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VARIABLE SELECTION IN LINEAR MIXED EFFECTS

MODELS

By Yingying Fan∗ and Runze Li†

University of Southern California and The Pennsylvania State University

This paper is concerned with the selection and estimation of fixed

and random effects in linear mixed effects models. We propose a class

of nonconcave penalized profile likelihood methods for selecting and

estimating important fixed effects. To overcome the difficulty of un-

known covariance matrix of random effects, we propose to use a proxy

matrix in the penalized profile likelihood. We establish conditions on

the choice of the proxy matrix and show that the proposed procedure

enjoys the model selection consistency where the number of fixed ef-

fects is allowed to grow exponentially with the sample size. We further

propose a group variable selection strategy to simultaneously select

and estimate important random effects, where the unknown covari-

ance matrix of random effects is replaced with a proxy matrix. We

prove that, with the proxy matrix appropriately chosen, the proposed

procedure can identify all true random effects with asymptotic prob-

ability one, where the dimension of random effects vector is allowed

to increase exponentially with the sample size. Monte Carlo simula-

tion studies are conducted to examine the finite-sample performance

of the proposed procedures. We further illustrate the proposed pro-

cedures via a real data example.

1. Introduction. During the last two decades, linear mixed effects

models (Laird and Ware, 1982; Longford, 1993) have been widely used

to model longitudinal and repeated measurements data, and have received
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much attention in the fields of agriculture, biology, economics, medicine, and

sociology. See Verbeke and Molenberghs (2000) and references therein. With

the advent of modern technology, many variables can be easily collected in

a scientific study, and it is typical to include many of them in the full model

at the initial stage of modeling to reduce model approximation error. Due to

the complexity of the mixed effects models, the inferences and interpretation

of estimated models become challenging as the dimension of fixed or ran-

dom components increases. Thus, the selection of important fixed or random

components becomes a fundamental problem in the analysis of longitudinal

or repeated measurements data using mixed effects models.

Variable selection for mixed effects models has become an active research

topic in the literature. Lin (1997) considers testing a hypothesis on the

variance component. The testing procedures can be used to detect whether

an individual random component is significant or not. Based on these testing

procedures, a stepwise procedure can be constructed for selecting important

random effects. Vaida and Blanchard (2005) propose the conditional AIC, an

extension of the AIC (Akaike, 1973), for mixed effects models with detailed

discussion on how to define degrees of freedom in the presence of random

effects. The conditional AIC has further been discussed in Liang et al. (2008).

Chen and Dunson (2003) develop a Bayesian variable selection procedure for

selecting important random effects in the linear mixed effects model using

the Cholesky decomposition of the covariance matrix of random effects, and

specify a prior distribution on the standard deviation of random effects with

a positive mass at zero to achieve the sparsity of random components. Pu and

Niu (2006) extend the generalized information criterion to select linear mixed

effects models and study the asymptotic behavior of the proposed method for

selecting fixed effects. Bondell et al. (2010) propose a joint variable selection

method for fixed and random effects in the linear mixed effects model using

a modified Cholesky decomposition in the setting of fixed dimensionality

for both fixed effects and random effects. Ibrahim et al. (2011) propose to

select fixed and random effects in a general class of mixed effects models with

fixed dimensions of both fixed and random effects using maximum penalized

likelihood method with the SCAD penalty and the adaptive least absolute

shrinkage and selection operator penalty.
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VARIABLE SELECTION IN LINEAR MIXED EFFECTS MODELS 3

In this paper, we develop a class of variable selection procedures for both

fixed effects and random effects in linear mixed effects models by incor-

porating the recent advances in variable selection. We propose to use the

regularization methods to select and estimate fixed and random effects.

As advocated by Fan and Li (2001), regularization methods can avoid the

stochastic error of variable selection in stepwise procedures, and can signif-

icantly reduce computational cost compared with the best subset selection

and Bayesian procedures. Our proposal differs from the existing ones in the

literature mainly in two aspects. First, we consider the high-dimensional

setting and allow dimension of fixed or random effect to grow exponentially

with the sample size. Second, our proposed procedures can estimate the fixed

effects vector without estimating the random effects vector and vice versa.

We first propose a class of variable selection methods for the fixed effects

using penalized profile likelihood method. To overcome the difficulty of un-

known covariance matrix of random effects, we propose to replace it with a

suitably chosen proxy matrix. The penalized profile likelihood is equivalent

to a penalized quadratic loss function of the fixed effects. Thus, the proposed

approach can take advantage of the recent developments in the computa-

tion of the penalized least-squares methods (Efron et al., 2004; Zou and Li,

2008). The optimization of the penalized likelihood can be solved by the

LARS algorithm without extra effort. We further systematically study the

sampling properties of the resulting estimate of fixed effects. We establish

conditions on the proxy matrix and show that the resulting estimate enjoys

model selection oracle property under such conditions. In our theoretical in-

vestigation, the number of fixed effects is allowed to grow exponentially with

the total sample size, provided that the covariance matrix of random effects

is nonsingular. In the case of singular covariance matrix for random effects,

one can use our proposed method in Section 3 to first select important ran-

dom effects and then conduct variable selection for fixed effects. In this case,

the number of fixed effects needs to be smaller than the total sample size.

Since the random effects vector is random, our main interest is in the

selection of true random effects. Observe that if a random effect covariate

is a noise variable, then the corresponding realizations of this random ef-

fect should all be zero and thus the random effects vector is sparse. So we
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propose to first estimate the realization of random effects vector using a

group regularization method and then identify the important ones based on

the estimated random effects vector. More specifically, under the Bayesian

framework, we show that the restricted posterior distribution of the random

effects vector is independent of the fixed effects coefficient vector. Thus, we

propose a random effect selection procedure via penalizing the restricted

posterior mode. The proposed procedure reduces the impact of error caused

by the fixed effects selection and estimation. The unknown covariance matrix

is replaced with a suitably chosen proxy matrix. In the proposed procedure,

random effects selection is carried out with group variable selection tech-

niques (Yuan and Lin, 2006). The optimization of the penalized restricted

posterior mode is equivalent to the minimization of the penalized quadratic

function of random effects. In particular, the form of the penalized quadratic

function is similar to that in the adaptive elastic net (Zou and Hastie, 2005;

Zou and Zhang, 2009), which allows us to minimize the penalized quadratic

function using existing algorithms. We further study the theoretical proper-

ties of the proposed procedure and establish conditions on the proxy matrix

for ensuring the model selection consistency of the resulting estimate. We

show that, with probability tending to one, the proposed procedure can se-

lect all true random effects. In our theoretical study, the dimensionality of

random effects vector is allowed to grow exponentially with the sample size

as long as the number of fixed effects is less than the total sample size.

The rest of this paper is organized as follows. Section 2 introduces the

penalized profile likelihood method for the estimation of fixed effects and

establishes its oracle property. We consider the estimation of random effects

and prove the model selection consistency of the resulting estimator in Sec-

tion 3. Section 4 provides two simulation studies and a real data example.

Some discussion is given in Section 5. All proofs are presented in Section 6.

2. Penalized profile likelihood for fixed effects. Suppose that we

have a sample of N subjects. For the i-th subject, we collect the response

variable yij , the d×1 covariate vector xij , and q×1 covariate vector zij , for

j = 1, · · · , ni, where ni is the number of observations on the i-th subject.

Let n =
∑N

i=1 ni, mn = max1≤i≤N ni, and m̃n = min1≤i≤N ni. We consider

the case where lim supn
mn

m̃n
< ∞, i.e., the sample sizes for N subjects are
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VARIABLE SELECTION IN LINEAR MIXED EFFECTS MODELS 5

balanced. For succinct presentation, we use matrix notation and write yi =

(yi1, yi2, · · · , yini
)T ,Xi = (xi1,xi2, · · · ,xini

)T , and Zi = (zi1, zi2, · · · , zini
)T .

In linear mixed effects models, the vector of repeated measurements yi on

the i-th subject is assumed to follow the linear regression model

yi = Xiβ + Ziγi + εi,(1)

where β is the d × 1 population-specific fixed effects coefficient vector, γi

represents the q × 1 subject-specific random effects with γi ∼ N(0, G), εi

is the random error vector with components independent and identically

distributed as N(0, σ2), and γ1, · · · ,γN , ε1, · · · , εN are independent. Here,

G is the covariance matrix of random effects and may be different from the

identity matrix. So the random effects can be correlated with each other.

Let vectors y, γ, and ε, and matrix X be obtained by stacking vectors

yi, γi, and εi, and matrices Xi, respectively, underneath each other, and let

Z = diag{Z1, · · · ,ZN} and G = diag{G, · · · , G} be block diagonal matrices.

We further standardize the design matrixX such that each column has norm√
n. The linear mixed effects model (1) can be rewritten as

(2) y = Xβ + Zγ + ε.

2.1. Selection of important fixed effects. In this subsection, we assume

that there are no noise random effects and G is positive definite. In the case

where noise random effects exist, one can use the method in Section 3 to

select the true ones. The joint density of y and γ is

f(y,γ) = f(y|γ)f(γ) = (2πσ)−(n+qN)/2|G|−1/2(3)

× exp

{
− 1

2σ2
(y−Xβ − Zγ)T (y−Xβ − Zγ)− 1

2
γTG−1γ

}
.

Given β, the maximum likelihood estimate (MLE) for γ is γ̂(β) = Bz(y −
Xβ), where Bz =

(
ZTZ + σ2G−1

)−1
ZT . Plugging γ̂(β) into f(y,γ) and

dropping the constant term yield the following profile likelihood function

Ln(β, γ̂(β)) = exp
{
− 1

2σ2
(y−Xβ)TPz(y−Xβ)

}
,(4)

where Pz = (I − ZBz)
T (I − ZBz) + σ2BT

z G−1Bz with I being the iden-

tity matrix. By Lemma 3 in Section 6, Pz can be rewritten as Pz =
(
I +
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σ−2ZGZT
)−1

. To select the important x-variables, we propose to maximize

the following penalized profile log-likelihood function

log
(
Ln(β, γ̂(β))

)
− n

∑dn

j=1
pλn

(|βj |),(5)

where pλn
(x) is a penalty function with regularization parameter λn ≥ 0.

Here, the number of fixed effects dn may increase with sample size n.

Maximizing (5) is equivalent to minimizing

Qn(β) =
1

2
(y−Xβ)TPz(y−Xβ) + n

∑dn

j=1
pλn

(|βj |).(6)

Since Pz depends on the unknown covariance matrix G and σ2, we propose

to use a proxy P̃z = (I+ZMZT )−1 to replace Pz, whereM is a pre-specified

matrix. Denote by Q̃n(β) the corresponding objective function when P̃z is

used. We will discuss in the next section on how to choose M.

We note that (6) does not depend on the inverse of G. So although we

started this section with the non-singularity assumption of G, in practice

our method can be directly applied even when noise random effects exist, as

will be illustrated in simulation studies of Section 4.

Many authors have studied the selection of the penalty function to achieve

the purpose of variable selection for the linear regression model. Tibshirani

(1996) proposes the Lasso method by the use of L1 penalty. Fan and Li

(2001) advocate the use of nonconvex penalties. In particular, they suggest

the use of the SCAD penalty. Zou (2006) proposes the adaptive Lasso by

using adaptive L1 penalty, Zhang (2010) proposes the minimax concave

penalty (MCP), Liu and Wu (2007) propose to linearly combine L0 and L1

penalties, and Lv and Fan (2009) introduce a unified approach to sparse

recovery and model selection using general concave penalties. In this paper,

we use concave penalty function for variable selection.

Condition 1. For each λ > 0, the penalty function pλ(t) with t ∈
[0,∞) is increasing and concave with pλ(0) = 0, its second order deriva-

tive exists and is continuous, and p′λ(0+) ∈ (0,∞). Further, assume that

supt>0 p
′′
λ(t)→ 0 as λ→ 0.

Condition 1 is commonly assumed in studying regularization methods

with concave penalties. Similar conditions can be found in Fan and Li (2001)
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VARIABLE SELECTION IN LINEAR MIXED EFFECTS MODELS 7

and Lv and Fan (2009). Although it is assumed that p′′λ(t) exists and is con-

tinuous, it can be relaxed to the case where only p′λ(t) exists and is continu-

ous. All theoretical results presented in later sections can be generalized by

imposing conditions on the local concavity of pλ(t), as in Lv and Fan (2009).

2.2. Model selection consistency. Although the proxy matrix P̃z may be

different from the true one Pz, solving the regularization problem (6) may

still yield correct model selection results at the cost of some additional bias.

We next establish conditions on P̃z to ensure the model selection oracle

property of the proposed method.

Let β0 be the true coefficient vector. Suppose that β0 is sparse and denote

s1n = ‖β0‖0 i.e., the number of nonzero elements in β0. Write

β0 = (β1,0, · · · , βdn,0)T = (βT
1,0,β

T
2,0)

T ,

where β1,0 is an s1n-vector and β2,0 is a (dn − s1n)-vector. Without loss

of generality, we assume that β2,0 = 0, that is, the nonzero elements of

β0 locate at the first s1n coordinates. With a slight abuse of notation, we

write X = (X1,X2) with X1 being a submatrix formed by the first s1n

columns of X and X2 being formed by the remaining columns. For a matrix

B, let Λmin(B) and Λmax(B) be its minimum and maximum eigenvalues,

respectively. We will need the following assumptions.

Condition 2.

(A) Let an = min1≤j≤s1n |β0,j |. It holds that ann
τ (log n)−3/2 → ∞ with τ ∈

(0, 12) being some positive constant, and supt≥an/2 p
′′
λn
(t) = o

(
n−1+2τ

)
.

(B) There exists a constant c1 > 0 such that Λmin(c1M− σ−2G) ≥ 0 and

Λmin(c1σ
−2(log n)G −M) ≥ 0.

(C) The minimum and maximum eigenvalues of matrices n−1(XT
1 X1) and

nθ(XT
1 PzX1)

−1 are both bounded from below and above by c0 and c−10 re-

spectively, where θ ∈ (2τ, 1] and c0 > 0 is a constant. Further, it holds that

(7)
∥∥∥
( 1

n
XT

1 P̃zX1

)−1∥∥∥
∞
≤ n−τ (log n)3/4/p′λn

(an/2)

(8) ‖XT
2 P̃zX1(X

T
1 P̃zX1)

−1‖∞ < p′λn
(0+)/p′λn

(an/2),

where ‖ · ‖∞ denotes the matrix infinity norm.
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Condition 2(A) is on the minimum signal strength an. We allow the min-

imum signal strength to decay with sample size n. When concave penalties

such as SCAD (Fan and Li, 2001) or SICA (Lv and Fan, 2009) are used, this

condition can be easily satisfied with λn appropriately chosen. Conditions

2(B) and (C) put constraints on the proxy M. Condition 2(C) is about the

design matrices X and Z. Inequality (8) requires noise variables and sig-

nal variables not highly correlated. The upper bound of (8) depends on the

ratio p′λn
(0+)/p′λn

(an/2). Thus, concave penalty functions relax this condi-

tion when compared to convex penalty functions. We will further discuss

constraints (7) and (8) in Lemma 1.

If the above conditions on the proxy matrix are satisfied, then the bias

caused by using P̃z is small enough and the resulting estimate still enjoys

the model selection oracle property described in the following theorem.

Theorem 1. Assume that
√
nλn →∞ as n→∞ and log dn = o(nλ2

n).

Then under Conditions 1 and 2, with probability tending to 1 as n → ∞,

there exists a strict local minimizer β̂ = (β̂
T

1 , β̂
T

2 )
T of Q̃n(β) which satisfies

‖β̂1 − β0,1‖∞ < n−τ (log n), and β̂2 = 0.(9)

Theorem 1 presents the weak oracle property in the sense of Lv and Fan

(2009) on the local minimizer of Q̃(β). Due to the high dimensionality and

the concavity of pλ(·), the characterization of the global minimizer of Q̃(β)

is a challenging open question. As will be shown in the simulation and real

data analysis, the concave function Q̃(β) will be iteratively minimized by the

local linear approximation method (Zou and Li, 2008). Following the same

idea as in Zou and Li (2008), it can be shown that the resulting estimate

poesses the properties in Theorem 1 under some conditions.

2.3. Choice of proxy matrix M. It is difficult to see from (7) and (8) on

how restrictive the conditions on the proxy matrix M are. So we further

discuss these conditions in the lemma below. We introduce the notation

T = σ2G−1+ZTPxZ and E = σ2G−1+ZTZ with Px = I−X1(X
T
1 X1)

−1X1.

Correspondingly, when the proxy matrix M is used, define T̃ = M−1 +

ZTPxZ and Ẽ = M−1 + ZTZ. We use ‖ · ‖2 to denote the matrix 2-norm,

that is, ‖B‖2 = {Λmax(BBT )}1/2 for a matrix B.
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VARIABLE SELECTION IN LINEAR MIXED EFFECTS MODELS 9

Lemma 1. Assume that ‖( 1nXT
1 PzX1)

−1‖∞ < n−τ
√
logn/p′λn

(an/2) and

‖T−1/2T̃T−1/2 − I‖2 <
(
1 + nτs

1/2
1n p′λn

(an/2)‖ZT−1ZT ‖2
)−1

.(10)

Then (7) holds.

Similarly, assume that ‖XT
2 PzX1(X

T
1 PzX1)

−1‖∞ < p′λn
(0+)/p′λn

(an/2),

and there exists a constant c2 > 0 such that

‖T−1/2T̃T−1/2 − I‖2 <
[
1 + n−1‖ZT−1ZT ‖2 ×(11)

max{c2nθ, c−10 (log n)s
1/2
1n λ−1n p′λn

(an/2)‖XT
2 PzX1‖2}

]−1
,

∥∥E−1/2ẼE−1/2 − I
∥∥
2
<

[
1 + λ−1n (log n)s

1/2
1n (log n)p′λn

(an/2)×(12)

‖ZGZT ‖2
{
‖(XT

1 PzX1)
−1‖2‖XT

2 PzX2

∥∥
2

}1/2]−1
,

then (8) holds.

Equations (10), (11) and (12) show conditions on the proxy matrix M.

Note that if penalty function used is flat outside of a neighborhood of zero,

then p′λn
(an/2) ≈ 0 with appropriately chosen regularization parameter λn,

and conditions (10) and (12) respectively reduce to

‖T−1/2T̃T−1/2 − I‖2 < 1, ‖E−1/2ẼE−1/2 − I‖2 < 1.(13)

Furthermore, since Z is a block diagonal matrix, if the maximum eigenvalue

of ZT−1ZT is of the order o(n1−θ), then condition (11) reduces to

‖T−1/2T̃T−1/2 − I‖2 < 1.(14)

Conditions (13) and (14) are equivalent to assuming that T−1/2T̃T−1/2 and

E−1/2ẼE−1/2 have eigenvalues bounded between 0 and 2. By linear algebra,

they can further be reduced to ‖T−1T̃‖2 < 2 and ‖E−1Ẽ‖2 < 2. It is seen

from the definitions of T, T̃, E and Ẽ that if eigenvalues of ZPxZ
T and

ZZT dominate those of σ2G−1 by a larger order of magnitude, then these

conditions are not difficult to be satisfied. In fact, note that both ZPxZ
T

and ZZT have components with magnitudes increasing with n, while the

components of σ2G−1 are independent of n. Thus as long as both matrices

ZPxZ
T and ZZT are non-singular, these conditions will easily be satisfied

with the choice M = (log n)I when n is large enough.
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3. Identifying important random effects. In this section, we allow

the number of random effects q to increase with sample size n and write it

as qn to emphasize its dependency on n. We focus on the case where the

number of fixed effects dn is smaller than the total sample size n =
∑N

i=1 ni.

We discuss the dn ≥ n case in the discussion Section 5. The major goal of

this section is to select important random effects.

3.1. Regularized posterior mode estimate. The estimation of random ef-

fects is different from the estimation of fixed effects, as the vector γ is ran-

dom. The empirical Bayes method has been used to estimate the random

effects vector γ in the literature. See, for example, Box and Tiao (1973),

Gelman et al. (1995), and Verbeke and Molenberghs (2000). Although the

empirical Bayes method is useful in estimating random effects in many situ-

ations, it cannot be used to select important random effects. Moreover, the

performance of empirical Bayes estimate largely depends on the accuracy of

estimated fixed effects. These difficulties call for a new proposal for random

effects selection.

Patterson and Thompson (1971) propose the error contrast method to

obtain the restricted maximum likelihood of a linear model. Following their

notation, define the n× (n− d) matrix A by the conditions AAT = Px and

ATA = I, where Px = I−X(XTX)−1XT . Then the vector ATε provides a

particular set of n− d linearly independent error contrasts. Let w1 = ATy.

The following proposition characterizes the conditional distribution of w1:

Proposition 1. Given γ, the density function of w1 takes the form

fw1

(
ATy|γ

)
= (2πσ2)−(n−d)/2 exp

{
− 1

2σ2
(y− Zγ)TPx(y− Zγ)

}
.(15)

The above conditional probability is independent of the fixed effects vector

β and the error contrast matrix A, which allows us to obtain a posterior

mode estimate of γ without estimating β and calculating A.

LetM0 ⊂ {1, 2, · · · , qn} be the index set of the true random effects. Define

M0 = {j : j = iqn + k, for i = 0, 1, 2, · · · , N − 1 and k ∈M0}

and denote by M
c
0 = {1, 2, · · · , Nqn} \M0. Then M0 is the index set of

nonzero random effects coefficients in the vector γ, and M
c
0 is the index set
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of the zero ones. Let s2n = ‖M0‖0 be the number of true random effects.

Then ‖M0‖0 = Ns2n. We allow Ns2n to diverge with sample size n, which

covers both the case where the number of subjects N diverges with n alone

and the case where N and s2n diverge with n simultaneously.

For any S ⊂ {1, · · · , qnN}, we use ZS to denote the (qnN)×|S| submatrix

of Z formed by columns with indices in S, and γS to denote the subvector

of γ formed by components with indices in S. Then γ
M0
∼ N(0,G

M0
) with

G
M0

a submatrix formed by entries of G with row and column indices in M0.

In view of (15), the restricted posterior density of γ
M0

can be derived as

fw1
(γ

M0
|ATy) ∝ fw1

(ATy|γ
M0

)f(γ
M0

)

∝ exp

{
− 1

2σ2
(y− Z

M0
γ
M0

)TPx(y− Z
M0

γ
M0

)− 1

2
γT
M0

G−1
M0

γ
M0

}
.

Therefore, the restricted posterior mode estimate of γ
M0

is the solution to

the following minimization problem:

minγ

{
(y− Z

M0
γ
M0

)TPx(y− Z
M0

γ
M0

) + σ2γT
M0

G−1
M0

γ
M0

}
.(16)

In practice, since the true random effects M0 are unknown, the formula-

tion (16) does not help us estimate γ. To overcome this difficulty, note that

Z
M0

γ
M0

= Zγ and γT
M0

G−1
M0

γ
M0

= γTG+γ with G+ the Moore-Penrose

generalized inverse of G. Thus, the objective function in (16) is rewritten as

(y− Zγ)TPx(y− Zγ) + σ2γTG+γ,

which no longer depends on the unknown M0. Observe that if the k-th

random effect is a noise one, then the corresponding standard deviation is

0 and the coefficients γik for all subjects i = 1, · · · , N should equal to 0.

This leads us to consider group variable selection strategy to identify true

random effects. Define γ·k = (
∑N

i=1 γ
2
ik)

1/2, k = 1, · · · , qn, and consider the

following regularization problem

1

2
(y− Zγ)TPx(y− Zγ) +

1

2
σ2γTG+γ + n

∑qn

k=1
pλn

(γ·k),(17)

where pλn
(·) is the penalty function with regularization parameter λn ≥

0. The penalty function here may be different from the one in Section 2.

However, to ease the presentation, we use the same notation.
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There are several advantages to estimating the random effects vector γ

using the above proposed method (17). First, this method does not require

knowing or estimating the fixed effects vector β, so it is easy to implement,

and the estimation error of β has no impact on the estimation of γ. In

addition, by using the group variable selection technique, the true random

effects can be simultaneously selected and estimated.

In practice, the covariance matrix G and the variance σ2 are both un-

known. Thus, we replace σ−2G with M, where M = diag{M, · · · ,M} with

M a proxy of G, yielding the following regularization problem

(18) Q̃∗n(γ) =
1

2
(y− Zγ)TPx(y− Zγ) +

1

2
γTM−1γ + n

qn∑

k=1

pλn
(γ·k).

It is interesting to observe that the form of regularization in (18) includes

the elastic net (Zou and Hastie, 2005) and the adaptive elastic net (Zou and

Zhang, 2009) as special cases. Furthermore, the optimization algorithm for

adaptive elastic net can be modified for minimizing (18).

3.2. Asymptotic properties. Minimizing (18) yields an estimate of γ, de-

noted by γ̂. In this subsection, we study the asymptotic property of γ̂.

Because γ is random rather than a deterministic parameter vector, the ex-

isting formulation for the asymptotic analysis of a regularization problem is

inapplicable to our setting. Thus, asymptotic analysis of γ̂ is challenging.

Let T = ZTPxZ + σ2G+ and T̃ = ZTPxZ +M−1. Denote by T11 =

ZT
M0

PxZM0
+ σ2(G

M0
)−1, T22 = ZT

M
c

0

PxZM
c

0

, and T12 = ZT
M0

PxZM
c

0

. Sim-

ilarly, we can define submatrices T̃11, T̃22, and T̃12 by replacing σ−2G with

M. Then it is easy to see that T̃12 = T12. Notice that if the oracle in-

formation of set M0 is available and G and σ2 are known, then the Bayes

estimate of the true random effects coefficient vector γ
M0

has the form

T−111 Z
T
M0

Pxy. Define γ∗ = ((γ∗1)
T , · · · , (γ∗N )T )T with γ∗j = (γ∗j1, · · · , γ∗jqn)T

for j = 1, · · · , N as the oracle-assisted Bayes estimate of the random effects

vector. Then γ∗
M

c

0

= 0 and γ∗
M0

= T−111 Z
T
M0

Pxy. Correspondingly, define

γ̃∗ as the oracle Bayses estimate with proxy matrix, i.e., γ̃∗
M

c

0

= 0 and

(19) γ̃∗
M0

= T̃
−1
11 Z

T
M0

Pxy.
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VARIABLE SELECTION IN LINEAR MIXED EFFECTS MODELS 13

For k = 1, · · · , qn, let γ∗·k = {∑N
j=1(γ

∗
jk)

2}1/2. Throughout we condition on

the event

Ω∗ = {mink∈M0
γ∗·k ≥

√
Nb∗0}(20)

with b∗0 ∈ (0,min∈M0
σk) and σ2

k = var(γjk). The above event Ω
∗ is to ensure

that the oracle-assisted estimator γ∗·k/
√
N of σk is not too negatively biased.

Condition 3. (A) The maximum eigenvalues satisfy Λmax(ZiGZT
i ) ≤

c3s2n for all i = 1, · · · , N , and the minimum and maximum eigenval-

ues of m−1n ZT
M0

PxZM0
and GM0

are bounded from below and above by

c3 and c−13 respectively with mn = max1≤i≤N ni, where c3 is a positive

constant. Further, assume that for some δ ∈ (0, 12),

‖T̃−111 ‖∞ ≤
√
Nn−1−δ

p′λn

(√
Nb∗0/2

) ,(21)

max
j∈Mc

0

‖Z̃T
j PxZM0

T̃
−1
11 ‖2 <

p′λn
(0+)

p′λn
(
√
Nb∗0/2)

,(22)

where Z̃j is the submatrix formed by the N columns of Z corresponding

to the j-th random effect.

(B) It holds that sup{t≥
√
Nb∗

0
/2} p

′′
λn
(t) = o(N−1).

(C) The proxy matrix satisfies Λmin(M− σ−2G) ≥ 0.

Condition 3(A) is about the design matrices X, Z, and covariance matrix

G. Since Z
M0

is a block diagonal matrix and lim sup maxi ni

mini ni
< ∞, the com-

ponents of ZT
M0

PxZM0
have magnitude of the order mn = O(n/N). Thus, it

is not very restrictive to assume that the minimum and maximum eigenval-

ues of ZT
M0

PxZM0
are both of the order mn. Condition (22) puts an upper

bound on the correlation between noise covariates and true covariates. The

upper bound of (22) depends on the penalty function. Note that for con-

cave penalty we have p′λn
(0+)/p′λn

(
√
Nb∗0/2) > 1, whereas for L1 penalty

p′λn
(0+)/p′λn

(
√
Nb∗0/2) = 1. Thus, concave penalty relaxes (22) when com-

pared with the L1 penalty. Condition 3(B) is satisfied by many commonly

used penalties with appropriately chosen λn, for example, L1 penalty, SCAD

penaty, and SICA penalty with small a. Condition 3(C) is a restriction on

the proxy matrixM, which will be further discussed in the next subsection.
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Let γ = (γT
1 , · · · ,γT

N )T with γj = (γj1, · · · , γjqn)T being an arbitrary

(Nqn)-vector. Define γ·k =
(∑N

j=1 γ
2
jk

)1/2
for each k = 1, · · · , qn. Let

M(γ) = {k ∈ {1, · · · , qn} : γ·k 6= 0} .(23)

Theorem 2 below shows that there exists a local minimizer of Q̃∗n(γ) defined

in (18) whose support is the same as the true one M0, and that this local

minimizer is close to the oracle estimator γ̃∗.

Theorem 2. Assume that Conditions 1 and 3 hold, b∗0n
δ/
√
N → ∞,

log
(
Nqn

)
= o

(
n2λ2

n/(Ns2nmn)
)
, and n2λ2

n/(Nmns2n) → ∞ as n → ∞.

Then, with probability tending to 1, there exists a strict local minimizer

γ̂ ∈ RNqn of Q̃∗n(γ) such that

M(γ̂) = M0 and max
k∈M0

{ 1

N

N∑

j=1

(γ̂jk − γ̃∗jk)
2
}1/2

≤ n−δ,

where δ is defined in (21).

Using similar argument to that for Theorem 1, we can obtain that the

dimensionality Nqn is also allowed to grow exponentially with sample size

n under some growth conditions and with appropriately chosen λn. In fact,

note that if the sample sizes n1 = · · · = nN ≡ mn/N , then the growth

condition in Theorem 2 becomes log(Nqn) = o(ns−12n λ
2
n). Since the lowest

signal level in this case is
√
Nb∗0, if b

∗
0 is a constant, a reasonable choice of

tuning parameter would be of the order
√
Nn−κ with some κ ∈ (0, 12). For

s2n = O(nν) with ν ∈ [0, 12) and Nn1−2κ−ν → ∞, we obtain that Nqn can

grow with rate exp(Nn1−2κ−ν).

3.3. Choice of proxy matrixM. Similarly as for the fixed effects selection

and estimation, we discuss (21) and (22) in the following lemma.

Lemma 2. Assume that ‖T−111 ‖∞ <
√
Nn−1−δ

p′
λn

(
√
Nb∗

0
/2)

[1− 1√
logn

] and

‖T−111 T̃11 − I‖2 ≤
[
1 +

√
s2n log nn

1+δp′λn
(
√
Nb∗0/2)‖T−111 ‖2

]−1
.(24)

Then (21) holds.
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VARIABLE SELECTION IN LINEAR MIXED EFFECTS MODELS 15

Assume that maxj∈Mc
0
‖Z̃T

j PxZM0
T−111 ‖2 <

p′
λn

(0+)

2p′
λn

(
√
Nb∗

0
/2)

with Z̃j defined

in (22 ) and

‖T11T̃
−1
11 − I‖2 ≤ 1.(25)

Then (22) holds.

Conditions (24) and (25) put restrictions on the proxy matrix M. Sim-

ilarly to the discussions after Lemma 1, if p′λn
(
√
Nb∗0/2) ≈ 0, then these

conditions become ‖T11T̃
−1
11 − I‖2 < 1. If ZT

M0

PxZM0
dominates σ2G−1

M0

by

a larger magnitude, then conditions (24) and (25) are not restrictive, and

choosing M = (log n)I should make these conditions as well as Condition

3(C) satisfied for large enough n.

We remark that using the proxy matrix M = (log n)I is equivalent to

ignoring correlations among random effects. The idea of using diagonal ma-

trix as a proxy of covariance matrix has been proposed in other settings

of high dimensional statistical inference. For instance, the naive Bayes rule

(or independence rule), which replaces the full covariance matrix in Fisher’s

discriminant analysis with a diagonal matrix, has been demonstrated to be

advantageous for high dimensional classifications both theoretically (Bickel

and Levina, 2004; Fan and Fan, 2008) and empirically (Dudoit et al., 2002).

The intuition is that although ignoring correlations gives only a biased esti-

mate of covariance matrix, it avoids the errors caused by estimating a large

amount of parameters in covariance matrix in high dimensions. Since the ac-

cumulated estimation error can be much larger than the bias, using diagonal

proxy matrix indeed produces better results.

4. Simulation and application. In this section, we investigate the

finite-sample performance of the proposed procedures by simulation stud-

ies and a real data analysis. Throughout, the SCAD penalty with a = 3.7

(Fan and Li, 2001) is used. For each simulation study, we randomly simulate

200 data sets. Tuning parameter selection plays an important role in regu-

larization methods. For fixed effect selection, both AIC- and BIC-selectors

(Zhang, Li and Tsai, 2010) are used to select the regularization parameter λn

in (6). Our simulation results clearly indicate that the BIC-selector performs
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better than the AIC-selector for both the SCAD and the LASSO penalties.

This is consistent with the theoretical analysis in Wang, Li and Tsai (2007).

To save space, we report the results with the BIC-selector. Furthermore the

BIC-selector is used for fixed effect selection throughout this section. For

random effect selection, both AIC- and BIC-selectors are also used to select

the regularization parameter λn in (18). Our simulation results imply that

the BIC-selector outperforms the AIC-selector for the LASSO penalty, while

the SCAD with AIC-selector performs better than the SCAD with BIC-

selector. As a result, we use AIC-selector for the SCAD and BIC-selector for

the LASSO for random effect selection throughout this section.

Example 1. We compare our method with some existing ones in the litera-

ture under the same model setting as that in Bondell et al. (2010), where a

joint variable selection method for fixed and random effects in linear mixed

effects models is proposed. The underlying true model takes the following

form with q = 4 random effects and d = 9 fixed effects

yij = bi1 + β1xij1 + β2xij2 + bi2zij1 + bi3zij2 + εij , εij ∼i.i.d. N(0, 1),(26)

where the true parameter vector β0 = (1, 1, 0, · · · , 0)T , the true covariance

matrix for random effects

G =




9 4.8 0.6

4.8 4 1

0.6 1 1


 ,

and the covariates xijk for k = 1, · · · , 9 and zijl for l = 1, 2, 3 are generated

independently from a uniform distribution over the interval [−2, 2]. So there

are three true random effects and two true fixed effects. Following Bondell

et al. (2010), we consider two different sample sizes N = 30 subjects and

ni = 5 observations per subject, and N = 60 and ni = 10. Under this model

setting, Bondell et al. (2010) compared their method with various methods

in the literature, and simulations therein demonstrate that their method

outperforms the competing ones. So we will only compare our methods with

the one in Bondell et al. (2010).

In implementation, the proxy matrix is chosen asM = (log n)I. We then

estimate the fixed effects vector β by minimizing Q̃n(β), and the random
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Table 1

Fixed and random effects selection in Example 1 when d = 9 and q = 4

Setting Method %CF %CR
N = 30 Lasso-P 51 19.5
ni = 5 SCAD-P 90 86

SCAD-T 93.5 99
M-ALASSO 73 79

N = 60 Lasso-P 52 50.5
ni = 10 SCAD-P 100 100

SCAD-T 100 100
M-ALASSO 83 89

effects vector γ by minimizing (18). To understand the effects of using proxy

matrix M on the estimated random effects and fixed effects, we compare

our estimates with the ones obtained by solving regularization problems (6)

and (17) with the true value σ−2G.
Table 1 summarizes the results by using our method with the proxy matrix

M and SCAD penalty (SCAD-P), our method with proxy matrix M and

Lasso penalty (Lasso-P), our method with true σ−2G and SCAD penalty

(SCAD-T). When SCAD penalty is used, the local linear approximation

(LLA) method proposed by Zou and Li (2008) is employed to solve these

regularization problems. The rows “M-ALASSO” in Table 1 correspond to

the joint estimation method by Bondell et al. (2010) using BIC to select

the tuning parameter. As demonstrated in Bondell et al. (2010), the BIC-

selector outperforms the AIC-selector for M-ALASSO. We compare these

methods by calculating the percentage of times the correct fixed effects are

selected (%CF), and the percentage of times the correct random effects are

selected (%CR). Since these two measures were also used in Bondell et al.

(2010), for simplicity and fairness of comparison, the results for M-ALASSO

in Table 1 are copied from Bondell et al. (2010).

It is seen from Table 1 that SCAD-P greatly outperforms Lasso-P and

M-ALASSO. We also see that when the true covariance matrix σ−2G is

used, SCAD-T has almost perfect variable selection results. Using the proxy

matrix makes the results slightly inferior, but the difference vanishes for

larger sample size N = 60, ni = 10.
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Example 2. In this example, we consider the case where the design matrices

for fixed and random effects overlap. The sample size is fixed at ni = 8

and N = 30, and the numbers for fixed and random effects are chosen to

be d = 100 and q = 10, respectively. To generate the fixed effects design

matrix, we first independently generate x̃ij from Nd(0,Σ), where Σ = (σst)

with σst = ρ|s−t| and ρ ∈ (−1, 1). Then for the j-th observation of the

i-th subject, we set xijk = I(x̃ijk > 0) for covariates k = 1 and d, and

set xijk = x̃ijk for all other values of k. Thus, 2 out of d covriates are

discrete ones and the rest are continuous ones. Moreover, all covariates are

correlated with each other. The covariates for random effects are the same

as the corresponding ones for fixed effects, i.e., for the j-th observation of

the i-th subject, we set zijk = xijk for k = 1, · · · , q = 10. Then the random

effect covariates form a subset of fixed effect covariates.

The first six elements of fixed effects vector β0 are (2, 0, 1.5, 0, 0, 1)T and

the remaining elements are all zero. The random effects vector γ is generated

in the same way as in Example 1. So the first covariate is discrete and

has both nonzero fixed and random effect. We consider different values of

correlation level ρ, as shown in Table 2. We choose M = (log n)I.

Since the dimension of random effects vector γ is much larger than the

total sample size, as suggested at the beginning of Subsection 2.1, we start

with the random effects selection by first choosing a relatively small tuning

parameter λ and use our method in Section 3 to select important random

effects. Then with the selected random effects, we apply our method in

Section 2 to select fixed effects. To improve the selection results for random

effects, we further use our method in Section 3 with the newly selected fixed

effects to reselect random effects. This iterative procedure is applied to both

Lasso-P and SCAD-P methods. For SCAD-T, since the true σ−2G is used,

it is unnecessary to use the iterative procedure and we apply our methods

only once for both fixed and random effects selection and estimation.

We evaluate each estimate by calculating the relative L2 estimation loss

RL2(β̂) = ‖β̂ − β0‖2/‖β0‖2,

where β̂ is an estimate of the fixed effects vector β0. Similarly, the relative

L1 estimation error of β̂, denoted by RL1(β̂), can be calculated by replacing
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Table 2

Fixed and random effects selection and estimation in Example 2 when ni = 8, N = 30,
d = 100, q = 10, and design matrices for fixed and random effects overlap.

Random Effects Fixed Effects

Setting Method FNR FPR MRL2 MRL1 FNR FPR MRL2 MRL1
(%) (%) (%) (%)

ρ = 0.3 Lasso-P 11.83 9.50 0.532 0.619 62.67 0.41 0.841 0.758
SCAD-P 0.50 1.07 0.298 0.348 0.83 0.03 0.142 0.109
SCAD-T 3.83 0.00 0.522 0.141 0.33 0.02 0.102 0.082

ρ = −0.3 Lasso-P 23.67 7.64 0.524 0.580 59.17 0.41 0.802 0.745
SCAD-P 1.83 0.71 0.308 0.352 0.67 0.05 0.141 0.109
SCAD-T 3.17 0.00 0.546 0.141 0.17 0.02 0.095 0.078

ρ = 0.5 Lasso-P 9.83 10.07 0.548 0.631 60.33 0.48 0.844 0.751
SCAD-P 1.67 0.50 0.303 0.346 0.17 0.05 0.138 0.110
SCAD-T 5.00 0.00 0.532 0.149 0.50 0.02 0.113 0.091

the L2-norm with the L1-norm. For the random effects estimation, we define

RL2(γ̂) and RL1(γ̂) in a similar way by replacing β0 with the true γ in each

simulation. We calculate the mean values of RL2 and RL1 in the simulations

and denote them by MRL2 and MRL1 in Table 2. In addition to mean

relative losses, we also calculate the percentages of missed true covaritates

(FNR), as well as the percentages of falsely selected noise covariates (FPR),

to evaluate the performance of proposed methods.

From Table 2 we see that SCAD-T has almost perfect variable selection

results for fixed effects, while SCAD-P has highly comparable performance,

for all three values of correlation level ρ. Both methods greatly outperform

the Lasso-P method. For the random effects selection, both SCAD-P and

SCAD-T perform very well with SCAD-T having slightly larger false nega-

tive rates. We remark that the superior performance of SCAD-P is partially

because of the iterative procedure. In these high-dimensional settings, di-

rectly applying our random effects selection method in Section 3 produces

slightly inferior results to the ones for SCAD-T in Table 2, but iterating

once improves the results. We also see that as the correlation level increases,

the performance of all methods become worse, but the SCAD-P is still com-

parable to SCAD-T and both perform very well in all settings.

Example 3. We illustrate our new procedures through an empirical anal-

ysis of a subset of data collected in the Multi-center AIDs Cohort Study.
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Fig 1. Boxplots of selected random effects. From left to right: bi(t)x3, i = 1, 2, · · · , 5, x1x3,

x2x3, where x1 is the smoking status, x2 is the age at infection, x3 is Pre-CD4 level, and

bi(t)’s are cubic spline basis functions of time.

Details of the study design, method, and medical implications have been

given by Kalsow et al. (1987). This data set comprises the human immun-

odeficiency virus (HIV) status of 284 homosexual men who were infected

with HIV during the follow-up period between 1984 and 1991. All patients

are scheduled to take measurements semiannually. However, due to the miss-

ing of scheduled visits and the random occurrence of HIV infections, there

are an unequal number of measurements and different measurement times

for each patients. The total number of observations is 1765.

Of interest is to investigate the relation between the mean CD4 percent-

age after the infection (y) and predictors smoking status (x1, 1 for smoker

and 0 for non-smoker), age at infection (x2), and pre-HIV infection CD4

percentage (Pre-CD4 for short, x3). To account for the effect of time, we

use a five dimensional cubic spline b(t) = (b1(t), b2(t), · · · , b5(t))T . We take

into account the two-way interactions b(tij)xi3, xi1xi2, xi1xi3, and xi2xi3.

These eight interactions together with variables b(tij), xi1, xi2, and xi3 give

us 16 variables in total. We use these 16 variables together with an intercept

to fit a mixed effects model with dimensions for fixed and random effects

d = q = 17. The estimation results are listed in Table 3 with rows “Fixed”

showing the estimated βj ’s for fixed effects, and rows “Random” showing

the estimates γ·k/
√
N . The standard error for the null model is 11.45, and it

reduces to 3.76 for the selected model. From Table 3, it can be seen that the
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baseline has time-variant fixed effect and Pre-CD4 has time-variant random

effect. Smoking has fixed effect while age and Pre-CD4 have no fixed effects.

The interactions smoking×Pre-CD4 and age×Pre-CD4 have random effects

with smallest standard deviations among selected random effects. The box-

plots of the selected random effects are shown in Figure 1.

Our results have close connections with the ones in Huang et al (2002)

and Qu and Li (2006), where the former used bootstrap approach to test

the significance of variables and the later proposed hypothesis test based on

penalized spline and quadratic inference function approaches, for varying-

coefficient models. Both papers revealed significant evidence for time-varying

baseline, which is consistent with our discovery that basis functions bj(t)’s

have nonzero fixed effect coefficients. At 5% level, Huang et al (2002) failed

to reject the hypothesis of constant Pre-CD4 effect (p-value 0.059), while Qu

and Li (2006)’s test was weakly significant with p-value 0.045. Our results

show that Pre-CD4 has constant fixed effect and time-varying random effect,

which may provide an explanation on the small difference of p-values in

Huang et al (2002) and Qu and Li (2006).

To further access the significance of selected fixed effects, we refit the

linear mixed effects model with selected fixed and random effects using the

Matlab function “nlmefit”. Based on the t-statistics from the refitted model,

the intercept, the baseline functions b1(t) and b2(t) are all highly significant

with t-statistics much larger than 7, while the t-statistics for b4(t) and x1

(smoking) are -1.026 and 2.216, respectively. This indicates that b4(t) is in-

significant and smoking is only weakly significant at 5% significance level.

This result is different from those in Huang et al (2002) and Qu and Li

(2006), where neither paper found significant evidence for smoking. A pos-

sible explanation is that by taking into account random effects and variable

selection, our method has better discovery power.

5. Discussion. We have discussed the selection and estimation of fixed

effects in Section 2, providing that the random effects vector has nonsingular

covariance matrix, while we have discussed the selection of random effects in

Section 3, providing that the dimension of fixed effects vector is smaller than

the sample size. We have also illustrated our methods with numerical studies.

In practical implementation, the dimensions of the random effects vector and
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Table 3

The estimated coefficients of fixed and random effects in Example 3

Intercept b1(t) b2(t) b3(t) b4(t) b5(t) x1 x2 x3

Fixed 29.28 9.56 5.75 0 -8.32 0 4.95 0 0

Random 0 0 0 0 0 0 0 0 0

b1(t)x3 b2(t)x3 b3(t)x3 b4(t)x3 b5(t)x3 x1x2 x1x3 x2x3

Fixed 0 0 0 0 0 0 0 0

Random 0.163 0.153 0.057 0.043 0.059 0 0.028 0.055

fixed effects vector can be both much larger than the total sample size. In

such case, we suggest an iterative way to select and estimate the fixed and

random effects. Specifically, we can first start with the fixed effects selection

using the penalized least squares by ignoring all random effects to reduce the

number of fixed effects to below sample size. Then in the second step, with

the selected fixed effects, we can apply our new method in Section 3 to select

important random effects. Thirdly, with the selected random effects from the

second step, we can use our method in Section 2 to further select important

fixed effects. We can also iterate the second and third steps several times to

improve the model selection and estimation results.

6. Proofs. Lemma 3 is proved in the online supplemental file.

Lemma 3. It holds that Pz = (I+ σ−2ZGZT )−1.

6.1. Proof of Theorem 1. Let N0 = {β = (βT
1 ,β

T
2 )

T : ‖β1 − β0,1‖∞ ≤
n−τ (log n),β2 = 0 ∈ Rdn−s1n}. We are going to show that under condi-

tions 1 and 2, there exists a strict local minimizer β̂ ∈ N0 of Q̃n(β) with

asymptotic probability one.

For a vector β = (β1, · · · , βp)T , let p̄′λn
(β) be a vector of the same length

whose j-th component is p′λn
(|βj |)sgn(βj), j = 1, · · · , dn. By Lv and Fan

(2009), the sufficient conditions for β̂ = (β̂
T

1 ,0
T )T ∈ Rdn with β̂1 ∈ Rs1n

being a strict local minimizer of Q̃n(β) are

−XT
1 P̃z(y−X1β̂1) + np̄′λn

(β̂1) = 0,(27)

‖v2‖∞ < np′λn
(0+),(28)

Λmin(X
T
1 P̃zX1) > −np′′λn

(|β̂j |), j = 1, · · · , s1n,(29)
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where v2 = XT
2 P̃z(y−X1β̂1). So we only need to show that with probability

tending to 1, there exists a β̂ ∈ N0 satisfying conditions (27) – (29).

We first consider (27). Since y = X1β0,1 + Zγ + ε, equation (27) can be

rewritten as

β̂1 − β0,1 = (XT
1 P̃zX1)

−1XT
1 P̃z(Zγ + ε)− n(XT

1 P̃zX1)
−1p̄′λn

(β̂1).(30)

Define a vector-valued continuous function g(β1) = β1−β0,1−(XT
1 P̃zX1)

−1XT
1 P̃z(Zγ+

ε) + n(XT
1 P̃zX1)

−1p̄′λn
(β1) with β1 ∈ Rs1n . It suffices to show that with

probability tending to 1, there exists β̂ = (β̂
T

1 , β̂
T

2 )
T ∈ N0 such that g(β̂1) =

0. To this end, first note that

(XT
1 P̃zX1)

−1XT
1 P̃z(Zγ+ε) ∼ N(0, (XT

1 P̃zX1)
−1XT

1 P̃zP
−1
z P̃zX1(X

T
1 P̃zX1)

−1).

By Condition 2(B), the matrix c1P̃z−P̃zP
−1
z P̃z = P̃zZ(c1M−σ−2G)ZT P̃z ≥

0, where A ≥ 0 means the matrix A is positive semi-definite. Therefore,

V ≡ (XT
1 P̃zX1)

−1XT
1 P̃zP

−1
z P̃zX1(X

T
1 P̃zX1)

−1 ≤ c1(X
T
1 P̃zX1)

−1.(31)

Thus, the j-th diagonal component of matrix V in (31) is bounded from

above by the j-th diagonal component of c1(X
T
1 P̃zX1)

−1. Further note that

by Condition 2(B), P̃
−1
z − c1(log n)P

−1
z ≤ Z(M− c1

(log n)
σ2 G)ZT ≤ 0. Re-

call that by linear algebra, if two positive definite matrices A and B satisfy

A ≥ B, then it follows from the Woodbury formula that A−1 ≤ B−1. Thus,

(c1 log n)P̃z ≥ Pz and (XT
1 P̃zX1)

−1 ≤ (c1 log n)(X
T
1 PzX1)

−1. So by Con-

dition 2(C), the diagonal components of V in (31) are bounded from above

by O(n−θ(log n)). This indicates that the variance of each component of the

normal random vector (XT
1 P̃zX1)

−1XT
1 P̃z(Zγ + ε) is bounded from above

by O(n−θ(log n)). Hence, by Condition 2(C),

‖(XT
1 P̃zX1)

−1X1P̃z(Zγ + ε)‖∞
= Op(n

−θ/2√(log n)(log s1n)) = op
(
n−τ (logn)

)
.(32)

Next, by Condition 2(A), for any β = (β1, · · · , βdn)T ∈ N0 and large enough

n, we can obtain that

|βj | ≥ |β0,j | − |β0,j − βj | ≥ an/2, j = 1, · · · , s1n.(33)
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Since p′λn
(x) is a decreasing function in (0,∞), we have ‖p̄′λn

(β1)‖∞ ≤
p′λn

(an/2). This together with Condition 2(C) ensures that

‖(XT
1 P̃zX1)

−1p̄′λn
(β1)‖∞ ≤ ‖(XT

1 P̃zX1)
−1‖∞‖p̄′λn

(β1)‖∞ ≤ o
(
n−τ−1(log n)

)
.

(34)

Combining (32) and (34) ensures that with probability tending to 1, if n is

large enough,

‖(XT
1 P̃zX1)

−1X1P̃z(Zγ + ε) + n(XT
1 P̃zX1)

−1p̄′λ(β1)‖∞ < n−τ (log n).

Applying the Miranda’s existence theorem (Vrahatis, 1989) to the function

g(β1) ensures that there exists a vector β̂1 ∈ Rs1n satisfying ‖β̂1−β0,1‖∞ <

n−τ log n such that g(β̂1) = 0.

Now we prove that the solution to (27) satisfies (28). Plugging y =

X1β0,1 + Zγ + ε into v in (28) and by (30), we obtain that

v2 = XT
2 P̃zX1(β0,1 − β̂1) +XT

2 P̃z(Zγ + ε) = v2,1 + v2,2,

where v2,1 = [−XT
2 P̃zX1(X

T
1 P̃zX1)

−1XT
1 P̃z +XT

2 P̃z](Zγ + ε) and v2,2 =

XT
2 P̃zX1(X

T
1 P̃zX1)

−1p̄λn
(β̂1). Since (Zγ+ε) ∼ N(0,P−1z ), it is easy to see

that v2,1 has normal distribution with mean 0 and variance

XT
2

(
I− P̃zX1(X

T
1 P̃zX1)

−1XT
1

)
P̃zP

−1
z P̃z

(
I−X1(X

T
1 P̃zX1)

−1XT
1 P̃z

)
X2.

Since P−1z ≤ c1P̃
−1
z , I−P̃

1/2

z X1(X
T
1 P̃zX1)

−1XT
1 P̃

1/2

z is a projection matrix,

and P̃z has eigenvalues less than 1, it follows that for the unit vector ek,

eTk var(v2,1)ek ≤ c1e
T
kX

T
2

(
P̃z − P̃zX1(X

T
1 P̃zX1)

−1XT
1 P̃z

)
X2ek

≤ c1e
T
kX

T
2 P̃zX2ek ≤ eTkX

T
2 X2ek = c1n,

where the last step is because each column of X is standardized to have

L2-norm
√
n. Thus, the diagonal elements of the covariance matrix of v1,2

are bounded from above by c1n. Therefore, for some large enough constant

C > 0,

P
(
‖v2,1‖∞ ≥

√
2Cn log dn

)
≤ (dn − s1n)P

(
|N(0, c1n)| ≥

√
2Cn log dn

)

= (dn − s1n) exp(−c−11 C log dn)→ 0.

imsart-aos ver. 2010/04/27 file: MixedPen.tex date: June 22, 2012



VARIABLE SELECTION IN LINEAR MIXED EFFECTS MODELS 25

Thus, it follows from the assumption log dn = o(nλ2
n) that ‖v2,1‖∞ =

Op(
√
n log dn) = op

(
np′λn

(0+)
)
. Moreover, by Condition 2(B) and (C),

‖v2,2‖∞ ≤ n‖XT
2 P̃zX1(X

T
1 P̃zX1)

−1‖∞p′λn
(an/2) < np′λn

(0+).

Therefore, the inequality (28) holds with probability tending to 1 as n→∞.

Finally we prove that β̂ ∈ N0 satisfying (27) and (28) also makes (29)

hold with probability tending to 1. By (33) and Condition 2(A),

0 ≤ −np′′λn
(|β̂j |) ≤ −n supt≥an/2 p

′′
λn
(t) = o

(
n2τ

)
.

On the other hand, by condition 2(C), Λmin(X
T
1 P̃zX1) ≥ c0n

θ. Since θ > 2τ ,

the inequality (34) holds with probability tending to 1 as n→∞.

Combing the above results, we have shown that with probability tending

to 1 as n → ∞, there exists β̂ ∈ N0 which is a strict local minimizer of

Q̃n(β). This concludes the proof.

6.2. Proof of Theorem 2. Let γ = (γT
1 , · · · ,γT

N )T ∈ RqnN with γT
j =

(γj1, · · · , γjqn) be a RNqn-vector satisfying M(γ) = M0. Define u(γ) =

(uT
1 , · · · ,uT

N )T ∈ RNqn with uj = (uj1, · · · , ujqn)T , where for j = 1, · · · , N ,

λnujk = p′λn
(γ·k)γjk/γ·k if k ∈M(γ),(35)

and λnujk = 0 if k /∈ M(γ). Here, γ·k = {∑N
j=1 γ

2
jk}1/2. Let γ̃∗ be the

oracle-assisted estimate defined in (19). By Lv and Fan (2009), the sufficient

conditions for γ with γ
M

c

0

= 0 being a strict local minimizer of (18) are

γ̃∗
M0

− γ
M0

= nλnT̃
−1
11 u(γM0

),(36)

(∑N

j=1
w2
jk

)1/2
< np′λn

(0+), k ∈M
c
0,(37)

Λmin(T̃11) > nΛmax

(
− ∂2

∂γ2
M0

(∑qn

j=1
pλn

(γ·k)
))

,(38)

where w(γ) = (wT
1 , · · · ,wT

N )T ∈ RNqn with wj = (wj1, · · · , wjqn)
T , and

(39) w(γ) = ZTPx(y− Zγ)−M−1γ.

We will show that, under Conditions 1 and 3, the above (36) – (38) are

satisfied with probability tending to 1 in a small neighborhood of γ̃∗.
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In general, it is not always guaranteed that (36) has a solution. We first

show that under Condition 3, there exists a vector γ̂∗ with M(γ̂∗) = M0

such that γ̂∗
M0

makes (36) hold. To this end, we constrain the objective

function Q̃∗n(γ) defined in (18) on the (Nsn2)-dimensional subspace B =

{γ ∈ RqnN : γ
M

c

0

= 0} of RqnN . Next define

N1 =
{
γ ∈ B : maxk∈M0

{∑N

j=1
(γjk − γ̃∗jk)

2
}1/2 ≤

√
Nn−δ

}
.

For any γ̃ = (γ̃11, · · · , γ̃1qn , · · · , γ̃N1, · · · , γNqn)
T ∈ N1 and k ∈M0, we have

‖γ̃ − γ̃∗‖∞ ≤ max
k∈M0

{ N∑

j=1

(γjk − γ̃∗jk)
2
}1/2 ≤

√
Nn−δ, and(40)

γ̃∗·k =
{ N∑

j=1

(γ̃∗jk)
2
}1/2 ≤

{ N∑

j=1

(γ̃∗jk−γ̃jk)2
}1/2

+
{ N∑

j=1

(γ̃jk)
2
}1/2 ≤

√
Nn−δ+γ̃·k.

Note that by Condition 3(C), we have T̃
−1
11 ≥ T−111 . Thus it can be derived

using linear algebra and the definitions of γ̃∗·k and γ∗·k that γ̃∗·k ≥ γ∗·k. Since

we condition on the event Ω∗ in (20), it is seen that for large enough n,

γ̃·k ≥ γ̃∗·k −
√
Nn−δ ≥ γ∗·k −

√
Nn−δ >

√
Nb∗0/2(41)

for k ∈M0 and γ̃ ∈ N1. Thus, in view of the definition of u(γ) in (35), for

k ∈M0, we have

‖λnu(γ̃M0
)‖∞ ≤ maxk∈M0

p′λn
(γ̃·k) ≤ p′λn

(
√
Nb∗0/2),

where the last step is because p′λn
(t) is decreasing in t ∈ (0,∞) due to the

concavity of pλn
(t). This together with (21) in Condition 3 ensures

‖nλnT̃
−1
11 u(γ̃M0

)‖∞ ≤ n‖T̃−111 ‖∞p′λn
(
√
Nb∗0/2) ≤

√
Nn−δ.(42)

Now define the vector-valued continuous functionΨ(ξ) = ξ−γ̃∗
M0

−nλnT̃
−1
11 u(ξ),

with ξ a RNs2n-vector. Combining (40) and (42) and applying Miranda’s

existence theorem (Vrahatis, 1989) to the function Ψ(ξ), we conclude that

there exists γ̂∗ ∈ N1 such that γ̂∗
M0

is a solution to equation (36).
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We next show that γ̂∗ defined above indeed satisfies (38). Note that for

any vector x 6= 0,

∂2

∂x2
pλn

(‖x‖2) = p′′λn
(‖x‖2)

xxT

‖x‖2
+ p′λn

(‖x‖2)(
1

‖x‖2
− xxT

‖x‖32
).(43)

Since −p′λn
(t) ≤ 0 and −p′′λn

(t) ≥ 0 for t ∈ (0,∞), we have

Λmax(−
∂2

∂x2
pλn

(‖x‖2)) ≤ −p′′λn
(‖x‖2) +

p′λn
(‖x‖2)
‖x‖2

−
p′λn

(‖x‖2)
‖x‖2

= −p′′λn
(‖x‖2).

Since γ̂∗
M0

∈ N1, by (41) we have γ̂∗·k >
√
Nb∗0/2 for k ∈M0. It follows from

the above inequality and Condition 3(B) that with probability tending to 1,

the maximum eigenvalue of the matrix − ∂2

∂γ2

M0

(∑qn
j=1 pλn

(γ̂∗·k)
)
is less than

maxj∈M0

(
− p′′λn

(γ̂∗·j)
)
= o(N−1) = o(mn/n).

Further, by Condition 3 (A), 1
nΛmin(T̃11) = 1

nΛmin(Z
T
M0

PxZM0
) ≥ c3

mn

n .

Thus, the maximum eigenvalue of the matrix − ∂2

∂γ2

M0

(∑qn
j=1 pλn

(γ̂∗·k)
)
is less

than n−1Λmin(T̃11) with asymptotic probability 1, and (38) holds for γ̂∗.

It remains to show that γ̂∗ satisfies (37). Let v̂ = γ̂∗ − γ̃∗. Since γ̂∗ is a

solution to (36), we have v̂ = nλnT̃
−1
11 u(γ̂M0

). In view of (39), we have

w(γ̂∗
M

c

0

) = (ZT
M

c

0

− T̃
T

12T̃
−1
11 Z

T
M0

)
Px(Zγ + ε) + T̃

T

12v̂M0
≡ w̃1 + w̃2.(44)

Since Zγ + ε ∼ N(0,P−1z ), we obtain that w̃1 ∼ N(0,H) with H = (ZT
M

c

0

−
T̃

T

12T̃
−1
11 Z

T
M0

)
PxP

−1
z Px(ZM

c

0

−Z
M0

T̃
−1
11 T̃12

)
. Note that Z

M
c

0

is a block diag-

onal matrix and the i-th block matrix has size ni× (qn− s2n). By Condition

3(A), it is easy to see that Λmax(ZGZT ) ≤ max1≤i≤N Λmax(ZiGZT
i ) ≤ c1s2n.

Thus, PxP
−1
z Px = Px(σ

2I+ZGZT )Px ≤ (σ2+ c1s2n)P
2
x = (σ2+ c1s2n)Px.

Further, it follows from T̃12 = T12 and ZT
M0

PxZM0
≤ T̃11 that

H ≤ (σ2 + c1s2n)(Z
T
M

c

0

− T̃
T

12T̃
−1
11 Z

T
M0

)
Px(ZM

c

0

− Z
M0

T̃
−1
11 T̃12

)

= (σ2 + c1s2n)(Z
T
M

c

0

PxZM
c

0

+ T̃
T

12T̃
−1
11 Z

T
M0

PxZM0
T̃
−1
11 T̃12 − 2ZT

M
c

0

PxZM0
T̃
−1
11 T̃12

)

≤ (σ2 + c1s2n)
(
ZT
M

c

0

PxZM
c

0

− T̃
T

12T̃
−1
11 T̃12

)
≤ (σ2 + c1s2n)Z

T
M

c

0

PxZM
c

0

.
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Thus, the i-th diagonal element of H is bounded from above by the i-th

diagonal element of (σ2 + c1s2n)Z
T
M

c

0

PxZM
c

0

, and thus bounded by c̃1s2nmn

with c̃1 some positive constant. Therefore by the normality of w̃1 we have

P
(
‖w̃1‖∞ ≥ {2c̃1s2nmn log(N(qn − s2n))}1/2

)

≤ N(qn − s2n)P
(
|N(0, c̃1s2nmn)| ≥ {2c̃1s2nmn log(N(qn − s2n))}1/2

)

= O
(
(log(N(qn − s2n)))

−1/2) = o(1).

Therefore, ‖w̃1‖∞ = op
(
{s2nmn log(N(qn − s2n)}1/2

)
= op(nN

−1/2λn) and

max
j>s2n

{∑N

k=1
w̃2
1,jk

}1/2
≤
√
N‖w̃1‖∞ = op(nλn) = op(1)np

′
λn
(0+),(45)

where w̃1,jk is the
(
(j − 1)qn + k

)
-th element of Nqn-vector w̃1.

Now we consider w̃2. Define Z̃j as the submatrix of Z formed by columns

corresponding to the j-th random effect. Then, for each j = s2n+1, · · · , qn,
by Condition 3(A) we obtain that

{
N∑

k=1

w̃2
2,jk}1/2 = nλn‖Z̃

T
j PxZM0

T̃
−1
11 u(γ̂

∗
M0

)‖2 ≤ n‖λnu(γ̂
∗
M0

)‖2‖Z̃
T
j PxZM0

T̃
−1
11 ‖2,

where w̃2,jk is the
(
(j − 1)qn + k

)
-th element of Nqn-vector w̃2. Since

γ̂∗
M0

∈ N1, by (35), (41) and the decreasing property of p′λn
(·) we have

‖λnu(γ̂
∗
M0

)‖2 ≤ p′λn
(
√
Nb∗0/2). By (22) in Condition 3(A),

max
j≥s2n+1

{
∑N

k=1
w̃2
2,jk}1/2 < np′λn

(0+).

Combing the above result for w̃2 with (44) and (45), we have shown that

(37) holds with asymptotic probability one. This completes the proof.
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