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Abstract

This paper is devoted to the study of couplings of the Lebesgue measure and the Poisson
point process. We prove existence and uniqueness of an optimal coupling whenever the
asymptotic mean transportation cost is finite. Moreover, we give precise conditions for the
latter which demonstrate a sharp threshold at d = 2. The cost will be defined in terms of an
arbitrary increasing function of the distance.

The coupling will be realized by means of a transport map (’allocation map’) which
assigns to each Poisson point a set (’cell’) of Lebesgue measure 1. In the case of quadratic
costs, all these cells will be convex polytopes.

1 Introduction and Statement of Main Results

a) The theory of optimal transportation studies couplings between two probability measures A
and v on R? which minimize the total transportation cost. A coupling is interpreted as a plan
how to transport A into v. Transporting a unit of mass from a to b produces cost of amount
c(a,b), where c(+,-) is a given cost function. Of particular interest are couplings ¢ which are
induced by transport maps, i.e. ¢ = (id, 1)\ for some map 9 : R — R? with ¢\ = v.

A fair allocation for a simple point process in R? is a coupling of the Lebesgue measure £ and
the point process u® induced by a transport map, i.e. there is a map ¥ : Q x R — R? such
that for P—almost every w € Q the map ¥* : R? — R? transports the Lebesgue measure into
the point process: ¥ £ = u“. Such an allocation is called factor allocation if it is a measurable
function of the point process (i.e. it measurably depends only on the given point process).

In this article we connect these two theories by constructing fair allocations between the Lebesgue
measure and point processes using tools from optimal transportation. Instead of considering the
total transportation cost we ask for minimizers of the cost per unit mass. Good estimates on the
transportation cost will directly imply good tail estimates for the distribution of the transport
distance.

Moreover, the techniques developed in this article allow to construct a fair factor allocation
with the best possible tail estimate and also to derive new estimates on the transportation cost
between the Lebesgue measure and a Poisson point process.

We now describe our results in more detail.

b) A point process p® : @ — N(R?) is a random variable with values in the space of integer
valued Radon measure. Put Z(w) = supp(p). Then, p® has the representation p® : w — p* =
> ees(w) k(E) - 6 with k(§) € N. p® is called equivariant if for all Borel sets A € B(R?) we have
pt#(A+2) = p¥(A). Here, we interprete w + z as the support of u* translated by z (see section
2.2).

Given an equivariant point process p® : w — u¥ = deg(w) k(§) - 6¢ on R? with unit intensity,
we consider the set II of all couplings ¢* of the Lebesgue measure £ and the point process — i.e.
the set of measure-valued random variables w — ¢* s.t. for a.e. w the measure ¢* on R% x R¢



is a coupling of £ and u* — and we ask for a minimizer of the asymptotic mean cost functional
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Here B, := [0,2")¢ C R The scale ¥ : R, — R, will always be some strictly increasing,
continuous function with ¥(0) = 0 and lim ¥(r) = oo.
r—00

A coupling w +— ¢* of the Lebesgue measure and the point process is called optimal if it minimizes
the asymptotic mean cost functional and if it is equivariant in the sense that ¢***(A+2z, B+2) =
¢* (A, B) for all z € R? and Borel sets 4, B € B(RY). Our main result states

Theorem 1.1. If the asymptotic mean transportation cost
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is finite then there exists a unique optimal coupling of the Lebesgue measure and the point process
[ ]
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¢) The unique optimal coupling ¢* can be represented as (Id,T%),£ for some map T : R —
supp(p®) € R? measurably only dependent on the sigma algebra generated by the point process.
In other words, T“ defines a fair factor allocation. Its inverse map assigns to each point & of
the point process (‘center’) a set ('cell’) of Lebesgue measure p“(£) € N. If the point process
is simple then all these cells have volume 1. In the case of quadratic cost, i.e. ¥(r) = 72, the
cells will be convex polytopes. The transport map will be given as T% = V* for some convex
function ¢ : RY — R and induces a Laguerre tessellation (see [LZ08]).

In the case ¥(r) = r the transportation map induces a Johnson-Mehl diagram (see [Aur91]).
For the many results on and applications of these tessellations see the references in [LZ08] and
[Aur91]. In the light of these results one might interpret the optimal coupling as a generalized
tessellation.

d) As a particular corollary to Theorem 1.1 we conclude that ¢o, = infgecry €5o(¢®) and that
the infimum is always attained, more precisely, it is attained by an equivariant coupling ¢®. For
equivariant couplings ¢®* the mean cost functional ﬁE [ fRdx A 9(2 —yl) dq'(w,y)], however,

is independent of A € R?. Hence,

(o = _inf E[/ ﬂ(lﬂf—y\)dq'(w,y)]
q*€llegu R4x[0,1)4

where Il.q, now denotes the set of all equivariant couplings of the Lebesgue measure and the
point process.

Moreover, for equivariant couplings, the mean cost of transportation E [¢(]z —T°(x)|)] of a
Lebesgue point 2 to the center of its cell is independent of € R?. Hence,

too = Inf B [9(|0 —T(0)])] (1.2)

where the infimum is taken over all equivariant maps 7 : R? x Q — R? with 7%, £ = u* for a.e.
w. And again: the infimum is attained by a unique such 7. Let us point out that the identity
(1.2) allows to resolve the asymmetry in the integration domain in equation (1.1): we equally
well may replace the domain of integration R% x B,, by B,, x R%.

e) Analogous results will be obtained in the more general case of optimal ’semicouplings’
between the Lebesgue measure and point processes of 'subunit’ intensity.



We develop the theory of optimal semicouplings as a concept of independent interest. Optimal
semicouplings are solutions of a twofold optimization problem: the optimal choice of a density
p < 1 of the first marginal pu; and subsequently the optimal choice of a coupling between ppiy
and po. This twofold optimization problem can also be interpreted as a transport problem with
free boundary values.

Given a point process of subunit intensity and finite mean transportation cost we prove that
there exists a unique optimal semicoupling between the Lebesgue measure and the point process.
It can be represented on R? x R% as before as ¢¥ = (Id, T¥),£ in terms of a transport map
T% : RY — supp[p®] U {8} where & now denotes an isolated point ('cemetery’) added to R

f) In any case, we prove that the unique transport map 7% can be obtained as the limit of a
suitable sequence of transport maps which solve the optimal transportation problem between
the Lebesgue measure and the point process restricted to bounded sets.
More precisely, for z € Z% and v € T := ({0,1}%)" consider the 'doubling sequence’ of cubes
n
Bu(z,7) = z-—Y 2"y 40,274
k=1

Note that the cube B, (z,7) is one of the subcubes obtained by subdividing B,41(2,7) into 2¢
cubes of half edge length. Let T ,(.,w,7) : RY — supp[u®] U {3} be the transport map for the
unique optimal semicoupling between £ and 1p, (. ) - #, that is, for the optimal transport of
an optimal ’submeasure’ p* - £ to the point process restricted to the cube B, (z,7).

Theorem 1.2. For every z € Z% and every bounded Borel set M C R?
le LoPov){(z,w,7) e M xQAxT: T, ,(z,w,v) # T(z,w)}) = 0

where v denotes the Bernoulli measure on T'.

g) If p® is a Poisson point process with intensity 8 < 1 we have rather sharp estimates for the
asymptotic mean transportation cost to be finite.

Theorem 1.3. (i) Assume d > 3 (and f < 1) or f <1 (and d > 1). Then there exists a
constant 0 < k < 00 s.1.

log ¥ log ¥
limsup()gid(r) <K = (<X — 1iminf()g7d(r) < K.
r—00 r r—00 r

(ii) Assume d <2 and 8= 1. Then for any concave 9 : [1,00) — R dominating 9

/ v(r) dr <oo = (<00 =— liminf v(r)
1

= 0.
rlt+d/2 r—o00 7d/2

The first implication in assertion (ii) is new. Assertion (i) in the case f = 1 is due to Holroyd
and Peres [HP05], based on a fundamental result of Talagrand [Tal94]. The first implication in
assertion (i) in the case § < 1 was proven by Hoffman, Holroyd and Peres [HHP06]. The second
implication in assertion (ii) is due to [HLO1].

Now let us consider the particular case of LP transportation cost, i.e. ¥(r) = rP.

Corollary 1.4. (i) For all d € N, all B < 1 and p € (0,00) the asymptotic mean LP-
transportation cost ¢ s finite if and only if

cp.m ] oo ford>3 or g <1;
p=p= %, ford <2 and f =1.
(it) If B =1 then for all p € (0,00) there exist constants 0 < k < k' < 0o s.t. for alld > 2(pA1)

k-dP? < ¢ < K -ab/2



h) The study of fair allocations for point processes is an important and hot topic of current
research, see e.g. [HP05, Tim09, HPPS09] and references therein. A landmark contribution was
the construction of the stable marriage between Lebesgue measure and an ergodic translation
invariant simple point process [HHP06]. One of the challenges is to produce allocations with
fast decay of the distance of a typical point in a cell to its center or of the diameter of the cell.
The gravitational allocation [CPPRa, CPPRb] in d > 3 was the first allocation with exponential
decay. Moreover, all the cells are connected and contain their center. However, the decay was
not yet as good as the decay of a random allocation constructed in [HP05].

On the other hand, during the last decade the theory of optimal transportation (see e.g. [RR98],
[Vil03]) has attracted lot of interest and has produced an enormous amount of deep results,
striking applications and stimulating new developments, among others in PDEs (e.g. [Bre91],
[Ott01], [AGS08]), evolution semigroups (e.g. [OV00], [ASZ09], [OS09]) and geometry (e.g.
[StuO6a, Stu06b], [LV09], [Vil09], [Oht09]). Ajtai, Komlés and Tusnady as well as Talagrand
and others studied the problem of matchings and allocation of independently distributed points
in the unit cube in terms of transportation cost (JAKT84], [Tal94] and references therein). For
further studies of invariant transports between random measures in more general spaces we refer
to [LT09]!.

i) In all the optimal transportation problems considered in the afore mentioned contributions,
however, the marginals have finite total mass. Our paper seems to be the first to prove exis-
tence and uniqueness of a solution to an optimal transportation problems for which the total
transportation cost is infinite.

More precisely, the main contributions of the current paper are:

e We present a concept of ’optimality’ for (semi-) couplings between the Lebesgue measure
and a point process.

e We prove existence and uniqueness of an optimal semicoupling whenever there exists a
semicoupling with finite asymptotic mean transportation cost.

e We prove that for a.e. doubling sequence of boxes (B,(z,7)),cy the sequence of optimal
semicouplings gy, , ., between the Lebesgue measure and the point process restricted to the
box By (z,7) will converge. More precisely, the sequence n,»~ Will converge as n — oo
towards a unique optimal semicoupling ¢* between the Lebesgue measure and the point
process.

e We prove that the asymptotic mean transportation cost for the Poisson point process in
d < 2 is finite for LP-costs with p < d/2 and also for more general scale functions like
I(r) = rd/2. with o > 1.

1
(log )

1.1 Outline

The article is divided into five parts. The core material with the proofs of the main theorems is
contained in sections 3 to 5. These three sections are rather independent of each other.

In section 2 we start by recalling the relevant definitions and objects we work with. We also
state an importation technical result, Theorem 2.1, the existence and uniqueness result of optimal
semicouplings on bounded sets. The proof of this theorem is deferred to section 6 because it is a
purely deterministic result on transportation problems between finite measures whereas the rest
of the article deals with transportation problems between random measures with infinite mass.

'In the course of the refereeing process of this paper a construction of a fair allocation for the Poisson point
process with optimal tail behaviour of the diameter of a typical cell was presented by Marké and Timar [MT11]
using the algorithm of Ajtai, Komlés and Tusnady.



Figure 1: Optimal semicoupling of Lebesgue and 25 points in the cube with cost function
c(z,y) = |z — yP and (from left to right) p=1, 2, 4 respectively.

The key idea for the proof is to show that every minimizer has to be concentrated on a certain
graph. Then, existence can be shown via lower semicontinuity plus compactness. Uniqueness
follows from the observation that a convex combination of optimal semicouplings can only be
concentrated on a graph if all optimal semicouplings are concentrated on the same graph.

In section 3 we proof the uniqueness part of Theorem 1.1. The idea for the proof is again to
show that every optimal semicoupling has to be concentrated on the graph of some function.
To this end, we introduce the concept of local optimality. A semicoupling ¢°® is called locally
optimal iff for P—almost all w the restriction of ¢ to any bounded Borel set A, lpa, 4¢“ is
optimal between its marginals in the classical sense. Using equivariance, we show that every
optimal semicoupling is locally optimal. Hence, by applying Theorem 2.1 we get the existence
of a transportation map and therefore uniqueness.

The proof of the existence part of Theorem 1.1 is presented in the first part of section 4. The
idea is to approximate the optimal semicoupling by solutions to classical optimal transportation
problems on bounded regions. The main problem to overcome is to control the contribution of a
small fixed observation window to the total asymptotic mean transportation cost. The solution
is not to consider a deterministic exhausting sequence of cubes but a random sequence of cubes.
This second randomization causes a symmetrization and induces tightness of this sequence. It
could also be seen as a way to enforce the equivariance of the limiting measure. The uniqueness
of optimal semicouplings then allows to remove the second randomization again and also to
deduce “quenched” results in the second part of section 4 which finally proves Theorem 1.2.

In section 5, we prove Theorem 1.3. The estimates are based on an explicit construction of a
semicoupling between £ and 1 9nyaps®. The transportation cost estimate can thereby be reduced
to the estimates of moments, central moments and inverse moments of Poisson random variables.
The advantage of this approach is that it allows to get fairly reasonable estimates of constants
and, more importantly, it is also potentially applicable to other cases of interest.

2 Set-up and Basic Concepts

£ will always denote the Lebesgue measure on R%. The complement of a set A ¢ R? will be
denoted by CA. The push forward of a measure p by a map S will be denoted by S.p.
2.1 Couplings and Semicouplings

For each Polish space X (i.e. separable, complete metrizable space) the set of measures on X —
equipped with its Borel o-field — will be denoted by M(X). Given any ordered pair of Polish



spaces X,Y and measures A € M(X),u € M(Y) we say that a measure ¢ € M(X xY) is a
semicoupling of A and p, briefly q € II5(A, ), iff the (first and second, resp.) marginals satisfy

(77'1)*(] S )‘7 (7T2)*q = M,

that is, iff g(A xY) < A(A) and ¢(X x B) = u(B) for all Borel sets A € X,B C Y. The
semicoupling ¢ is called coupling, briefly ¢ € II(A, ), iff in addition

(Wl)*q = A

Existence of a coupling requires that the measures A and p have the same total mass. If the total
masses of A and u are finite and equal then the 'renormalized’ product measure ¢ = ﬁ)\ @ W
is always a coupling of A and pu.

If A and p are X-finite, ie. X = > 07 A\p, = D07 pp, with finite measures A, € M(X),
pn € M(Y') — which is the case for all Radon measures — and if both of them have infinite total
mass then there always exists a Y-finite coupling of them. (Indeed, then the A, and pu, can be
chosen to have unit mass and ¢ = ), (A, ® p1p,) does the job.)

See also [Figl0] for the related concept of partial coupling.

2.2 Point Processes

Throughout this paper, u® will denote an equivariant point process of subunit intensity, modeled
on some probability space (2,2, P). For convenience, we will assume that ) is a compact
separable metric space and 2 its completed Borel field. These technical assumptions are only
made to simplify the presentation.

Recall that a point process is a measurable map u® :  — M (Rd), w — p* with values in the
subset N (R?) of locally finite counting measures on R%. Tt is a particular example of a random
measure, characterized by the fact that u“(A) € Ny for P-a.e. w and every bounded Borel set
A C R%. Tt can always be written as

pe= > k(€) o

§eE(w)

with some countable set Z(w) C R? without accumulation points and with numbers k(¢) € N.
The point process is called simple iff k(£) =1 for all £ € Z(w) and a.e. w or, in other words, iff
pu({z}) € {0,1} for every x € R? and a.e. w.

We assume that the probability space (€2,2l,P) admits a measurable flow 6 : R x Q — Q such
that the point process u® is R%—equivariant or just equivariant, i.e.

WO (At z) = p(A)

for all Borel sets A € B(R?). Moreover, we assume that P is stationary, that is invariant under
the flow
Pof = P.

In particular, this implies that p® is translation invariant in the usual sense, that is

—
=

(T2)ep® = p®

for each z € R?. We interpret the flow as a shift of the support of y® and therefore write
0.(w) = w + z (see also Example 2.1 of [LT09)).

To split the translation invariance into equivariance and stationarity has the huge advantage
that equivariance is stable under addition whereas translation invariance is not. It is not really
a restriction as we can always take the canonical realisation as a probability space (again see
Example 2.1 of [LT09)]).



We say that u® has subunit intensity iff E[u*(A)] < £(A) for all Borel sets A ¢ R If 7="
holds instead of ”<” we say that u® has unit intensity. A translation invariant point process
has subunit (or unit) intensity if and only if its intensity

B=E |u*(10,1)%)]

is <1 (or =1, resp.).
Given a point process ®, the measure d(u*P)(y,w) := du®(y) dP(w) on R% x Q is called Campbell
measure of the random measure u°.

The most important example of an equivariant simple point process is the Poisson point process
or Poisson random measure with intensity 8 < 1. It is characterized by

e for each Borel set A C R? of finite volume the random variable w + p“(A) is Poisson
distributed with parameter g - £(A) and

e for disjoint sets Ay, ... Ay C RY the random variables (A1), ..., u*(Ax) are independent.

There are some instances in which we need additional assumptions on p® (e.g. ergodicity, unit
intensity). In each of these cases we will clearly point out the specific assumptions we make.

2.3 Couplings of the Lebesgue Measure and the Point Process

A (semi-)coupling of the Lebesgue measure £ € M(R?) and the point process p® : Q — M(R%)
is a measurable map ¢*: Q — M(R? x RY) s.t. for P-a.e. w €

¢“ is a (semi-) coupling of £ and p®.

We say that a measure Q € M(R? x R? x Q) is an universal (semi-)coupling of the Lebesgue
measure and the point process iff dQ(z, y,w) is a (semi-)coupling of the Lebesgue measure d€(x)
and of the Campbell measure d(u*P)(y,w).

Disintegration of a universal (semi-)coupling w.r.t. the third marginal yields a measurable map
¢® : Q — M(R? x RY) which is a (semi-)coupling of the Lebesgue measure £ and the point
process u®. Conversely, given any (semi-)coupling ¢* of the Lebesgue measure £ and the point
process u°®, then its Campbell measure

dQ(z,y,w) = dg*(z,y)dP(w)
defines a universal (semi-)coupling.

According to this one-to-one correspondence between ¢* — (semi-)coupling of £ and pu®* — and
Q@ = ¢*P — (semi-)coupling of £ and p*P — we will freely switch between them. In many cases,
the specification "universal’ for (semi-)couplings of £ and u®P will be suppressed. And quite
often, we will simply speak of (semi-)couplings of £ and p°.

2.4 Fair allocations

Let p® € N(R?) be given. A fair allocation of Lebesgue measure £ to p® is a measurable map
T QxR = R (w,2) — U¥(x) such that for P—almost every w

(i) £ (R%\ Ugez, 51()) = 0

(i) £(P,1(€) = 1 forall £ € E(w).



We call each configuration point ¢ € Z(w) a center, and the set (U*)~1(€) the cell associated to
the center &. The allocation W* is called equivariant iff U, (v) =y = Vz € R?: Wy (2 +2) =
y + z. An allocation is called factor allocation if the random map w — ¥¥ is measurable with
respect to the o—algebra generated by u®. For some examples on allocations and their connec-
tion to Palm measures we refer to [HP05, HHP06, CPPRa] and references therein.

In particular, any allocation W¥*® for u® induces a coupling ¢* between £ and p® via ¢* =
(id, ¥*),.L.

2.5 The optimal transportation problem

Given two probability measures ), u on R¢ and a measurable cost function ¢ : R? x R* — R the
optimal transportation problem between A and p is to find a minimizer of

/ c(z,y) dq(z,y)
R4 xR4

among all couplings g of A and p. A minimizer is called optimal coupling. Optimal couplings have
many nice properties. The most basic and also very intuitive one is that they are concentrated
on c-cyclical monotone sets. A set N C R% x R? is called c-cyclical monotone iff for all n € N
and (z;,y;) € N fori=1,...,n we have

(4, Yiv1), (2.1)
1

n n
ZC(%’, yi) <

=1 7

where 3,11 = y1. The interpretation of cyclical monotonicity is clear. If a coupling is optimal
we cannot improve it, produce a coupling with less cost, by breaking up and recoupling finitely
many coupled pairs of points. In fact, if the cost function is sufficiently nice (continuous is
much more than needed, see [BGMS09]) also the reverse direction holds. Any measure that is
concentrated on a c-cyclical monotone set is optimal. In many situations, the optimal coupling
is induced by a transportation map T, i.e. ¢ = (id,T),\. Then T is c-cyclically monotone iff
its graph is c-cyclical monotone set. For more details on optimal transportation and its many
applications we refer to [Vil03, Vil09, RR98].

2.6 Cost Functionals

Throughout this paper, ¥ will be a strictly increasing, continuous function from Ry to R4 with
¥(0) = 0 and li)m Y(r) = oo. Given a scale function ¥ as above we define the cost function
T oo

c(x,y) =9 (Jz —yl)

on R% x R?, the cost functional
Costla) = [ | clavy) daf.)
Réx R4
on M(R? x R%) and the mean cost functional

Cost(Q) = [ el dQ(wp.)
R xR4x

on M(R% x R% x Q). We have the following basic result on existence and uniqueness of optimal
semicouplings the proof of which is deferred to the section 6. The first part of the theorem, the
existence and uniqueness of an optimal semicoupling, is very much in the spirit of an analogous
result by Figalli [Fig10] on existence and (if enough mass is transported) uniqueness of an optimal
partial coupling. However, in our case the second marginal is discrete whereas in [Figl0] it is
absolutely continuous.



Figure 2: Concept of exhausting sequences: start with a small cube and repeatedly double its
edge lengths to exhaust space (cost function c(z,y) = |z — y|?).

Theorem 2.1. (i) For each bounded Borel set A C R? there exists a unique semicoupling @Q A
of £ and (14u®)P which minimizes the mean cost functional Cost(.).

(i1) The measure Q4 can be disintegrated as dQa(z,y,w) := dg¢*(x,y) dP(w) where for P-a.e. w
the measure ¢4 is the unique minimizer of the cost functional Cost(.) among the semicouplings
of £ and 1ap”.

(iii) Cost(Qa) = [, Cost(q4) dP(w).

For a bounded Borel set A C R? | the transportation cost on A is given by the random variable
Ca:Q —[0,00] as

Ca(w) := Cost(q4) = inf{Cost(¢”) : ¢“ semicoupling of £ and 14 u}.

Lemma 2.2. (i) If Ay,..., A, are disjoint then Yw € )

U A

i=1

Co @ > Y Ciw
=1

(ii) If A1 and Az are translates of each other, then Ca, and Ca, are identically distributed.

(117) If A1, ..., Ay, are disjoint and p®(Ay),...,u*(A,) are independent, then the random vari-
ables C4,,1=1,...,n, are independent.

Proof. Property (ii) and (iii) follow directly from the respective properties of the point process
and the invariance of the Lebesgue measure under translations. The intuitive argument for (i)
is, that minimizing the costs on |J; A; is more restrictive than doing it separately on each of the
A;. The more detailed argument is the following. Given any semicoupling ¢* of £ and 1) 4,4
then for each i the measure ¢’ := 1ga, 4,9 is a semicoupling of £ and 14,u“. Choosing ¢ as
the minimizer of C 0 (w) yields

%
i=1

C, 4,(@) = Cost(q*) = ) Cost(g?) = 3 Ca, ().

2.7 Convergence along Standard Exhaustions

For n € Ng := NU {0} and z € Z¢ define the cube or boxr B, (z) of generation n with basepoint
z by
Bn(z) = z+10,2M)%



For z = 0 simply put B,, = B,(0). More generally, for v = (v;) € I' := ({0, 1})N put

n
Bn(z’r)/) = = Z 2]4:71,)% + [07 2n)d
k=1

Starting with the unit box By(z,v) = 2z + [0,1)¢, for any random vector v € T' the sequence
(Bn(2,7))nen, can be constructed iteratively as follows: Given the box B,(z,7) attach 2¢ — 1
copies of it — depending on the random variable v,+1 = (7}L+1, e ,’ygﬂ) with values in {0,1}% —
either on the right (if 7,5, ; = 0) or on the left (if 7, ; = 1), either on the backside (if y2,; = 0)
of on the front (if v2,, = 1), either on the top (if v3,; = 0) or on the bottom (if y2,; = 1), etc.
The sequence (B (z,7))nen, for fixed z and v is increasing and for v-almost every v € T it
increases to RY. Each of the boxes B, (z,7) contains the point z.

Put
e = 27" E[Cp, ()]

Note that translation invariance (equivariance plus stationarity) implies that the right hand side
does not depend on z € Z% and vy € T.

Corollary 2.3. (i) The sequence (¢y)neN, is non-decreasing. The limit

(o = lim¢, = supc,
n—00 n

exists in (0, 00].

(ii) Assume that p® is ergodic. Then, we have for all z € Z%, for all v € T' and for P-almost
every w € §:

iminf27"Cp, )W) = oo

(ii1) oo < in&’ Coo(q) where Ilg denotes the set of semicouplings of £ and p®.
qells

Proof. (i) is an immediate consequence of the previous lemma. For (ii) fix an arbitrary nested
sequence of boxes (B),), generated by a standard exhaustion. Then we have by superadditivity
Yw e Q for all n,k € N

2dk

27d(’n+k‘)CBn+k (W) 2 276”{ Z 277LdCBj (W),
j=1

where B, are disjoint copies of B,, such that U?ikl Bl = Bk In the limit of £ — oo we get by
ergodicity for P-a.e. w

lim inf 2_deBk (w) > E [2_"dCBn} =c,

k—o0

for each n € N and thus

lim inf 27 Cp, (W) > co.
k—o0

On the other hand, Fatou’s lemma implies
E [hminfz*"chn} < liminfE [zfnchn] .
n—oo n—oo

Both inequalities together imply the assertion.

For (iii) take any semicoupling ¢® of £ and pu*P. Then, we have for any n

2_dn¢05t(1Rd><BnXQq.) > Cp.
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Figure 3: Semicoupling of Lebesgue and 25 points in the cube with ¢(z,y) = | — y| where each
point gets mass 1/9,1/3, 1 respectively.

Taking the limit yields

Coo(q®) = liminf 27" Cost(1uy g, x0q") > lime, = coo
n—oo n

O]

Corollary 2.4. ¢y, only depends on the scale ¥ and on the distribution of u®, — not on the
choice of the realization of u® on a particular probability space (2,2, P).

Proof. 1t is sufficient to show, that ¢, just depends on the distribution of ®. For a given set
of points Z(w) in B, there is a unique semicoupling ¢ of £ and 1p,4* minimizing Cost (see
Proposition 6.3). Hence, qp, Just depends on = (w). However, the distribution of the points in
By, Z(w), just depends on the distribution of p°. O

Remark 2.5. None of the previous definitions and results required that p® has subunit intensity.
However, one easily verifies that

B>1 = (=0

where §:=E [,u'([O, 1)d)} denotes the intensity of the equivariant point process.

Remark 2.6. The problem of finding an optimal semicoupling between £ and a Poisson point
process u® of intensity 8 < 1 is equivalent to the problem of finding an optimal semicoupling
between £ and (- i* where ® is a Poisson point process of unit intensity.
Indeed, given 5 € (0,1) and a semicoupling ¢* of £ and a Poisson point process u°® of intensity
B. Put 7 : z — Y%z on R? as well as on R? x R%. Then ¥ = 1,u” is a Poisson point process
with intensity 1 and

q’ =B 7uq”

is a semicoupling of £ and 3-a“. Conversely, given any Poisson point process i of unit intensity
and any semicoupling ¢* of £ and - i“ then ¢¥ := % - (171)4¢% is a semicoupling of £ and
e = (771),.4%, the latter being a Poisson point process of intensity 8. In both cases, ¢ is
equivariant if and only if ¢ is equivariant.

The asymptotic mean transportation cost for ¢* measured with scale ¥ will coincide with the
asymptotic mean transportation cost for ¢* measured with scale ¥g(r) := 3 - 9B r):

B[ e—shdg=E [ (e —l)da
Rd x[0,1) Rd x[0,1)d

11



Figure 4: The left picture is a semicoupling of Lebesgue and 36 points with cost function
c(z,y) = |r — y[*. In the right picture, the five points within the small cube can choose new
partners from the mass that was transported to them in the left picture (corresponding to the
measure Ay4). If the semicoupling on the left hand side is locally optimal, then the points in the
small cube on the right hand side will choose from the gray region exactly the partners they
have in the left picture.

3 Uniqueness

Throughout this section we fix an equivariant point process u® : Q — M(R?) of subunit intensity
and with finite asymptotic mean transportation cost ¢s.

Proposition 3.1. Given a counting measure p € N'(R?) and a semicoupling q of £ and i, then
the following properties are equivalent:

(i) For each bounded Borel set A C RY, the measure 1gay 4q is the unique optimal semicoupling
of the measures Aa(.) :=q(-, A) and 1op (see Figure 4).

(ii) The support of q is c-cyclically monotone, more precisely,

n n
> elwinyi) < elwiyir)
i=1 i=1
for anyn € N and any choice of points (x1,y1), ..., (Tn, yn) in supp(q) with the convention

Ynt1 =y1 (cf (2.1)).

(i4i) There exists a density p : RY — [0,1] and a c-cyclically monotone map T : {p > 0} — R4
such that
g=(14.T). (p9) (3.1)
Recall that, by definition, a map T is c-cyclically monotone iff the closure of its graph
{(z,T(x)): =€ A“} is a c-cyclically monotone set.

Proof. The implications (iii) = (i1) = (¢) follow from Lemma 6.1.

(i) = (#ii):  Fix an exhaustion (B.), of R? by boxes, say B/, = [-2""!,2""1)4. For each
n € N, let p, be the density of the measure A, := Ap/ on R?. This is the part of Lebesgue measure
from which the points inside of B}, might choose their 'partners’. Obviously, 0 < p, < pp+1 < 1.
Hence, lim,,_,o pn(z) = p(x) < 1 exists £—a.e..

12



Assuming (i), according to Proposition 6.3 (or, more precisely, a canonical extension of it for
semicouplings of p€ and o) there exists a c-cyclically monotone map T, : {p, > 0} — R? such
that

dq(z,y) = dor,(a)(y) pu(x)dL(x)  on R x By,

Since the left hand side is independent of n, we have
Thvr = T, on {p, > 0}.
This trivially yields the existence of

T := T}Lnolo T, on {p >0} := nlgn;o{pn},

defining a c-cyclically monotone map 7' : {p > 0} — R? with the property that

dq(x,y) = dop@)(y)p(r) d€(x).
O

Remark 3.2. Set A = {p > 0}. In the sequel, any transport map T : A — R? as above will be
extended to a map T : RY — R U {8} by putting T(x) := 0 for all v € R\ A where  denotes
an isolated point added to R (’point at infinity’, cemetery’). Then (3.1) simplifies to

q=(Id,T), (p€) onR%xRY (3.2)
Moreover, we put ¢(x,T(x)) = c(z,0) = 0 forx € RY\ A.
Definition 3.3. .

> A semicoupling Q = q°P of £ and u® is called locally optimal iff some (hence every) of
the properties of the previous proposition are satisfied for P-a.e. w € €.

> A semicoupling Q = ¢q°P of £ and u® is called asymptotically optimal iff

lim inf 2_nd€05t(1Rd><B/ Q) = Co
n— 00 "

for some exhaustion (B!), of R? by boxes B!, = B, (z,7).

> A semicoupling Q = ¢°P of £ and pu® is called equivariant iff for each z € Z% the measure
Q is equivariant under the diagonal action of Z%, i.e.

¢“(A,B) = ¢“T*(A+ 2z B+ 2),
for all z € Z¢ and A, B € B(R?).

> A semicoupling Q = q°P of £ and p® is called optimal iff it is equivariant and asymptoti-
cally optimal.

The very same definitions apply to couplings instead of semicouplings.

Remark 3.4. (i) Asymptotic optimality is not sufficient for uniqueness and it does not imply
local optimality: Given any asymptotically optimal semicoupling ¢®* and a bounded Borel set
A C R? of positive volume, choose an arbitrary coupling ¢4 of the measures ¢“(., A) and 14u~
— which are the marginals of ¢4 = lgay4¢¥. If p¥(A) > 2 (which happens with positive
probability) then one can always achieve that ¢4 is a non-optimal coupling and that it is different
from ¢4. Put

= q" +q1 — qi.
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Then ¢°® is an asymptotically optimal semicoupling of £ and u®. It is not locally optimal and it
does not coincide with ¢°.

(i)  Local optimality does not imply asymptotic optimality and it is not sufficient for unique-
ness: For instance in the case p = 2, given any coupling ¢* of £ and p® and z € R?\ {0}
then

dg*(z,y) = dg*(z + 2, y)
defines another locally optimal coupling of £ and p°. At most one of them can be asymptotically
optimal.

(iii)  Note that local optimality — in contrast to asymptotic optimality and equivariance — is
not preserved under convex combinations. We do not claim that local optimality and asymptotic
optimality imply uniqueness.

(iv) Local optimality links classical optimal transportation problems, optimal transportation
problems between finite measures, with optimal transportation problems between £ and a point
process by locally optimizing the semicouplings.

Given 7,7 € M(R?) with v(R?) > n(RY) we define the transportation cost by

Cost(v,n) :=inf {Cost(q) : ¢ € Is(y,n)}.

Similarly, given measure valued random variables v*,7® : Q@ — M(R%) and a bounded Borel set
A C R? we define the mean transportation cost by

Cost(~*,n°®) := inf {Cost(¢°P) : ¢¥ € [I;(v*,n") for a.e. w}.

Given a (semi-)coupling @@ = ¢°P of £ and p°P recall the definition of A% from Prop. 3.1. We
define the efficiency of the (semi-)coupling Q on the set A by

_ Cost(AY, Lap®)
effa(Q) :== Cost(lpay 4Q)

It is a number in (0,1]. The (semi-)coupling @ is said to be efficient on A iff eff4(Q) = 1.
Otherwise, it is inefficient on A.

Lemma 3.5. (i) Q is locally optimal if and only if eff4(Q) = 1 for all bounded Borel sets
ACRY,
(i) eff 4(Q) = 1 for some A C R? implies eff 4(Q) = 1 for all A’ C A.

Proof. (i) Let A be given and w € 2 be fixed. Then 1pa, 4¢“ is the optimal semicoupling of the
measures A4 and 14u“ if and only if

Cost(1gay 4¢”) = Cost (A, 1ap”). (3.3)
On the other hand, ff,(Q) = 1 is equivalent to
E [Cost(1gay 4¢°)] = E[Cost (A%, 1ap®)].

The latter, in turn, is equivalent to (3.3) for P-a.e. w € Q.
(i) If the transport ¢ restricted to R? x A is optimal then also each of its sub-transports (see
Theorem 4.6 in [Vil09]). O

Theorem 3.6. Every optimal semicoupling of £ and u®P is locally optimal.
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Proof. Assume we are given a semicoupling @ of £ and u®P which is equivariant and not locally
optimal. According to the previous lemma, the latter implies that there exist n € N and zq € Z¢
such that the semicoupling @ is not efficient on the box B, (z0) = 20 + [0,2™)%, i.e.

1= ¢ffp, () (Q) < 1.

By equivariance this implies ¢ffp, ,)(Q) =7 <1 for all 2 € Z%. Hence, for each z € Z¢ there
exists a measure-valued random variable cjj'gn ) such that (jgn 2) for a.e. w is a semicoupling of
A“én(z) and 1p ;yu” and more efficient than qgn(z) = lpax B, (z) - ¢*, i-e. such that

E [Cost(dh,.))] < n-E[Cost(ah, ()] -

Put

= ), e

z€(2n Z)4

Then §° is a semicoupling of £ and x® and for all z € (2" Z)¢

E Cost(lexBn(z)(I')} < U'E[Cost(lexBn(z)q') .

Equivariance of ¢* — together with uniqueness of cost minimizers on bounded sets — implies
equivariance of ¢* under the group (Q”Zd). In other words, @ = ¢°P is an (2"Zd)—equivariant
semicoupling of £ and u®P which satisfies

Cost(lpay g, Q) < 1+ Cost(lgayp, (@)
for all z € (2" Z)?. Additivity of the mean cost functional €ost(.) implies

Cost(lgayp,,, Q) < n- Cost(lgayp,,, Q)
for all k£ € Ny and therefore, due to Corollary 2.3(iii), finally

too < liminf Cost(lga, g, Q) < n-liminf Cost(lga, 5 Q)
k—o0

k—o0

with n < 1. This proves that () is not asymptotically optimal. ]

Lemma 3.7. Let ¢* = (id, T%).(p*£) be an optimal semicoupling between £ and pu®. Then,
P—a.s. we have p*(z) € {0,1} £—a.e..

Proof. Assume there is a n € N and B, (29) = 20 + [0,2")? such that on a set of positive P—
measure

q:«j = 1Rd><Bn(zO) dqw($7y) = (Zda Tw)*(p‘;:’g)

with 0 < p% < 1 on a set of positive £—measure. However, due to Propostion 6.3 this implies
that @) = ¢*PP is not efficient on B),(2) because it is possible to construct a semicoupling between
lwsoL and 1p, (.)pu* with less cost. By the same reasoning as in the last proof, this implies
that @ is not optimal. O

Hence, any optimal semicoupling can be written as ¢* = (id, T%),£ for some measurable map
T:AY - RIU{0} (cf Remark 3.2).

Theorem 3.8. There exists at most one optimal semicoupling of £ and p°P.
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Proof. Assume we are given two optimal semicouplings ¢} and ¢35. Then also ¢°® := %q{ + %qg is
an optimal semicoupling. Hence, by the previous theorem all three couplings — ¢f, ¢5 and ¢°* —
are locally optimal. Thus, for a.e. w by the results of Proposition 3.1 and the last Lemma there
exist maps T}, T5’, T% and sets AY, A%, A¥ such that

dorw(z)(y) Law(z) dL(z) = dg“(z,y)

1 1
— (50145 () + 3B (DL (0)) aSla)

This, however, implies T}’ (z) = T5'(z) for a.e. x € AY N A% and, moreover, Ay = A%. Thus
g7 = d5- H

Remark 3.9. Note that we only used equivariance under the action of Z?. However, the
minimizer is equivariant under the action of R%. For the uniqueness it would also have been
sufficient to require equivariance under the action of kZ? for some k € N.

Theorem 3.10. (i) If pu® has unit intensity then every optimal semicoupling of £ and u® is
indeed a coupling of them.
(ii) Conversely, if an optimal coupling exists then u® must have unit intensity.

This theorem is in a similar spirit as Theorem 4 in [HHPO06].

Proof. (i) Let @ be an optimal semicoupling. For n € N put B,(z) = z + [0,2")¢ and consider
the saturation oy, := 27%Q(By(2) x Bi(z) x Q) < 1. Note, that ay is independent of z € Z4.
Hence, we have oy, < ay11. Indeed, By 1(z) is the disjoint union of 2¢ cubes By (y;) for suitable
y;. Therefore,

2d

a1 > 274> 27MQ(B(y;) x Bil(yy) x Q) = oy

j=1
Thus, the limit coo := limy_, oo v exists and we have ay € (0, 1].
Since p® has unit intensity and since @ is a semicoupling we have Q(R? x By, x Q) = 2F¢. Let us
first assume that a < 1 and choose r = [(1+ 3(1 — aoo))/? —1]/2. Then for all k € N mass of
a total amount of at least (1 — as)2%¢ has to be transported from CBy into By. The volume of
the (r2¥)-neighborhood of the box By is less than 3(1 — )2, Hence, mass of total amount
of at least %(1 — (100 )2"? has to be transported at least the distance 2. Thus, we can estimate
the costs per unit from below by

1
gk / (2,y) dO(m, ) > (1= am)d(r2b).
Rax By, xQ 2

The right hand side diverges as k tends to infinity which contradicts the finiteness of the costs
per unit. Thus, we have an = 1. Furthermore, for all k there is a u € By (0) such that

ap = 27de(Bk(O) X Bk(O) X Q) = o Hd Z Q(B()(U) X Bk(O) X Q)
vE By (0)NZ4

Q(Bo(u) x Bi(0) x Q) < Q(Bo(u) x RY x Q).

IN

However, by translation invariance (equivariance plus stationarity) the quantity Q(Bg(u) x R% x
Q) is independent of u. Moreover, it is bounded above by 1 as @ is a semicoupling. Hence, we
have for all v € R%:

1 =limsup oy, < Q(By(v) x R x Q) < 1.

k—o0

Therefore, () is actually a coupling of the Lebesgue measure and the point process.
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(ii) Assume that @ is an optimal coupling and that 8 < 1. Then a similar argumentation as
above yields that for each box By, Lebesgue measure of total mass > (1 — f3) - 2kd hag to be
transported from the interior of By, to the exterior. As k tends to 0o, the costs of these transports
explode. O

Corollary 3.11. In the case ¥(r) = 12, given an optimal coupling ¢* of £ and a point process
©® of unit intensity then for a.e. w € Q there exists a convex function ¢ : R* = R (unique up
to additive constants) such that

¢ = (1d,V¥), £.

In particular, a ’fair allocation rule’ is given by the monotone map T = V».
Moreover, for a.e. w and any center { € Z(w) := supp(u®), the associated cell

SU() = (T*)"'({eh)

is a convex polyhedron of volume u®(§) € N. If the point process is simple then all these cells
have volume 1.

Proof. By Proposition 3.1 we know that T = lim,,_,», 7, where T} is an optimal transporta-
tion map from some set A% to B,,. From the classical theory (see [Bre91, GM96]) we know that,
T = V¥ for some convex function ¢%. More precisely,

pp(r) = max (2% — |z — & /2+be)
€5 (w)NBy,

for some constants be. Moreover, we know that 7" , = T}Y on A} for any k € N. Fix any

€ € E(w). Then, there is n € N such that & € B,,. Then, (T¥,,)~ (&) = (T¥)"(&) for any
k € N. Furthermore,

TE(x) =& <& —lv—6&f/2+bgy>—|o—¢€7/2+b VEEE(W)NB,, &+ &.

For fixed & # &y this equation describes two halfspaces separated by a hyperplane (defined by
equality in the equation above). The set S“(&) is then given as the intersection of all these
halfspaces defined by &y and £ € Z(w) N B;L. Hence, it is a convex polytope. Moreover, the last
inequality is exactly the defining equation for a Laguerre tessellation wrt supp(u®) and weights
be (see [LZ08]). O

4 Construction of Optimal Semicouplings

Again we fix an equivariant point process u® : © — M(RY) of subunit intensity and with finite
asymptotic mean transportation cost ¢.

4.1 Second Randomization and Annealed Limits

The crucial step in our construction of an optimal coupling of Lebesgue measure and the point
process will be the introduction of a second randomization, — besides the first randomness
modeled on the probability space (£2,2(,P) which describes the random choice w — p“ of a
realization of the point process. The second randomization describes the random choice v —
(Bn(2,7))en of an increasing sequence of boxes containing a given starting point z € Z% (see
also section 2.7). It is modeled on the Bernoulli scheme (T, B(T),v) with I' = ({0, 1}9)N, B(T")
its Borel o-field and v the uniform distribution on T' = ({0, 1}%)Y (or, more precisely, the infinite
product of the uniform distribution on {0, 1}9).

For each z € Z% v € T and k € N, recall that Q By (z,y) denotes the minimizer of Cost among
the semicouplings of £ and (1, ;) #*)P as constructed in Theorem 2.1. Equivariance of this
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minimizer implies that Qp, . (4, B,w) = Qpen(A+2z—2,B+2z—2 w+z—2) for
all 2,2/ € Z% and A, B € B(M). Put

dQl;(ZL‘,y,w) = /dQBk(z,v) (IE, va)dy(f)/)
r
and dng(x,y,w) = 1B0(z)(y)dQ’§(mava)

The measure ng defines a semicoupling between the Lebesgue measure and the point process
restricted to the box By(z). It is a deterministic, fractional allocation in the following sense:

e it is a deterministic function of u* and does not depend on any additional randomness
(coming e.g. from dv(7))

e the measure transported into a given point of the point process has density < 1.

The last fact of course implies that the semicoupling Qk is not optimal. The first fact implies
that all the objects derived from Qk in the sequel — like Q°° and QQ°° — are also deterministic.

Lemma 4.1. (i) For each k € N and z € 74

/ (2, 9)dQ¥ (z,y,w) < oo

RdXBo(z)XQ
(i) The family (Qlj)keN of probability measures on R% x R x Q is relatively compact in the
weak topology.
(iii) There exist probability measures Q° and a subsequence (k;)ien such that for all z € 7.%:
Ql;” — QZO weakly as | — oo.

Proof. (i) Let us fix z € Z¢ and start with the important observation: For given n € N the
initial box By(z) has each possible 'relative position within By (z,7)’ with equal probability.
Hence, together with translation invariance of Qp, (. ) (Which in turn follows from equivariance
and sationarity of IP) we obtain

c(:c,y)dQ';(:c,y,w) - / / c(xvy)dQBk(z,'y) ('xayaw)dy(’)/)

R4 x By (2)xQ T' RéxBo(2)x€2
_ g—kd Z / c(x,y)dQp, (») (7, y,w)
v€By(2)NZ4 R x Bo(v)xQ

= 27 / c(x,y)dQp, () (x, y,w)
RdXBk(Z)XQ
= ¢t < Coo-

(ii) In order to prove tightness of (Q )keN, let

Kp:={yeRy: inf |z—y|<m}
z€By(2)

denote the closed m-neighborhood of the unit box based at z. Then

k 1 k
QUK x Bo(:) x ) < s | g SR 9,0
1
= o)
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Since ¥(m) — oo as m — oo this proves tightness of the family (Q*)reny on R x R x Q. (Recall
that Q was assumed to be compact from the very beginning.)

(iii) Tightness yields the existence of Q;’O and of a converging subsequence for each z. A stan-
dard argument ('diagonal sequence’) then gives convergence for all z € Z¢ along a common
subsequence. O

Lemma 4.2. (i) For each r > 0 there exist numbers ey (r) with e(r) — 0 as k — oo such that
for all z,2' € Z% and all k € N

/ Qo (A) dv(y) < / Qoo (A) dv(y) + x|z — 2']) - 5up Qs (o1 (A)
I I Y

for any Borel set A C R% x R% x Q.
(i4) For all z1,...,2n € Z%, all k € N and all Borel sets A C R?

m

> QE(AXRIxQ) < (1 +) enller - zi|)> - £(A).
i=1 i=1
Proof. (i) Firstly, note that for each z,2' € Z% k € N,y € I':

Z € By(z,7) <<= 37 : B(z,7) = Be(¢.7)

and in this case

v({y' : Br(2,7) = Bi(z,m)}) = 27
Moreover,

v({y : 2 ¢ Be(z,7)}) < ex(lz—7])

for some ey (r) with e (r) — 0 as k — oo for each r > 0. It implies that for each pair z, 2’ € Z¢
and each k € N

v({v €T : 3V @ B(z,7) = Br(z',7)}) > 1—erl(lz—7]).
Therefore, for each Borel set A € R? x R4 x

/ Qp(v (A dv(y) < / QB () (A) dv(7) +er(lz = 2']) - sup Q. (4 (A)-
r r gl

(ii) According to the previous part (i), for each Borel set A C RY

ZQZ(A x R% x Q)

i=1

= 3 [ @riey (A% Bole) x ()
i=1 7T

< ) [/F @By (21,7) (A X Bo(zi) x Q) dv(y) + ex(lz1 — zi) - Sup @By, (21,7 (A X Bo(2i) x Q)
i=1 Ve
< Quam(AX R x Q)+ “ep(lz1 — 2) - £(A)
i=1
<

(1 + ) enller - zi|)> - £(A).
=1
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Theorem 4.3. The measure Q> := 3 ;4 Q‘Zx’ is an optimal semicoupling of £ and u®.

Proof. (i) Second/third marginal: For any f € C;” (R? x Q) we have due to Lemma 4.1

/ £y 0)AQ™ (2, y, )
RIx
= Z/Rxﬂ y7 dQ (1‘ y,w )

2€74

— Y jm / £y, w)dQR (2, w)
ez —00 JRAx )

- Z /Rde f(y’w)lBo(z)( )d<M.P)(yaw>

2€7Z4

— / £, ) (P (3,0).
RIx

(ii) First marginal: Let an arbitrary bounded open set A C R? be given and let (2;);cn be an
enumeration of Z¢. According to the previous Lemma 4.2, for any m € N and any k € N

ZQkAdexQ <1+Z€k|zl—zz|> £(A).

=1

Letting first k£ tend to oo yields

iQ;j(A x R? x Q) < £(A).

i=1

Then with m — oo we obtain
Q¥ (A xR x Q) < £(A)

which proves that (7).Q> < £.

(iii) Optimality: By construction, Q> is Z%—equivariant. Due to the stationarity of P, the
asymptotic cost is given by

Lo @@ wne) = X[ el a0 e

274 4xBo(0
- o) QT ) < e
RdXBo() Q

Here the final inequality is due to Lemma 4.1, property (i) (which remains true in the limit
k = 00), and the last equality comes from the fact that

/ c(x,y) dQ%(z,y,w) =0
]RdXBo(u) Q

for all z # u and for all k£ € N (which also remains true in the limit k& = 0c0). O

Corollary 4.4. (i) For k — oo, the sequence of measures QF = > Q’;, k € N, converges
2€Z4
vaguely to the unique optimal semicoupling QQ°°.

(ii) For each z € 7 the sequence (Q¥)ren converges vaguely to the unique optimal semicoupling

Q™.

20



Proof. (i) A slight extension of the previous Lemma 4.1(iii) + Theorem 4.3 yields that each
subsequence (Q*),, of the above sequence (Q*); will have a sub-subsequence converging vaguely
to an optimal coupling of £ and ©®. Since the optimal coupling is unique, all these limit points
coincide. Hence, the whole sequence (Q*); converges to this limit point (see e.g. [Dud02], Prop.
9.3.1).

(ii) Lemma 4.2 (i) implies that for z, 2/, u € Z¢ and every measurable A C R? x R% x

1Q5(AN (R x By(u) x Q) — Q% (AN (R? x By(u) x Q)

< ez —7)- supd QB,(w) (AN (R4 x By(u) x Q))
vEZ
< ez =2 =0

as k — co. Hence, for each f € C.(R? x R? x Q) and each 2’ € R?

> [ ) 1y )dQE [ Flaw)d@h| o,

2€74
That is, | [ fdQ* — [ fdQY| — 0 as k — <. O

Corollary 4.5. We have ¢ = inﬁ Coo(q®) where s denotes the set of all semicouplings q°
q‘e s

of £ and p®. In particular, the following holds

P | .
Anf - liminf @E [ /R ien c(z,y)dq (x,y)]

1

= liminf inf —FE . .
e e, €(By) [/Rden c(x,y) dg (w,y)]

Proof. The optimal coupling () constructed in the previous Theorem has mean asymptotic trans-
portation cost bounded above by ¢o,. Thus, we have inﬁ Coo(q®) < too. Together with Lemma
q*€lls

2.3, this yields the claim. O

4.2 Quenched Limits

According to section 3, the unique optimal semicoupling between d£(x) and du“(y) dP(w) can
be represented on R x R? x Q as

dgfm(xayauo ::déT(x#O(y)dg(x)dP(w)

by means of a measurable map
T:R?x Q — R?U {d},

defined uniquely almost everywhere. Similarly, for each z € Z% and k € N there exists a

measurable map
T.r:REXxQxT — RIU {8}

such that for each v € I" the measure

dQBy(z7) (T, Y, W) = dOT,  (2,0,7)(¥) dL(2) dP(w)
on R% x RY x € is the unique optimal semicoupling of d€(x) and 1B, (27 (y) du (y) dP(w).
Proposition 4.6. For every z € Z¢

T, p(z,w,y) — T(z,w) as k— o0 locally in £®P® v-measure.
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The claim basically relies on the following lemma which is a slight modification (and extension)
of a result in [Amb03].

Lemma 4.7. Let X,Y be locally compact Polish spaces, 6 a Radon measure on X and p a
metric on Y compatible with the topology.

(i) For alln € N let T,,, T : X =Y be Borel measurable maps. Put dQn(v,y) := dég, ) (y)d0(x)
and dQ(x,y) := dop(y)(y)do(z). Then,

T, — T locally in measure on X <= @, — Q vaguely in M(X xY).

(i) More generally, let T and Q) be as before whereas

AQu(w.9) = [ dbr, ) 40 (&") B
for some probability space (X', A',0") and suitable measurable maps T,, : X x X' =Y. Then
Qn — Q vaguely in M(X xY) = T,(z,2') = T(x) in measure on X x X'.

Proof. (i) Assume T,, — T in f-measure. Then also f o (Id,T,) — f o (Id,T) in #-measure for
any f € C.(X xY). Therefore, by the dominated convergence theorem we have

/fxden—/fa?T d9—>/fa:T dﬁ—/fxy

This proves the vague convergence of @, towards Q

For the opposite direction, fix K C X compact and ¢ > 0. By Lusin’s theorem there is a compact
set K C K such that T'|x is continuous and (K\K) <e. Put n: Ry — Ry, t— 1 At| /e. The
function

o(z,y) = 1 (2)n(p(y, T(x)))

is upper semicontinuous, nonnegative and compactly supported. Hence, there exist ¢; € C.(X x
Y) with ¢; N\, ¢. By assumption, we have for each [

/ o(x,4)dQn(z,y) < / o1, )dQn (2, y) "5 / o, )dQ(, y).

Moreover,
l

/aﬁz(w’y)dQ(x’y) 1°°/¢(x,y)dQ(x,y) =0.

Therefore, lim, o [ ¢(z,y)dQn(x,y) = 0. In other words,

lim [ Lic(a)n(p(Tu(x), T(x)))d6(x) = 0.

n—oo

This implies limy, oo 0({x € K : p(T},(x),T(z)) > €}) = 0 and then in turn
ILm 0({x € K : p(T(x),T(x)) > 2}) = 0.

(ii) Given any compact K C X and any € > 0, choose ¢ as before. Then vague convergence
again implies limy, o [ (2, y)dQy(x,y) = 0. This, in other words, now reads as

lim / // L (z)n(p(Tp(z,2"), T(2))) do' (") df(z) = 0.

n—o0 X

Therefore,
Tim (02 ') ({(x,x’) e K x X' p(Tp(z,2), T(z)) > zg}) —0
This is the claim. O

22



Proof of the Proposition. Fix z € Z¢ and recall that

Q* — Q> vaguely on R? x R?

where
Q™ (.%', Y, w) = ddT(z,w) (y) d£($) d]P)(w)
and
dQ’; (l’, Y, w) = /F dQBk (z,7) (x7 Y, w) dy(’Y) = /F dészk(z,w,’y) (y) dﬁ((]}) dP(w) dV(fY)

with transport maps 7 : R x Q — RIU {0} and T, : R? x Q x I' — R?U {0} as above.
Apply assertion (i) of the previous lemma with X := R? x Q, X’ = I'Y = R? U {3} and
0=SoP,0 = . 0

Actually, this convergence result can significantly be improved.

Theorem 4.8. For every z € Z% and every bounded Borel set M C R?
(LoPev)({(r,w,7) e M xQxT: T, p(z,w,y) # T(z,w)}) = 0.

lim

k—00
Proof. Let M as above and € > 0 be given. Finiteness of the asymptotic mean transportation
cost implies that there exists a bounded set M’ C R? such that

(LoP) ({(z,w) e M xQ: T(z,w) ¢ M'}) <e.

Given the bounded set M’ there exists § > 0 such that the probability to find two distinct
particles of the point process at distance < §, at least one of them within M’ is less than ¢, i.e.

P <{w Ay, ) e M xR 0< ly—v| <0, p{y}) >0, p{y'}) > 0}) <e.

On the other hand, Proposition 4.6 states that with high probability the maps 7" and T}, ;, have
distance less than §. More precisely, for each § > 0 there exists kg such that for all k£ > kg

LoPov)({(z,w,7) e M x AxT: |T,p(z,w,y) —T(z,w)| > d}) <e.

Since all the maps T" and T, j, take values in the support of the point process (plus the point 0)
it follows that

(LP@v)({(z,w,7) e M x QA xT: T, p(z,w,vy) # T(r,w)}) <3e
for all k& > k. ]
Corollary 4.9. There exists a subsequence (k;); such that
Top(z,wy) — T(zw) as [ — oo

for almost every x € R%, w € Q, v € T and every z € Z%. Indeed, the sequence (T y,); is finally
stationary. That is, there exists a random variable I, : R x Q x I' = N such that almost surely

Top(r,w,y) = Tlew)  forall 1>1.(z,w,7).

Corollary 4.10. There is a measurable map T : M(R?) — M(RY x RY) s.t. ¢ := Y (u®) de-
notes the unique optimal semicoupling between £ and p*. In particular the optimal semicoupling
is a factor coupling.

Proof. By Theorem 2.1, the maps T are measurable with respect to the sigma algebra gen-
erated by pu®. By Theorem 4.8, the optimal transportation map 7 is also measurable with
respect to the sigma algebra generated by p®. Because the optimal semicoupling ¢® is given by
¢ = (id, T%),L, it is also measurable with respect to the sigma algebra generated by u®. Thus,
there is a measurable map Y such that ¢* = T (u®). O
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5 Estimates for the Asymptotic Mean Transportation Cost of a
Poisson Process

Throughout this section, u® will be a Poisson point process of intensity 8 < 1. The asymptotic
mean transportation cost for p* will be denoted by

Coo = c00(197(1’ ﬁ)

or, if ¥(r) = rP, by ¢ (p,d,3). We will present sufficient as well as necessary conditions for
finiteness of ¢s,. These criteria will be quite sharp. Moreover, in the case of LP-cost, we also
present explicit sharp estimates for ¢.

To begin with, let us summarize some elementary monotonicity properties of ¢ (9, d, 3).

Lemma 5.1. (i) 9 <9 implies ¢ (¥, d, B) < oo (9, d, B).

zg:g < 00 and ¢ (9, d, B) < oo imply cso(V,d, B) < 00.

(i) If 9 = @ oV for some convexr increasing ¢ : Ry — Ry then ¢ (87 eso(V,d, B)) <
B~ oo (0, d, B).

(iii) B < B implies coo(V, d, B) < coo(, d, B).

Proof. (i) is obvious. (ii) If § denotes the optimal semicoupling for ¥ then Jensen’s inequality
implies

More generally, limsup,._, -,

@) = R [ @) datey)

> o[ E / Iz —yl) dae,y) | = o8 e (9, d, B).
Rdx[0,1)4

(iii) Given a realization 7i* of a Poisson point process with intensity 5. Delete each point
¢ € supp[i*] with probability 1 — 3/, independently of each other. Then the remaining point
process u® is a Poisson point process with intensity 8. Hence, each semicoupling g* between £
and 1% leads to a semicoupling ¢“ between £ and u“ with less or equal transportation cost: the
centers which survive are coupled with the same cells as before.) O

5.1 Lower Estimates

Theorem 5.2 ([HLO1]). Assume 8 =1 and d < 2. Then for all translation invariant couplings
of Lebesgue and Poisson

E [/ |z — y|%/? dq'(x,y)] = 0.
R x[0,1)d

Theorem 5.3. For all 5 <1 and d > 1 there exists a constant k' = k'(d, ) such that for all
translation invariant semicouplings of Lebesque and Poisson

[, e (wle ) dq'(az,w] = co.
Rdx[0,1)¢

The result is well-known in the case 8 = 1. In this case, it is based on a lower bound for the event
"no Poisson particle in the cube [—r,7)%" and on a lower estimate for the cost of transporting
the Lebesgue measure in [—7/2,7/2)¢ to some distribution on R? \ [—r, )9

oo > €XP <—(2r)d) - <g> 274,
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Hence, ¢o, — 00 as r — oo if 9(r) = exp(x/ r?) with ' > 2%,
However, this argument breaks down in the case 8 < 1. We will present a different argument
which works for all 5 < 1.

Proof. Consider the event ”more than (3r)¢ Poisson particles in the box [—r/2,7/2)%" or, for-
mally,

) = {u* (I=r/2.r/2)") = 3r)} .

Note that Ep® ([-r/2,7/2)%) = Br¢ with 3 < 1. For w € Q(r), the cost of a semicoupling
between £ and 1j_, /5, /9)ap* is bounded from below by

¥(r/2) . pd

(since r¢ Poisson points — or more — must be transported at least a distance 7/2). The large
deviation result formulated in the next lemma allows to estimate

P(Q(ry)) > e k"
for any k > I5(3%) and suitable 7, — co. Hence, if 9(r) > exp(x’r?) with &’ > 2¢ - k then
oo > P(Q(rp)) - 9(r/2) > exp((k'27% — k)rd) = o0
as r — 0o. O

Lemma 5.4. Given any nested sequence of bozves By(z,7) C R? and t > f3

lim
o 9nd

with I5(t) = tlog(t/B) —t+ p.

08P | o " (Bl ) 2 1] = 150

Proof. For a fixed sequence By(z,7), n € N, consider the sequence of random variables Z,,(.) =

u1®(Bn(z,7)). For each n € N
Zn= > X

i€ B (2,7)NZ4
with X; = p®(Bo(7)). The X; are iid Poisson random variables with mean 5. Hence, Cramér’s
Theorem states that for all ¢t >

1

|
liminf — logP [2nd Zn > t} > I5(t)

n—oo 2nd
with
I5(t) = sup [tz — log fi(x)] = tlog(t/B) —t + 5.

5.2 Upper Estimates for Concave Cost

In this section we treat the case of a concave scale function . In particular this implies that
the cost function c(z,y) = ¥(|z — y|) defines a metric on R?. The results of this section will be
mainly of interest in the case d < 2; in particular, they will prove assertion (ii) of Theorem 1.3.
It suffices to consider the case 8 = 1. Similar to the early work of Ajtai, Komlés and Tusnady
[AKT84], our approach will be based on iterated transports between cuboids of doubled edge
length.

We put

O(r) = /OT ¥(s)ds and e(r):=sup Ik (5.1)
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5.2.1 Modified Cost

In order to prove the finiteness of the asymptotic mean transportation cost, we will estimate the
cost of a semicoupling between £ and 144°* from above in terms of the cost of another, related
coupling.

Given two measure valued random variables v§, 13 : Q — M(RY) with v¥(R?) = v§'(R?) for a.e.
w € Q) we define their transportation distance by

Wy(vr,1v2) := / Wy (v, vs) dP(w)
Q
where
Wy (n1,m2) = inf {/ I(|x —y|) dg(z,y) : q is coupling of 71, 772}
R4 xR4

denotes the usual L!'-Wasserstein distance — w.r.t. the distance ¥(|z — y|) — between (not
necessarily normalized) measures 71,72 € M(RY) of equal total mass.

Lemma 5.5. (i) For any triple of measure-valued random variables v$,vs,v5 : Q — M(R?)
with ¥ (RY) = 1§ (RY) = 14 (R?) for a.e. w € Q we have the triangle inequality

Wy (v1,v3) < Wy(v1,v2) + Wy(va, v3).

(ii) For each countable family of pairs of measure-valued random variables vy, ,vs, :  —
MR with v, (RY) = 1§, (R?) for a.e. w € Q and all k we have

Wy (Z Z0 ZVQ.,k> < Zwﬁ (x> vap) -
A % A

Proof. Gluing lemma (cf. [Dud02] or [Vil09], chapter 1) plus Minkowski inequality yield (i); (ii)
is obvious. 0

For each bounded measurable A C R? let us now define a random measure v% : Q — M(R?) by

= -1 L.

Note that — by construction — the measures v/ and 14 u have the same total mass. The modified
transportation cost is defined as

~

Calw) = inf{/c(m,y)d@(m,y) : q is coupling of 14 and 14 u“’} = Wy(vg, 1ap®).

Put n
& =27 E|[Cp, |

with B, = [0,2")? as usual.

5.2.2 Semi-Subadditivity of Modified Cost

The crucial advantage of this modified cost function C. is that it is semi-subadditive (i.e. sub-
additive up to correction terms) on suitable classes of cuboids which we are going to introduce
now. For n € No,k € {1,...,d} and i € {0,1}* put

By = 10,2")F x [0,2" TR 4 2m  (3y, .. iy, 0,...,0)
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These cuboids can be constructed by iterated subdivision of the standard cube B,,1; as follows:
We start with B,,+1 = [0,2"T1)? and subdivide it (along the first coordinate) into two disjoint

congruent pieces B(-121 =[0,2") x [0,2"*+1)4=1 and BW BT(Z(QI +2"-(1,0,...,0). In the k-th

n+1l —
step, we subdivide each of the B ; = Br(fjr’l “i-1) for i € {0,1}*~1 along the k-th coordinate
into two disjoint congruent pieces BT(ZZl =19) and Bfﬁr’l -1l After d steps we are done.

Each of the BY 4 for i € {0, 1}¢ is a copy of the standard cube B,,, more precisely,
1 =DBy 42"

Lemma 5.6. Given n € No,k € {1,...,d} and i € {0,1}* put Dy = Bf:}r’l oik—1,0) .Dy =
Bfﬁ’i"’zk*l’l) and D = Do U Dy = Bfﬁ’i"’lk’l). Then

Wy (vp, + Vb, , vp) < 27 (MTD@(2nH1)2d/2(n41)=k/2,
with © as defined in (5.1).

Proof. Put Zj(w) := p¥(D;) for j € {0,1}. Then Zy, Z; are independent Poisson random
variables with parameter ag = a3 = £(D;) = 29" *V=F and Z := u(D) = Zy + Z; is a Poisson
random variable with parameter o = 2d(nt1)—k+1

The measure vp has densfoy 2 on D whereas the measure vp := vp, + vp, has density % on
the part Dy C D and it has den81ty 221 on the remaining part Dy C D. If Z = 0 nothing has to
be transported since v already comc1des with v. Hence, for the sequel we may assume Z > 0.
Assume that Zg > Z;. Then a total amount of mass 2054L uniformly distributed over Dy, will
be transported with the map

n+1
2 _xlmkarl?"'uxd)

T : (:L'l, ey X1, Ty Tt 1y - - - ,Hfd) — (acl, ey Lh—1,
from Dy to D1. The rest of the mass remains where it is. Hence, the cost of this transport is

20— 2]y [* (4 gy day = 20 D02 ) - 2 — 2
g F ) 0@ - 2w da = (2"7) 120 = 2.

Hence, we get

Wy (7p,vp) = 2*<“+2>@(2n+1) E(|Zo — Z1]]
< —(n+1) 9(2n+1) .E HZO _ QOH
< o—(n+1) @<2n+1> ) 04(1)/2 _ 2—(n+1)@(2n+1)Qd/Q(n+1)—k/2_
O
Proposition 5.7. For all n € N and arbitrary dimension d the following holds
Proof. By definition
Wy (1Bn+1.“a VBn+1) = 2d(n+1) G n+1
and it is easily observed that
Wy [ 1p,m, Y ve | < Y Wy(lgimrvp) =27 Wy (1p,uvs,) =243,
1€{0,1}¢ i€{0,1}¢
Hence, by the triangle inequality for Wy an upper estimate for ¢,y; — ¢, will follow from an

n+1l J°

upper bound for Wy (Zie{ojl}d Vpi , VB
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In order to estimate the cost of transportation from v(g := Zie{o,l}d vpi to vy = vp,,, for
fixed n € Ny, we introduce (d — 1) further ('intermediate’) measures
vm = Y Vs,
ie{0,1}*
and estimate the cost of transportation from vy to v,y for k € {1,...,d}. For each k, these

cost arise from merging 281 pairs of cuboids into 2571 cuboids of twice the size. More precisely,
from moving mass within pairs of adjacent cuboids in order to obtain equilibrium in the unified
cuboid of twice the size. These costs — for each of the 2¥~! pairs involved — have been estimated
in the previous lemma:

W (v 1)) < 2k=1. W, (VBZ_’O VgV ) < ok=1. 9=(n+) g(gn+1yod/2nt1)=k/2

n+1 n+1
for k € {1,...,d} (and arbitrary i € {0,1}*~1). Thus

2d(n+1) i [/En+1 _’c\n] < qu (1Bn+1,u, V(O)) — Wq? (1Bn+1:UJ7 V(d))

d
< > Wo (W v)
k=1
d
< Z 2k/2 . 2—(n+2)@(2n+1)2d/2(n+1)
k=1

< 4. 2(n+2)(d/271) . 9(2n+1)

which yields the claim. O
Corollary 5.8. If 3 2-(»+DA/24)9(27+1) < o0, we have
n>1
Too = lim ¢,
n—oo

exists and is finite.

Proof. According to the previous Proposition

s - d
lim T, < Ty + > DR ggmt), (5.2)
m>N
for each N € N. As the sum was assumed to converge the claim follows. O

5.2.3 Comparison of Costs
Recall the definition of ¢, from section 2.7.
Proposition 5.9. For all d € N and for all n € Ny
¢, < T+ @-5(2”).

Proof. Let a box B = B, = [0,2")? for some fixed n € Ny be given. We define a measure-valued
random variable A% : Q — M(R?) by

A =1, -8

B(w)

with a randomly scaled box B(w) = [0, Z(w)V/4)? ¢ R? and Z(w) = p(B). Recall that Z is a
Poisson random variable with parameter o = 2"¢. Moreover, note that

AB(RT) = 1(B) = vi(RY)
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and that A% < £ for each w € Q. Each coupling of A% of 151, therefore, is also a semicoupling
of £ and 1pu*. Hence,
2nd - Cp S ng()\B, lB,u).

On the other hand, obviously,

ond ¢ — Wy(vp, 1pp)

and thus
ond (Cn — /C\n) < Wﬂ(VB, )\B).

If Z > «a a transport Tivp = Ap can be constructed as follows: at each point of B the portion %

of v remains where it is; the rest is transported from B into E\B . The maximal transportation
distance is vd - ZY/?. Hence, the cost can be estimated by

9 (\/&- zl/d) (Z - a).

On the other hand, if Z < « in a similar manner a transport T/\Ag = vg can be constructed
with cost bounded from above by

9 (\/g-al/d) (a—2).
Therefore, by definition of the function £(.)
E [19 (\/&(Z v a)l/d> Z - a@
< e al/d> Vd-E [(Z\/oz)l/2 . |Z—oz|]

< <
(

IN

Wy (vB, AB)

1/2
< ¢ al/d) Vd-E[Z+a]? E [|Z—a|2}
1/2

= (2 Vd- [2~2”d-2nd] .

This finally yields
tn — G < 27 Wy (vp, Ag) < e(2) - V2d.
O
Theorem 5.10. Assume that
= 00

then
Coo < Too < 00.

Proof. Since

> J(r) — 62"
/1 Trapdr <o = 2_312n(1+d/2)<oo,

Corollary 5.8 applies and yields t,, < oo. Moreover, since 1 is increasing, the integrability
condition (5.3) implies that

I(s)
ge(r)=sup—7 — 0
(r) P 7
as r — oo. Hence, ¢s, < Co by Proposition 5.9. O

The previous Theorem essentially says that cs, < 0o if 9 grows ’slightly’ slower than r%2. This
criterion is quite sharp in dimensions 1 and 2. Indeed, according to Theorem 5.2 in these two
cases we also know that co = 00 if ¥ grows like 7%2 or faster.
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5.3 Estimates for LP-Cost

The results of the previous section in particular apply to LP-cost for p < d/2 in d < 2 and to
LP-cost for p < 1in d > 3. A slight modification of these arguments will allow to deduce cost
estimates for LP cost for arbitrary p > 1 in the case d > 3.

In this case, the finiteness of ¢, will also be covered by the more general results of [HP05], see
Theorem 1.3 (i). However, using the idea of modified cost we get reasonably good quantitative
estimates on ¢s. Throughout this section we assume 5 = 1.

5.3.1 Some Moment Estimates for Poisson Random Variables

For p € R let us denote by [p]| the smallest integer > p.

Lemma 5.11. For each p € (0,00) there exist constants C1(p), Ca(p), Cs(p) such that for every
Poisson random wvariable Z with parameter o > 1:

(i) E[ZP] < Ci(p) - aP, where one can choose C1(1) =1, C1(2) = 4.
For general p one may choose C1(p) = [p]? or Ci(p) =2P~ - ([p] — 1)L

(ii} E [Z_p : 1{Z>0}] < Cg(p) -a”P.
For general p one may choose Ca(p) = ([p] + 1)!.

(iii) B[(Z — a)P] < C3(p) - aP/?, where one can choose C3(2) =1, C1(4) = 2.
For general p one may choose Cy = 2P~ - (2[5] — 1)!.

Proof. In all cases, by Holder’s inequality it suffices to prove the claim for integer p € N.

(i) The moment generating function of Z is M (t) := E[e'?] = exp (a(e’ — 1)). For integer p, the
p-th moment of Z is given by the p-th derivative of M at the point ¢t = 0, i.e. E[ZP] = M®)(0).
As a function of «, the p-th derivative of M is a polynomial of order p (with coefficients depending
on t). As a > 1 we are done.

To get quantitative estimates for Cq, observe that differentiating M (¢) p times yields at most
2P~! terms, each of them having a coefficient < (p — 1)! (if we do not merge terms of the same
order). Thus, we can take C7 = 2P~1. (p — 1)\

Alternatively, we may use the recursive formula

Tui(a) = a kg (17

for the Touchard polynomials T, (c) := E[Z"], see e.g. [Tou56]. Assuming that Tj(a) < (ka)*
for all k =1,...,n leads to the corresponding estimate for k = n + 1.

(iii) Put p = 2k with integer k. The moment generating function of (Z — «) is

l(g

24472
PR+ 2 (5

N(#) = exp (a(e' — 1 — t)) = exp (%t%(t)) 1 Yepe i VOR3(t) + . ..

2 2°2
with h(t) = t%(et — 1 —t). Hence, the 2k-th derivative of N at the point ¢ = 0 is a polynomial
of order k in . Since a > 1 by assumption, E[(Z — a)?*] = N@¥(0) < C3 - oF for some Cs.
To estimate C3, again observe that differentiating N (t) (2k) times yields at most 22! terms.

Each of these terms has a coefficient < (2k — 1)! (if we do not merge terms). Hence we can take
C3(2k) = 22F=1. (2k — 1)\
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(ii) The result follows from the inequality

1 (kE+1)l!
i R S
¢ = (k+x)!

for positive integers k and x. The inequality is equivalent to

zr—1/) —

For fixed k the latter inequality holds for = 1. If x increases from x to £+ 1 the right hand side
grows by a factor of (’CTH)kJr1 and the Lh.s. by a factor of 4L Ag (z 4+ k+1)2F < (z+1)F1,
the inequality holds. Then, we can estimate

E{l'lm} = E[( b >'1Z>°]

Zk Z+1)---(Z+k
e = (k+1)!
= € - 7 ;
;]! G+1)---(G+k)
! X itk !
a st (J+Ek)! e
If we choose k = [p] this yields the claim. O

5.3.2 LP-Cost for p>1ind >3

Given two measure valued random variables v§,v3 : Q — M(RY) with v¥(R?) = v§'(R?) for a.e.
w € Q) we define their LP-transportation distance by

Wolin,va) = [ /Q WE( 1) dP(wﬂ N

where

1/p
Wy(n1,m2) = inf { [/ |z — y|P db(, y)] : 6 is coupling of 171,772}
RIx R4

denotes the usual LP-Wasserstein distance between (not necessarily normalized) measures 71,72 €
M(RY) of equal total mass. Note that W, (11, 15) is not the LP-Wasserstein distance between
the distributions of v and v35. The latter in general is smaller. Similar to the concave case the
triangle inequality holds and we define the modified transportation cost as

Ca(w) = inf {/ |z — y[Pdq(z,y) : q is coupling of v4 and 14 /ﬂ} = WIWE, 1ap”).

Put .
& = 27 E [Cp,| = Wh(2,, 15,10%)

with B, = [0,2")¢ as usual.

Lemma 5.12. Given n € No,k € {1,...,d} and i € {0,1}* put Dy = BU17*% p, —
Bg’i’i"’l’“‘l’l) and D = DyU D; = Bfﬁ’i"’z’“”). Then for some constant k1 depending only on p:

WP (vpy +vp, , vp) < K1 - o(n+1)(pt+d—pd/2)  ok(p/2-1)+1

One may choose k1(p) = Iﬁ2_p -C3(2p) - C2(2(p — 1)).
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Proof. The proof will be a modification of the proof of Lemma 5.6. An optimal transport map
T:D — D with Tyvp = vp is now given by

27
T: (xla"‘7mk—17xk7xk+17‘ . .,.de) = (5131,.. '7xk—177 *Thy Thd-1, - - - ,.Td)
on Dy and
27
. +1 +1 1
T (21,00 T 1, Ty Ty 1y - -+ Td) = (D1, 000, Tp—1, 2" — (2770 —my,) - 7,$k+1,---,9€d)

on Dj. As before we put Z;(w) = p*(D;) for j =0,1 and Z = Zy + Z;. (If p > 1 this is indeed
the only optimal transport map.) The cost of this transport can easily be calculated:

2n P n p
. _ 27 2nP Zy — 21
Tx—xpdux:Zo-Z"/ — T — 2| drp = 'ZO"
JRLERERE N — -
and analogously
_ 2np Zo— 71 |P
T(z) —x|Pdv(x) = 2| ——
@) e i) = 75|
Hence, together with the estimates from Lemma 5.11 this yields
_ 2"P | Zo — Z1|P
WP (Up,vp) = P E [ Z1 - Mzs0)
onp 1/2 _ _ 1/2
< E[|Z0 — 21| -IE[Z 20-1) .1 }
S [1Z0 — Z1[*"] {(z>0}
9(n+1)p 1/2 1/2
< CENZ0 — aal?? -E [Z*Z(pfl) 1 ]
S T [1Z0 — o] (Z>0}
2(n+1)p 9
< Cx-P 0, ol
= o 30 2
< gy - 2D (pHd—pd/2)  ok(p/2-1)+1
which is the claim. ]

With the very same proof as before (Proposition 5.7), just insert different results, we get

Proposition 5.13. For all d € N and all p > 1 there is a constant ko = ka(p,d) such that for
all n € Ny

3}#’1 < ?711/17 + Ky - 2t (A-d/2)
One may choose ky(p,d) = ry(p)Y/P - Zi:l 2k/2 < ki (p)V/P - 24242 where Ky is the constant
from the previous Lemma.

Corollary 5.14. For alld> 3 and allp > 1

T = lim<e, < oo
n—oo

More precisely, for all n € Ny

o—(n+1)(d/2-1)

<1l/p <1/p e
A < ¢/f + ke R

In particular,

S o e As(@)'?
= W=yt

Recall the definition of ¢, from section 2.7. Comparison of costs ¢, and ¢, now yields
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Proposition 5.15. For all d > 3 and all p > 1 there is a constant k3 such that for all n € Ny

Mp < TPy gy on(1d/2)

Proof. It is a modification of the proof of Proposition 5.9. This time, the map T : B — B
N\ 1/d
T: x+— <) T
o

defines an optimal transport Tyvg = Ag. Put 7/ = 7'(d,p) = f[o 1)d |z|P dz. (This can easily be
estimated, e.g. by 7/ < Zﬁdpﬂ if p > 2.) The cost of the transport T is

1/d
() -
(6%

p

P
/ |T(z) — z|Pdvg(x) = 7 -2".7.
B

< T'-Q"p-Z-'Z—l
«

The inequality in the above estimation follows from the fact that [t—1| < [t—1|-(t3~ 4. . 4t+1| =
[t — 1| for each real t > 0. The previous cost estimates holds true for each fixed w (which for
simplicity we had suppressed in the notation). Integrating w.r.t. dP(w) yields

|

1/2

Z
2
(0%

Wh(vp,Ag) < 7' -2"-E [Z‘

72w P E[22]? R [|Z - a]'?

VANRVAN

and thus
clpe TP <ol gn(1=d/2),

Corollary 5.16. For alld >3 and allp > 1

o < T < 00

5.3.3 Quantitative Estimates

Throughout this section, we assume that ¥(r) = rP with p < p(d) where

oo, ford>3
p<p(d):=< 1, ford=2
%, for d =1.

Proposition 5.17. Put 7(p,d) (T4 + 1)/, 7r_1/2)p. Then

_ _d .
= dip
Coo > €0 > 7(p,d).

Proof. The number 7 as defined above is the minimal cost of a semicoupling between £ and a
single Dirac mass, say dp. Indeed, this Dirac mass will be transported onto the d-dimensional
ball K, = {x € R?: |z| < r} of unit volume, i.e. with radius r chosen s.t. £(K,) = 1. The cost
of this transport is fKT |x|P dx = ﬁr” =T.

For each integer Z > 2, the minimal cost of a semicoupling between £ and a sum of Z Dirac

masses will be > Z - 7. Hence, if Z is Poisson distributed with parameter 1

o >E[Z]-T=T.
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Remark 5.18. FEaplicit calculations yield

1 2 3 3\*/*3
)=-——".277 %) =——— g P/ 3)=——0 (=
whereas Stirling’s formula yields a uniform lower bound, valid for all d € N (which indeed is a
quite good approximation for large d)

d d \"*
> (=) .
7(p.d) = d+p (27T€>

Proposition 5.19. Put 7 =7(d,p) = f[o 1)d f[o 1)d |z — y|P dydx. Then
<

~

-1z 0w < T

e

Moreover, T < (1+p)(171+p/2) -dP/? for allp > 2 and T < (%l)p/2 for all0 < p < 2.

Proof. If there is exactly one Poisson particle in By = [0, 1)¢ — which then is uniformly distributed—
then the transportation cost is exactly 7(d,p). If there are N > 1 particles in By, the cost per
particle is by definition of ¢y bounded by 7(d,p). Hence, we can bound ¢y by the expected
number of particles in By times 7(d, p) which is precisely 7(d,p). The number of particles will
be Poisson distributed with parameter 1. The lower estimate for the cost follows from the fact
that with probability e~! there is exactly one Poisson particle in By = [0, 1)<.

Using the inequality (22 +...+22)P/2 < @P/2=1. (2] + ... + %) — valid for all p > 2 — the upper
estimate for 7 can be derived as follows

d
o] emupdste < @Y [y dyas
[0,1)2 J[0,1)¢ i—1 [0,1]¢ J[0,1]¢
1,1
dp/Q/ / |s — t|P dsdt
o Jo
(1+p)(1+p/2)
Applying Hélder’s inequality to the inequality for p = 2 yields the claim for all p < 2. O

Theorem 5.20. For allp <1 and d > 2p

d d\"* _ _ (4 p/2+ 1
d+p \2re = fe = \G (p+ 1) (2427 1)

whereas for allp > 1 and d > 3

1/p 1/2 1/2
o s
d+p ome 612 A [(14p)(1+p/2)]4/P

Proof. Proposition 5.17 and the subsequent remark yield the lower bound

d d \"*
L <r <
d+p (271'6) =T = oo

valid for all d and p. In the case p > 1 the upper bound follows from Proposition 5.19 and
Corollary 5.14 by

451/:0 d'/?
<
2-1 —2-4/2 = 612 A [(1 4 p)(1 + p/2)]1/P

ir o< Flry +28-/£}/p.
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In the case p < 1, estimate (5.2) with O(r) = —=rPT! yields

T optl
<ot i o-(mr1)@/2+1) 1 otminmen _g 4 1 ,
" p+1 (p+1)(24/277 — 1)
provided p < d/2. Together with Proposition 5.9 this yields the claim. ]
Corollary 5.21. (i) For all p € (0,00)
1 el : el 1
oD < hgglor;fm < hg;s{)gpm < or [t o)t o2

Note that the ratio of right and left hand sides is less than 5, — and for p < 2 even less than 2.
(i1) For all p € (0,00) there exist constants k, k" such that for all d > 2(p A 1)

k-dP? < ¢ < K -aV2

6 Optimal Semicouplings with Bounded Second Marginals

The goal of this chapter is to prove Theorem 2.1 (= Theorem 6.6), the crucial existence and
uniqueness result for optimal semicouplings between the Lebesgue measure and the point process
restricted to a bounded set.

Throughout this chapter, we fix the cost function ¢(x,y) = ¥(|Jz — y|) with ¥ — as before — being
a strictly increasing, continuous function from R to Ry with 9(0) = 0 and Tlggo Y(r) = o0. In

dimension one we exclude the case 9(r) = r.

Lemma 6.1. Suppose there is given a finite set Z = {&1,...,&} C R and a probability density
pe L' (R L).

(i) There exists a unique coupling q of p£ and o = %dez d¢ which minimizes the cost function
Cost(+).

(ii) There exists a (£-a.e. unique) map T : {p > 0} — = with Ty (pL) = o which minimizes
J (@, T(x))p(x) de(x).

(1ii) There exists a (£-a.e. unique) map T : {p > 0} — = with Ty.(pL) = o which is c-monotone
(in the sense that the closure of {(x,T(x)) : p(xz) > 0} is a c-cyclically monotone set).

(iv) The minimizers in (i), (ii) and (iii) are related by q = (Id, T)«(pL) or, in other words,

dq(z,y) = dop)(y) p(z)dL(z).

Proof. We prove the lemma in three steps.

(a) By compactness of II(p£,0) w.r.t. weak convergence and continuity of c¢(-,-) there is a
coupling ¢ minimizing the cost function Cost(-) (see also [Vil09], Theorem 4.1).

(b) Write p€ =: A = Zle Ai where A\;(.) :=q(. x {&}) for each i = 1,..., k. We claim that the
measures ()\;); are mutually singular. Assuming that there is a Borel set N such that for some
i # j we have \j(N) = a > 0 and A\;(N) = S > 0 we will redistribute the mass on N being
transported to & and &; in a cheaper way. This will show that the measures ();); are mutually
singular. In particular, the proof implies the existence of a measurable c-monotone map T such
that ¢ = (Id,T)«(pL).

W.lo.g. we may assume that (p£)(N) = a + . Otherwise write p = p; + p2 such that on N
dAi(z) + dXj(z) = d(p1£)(z) and just work with the density p;.

Put f(z) := c(x,&) — e(x,&5). As c(-,-) is continuous, f is continuous. The function ¢(z,y)
is a strictly increasing function of the distance |x — y|. Thus, the level sets {f = b} define
(locally) (d — 1) dimensional submanifolds (e.g. use implicit function theorem for non smooth
functions, see Corollary 10.52 in [Vil09]) changing continuously with b. Choose by such that
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pL({f < bo} N N) = o (which implies pL({f > bo} N N) = ) and set N; := {f < bp} N N and
Nj = {beo}ﬂN
For | = i, j )

d\(z) == dN(z) — In(z)dN(z) + 1N, (2)d(pL) ().

For [ # i, j set N o=\ By construction, ¢ = Zle N® J¢, is a coupling of p£ and o. Moreover,
q is c-cyclically monotone on N, that is Vx; € NV;,x; € N; we have

C(xiv ‘51) + C(.f()j, €]) < C(fIfj, gl) + C(xia ‘5])

Furthermore, the set where equality holds is a null set because c(z,y) is a strictly increasing
function of the distance. Then, we have

Cost(q) — Cost(q)
= / c(z,&)dNi(z) + ez, &5)dN(z) —/ c(m,fi)dS\i(az) —/ c(a?,fj)dj\j(ac) >0,
N , ,

N; N;

by cyclical monotonicity. This proves that A; and A; are singular to each other.

Hence, the family (A;)i=1,.  is mutually singular which in turn implies that there exist Borel
sets S; C R? with Ule = R? and \;(S;) = 0 for all i # j. Define the map T : R? — = by
T(z):=¢&; for all x € S;. Then ¢ = (Id,T).(pL).

(c) Assume there are two minimizers of the cost function Cost, say ¢; and ¢a. Then ¢3 :=
%(ql + ¢2) is a minimizer as well. By step (b) we have ¢; = (Id, T;)«pL for i = 1,2,3. This
implies

dory(a) (y) dpL(z) = dgs(z,y) = d(;ql(x,y)Jr;qz(ar,y))

1 1
= (3o + o) ) dosia)

This, however, implies T} (x) = Ty(x) for p€ a.e. € R? and thus q; = ¢o. dJ

Remark 6.2. (i) In dimension one we exclude the case c(x,y) = |x — y| because the optimal
coupling between an absolutely continuous measure and a discrete measure need not be
unique. In higher dimensions it is unique, as we get strict inequalities in the triangle
inequalities. A counterexample for one dimension is the following. Take M\ to be the
Lebesgue measure on [0,1] and put p = £80 + 301 16. Then, for any a € [1/16,1/3]

qa(dz, dy) = 1j9,q)(2)00(dy)A(dx) + 1[4,2/3+4a)(2)01/16(dY)A(dx) + 1[q12/3,1)(2)d0(dy) A(d)
is an optimal coupling of X\ and p with Cost(q,) = 11/24.
(ii) In the case ¥(r) = r2, there exists a convex function ¢ : {p >0} — R such that
T(x) = Vep(x) for £-a.e. x.

2—
More generally, if 9(r) = rP with p > 1 then the map T is given as T (x) = x—l—\Vw(:v)]pT?'
Vip(z) for some |.|P-convex function ¢ : {p > 0} — R.

Proposition 6.3. For each finite set © C R? there exists a unique semicoupling q of £ and
0 =) ¢exz O which minimizes the cost functional Cost(-).

Proof. (i) The functional Cost(.) on M(R? x R?) is lower semicontinuous w.r.t. weak topology.
Indeed, if n,, — n weakly then with cx(x,y) := min{d(|z — y|), k}

lim inf Cost(7,,) > sup [lim/ck dnn] = sup/ck dn = Cost(n).
n ELn k
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(ii) Let Q denote the set of all semicouplings of £ and ¢ and Q; the subset of those ¢ € Q
which satisfy %Cost(q) < infyeq Cost(q') =: c¢. Then £, is relatively compact w.r.t. the weak
topology. Indeed, ¢(R? x [Z) = 0 for all ¢ € 9Q; and

o(CK(E) X ) < s - Contla) <
for each r > 0 where K,(Z) denotes the closed r-neighborhood of = in R?. Thus for any ¢ > 0
there exists a compact set K = K,.(Z) x Z in R x R? such that ¢(CK) < e uniformly in ¢ € ;.
(iii) The set 9Q is closed w.r.t. weak convergence. Indeed, if g, — ¢ then (m1).q, — (71)«q and
(7['2)*(]71 - (71'2)*(].
Thus, 9; is compact and Cost(.) attains its minimum on £ (or equivalently on Q).
(iv) Now let a minimizer ¢ of Cost(.) on Q be given and let A = (71 )«q denote its first marginal.
Then A = p- £ for some density 0 < p < 1 on R% Our first claim will be that p only attains
values 0 and 1.
Indeed, put U = {p > 0}. According to the previous Lemma 6.1, there exists an a.e. unique
transport map’ T : U — E s.t.

Cc

q= (Id,T).\.

For a given 'target point’ £ € Z, Ug := U NT~1(£) is the set of points which under the map
T will be transported to the point £. Within this set, the density p has values between 0 and
1 and its integral is 1. If the density is not already equal to 1 we can replace it by another
one which gives maximal mass to the points which are closest to the target £&. Indeed, put
r(€) :=inf{r >0 : £(K,.(§)NUe) > 1} and X := j - £ with

/3(.'1:) = 1U£€E Kr(g)(é)ﬂUg (1;)
Then

G:= (Id,T).\
defines a semicoupling of £ and o with Cost(q) < Cost(g). Moreover, Cost(g) = Cost(g) if and
only if p = p a.e. on R% The latter is equivalent to p € {0,1} a.e.
(v) Assume there are two optimal semicouplings ¢; and go whose first marginals have density
1y, and 1, resp. Then ¢ := %(ql + ¢2) is optimal as well and its first marginal has density
%(1(]1 + 1y,). By the previous part (iv) of this proof the density can attain only values 0 or 1.
Therefore, we have U; = Uy (up to measure zero sets) and g1 = go. ]

Lemma 6.4. Given a bounded Borel set A C R%, let Megunt(A) = {0 € Meount(R?) @ o(R4\
A) = 0} denote the set of finite counting measures which are concentrated on A. Define T :
Meount(A) = M(RIxRY) the map which assigns to each ¢ € Meouni(A) the unique q € T1,(£, o)
which minimizes the cost functional Cost(.). Then Y is continuous (w.r.t. weak convergence on
the respective spaces).

Proof. (i) Take a sequence (0y,)n C Meount(A) converging weakly to some o0 € Mouni(A). Put
qn := Y(0y,) for n € N and ¢ = T(0). We have to prove that ¢, — q.

(ii) The weak convergence o, — o implies that finally all the measures o, have the same total
mass as o, say k. Hence, for each sufficiently large n € N there exist points 27, ..., 27 and Borel
sets ST,..., S} such that

k
Un:z(scha Qn:zlsf'g@éa:f
=1 =1

Similarly o = Zle 0z, and ¢ = Zle 1s,£ ® 65, with suitable points x1, ...,z and Borel sets
S1,. ..,k Weak convergence moreover implies that for each i =1,...,k

= x; as n — oo.
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(iii) Based on the representations of ¢ and o, we can construct a semicoupling ¢, of £ and o,
as follows

k
Gn =Y 15,L® dan.
=1

Then by continuity of ¥ and dominated convergence theorem

k

k
lim sup Cost(g,,) = limsupZ/S Wy — x|)dy = Z/ H|y — x;|)dy = Cost(q).
" =175

i=1 75
And of course Cost(g,) < Cost(g,). Thus

lim sup Cost(g,) < Cost(q).

(iv) The sequence (g ), is relatively compact in the weak topology of M(R? x R?). Therefore,
there is a subsequence, denoted again by (¢, )n, converging weakly to some measure § € M(R? x
R%). Tt follows that (m2)«qn — (m2)«G and thus (m2).§ = o. Similarly, (m1)«¢ < £. Thus
g € II4(L£, o). Lower semicontinuity of the cost functional implies

Cost(q) < 1irr_1>inf Cost(gn)-

(v) Summarizing, we have proven that ¢ is a semicoupling of £ and o with
Cost(g) < Cost(q).

Since ¢ is the unique minimizer of the cost functional among all these semicouplings, it follows
that ¢ = ¢. In other words,
lim Y(o,) =Y (lim o,).

n—oo n—o0

This proves the continuity of T. O

For a given w let us apply the previous results to the measure
o=1 Auw = Z 55
€€E(w)NA
for a realization pu® of the point process. Then, there is a unique minimizer — in the sequel
denoted by ¢4 — of the cost functional Cost among all semicouplings of £ and 14u~.

Lemma 6.5. For each bounded Borel set A C R% the map w — q4 is measurable.

Proof. We saw that the map T : Mepunt(A) — M(R? x R?), o + Y(o) assigning to each
counting measure o its unique minimizer of Cost(.) is continuous. By definition of the point
process, w — u“ is measurable. Hence, the map

wgy =T Z ¢
EEANE(w)

is measurable. O

Theorem 6.6. (i) For each bounded Borel set A C R? there exists a unique semicoupling Q a
of £ and (14p°)P which minimizes the mean cost functional Cost(.).

(it) The measure Q4 can be disintegrated as dQa(z,y,w) = dq¢4(x,y) dP(w) where for P-a.e. w
the measure ¢4 is the unique minimizer of the cost functional Cost(.) among the semicouplings
of £ and 14p”.

(i1i) Cost(Qa) = [ Cost(q4) dP(w).
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Proof. The existence of a minimizer is proven along the same lines as in the previous proposition:
We choose an approximating sequence @, in M(R? x R? x Q) — instead of a sequence ¢, in
M(R? x R?) — minimizing the lower semicontinuous functional Cost(.). Existence of a limit
follows as before from tightness of the set of all semicouplings @ with Cost(Q) < 2 inf 5 Cost(Q).
For each semicoupling @ of £ and p*P with disintegration as ¢*IP we obviously have

Cost(Q) = /Q Cost(¢*) dP(w).

Hence, () is a minimizer of the functional €ost(.) (among all semicouplings of £ and u°P) if

and only if for P-a.e. w € Q the measure ¢* is a minimizer of the functional Cost(.) (among all

semicouplings of £ and pv).

Uniqueness of the minimizer of Cost(.) therefore implies uniqueness of the minimizer of Cost(.).
O

Corollary 6.7. For each z € R? and each bounded Borel set A C R¢ the measure Q4 satisfies
QA(B> va) = QA+Z(B + 2, C+ Z, W+ Z),
for all Borel sets B,C € B(R?).

Proof. Since £ is equivariant and p°® is equivariant the claim follows from the uniqueness of the
minimizer of the cost functional Cost(-). O

Remark 6.8. As before for a finite set = C R? put o = 2565 d¢. Let q be a semicoupling
of £ and 0. Then, q minimizes Cost(.) iff the support of q is c-cyclically monotone and q is
c-sequentially monotone in the following sense:

D el &) < elwi, &)
i=1 i=1

for all n € N, {(x;, &)}, € supp(q), Vep+1 € supp((m1)«q).

Proof. Let q be the unique minimizing semicoupling. The cyclical monotonicity follows from the
general theory of optimal transportation (cf section 2.5). Put U := supp((71).q). Assume that
q is not sequentially monotone. Then, there are n € N,z = 11 € CU, {(z;,&)}", € supp(q)
such that

n

Doelwin&) > Y elwivn, &)

i=1 i=1
By continuity of the cost function, there are (compact) neighborhoods U; of z; and V; of &; such
that Up+1 NU = 0 and

n n

Z c(ui, Ui) > Z C(Ui+1a 'Ui)a

i=1 i=1
whenever u; € U; and v; € V;. Moreover, as supp(o) is discrete we can assume (by shrinking
Vj slightly if necessary) that V; Nsupp(o) = {&}. As (2;,&) € supp(q) for 1 < i < n we
have inf; ¢(U; x {&}) > 0. Set A := inf{q(U1 x {&1}),...,q(Un X {&n}), £(Un+1)}. Then, we
can reallocate mass to define a new measure with less cost. Indeed, we can choose subsets

Ui C U;,U; x {€}; C supp(q) with £(U;) = X and define a new measure § by

1 n
dg(z,y) = dq(z,y) — nZlUX{g}xyd,S ZlU+1x{§}(m y)dL(x).
i=1

By assumption, we have Cost(§) < Cost(q). Hence, ¢ is not minimizing Cost.
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For the other direction let us assume that q is cyclically monotone and sequentially monotone
but not minimizing Cost(.). Then, there is a Borel set U # U(= supp((m1)«q)) (by uniqueness
of optimal transportation of fixed measures) and a unique Cost minimizing coupling G of 15£
and o such that Cost(¢) < Cost(gq) and the support of g is cyclically monotone. As U + U there
is some z € U\U which is transported by § to &, say. For £ € = set Se:={zeR?: (2,6 €
supp(q)} and similarly 5*5 for ¢. By sequential monotonicity of q for all zy € Sg¢, we must have
(:co,fo) < ¢(z,&o). Moreover, the set {x € S¢, : c(z, &) = c(z 50)} is a £ null set. Thus, there is
a set 550 C S, of Lebesgue measure one such that for all z € Sgo we have c(z, &) < ¢(z,&). B
the first part, we know that a minimizing semicoupling is sequentially monotone. Thus, S’go C U
and also Sg, C U (in particular if 5 = {£} we are done).
Moreover, by assumption there is some ;1 € 550\550 which is transported by ¢ to some §; € =.
Then, S&\Sgl is not empty. If S¢, N CU # 0 we choose x5 € Se, N CU and stop. If Se, C U there
is g € Sgl\S& which is transported by ¢ to some &. If & € {&o, &1} (that is & = &y) we choose
To € 5’52 NS¢, and stop. Otherwise we proceed in the same manner until either Sg, N CU +# 0
or & € {&o,...,&k—2}. By this procedure we construct a sequence o, ..., T such that z; €
ng NSg;_, for 1 <j<k—1,20€ S, \U and either 2, € Sg, \U or a3, € S, ﬂSyk L= ng NSy, .
for some 0 <j<k—-2.In the latter case, we have by cyclical monotonicity for ¢ and ¢

k K
Doelwin ) <Y elmivn, &) <Y el &),
i=

i=j i=j
where &, = &; and x4 = xj. Hence, we have equality everywhere. However, we can move the

x; slightly to get a contradiction. Thus, we need to have z; € Sgk\U . Then we have by the
sequential monotonicity of ¢ and ¢

k—1 k— k—1
ZC :C’L’é-l < Z C\Ti+1, 5@ < ZC $17€Z
i=0 i=0 i=0
Hence, we need to have equality and therefore a contradiction as before. Hence, ¢ = q. O
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