν

〈wµ, wν〉n
λµ − λν

θµ − 1
nλν

P⊥Zwν .
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18 BIRNBAUM, JOHNSTONE, NADLER AND PAUL

By orthogonality,

(A.19) ‖ HνSθν ‖2=
∑

µ 6=ν

〈wµ, wν〉2n
(λµ − λν)2

+
1

n2λ2
ν

wT
ν ZT P⊥Zwν .

Now we compute the expectation. One verifies that zν ∼ N(0, In) indepen-
dently of each other and of each vν ∼ N(0, In), so that wν ∼ N(0, (1+λν)In)
independently. Hence, for µ 6= ν,

E〈wµ, wν〉2n = n−2Etr(wνw
T
ν wµwT

µ )(A.20)

= n−2tr((1 + λµ)(1 + λν)In)
= n−1(1 + λµ)(1 + λν).

From (A.16),

E[wT
ν ZT P⊥Zwν |Z] = zT

ν ZT P⊥Zzν + λνE[vT
ν ZT P⊥Zvν |Z]

= tr(ZZT P⊥ZZT θµθT
µ ) + λνtr(P⊥ZZT ).

Now, it can be easily verified that if W := ZZT ∼ WN (n, I), then for
arbitrary symmetric N ×N matrices Q, R, we have,

(A.21) Etr(WQWR) = n[tr(QR) + tr(Q)tr(R)] + n2tr(QR).

Taking Q = P⊥ and R = θµθT
µ , by (A.21) we have

(A.22) E[wT
ν ZP⊥Zwν ] = ntr(P⊥) + nλνtr(P⊥) = n(N −M)(1 + λν).

Combining (A.20) with (A.22) in computing the expectation of (A.19), we
obtain the expression (A.14) for E ‖ HνSθν ‖2.

Bound for ‖ S−Σ ‖. We begin with the decomposition of the sample
covariance matrix S. Introduce the abbreviation ξµ = n−1Zvµ. Then,
(A.23)

S =
M∑

µ=1

M∑

µ′=1

√
λµλµ′〈vµ, vµ′〉nθµθT

µ′ +
M∑

µ=1

√
λµ(θµξT

µ + ξµθT
µ ) + n−1ZZT

and hence

‖ S− Σ ‖ ≤
M∑

µ=1

M∑

µ′=1

√
λµλµ′ |〈vµ, vµ′〉n − δµµ′ |(A.24)

+2
M∑

µ=1

√
λµ ‖ ξµ ‖ + ‖ n−1ZZT − I ‖,
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where δµµ′ denotes the Kronecker symbol. Let D1 be the intersection of all
the events (for some constant c > 0):

D11 := {| ‖ vµ ‖2
n −1| ≤ 2c

√
n−1 log n, 1 ≤ µ ≤ M},

D12 := {|〈vµ, vν〉n| ≤ c
√

n−1 log n, 1 ≤ µ 6= µ′ ≤ M},

D13 := {‖ ξµ ‖≤ (1 + 2c
√

N−1 log n)

√
N

n
, 1 ≤ µ ≤ M}.

Since vν
i.i.d.∼ N(0, In) independent of Z, we have Zvν/ ‖ vν ‖∼ N(0, IN )

independently of vν , and ‖ vν ‖2∼ χ2
n. Moreover,

D11 ∩ {‖ Zvµ ‖2 / ‖ vµ ‖2≤ 1 + 2c
√

N−1 log n, 1 ≤ µ ≤ M} ⊂ D13.

Hence, we use Lemmas A.2 and A.3 to prove that

(A.25) 1− P(D1) ≤ 3Mn−c2 + M(M − 1)n−(3/2)c2+O(n−1 log n).

Define D2 to be be the event that

(A.26) D2 :=



‖

1
n
ZZT − IN ‖≤ N

n
+ 2

√
N

n
+ ctn



 ,

with tn as in Lemma A.1 with Nn = max{n,N} = n so that tn = 8
√

n−1 log n.
Lemma A.1 also establishes that 1 − P(D2) ≤ 2n−c2 . Using the notation
ηn := (N−1 log n)1/2, we have, on D1 ∩D2,

‖ S− Σ ‖ ≤ 2c(
M∑

µ=1

√
λµ)2ηn + 2(

M∑

µ=1

λµ)(1 + 2cηn)

√
N

n
(A.27)

+2

√
N

n
+

N

n
+ ctn.

Recalling that ρν = λν/λ1 for ν = 1, . . . , M , we have for large n that

∆ν ≤ Cν(ρ)
‖ S− Σ ‖

λ1
,

where, say Cν(ρ) = 2max{(ρν − ρν+1)−1, (ρν−1 − ρν)−1}. Observe that
tn/λ1 = 8ηn

√
N/(nλ1)2. Now, substitute (A.27) to conclude that there are

functions Bi(ρ) such that on Dn := D1 ∩D2,

∆ν ≤ B1(ρ)ηn + B2(ρ)(1 + 2cηn)

√
N

nλ1
+ 2

√
N

nλ2
1

+
N

nλ1
+ 8cηn

√
N

nλ2
1

.
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20 BIRNBAUM, JOHNSTONE, NADLER AND PAUL

Our assumptions imply that

ηn =

√
log n

N
→ 0 and

N

nλ2
1

+
N

nλ1
=

N

nh(λ1)
→ 0,

so that ∆ν → 0. To summarize, choose c =
√

2, say, so that on Dn, which
has probability at least 1 − O(n−2), we have δ′nν → 0. This completes the
proof of (A.13).

Theorem 2.1 now follows from noticing that L(θ̂ν , θν) ≤ 2 and so

E[L(θ̂ν , θν), (D1 ∩D2)c] ≤ 2P((D1 ∩D2)c) = O(N−2
n ) = o(E ‖ HνSθν ‖2),

and an additional computation using (A.19) which shows that

E[‖ HνSθν ‖2, Dc
n] ≤ (E[‖ HνSθν ‖4)1/2P (Dc

n) = o(E[‖ HνSθν ‖2).

A.2. Lower bound on the minimax risk. In this subsection, we
prove Theorems 3.1 and 3.2. The key idea in the proofs is to utilize the
geometry of the parameter space in order to construct appropriate finite
dimensional subproblems for which bounds are easier to obtain. We first
give an overview of the general machinery used in the proof.

Risk bounding strategy. A key tool for deriving lower bounds on the
minimax risk is Fano’s Lemma. In this subsection, we use superscripts on
vectors θ as indices, not exponents. First, we construct a large finite subset
F of ΘM

q (C1, . . . , CM ), such that the following property holds, for a given
ν ∈ {1, . . . , M}.

If θ1, θ2 ∈ F , then L(θ1
ν , θ

2
ν) ≥ 4δ, for some δ > 0 (to be chosen).

This property will be referred to as “4δ-distinguishability in θν”. Given any
estimator θ̂ of θ, based on data Xn = (X1, . . . , Xn), define a new estimator
φ(Xn) = θ∗, whose M components are given by θ∗ν = arg minθ∈F L(θ̂ν , θν),
where θ̂ν is the ν-th column of θ̂. Then, by Chebyshev’s inequality and the
4δ-distinguishability in θν , it follows that

sup
θ∈ΘM

q (C1,...,CM )

EθL(θ̂ν , θν) ≥ δ sup
θ∈F

Pθ(φ(Xn) 6= θ).(A.28)

The task is then to find an appropriate lower bound for the quantity on the
right hand side of (A.28). For this, we use the following version of Fano’s
lemma, due to [6], modifying a result of [31] (p. 1570-71).
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Lemma A.5. Let {Pθ : θ ∈ Θ} be a family of probability distributions
on a common measurable space, where Θ is an arbitrary parameter set. Let
pmax be the minimax risk over Θ, with the loss function L′(θ, θ′) = 1θ 6=θ′,

pmax = inf
T

sup
θ∈Θ

Pθ(T 6= θ) = inf
T

sup
θ∈Θ

EL′(θ, T ),

where T denotes an arbitrary estimator of θ with values in Θ. Then for any
finite subset F of Θ, with elements θ1, . . . , θJ where J = |F|,

(A.29) pmax ≥ 1− inf
Q

J−1 ∑J
i=1 K(Pi, Q) + log 2

log J

where Pi = Pθi, and Q is an arbitrary probability distribution, and K(Pi, Q)
is the Kullback-Leibler divergence of Q from Pi.

The following lemma, proven in Section B, gives the Kullback-Leibler
discrepancy corresponding to two different values of the parameter.

Lemma A.6. Let θj := [θj
1 : . . . : θj

M ], j = 1, 2 be two parameters (i.e.,
for each j, θj

k’s are orthonormal). Let Σj denote the matrix given by (2.1)
with θ = θj (and σ = 1). Let Pj denote the joint probability distribution of
n i.i.d. observations from N(0, Σj). Then the Kullback-Leibler discrepancy
of P2 with respect to P1 is given by

(A.30) K1,2 := K(θ1, θ2) =
n

2

[
M∑

ν=1

η(λν)λν −
M∑

ν=1

M∑

µ=1

η(λν)λµ|〈θ1
µ, θ2

ν〉|2
]
,

where η(λ) = λ/(1 + λ).

Geometry of the hypothesis set and Sphere Packing. Next, we describe
the construction of a large set of hypotheses F , satisfying the 4δ distin-
guishability condition. Our construction is based on the well studied sphere
packing problem, namely how many unit vectors can be packed onto Sm−1,
with given minimal pairwise distance between any two vectors.

Here we follow the construction due to [32] (p. 77). Let m be a large
positive integer, and m0 = b2m/9c. Define Y ∗

m as the maximal set of points
of the form z = (z1, . . . , zm) in Sm−1 such that the following is true:

√
m0zi ∈ {−1, 0, 1} ∀ i,

m∑

i=1

|zi| = √
m0 and, for z, z′ ∈ Y ∗

m, ‖ z−z′ ‖≥ 1.

imsart-aos ver. 2007/12/10 file: lbd_sparse_pca_020512.tex date: February 5, 2012



22 BIRNBAUM, JOHNSTONE, NADLER AND PAUL

For any m ≥ 1, the maximal number of points lying on Sm−1 such that any
two points are at distance at least 1, is called the kissing number of an m-
sphere. [32] uses the construction described above to derive a lower bound
on the kissing number, by showing that |Y ∗

m| ≥ (9/8)m(1+o(1)) for m large.
Next, for m < N −M we use the sets Y ∗

m to construct our hypothesis set
F of same size, |F| = |Y ∗

m|. To this end, let {eµ}N
µ=1 denote the standard

basis of RN . Our initial set θ0 is composed of the first M standard basis
vectors, θ0 = [e1 : . . . : eM ]. Then, for fixed ν, and values of m, r yet to be
determined, each of the other hypotheses θj ∈ F has the same vectors as θ0

for k 6= ν. The difference is that the ν-th vector is instead given by

(A.31) θj
ν =

√
1− r2 eν + r

m∑

l=1

zj
l eM+l, j = 1, . . . , |F|,

where zj = (zj
1, . . . , z

j
m), j ≥ 1, is an enumeration of the elements of Y ∗

m.
Thus θj

ν perturbs eν in subsets of the fixed set of coordinates {M+1, . . . , M+
m}, according to the sphere packing construction for Sm−1.

The construction ensures that θj
1, . . . , θ

j
M are orthonormal for each j. Fur-

thermore, (A.30) simplifies to

(A.32) K(θj , θ0) =
1
2
nh(λν)(1− (〈θj

ν , θ
0
ν〉)2) =

1
2
nh(λν)r2, j = 1, . . . , |F|.

Finally, by construction, for any θj , θk ∈ F with j 6= k

(A.33) L(θj
ν , θ

k
ν) ≥ r2,

In other words, the set F is r2-distinguishable in θν . Consequently, combin-
ing (A.28) and (A.32),

(A.34) R∗
ν = inf

θ̂ν

sup
Θq(C)

EL(θ̂ν , θν) ≥ (r2/4)[1− a(r,F)],

with

(A.35) a(r,F) =
1
2nh(λν)r2 + log 2

log |F| .

Proof of Theorem 3.1. Let m be an integer yet to be specified and let
r ∈ (0, 1). Let Y ∗

m be the sphere-packing set defined above, and let F be the
corresponding set of hypotheses, defined via (A.31).

Let c1 = log(9/8), then we have log |F| ≥ bmc1m, where bm → 1 as
m →∞. Inserting the following value for r = r(m),

(A.36) r2 =
c1m

nh(λν)
,
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into Eq. (A.35) gives that

a(r,F) ≤
1
2c1m + log 2

bmc1m
.

Therefore, so long as m ≥ m∗, an absolute constant, we have a(r,F0) ≤ 3/4.
We need to ensure that θj

ν ∈ Θq(Cν). Since exactly m0 coordinates are
non-zero out of {M + 1, . . . , M + m},

‖θj
ν‖q

q = (1− r2)q/2 + rqm
1−q/2
0 ≤ 1 + aqr

qm1−q/2

where aq = (2/9)1−q/2. A sufficient condition for θ
(j)
ν ∈ Θq(Cν) is that

(A.37) aqm(r2/m)q/2 ≤ C̄q
ν .

Substituting (A.36) puts this into the form

m ≤ 1

aqc
q/2
1

C̄q
ν [nh(λν)]q/2.

To simultaneously ensure that (i) r2 < 1, (ii) m does not exceed the
number of available co-ordinates, N −M , and (iii) θj

ν ∈ Θq(Cν), we set

m = min{bnh(λν)c, N −M, bAqC̄
q
ν(nh(λν))q/2c},

where Aq = 1/(aqc
q/2
1 ). Recalling the notations (3.1), (3.2) and (3.3), this

becomes (without loss of generality assuming nh(λν) and mν to be integers)

m = min{τ−2
ν , N ′,mν} = τ−2

ν min{1, τ2
ν ·min{N ′,mν}}

and Theorem 3.1 follows.

Proof of Theorem 3.2. The construction of the set of hypotheses in the
proof of Theorem 3.1 considered a fixed set of potential non-zero coordinates,
namely {M +1, . . . ,M +m}. However, in the ultra-sparse setting, when the
effective dimension is significantly smaller than the nominal dimension N , it
is possible to construct a much larger collection of hypotheses by allowing the
set of non-zero coordinates to span all remaining coordinates {M+1, . . . , N}.

In the proof of Theorem 3.2 we shall use the following lemma, proven in
Section B. Call A ⊂ {1, . . . , N} an m−set if |A| = m.
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Lemma A.7. Let k be fixed, and let Ak be the maximal collection of
m−sets such that the intersection of any two members has cardinality at
most k − 1. Then, necessarily,

(A.38) |Ak| ≥
(

N

k

)/(
m

k

)2

.

Let k = [m0/2]+1 and m0 = [βm] with 0 < β < 1. Suppose that m,N →∞
with m = o(N). Then

(A.39) |Ak| ≥ exp[NE(βm/2N)− 2mE(β/2)](1 + o(1)).

where E(x) is the Shannon entropy function,

E(x) = −x log(x)− (1− x) log(1− x), 0 < x < 1.

Let π be an m−set contained in {M + 1, . . . , N}, and construct a family
Fπ by modifying (A.31) to use the set π rather than the fixed set {M +
1, . . . ,M + m} as in Theorem 3.1:

θ(j,π)
ν =

√
1− r2 eν + r

∑

l∈π

zj
l el, j = 1, . . . , |Y ∗

m|.

We will choose m below to ensure that θ
(j,π)
ν ∈ Θq(Cν). Let P be a collection

of sets π such that, for any two sets π and π′ in P, the set π∩π′ has cardinality
at most m0/2. This ensures that the sets Fπ are disjoint for π 6= π′, since
each θ

(j,π)
ν is nonzero in exactly m0 + 1 coordinates. This construction also

ensures that

for all y,y′ ∈
⋃

π∈P
Fπ, L(y,y′) ≥

(
m0

2
+

m0

2

) (
r√
m0

)2

= r2.

Define F :=
⋃

π∈P Fπ. Then

(A.40) |F| = |
⋃

π∈P
Fπ| = |P| |Y ∗

m| ≥ |P|(9/8)m(1+o(1)).

By Lemma A.7, there is a collection P such that |P| is at least exp([NE(m/9N)−
2mE(1/9)](1 + o(1))). Since E(x) ≥ −x log x, it follows from (A.40) that,

log |F|
m

≥
(

1
9

log
9N

m
− 2E(1/9)

)
+ log(9/8)(1 + o(1)) ≥ α

9
log N + O(1),

since m = O(N1−α).
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Proceeding as for Theorem 3.1, we have log |F| ≥ bm(α/9)m log N , where
bm → 1. Let us set (with m still to be specified)

(A.41) r2 = m
(α/9) log N

nh(λν)
= mτ̄2

ν ,

Again, we need to ensure that θ
(j,π)
ν ∈ Θq(Cν), which as before is implied

by (A.37). Substituting (A.41) puts this into the form

m ≤ m̄ν = a−1
q (C̄ν/τ̄ν)q.

To simultaneously ensure that (i) r2 < 1; (ii) m does not exceed the number
of available co-ordinates, N −M ; and (iii) θj

ν ∈ Θq(Cν), we set

m = min{bτ̄−2
ν c, N −M, ba−1

q (C̄q
ν/τ̄ν)qc}.

As n,N →∞, we have that m = ba−1
q (C̄ν/τ̄ν)qc, and Theorem 3.2 follows.

A.3. Lower bound on the risk of the D.T. estimator. To prove
Theorem 4.1, assume w.l.g. that 〈θ̂1,DT , θ1〉 > 0, and decompose the loss as

(A.42) L(θ̂1,DT , θ1) =‖ θ1 − θ1,I ‖2 + ‖ θ̂1,DT − θ1,I ‖2,

where I = I(γn) is the set of coordinates selected by the D.T. scheme and
θ1,I denotes the subvector of θ1 corresponding to this set. Note that, in
(A.42), the first term on the right can be viewed as a bias term while the
second term can be seen as a variance term.

We choose a particular vector θ1 = θ∗ ∈ Θq(C) so that

(A.43) E ‖ θ∗ − θ∗,I ‖2≥ KC̄qn−
1
2
(1−q/2).

This, together with (A.42), proves Theorem 4.1 since the worst case risk
is clearly at least as large as (A.43). Accordingly, set rn = C̄q/2n−

1
4
(1−q/2),

where C̄q = Cq − 1. Since Cqnq/4 = o(n1/2), we have rn = o(1), and so for
sufficiently large n, we can take rn < 1 and define

θ∗,k =





√
1− r2

n if k = 1
rn√
mn

if 2 ≤ k ≤ mn + 1

0 if mn + 2 ≤ k ≤ N

where mn = b(1/2)C̄qnq/4c. Then by construction θ∗ ∈ Θq(C), since

N∑

k=1

|θ∗,k|q = (1− r2
n)q/2 + rq

nm1−q/2
n < 1 + rq

nm1−q/2
n ≤ 1 +

C̄q

21−q/2
< Cq,
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where the last inequality is due to q ∈ (0, 2) and C̄q = Cq − 1.
For notational convenience, let αn = γ

√
log N/n. Recall that D.T. selects

all coordinates k for which Skk > 1 + αn. Therefore, coordinate k is not
selected with probability

(A.44) pk = P(Skk < 1 + αn) = P
(

Wn

n
<

1 + αn

1 + λ1θ2
∗,k

)

where Wn ∼ χ2
n. Notice that, for k = 2, . . . , mn + 1, pk = p2, and θ∗,k = 0

for k > mn + 1. Hence,

E ‖ θ∗ − θ∗,I ‖2=
N∑

k=1

pk|θ∗,k|2 > p2

mn+1∑

k=2

|θ∗,k|2 = p2r
2
n = p2C̄

qn−
1
2
(1−q/2).

Thus, to finish the proof of Theorem 4.1, it is enough to show that p2 > 1−An

for some An that converges to 0 as n →∞. Rewrite (A.44) as

pk = P
(

Wn

n
< 1 + εk

)
= 1−P

(
Wn

n
≥ 1 + εk

)
where εk =

αn − λ1|θ∗,k|2
1 + λ1|θ∗,k|2 .

Since |θ∗,2|2 = r2
n/mn = 2n−1/2(1 + o(1)), it follows that

ε2 =
γ
√

log N
n − λ1

r2
n

mn

1 + λ1
r2
n

mn

=
1√
n

(
γ
√

log N − 2λ1

1 + 2λ1/
√

n

)
(1 + o(1))

so that nε22 → ∞ as n → ∞. This, together with (A.3), shows that p2 ≥
1−An where we can choose An = exp(−3nε22/16) = o(1).

APPENDIX B: PROOF OF RELEVANT LEMMAS

B.1. Proof of Lemma A.1. We use the following result on extreme
eigenvalues of Wishart matrices by [11].

Lemma A.1. Let Z be a p×q matrix of i.i.d. N(0, 1) entries with p ≤ q.
Let smax(Z) and smin(Z) denote the largest and the smallest singular value
of Z, respectively. Then,

P(smax(
1√
q
Z) > 1 +

√
p/q + t) ≤ e−qt2/2,(A.1)

P(smin(
1√
q
Z) < 1−

√
p/q − t) ≤ e−qt2/2.(A.2)
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We apply Lemma A.1 separately for N ≤ n and for N > n. Observe first
that,

∆ :=‖ 1
n
ZZT − IN ‖= max{λ1(n−1ZZT )− 1, 1− λN (ZZT )}.

Consider first N ≤ n and let s± denote the maximum and minimum singular
values of n−1/2Z. Define γ(t) :=

√
N/n + t for t > 0. Then, since ∆ =

max{s2
+ − 1, 1− s2−}, and letting ∆n(t) := 2γ(t) + γ(t)2 we have

{∆ > ∆n(t)} ⊂ {s+ > 1 + γ(t)} ∪ {s− < 1− γ(t)}.

Now, applying Lemma A.1 with p = N and q = n, we get

P(∆ > ∆n(t)) ≤ 2e−nt2/2.

We observe that

(A.3) ∆n(t) = (N/n + 2
√

N/n) + t(2 + t + 2
√

N/n).

Now consider N > n. Noting that λN (n−1ZZT ) = 0, we have

∆ = max{(N/n)s2
+ − 1, 1}.

This time, let γ̄(t) :=
√

n/N + t and ∆N (t) := max{(N/n)(1+ γ̄(t))2−1, 1}.
We apply Lemma A.1 with p = n, q = N , so that

P(∆ > ∆N (t)) = P(s+ > 1 + γ̄(t)) ≤ e−nt2/2,

and observe that

(A.4) ∆N (t) = (N/n + 2
√

N/n) + (N/n)t(2 + t + 2
√

n/N).

Thus from (A.3) and (A.4), we have

∆max{n,N}(t) ≤ (N/n + 2
√

N/n) + t(Nn/n)(4 + t).

Now choose t = c
√

2 log Nn/Nn so that tail probability is at most 2e−N2
nt2/2 =

2N−c2
n . The result is now proved, since if c

√
log n/n ≤ 1 then t(Nn/n)(4 +

t) ≤ ctn.
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B.2. Proof of Lemma A.6. Recall that, if distributions F1 and F2

have density functions f1 and f2, respectively, such that the support of f1

is contained in the support of f2, then the Kullback-Leibler discrepancy of
F2 with respect to F1, to be denoted by K(F1, F2), is given by

(A.5) K(F1, F2) =
∫

log
f1(y)
f2(y)

f1(y)dy.

For n i.i.d. observations Xi, i = 1, . . . , n, the Kullback-Leibler discrepancy
is just n times the Kullback-Leibler discrepancy for a single observation.
Therefore, without loss of generality we take n = 1. Since

(A.6) Σ−1 = (I −
M∑

ν=1

η(λν)θνθ
T
ν ),

the log-likelihood function for a single observation is given by

log f(x|θ) = −N

2
log(2π)− 1

2
log |Σ| − 1

2
xT Σ−1x(A.7)

= −N

2
log(2π)− 1

2

M∑

ν=1

log(1 + λν)

−1
2

(
〈x, x〉 −

M∑

ν=1

η(λν)〈x, θν〉2
)

.

From (A.7), we have

K1,2

= Eθ1

(
log f(X|θ1)− log f(X|θ2)

)

=
1
2

M∑

ν=1

η(λν)[Eθ1(〈X, θ1
ν〉)2 − Eθ1(〈X, θ2

ν〉)2]

=
1
2

M∑

ν=1

η(λν)[〈θ1
ν , Σ(1)θ

1
ν〉 − 〈θ2

ν , Σ(1)θ
2
ν〉]

=
1
2

M∑

ν=1

η(λν)


(‖ θ1

ν ‖2 − ‖ θ2
ν ‖2) +

M∑

µ=1

λµ{(〈θ1
µ, θ1

ν〉)2 − (〈θ1
µ, θ2

ν〉)2}

 ,

which equals the RHS of (A.30), since the columns of θj are orthonormal
for each j = 1, 2.
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B.3. Proof of Lemma A.7. Let Pm be the collection of all m−sets
of {1, . . . , N}, clearly |Pm| =

(N
m

)
. For any m−set A, let I(A) denote the

collection of “inadmissible” m−sets A′ for which |A ∩A′| ≥ k. Clearly

|I(A)| ≤
(

m

k

)(
N − k

m− k

)
.

If Ak is maximal, then Pm = ∪A∈Ak
I(A), and so (A.38) follows from the

inequality
|Pm| ≤ |Ak| max

A
|I(A)|,

and rearrangement of factorials.
Turning to the second part, we recall that Stirling’s formula shows that

if k and N →∞,
(

N

k

)
= θ

(
N

2πk(N − k)

)1/2

exp
{
NE

( k

N

)}
,

where θ ∈ (1−(6k)−1, 1+(12N)−1). The coefficient multiplying the exponent
in

(N
k

)/(m
k

)2 is

√
2πk(1− k/N)−1/2(1− k/m) ∼

√
πβm(1− β/2) →∞

under our assumptions, and this yields (A.39).
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