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Abstract

We consider the ensemble of adjacency matrices of Erdds-Rényi random graphs, i.e. graphs on N
vertices where every edge is chosen independently and with probability p = p(IN). We rescale the matrix
so that its bulk eigenvalues are of order one. We prove that, as long as pN — oo (with a speed at
least logarithmic in N), the density of eigenvalues of the Erdds-Rényi ensemble is given by the Wigner
semicircle law for spectral windows of length larger than N~' (up to logarithmic corrections). As a
consequence, all eigenvectors are proved to be completely delocalized in the sense that the £°°-norms of
the ¢2-normalized eigenvectors are at most of order N~!/2 with a very high probability. The estimates in
this paper will be used in the companion paper [13] to prove the universality of eigenvalue distributions
both in the bulk and at the spectral edges under the further restriction that pN > N?/3,
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1 Introduction

The universality of random matrices has been a central subject since the pioneering work of Wigner [40],
Gaudin [27], Mehta [30] and Dyson [12]. The problem can roughly be divided into the bulk universality in the
interior of the spectrum and the edge universality near the spectral edge. The bulk and edge universalities
for invariant ensembles have been extensively studied; see e.g. [4,8,9,31] and [1,6,7] for a review. A key
contributing factor to the progress in the study of invariant ensembles is the existence of explicit formulas for
the joint density function of the eigenvalues. There is no such explicit formula for non-invariant ensembles,
and hence our understanding of them is much more limited. The most prominent examples for non-invariant
ensembles are the Wigner matrices with i.i.d. non-Gaussian matrix elements. The edge universality of
Wigner matrices can be proved via the moment method and its various generalizations; see e.g. [32-34].
The bulk universality for general classes of Wigner matrices was listed in Mehta’s book [30] as Conjectures
1.2.1 and 1.2.2 on page 7. We shall refer to these two conjectures collectively as the Wigner-Dyson-Gaudin-
Mehta conjecture, in recognition of the pioneering works of Wigner, Dyson, Gaudin, and Mehta listed above.
It remained unsolved until very recently. This is mainly due to the fact that all existing methods on local
eigenvalue statistics depended on explicit formulas, which are not available for Wigner matrices. In a series of
papers [15-23], a new approach to understanding the local eigenvalue statistics was developed. In particular,
it led to the first proof [19] of the Wigner-Dyson-Gaudin-Mehta conjecture for Hermitian Wigner matrices
whose entries have smooth distributions. This approach is based on three basic ingredients: (1) a local
semicircle law — a precise estimate of the local eigenvalue density down to energy scales containing around
(log N)© eigenvalues; (2) the eigenvalue distribution of Gaussian divisible ensembles via an estimate on the
rate of decay to local equilibrium of the Dyson Brownian motion [12]; (3) a density argument which shows
that for any probability distribution of the matrix elements there exists a Gaussian divisible distribution such
that the two associated Wigner ensembles have identical local eigenvalue statistics down to the scale 1/N.
Furthermore, the edge universality can also be obtained by some modifications of (1) and (3) [23]. The class
of ensembles to which this method applies is extremely general; in particular it includes any (generalized)
Wigner matrices under the sole assumption that the distributions of the matrix elements have a uniform
subexponential decay. We remark that the universality of Wigner matrices, under certain restrictions on
the distribution of the matrix entries, was also established in [36,37]. We shall discuss these results in the
companion paper [13].

In this paper and its companion [13], we extend the approach (1)—(3) to cover a class of sparse matrices.
This class includes the Erdés-Rényi matrices, which we now introduce. Symmetric N x N matrices with 0-1
entries arise naturally as adjacency matrices of graphs on N vertices. Since every non-oriented graph can
be uniquely characterized by its adjacency matrix, we shall from now talk about matrix ensembles (with 0-1
entries) and graph ensembles interchangeably. We shall always normalize the matrices so that their spectra
typically lie in an interval of length of order one. One common random graph ensemble is the Erdds-Rényi
graph [24,25]. In it each edge is chosen independently and with probability p = p(N). Since each row and
column of the adjacency matrix has typically p/N nonzero entries, it is sparse as long as p < 1. We shall
refer to pN as the sparseness parameter of the matrix.

Our goal in this paper, and in its companion [13], is to establish both the bulk and edge universalities for
the Erd6s-Rényi ensemble under the restriction pN > N2/3. In other words, we prove that the eigenvalue
gap distributions in the bulk and near the edges are given by those of the Gaussian Orthogonal Ensemble
(GOE) provided that pN > N?/3. We remark that the law of the Erdés-Rényi ensemble is even more
singular than that of the Bernoulli Wigner matrices, since the matrix elements are highly concentrated
around 0. Another way of expressing the singular nature of the Erdés-Rényi ensemble is to say that the
moments of the matrix entries decay much more slowly than in the case of Wigner matrices.

The matrix elements of the Erdés-Rényi ensemble take on the values 0 and 1. Hence they do not satisfy
the mean zero condition which typically appears in the random matrix literature. Due to the nonzero mean
of the entries, the largest eigenvalue of the Erdés-Rényi ensemble is very large and far away from the rest
of the spectrum, which by our normalization lies in the interval [—2,2]. By the edge universality of the
Erdos-Rényi ensemble, we therefore mean that the probability distribution of the second largest eigenvalue
is given by the distribution of the largest eigenvalue of the GOE, which is the well-known Tracy-Widom



distribution.

As the first step of the general strategy to establish universality, we shall prove a local semicircle law,
Theorem 2.9, stating that the eigenvalue distribution of the Erdés-Rényi ensemble in any spectral window of
size 1) containing on average N1 ~ (log N)¢ eigenvalues is given by the Wigner semicircle law. Theorem 2.9
is valid in the bulk and at the edges as long as the parameter p = p(NN) satisfies pN — oo with a rate at least
logarithmic in N. Similar results but for much larger spectral windows (of lengths at least 7 ~ (pN)~1/10)
were recently proved in [38].

We note that the semicircle law for Wigner matrices in spectral windows of size n ~ N~!/2 has been
known for some time [2,28]. The semicircle law in the smallest possible spectral window (of size n > N~1
in the bulk) was established in [16,17]. This estimate, referred to as the local semicircle law, has become a
fundamental tool in the proofs of the universality of random matrices in [19] as well as in the subsequent
works [18,36]. The local semicircle law in [16,17] is optimal in terms of the range of 7, but the error
estimates, of order (N7)~'/2 in the bulk and with a coefficient deteriorating near the spectral edges, were
not optimal. Optimal error estimates, uniform throughout the entire spectrum and valid for more general
classes of Wigner matrices, were obtained in [23]. The local semicircle law proved in this paper can also be
viewed as a generalization of the results in [23] in two unrelated directions: (a) the laws of the matrix entries
are much more singular, and (b) the matrix entries have nonzero mean.

Besides eigenvalues, eigenvectors also play a fundamental role in the theory of random matrices. One
important motivation for their study is that random matrices can be viewed as mean-field approximations
of random Schrodinger operators where delocalization of eigenfunctions is a key signature for the metallic or
conducting phase. Another question about eigenvectors of random graphs is the size of their nodal domains,
which can studied using delocalization bounds [10]. It was first proved in [15] that eigenvectors for Wigner
matrices are completely delocalized, partly motivated by a conjecture of T. Spencer. The method was refined
in [16,17], and was also adapted in [36,38]. The key observation behind the proof is that the delocalization
estimate for eigenvectors follows from the local semicircle law provided that the spectral windows can be
made sufficiently small. Thus Theorem 2.9 also implies, with v, denoting the ¢?-normalized eigenvectors,
that

(log N)“
VN

holds with exponentially high probability with some constant C' (Theorem 2.16). This establishes the com-
plete delocalization of all eigenvectors as long as the sparseness parameter p/N increases at least logarith-
mically in N. In particular, this result gives the optimal answer to a question posed in Section 3.3 of [10],
asking whether ||vy|/oo < N~%/2%°(1) holds for all eigenvectors v,. In fact, this question was originally posed
for fixed p, but our result shows that the bound conjectured in [10] holds even for p > (log N)* N~1. Tt
was recently proved in [38] that ||Vale < (pN)~1/2 away from the spectral edge; some earlier results were
obtained in [11]. These results established only the lower bound pN on the localization length; the complete
delocalization (1.1) corresponds to the optimal localization length of order N.
Our main result on the bulk and edge universalities will require a further condition

maX{HVaHOO : 1<a<N} <

(1.1)

pN > N2/3, (1.2)

This and related issues will be discussed in the second paper [13].

2 Definitions and results

We begin this section by introducing a class of N x N sparse random matrices A = Ay. Here N is a large
parameter. (Throughout the following we shall often refrain from explicitly indicating N-dependence.)

The motivating example is the Erdds-Rényi matriz, or the adjacency matrix of the Erdds-Rényi random
graph. Tts entries are independent (up to the constraint that the matrix be symmetric), and equal to 1 with
probability p and 0 with probability 1 — p. For our purposes it is convenient to replace p with the new



parameter ¢ = q(N), defined through p = ¢*/N. Moreover, we rescale the matrix in such a way that its bulk
eigenvalues typically lie in an interval of size of order one.

Thus we are led to the following definition. Let A = (a;;) be the symmetric N x N matrix whose entries
a;; are independent (up to the symmetry constraint a;; = a;;) and each element is distributed according to

. 1. 2
7 )1 with probability %

Qij = 1 . - 2
q |0 with probability 1 — % .

(2.1)

Here v := (1 — q2/N)’1/2 is a scaling introduced for convenience. The parameter ¢ < N'/2 expresses the
sparseness of the matrix; it may depend on N. Since A typically has ¢° N nonvanishing entries, we find that
if ¢ < N'/2 then the matrix is sparse.

We extract the mean of each matrix entry and write

A = H +qle)e],

where the entries of H (given by h;; = a;; — vq/N) have mean zero, and we defined the vector
e =ey = —(1,...,1)7. (2.2)

(As above, we often neglect the subscript N of e; the precise value of this subscript will always be clear from
the context.) Here we use the notation |e)(e| to denote the orthogonal projection onto e, i.e. (|e){e|);; :=
N-L
One readily finds that the matrix elements of H satisfy the moment bounds
1 1

Eh}; = ¥ E|hyl" < N (2.3)
where p > 2.

More generally, we consider the following class of random matrices with non-centred entries characterized
by two parameters ¢ and f, which may be N-dependent. The parameter g expresses how singular the
distribution of h,; is; in particular, it expresses the sparseness of A for the special case (2.1). The parameter
f determines the nonzero expectation value of the matrix elements.

Throughout the following we shall make use of a (possibly N-dependent) quantity £ = {xn satisfying

14+ag < & < Aploglog N, (2.4)

for some fixed positive constants ag > 0 and Ay > 10. The parameter £ will be used as an exponent in
logarithmic corrections as well as probability estimates.

DEFINITION 2.1 (H). Fiz a parameter & = &y satisfying (2.4). We consider N x N random matrices
H = (hi;) whose entries are real and independent up to the symmetry constraint h;j = h;;. We assume that
the elements of H satisfy the moment conditions

1 Ccr
Ehi; = 0, Elhi;? = — E|hi;|P < N2

¥ (2.5)

for1<i,j <N and 3 < p < (log N)Aolegloe N “yhere C is a positive constant. Here ¢ = q(N) satisfies
(log N)?’f < g < CN'/? (2.6)
for some positive constant C.

Note that the entries of H exhibit a slow decay of moments. The variance is of order N~!, but higher
moments decay at a rate proportional to inverse powers of ¢ and not N'/2. Thus, unlike for Wigner matrices,
the entries of sparse matrices satisfying Definition 2.1 do not have a natural scale. (The entries of a Wigner
matrix live on the scale N~'/2, which means that the high moments decay at a rate proportional to inverse
powers of N'/2. See Remark 2.5 below for a more precise statement.)



DEFINITION 2.2 (A). Let H satisfy Definition 2.1. Define
A = H+ fle)(e], (2.7)
where f = f(N) is a deterministic number that satisfies
0 < f < NY, (2.8)
for some constant C > 0.

REMARK 2.3. For definiteness, and bearing the Erdés-Rényi matrix in mind, we restrict ourselves to real
symmetric matrices satisfying Definition 2.2. However, our proof applies equally to complex Hermitian sparse
matrices.

REMARK 2.4. To simplify the presentation, we assume that all matrix elements of H have identical variance
1/N. As in [21], Section 5, one may however easily generalize this condition and require that the variances
be bounded by C/N and their column sums (hence also the row sums) be equal to 1. Thus one may for
instance consider Erdés-Rényi graphs in which a vertex cannot link to itself (i.e. the diagonal elements of A
vanish).

REMARK 2.5. In particular, we may take H to be a Wigner matrix whose entries have subexponential decay,
P(N1/2|hij\ > 1) < Cexp(—2'/?)
for some positive constants  and C. Indeed, in this case we get

1 Op)oP
Ehij =0, E|hij‘2 = N’ E|hij|p < C@

Now we choose
g = NY2(0(log N)Aoleslos Ny~

Since ¢! < (log N)¢1ogloe N N=1/2 e find that all factors ¢~ ' in error estimates such as (2.16) and (2.17)
below may be replaced with N~1/2 at the expense of a larger exponent in the preceding logarithmic factors.
In fact, using Lemma 3.2 below, it is easy to see that in this case all terms depending on ¢ in estimates such
as (2.16) and (2.17) may dropped, as they are bounded by the other error terms. In particular, Theorem 2.8
generalizes Theorem 2.1 of [23].

We shall frequently have to deal with events of very high probability, for which the following definition
is useful. It is characterized by two positive parameters, £ and v, where £ is subject to (2.4).

DEFINITION 2.6 (HIGH PROBABILITY EVENTS). We say that an N-dependent event Q2 holds with (&, v)-high
probability if
P(Q°) < e V(o8 N)° (2.9)

fO’l“ N 2 No(V, ao,A(]).
Similarly, for a given event Qg, we say that Q holds with (£, v)-high probability on Qg if

P(QO ch) < efu(logN)E
fOT N > ]\fo(V7 ao,Ao).

REMARK 2.7. In the following we shall not keep track of the explicit value of v; in fact we allow v to
decrease from one line to another without introducing a new notation. It will be clear from the proof that
such reductions of v occur only at a few, finitely many steps. Hence all of our results will hold for v < vy,
where vy depends only on the constants C' in Definition 2.1 and the parameter ¥ in (2.10) below. (In
particular, v is independent of &.)



We shall use C' and ¢ to denote generic positive constants which may only depend on the constants in
assumptions such as (2.4) and (2.5). Typically, C denotes a large constant and ¢ a small constant. Note
that the fundamental large parameter of our model is N, and the notations >, <, O(+), o(-) always refer to
the limit N — oo. Here a < b means a = o(b). We write a ~ b for C~'a < b < Ca.

We now list our results. We introduce the spectral parameter

z = E+in

where £ € R and n > 0. Let ¥ > 3 be a fixed but arbitrary constant and define the domain

D :={zeC:|E|<%,0<n<3}. (2.10)
We define the density of the semicircle law
1
Qsc(x) = 2 [4—.1‘2]+, (211)
m

and, for Im z > 0, its Stieltjes transform

r—z

Mme(2) = /Rgsc(x)dm. (2.12)

The Stieltjes transform mg.(z) = mg. may also be characterized as the unique solution of

1
Mge + =0 (2.13)
24+ Mee

satisfying Im mg.(z) > 0 for Im z > 0. We define the resolvent
G(z) == (H—2)"",
as well as the Stieltjes transform of the empirical eigenvalue density

m(z) = %Tr G(z).

For x € R we define the distance k, to the spectral edge through
Ko = ||z] —2|. (2.14)

THEOREM 2.8 (LOCAL SEMICIRCLE LAW FOR H). There are universal constants C1,Ca > 0 such that the

following holds. Suppose that H satisfies Definition 2.1. Moreover, assume that

A(](]. —+ 0(1))
2

Then there is a constant v > 0, depending on Ag, X, and the constants C in (2.5) and (2.6), such that the

following holds.
We have the local semicircle law: the event

Q{ i) = ()] < Qe )% (mind 2l T+ N177>} =1

holds with (&, v)-high probability. Moreover, we have the following estimate on the individual matriz elements
of G. The event

£ = loglog N, q > (log N)“¢. (2.15)

n { max |Gy;(2) — 0imae(2)] < (log N)©28 ((1] + Im e (2) + 1) } (2.17)

veD 1<i,j <N Nn Nn

holds with (§,v)-high probability.



The results of Theorem 2.8 may be interpreted as follows. Consider first the bulk, i.e. kg > ¢ > 0. Then
Theorem 2.8 states roughly that

1 1

— 4+ —, + 2.18

|Gij(2) - 6ijm86(2)| <

El
3\;

Q| =

|m(z) - m80(2)| S

up to logarithmic factors. Since |ms.(z)| ~ 1, both estimates are stable in a sense that they identify the
leading order terms of m and G;; down to the optimal scale n > N~!. Note that choosing n < N~! in

_ 1 n”
) = 5 L EA P

allows one to resolve individual eigenvalues A, of H. Therefore below the scale < N~! the quantities m
and G;; become strongly fluctuating and the these fluctuations are larger than the main term. In the regime
n > (log N)¢N~! in which the fluctuations are smaller than the main term, a spectral window of size 7
contains at least (log N)“¢ eigenvalues; hence an averaging takes place.

The factor 1/¢ on the right-hand side of the second inequality of (2.18) arises from the strong fluctuations
of the matrix entries h;;, which take on values of size ¢! with probability of order ¢ N~!. Indeed, it is
apparent from the representations (3.13) and (3.23) that G;; = m2.h;; + ..., i.e. G;; has a component that
fluctuates on the scale ¢~'. The improvement from ¢~! to ¢~2 in the first inequality of (2.18) arises from an
averaging in the summation m = N~} >~; Gi;. If the random variables in the average were independent, one

would expect the averaging to yield an improvement of order N~'/2; however in our case there are strong

dependencies, which result in the more modest gain of order ¢~ '.

At the edge (kg = 0), the estimates (2.16) and (2.17) may be roughly stated as

o1, 1 <1 nt/4 1
[m(z) = mse(2)] S 5‘*‘]\7777 |Gij(2) = diymse(2)| < 5‘*‘ ﬁNn'f'an-

Now we formulate the local semicircle law for the matrix A given in Definition 2.2. Define the quantities

Gz) = (A—2)"Y,  W(z) = %Tré(z). (2.19)

THEOREM 2.9 (LOCAL SEMICIRCLE LAW FOR A). There are universal constants Cq,Co > 0 such that the
following holds. Suppose that A satisfies Definition 2.2, and that & and q satisfy (2.15). Then there is a
constant v > 0 — depending on Ay, ¥, and the constants C in (2.5), (2.6), and (2.8) — such that the following
holds.

We have the local semicircle law: the event

Ot stz o)) e

holds with (&, v)-high probability. Moreover, we have the following estimate on the individual matriz elements
of G. If the assumption (2.8) is strengthened to

0 < f < CyNY2, (2.21)

for some constant Cy, then the event

cep | 1SIIsN q Nn Nn

m { max ‘é”(z) — (5ijmsc(z)‘ < (log N)©2¢ (1 + w + 1) } (2.22)

holds with (§,v)-high probability, where v also depends on Cjy.



Next, let A\; < .-+ < Ay be the ordered family of eigenvalues of H, and let uy,...,uy denote the
associated eigenvectors. Similarly, we denote the ordered eigenvalues of A by p; < --- < py and the
associated eigenvectors by vi,...,vy. We use the notations u, = (us(i))¥, and v, = (v,(i))X, for the
vector components. All eigenvectors are £2-normalized and have real components.

We state our main result about the local density of states of A. For 4 < E5 define the counting functions

E2 —
Nuo(Ey,Ey) == N osc(x)dz  N(Ey, Ez) = [{a: By < o < B2} (2.23)
Eq

THEOREM 2.10 (LOCAL DENSITY OF STATES). Suppose that A satisfies Definition 2.2 and that & and q
satisfy (2.15). Then there is a constant v > 0 — depending on A, X, and the constants C in (2.5), (2.6),
and (2.8) — as well as a constant C' > 0 such that the following holds.
For any Ey and By satisfying Fy > E1 + (log N)° N~ we have
1+0<(1ogN)Cf( ! + ! ))] (2.24)
N(Ey — E1)3%  ¢*(Ey — Ey) '

N (E1, Esy) = Nyo(Er, E»)

with (&, v)-high probability.
Away from the spectral edge we have a stronger statement. Fix k., > 0. Then, for any E1 and Fs
satisfying Eo > E7 + (log N)CfN*1 as well as kg, = Ky« and Kg, = K«, we have

1+0 <(10g N)©¢ <N(E21_El> + ;))] (2.25)

with (&, v)-high probability, where the constant in O(-) depends on K.

N (E1, Ey) = Ny(E1, Es)

REMARK 2.11. Both results (2.24) and (2.25) are special cases of a more general, uniform, estimate; see
Proposition 8.2.

In the recent work [38], the asymptotics of the local density of states was also established, but only in
much larger spectral windows, of size at least (Np)~'/19 = ¢=1/5, and with a weaker error estimate.
Our next result concerns the integrated densities of states,
1 ~ 1 -~
Nse(E) = — Nye(—00, F), WE) ;= = N(—o0,F). (2.26)
N N
THEOREM 2.12 (INTEGRATED DENSITY OF STATES). Suppose that A satisfies Definition 2.2 and that § and
q satisfy (2.15). Then there is a constant v > 0 — depending on Ao, 3, and the constants C' in (2.5), (2.6),
and (2.8) — as well as a constant C > 0 such that the event

N {|’ﬁ(E) —nse(E)| < (1ogN)Cf(i[ PR \/"?E)} (2.27)

3
E€[-3,5) q q

holds with (§,v)-high probability.

Next, we prove that the N — 1 first eigenvalues of A are close the their classical locations predicted by
the semicircle law. Denote by v, the classical location of the a-th eigenvalue, defined through

Ne(Va) = % for a=1,...,N. (2.28)
The following theorem compares the locations of the eigenvalues u1,...,uny_1 to their classical locations
Y1, --+5YN—1- 1t is well known that the largest eigenvalue upy of the Erdés-Rényi matrix is much larger than

~n. This holds for more general sparse matrices as well; more precisely, if f > 1+ c then uy ~ f + f~'is
separated from pun_1 =~ 2 by a gap of order one. The precise behaviour of py in this regime is established
in Theorem 6.2 below.



THEOREM 2.13 (EIGENVALUE LOCATIONS). Suppose that A satisfies Definition 2.2 and that & satisfies (2.15).
Let ¢ be an exponent satisfying 0 < ¢ < 1/2, and set ¢ = N®. Then there is a constant v > 0 — depending on
Ao, X, and the constants C in (2.5), (2.6), and (2.8) — as well as a constant C > 0 such that the following
holds.

We have with (€, v)-high probability that

N-1
> ltta — Yal? < (log N)©¢ (N140 4 N4/3-80) (2.29)
a=1

Moreover, for alla =1,..., N — 1 we have with (£, v)-high probability that

lttee — 7| < (log N)CE <N2/3 (@712 +1(@ < (log N)CE(1 4 N'739)) | 4 N2/3-10G-2/% 1 =20 )

(2.30)
where we abbreviated & := min{a, N — a}.
REMARK 2.14. Under the assumption ¢ > 1/3 the estimate (2.30) simplifies to
e —7a| < (log N)CE (N*2/3a*1/3 + N*%) , (2.31)

which holds with (&, v)-high probability.
REMARK 2.15. Theorems 2.10, 2.12, and 2.13 also hold — with the same proof — for the matrix H. More
precisely, Theorem 2.10 holds with with A (E, Es) replaced with

N(ElaEQ) = ’{Ck : El < )\a < E2}|7

Theorem 2.12 holds with n(F) replaced with

and Theorem 2.13 holds with p, replaced with A,.

Our final result shows that the eigenvectors of A are completely delocalized.

THEOREM 2.16 (COMPLETE DELOCALIZATION OF EIGENVECTORS). Suppose that A satisfies Definition 2.2
and (2.21). Then there is a constant v > 0 — depending on Ay, &, and the constants C in (2.5), (2.6), and
(2.8) — such that the following statements hold for any & satisfying (2.4).

We have with (€, v)-high probability

log N)4¢
max [va oo < S8V (2.32)
a<N v N
Moreover, we have with (£,v)-high probability
1 1 (logN)¢
vy —e¢elp = =40 — +— 1. 2.33
If additionally f < C for some constant C then we have with (&, v)-high probability
(log N)*
Vil < o 2.34

Finally, there exists positive constants C,Cqy such that if f > Co(log N)* then we have with (&,v)-high
probability

(2.35)



REMARK 2.17. If f does not grow with N, then the components vy (i) of the largest eigenvector fluctuate,
and we do not expect (2.35) to hold. However, a delocalization bound similar to (2.34) holds for all f.
In (2.34) this bound was proved for f < C. In fact, a slight modification of our proof yields complete
delocalization for the values of f not covered by Theorem 2.16, i.e. 1 < f < Cy(log N)¢. We claim that in
this case we have, with (¢, v)-high probability,

log N)©¢
ol < SE

The required modifications are sketched at the end of Section 7.3 below.

(2.36)

REMARK 2.18. Similarly, if H satisfies Definition 2.1, all of its eigenvectors are delocalized in the sense that

log N)%¢
max [ua e < (log N)™
a VN
with (&, v)-high probability. The proof is a straightforward application of (3.4) below and the estimate (7.25)
applied to G ;.
In the recent work [38], a weaker upper bound of size (Np)~'/2 = ¢=' was established for the £>°-norm
of the eigenvectors of A associated with eigenvalues away from the spectral edge.

3 The weak local semicircle law for H

In this section, we introduce and prove a weak version of the local semicircle law for the matrix H. This
result is weaker than our final result for H, Theorem 2.8, but it will be used as an a priori bound for the
proof of Theorem 2.8. Moreover, Theorem 3.1 holds under slightly weaker assumptions on £ than Theorem
2.8, and is for this reason a more suitable tool for proving eigenvector delocalization, Theorem 2.16; see
Section 7.3 for details.

We shall prove Theorem 3.1 (the weak local semicircle law) for spectral parameters z in the set

Dy = {z€C: |E|<Z, (logN)"N'<n<3} C D, (3.1)
where the parameter L = L(NV) will always satisfy
L > 8. (3.2)

THEOREM 3.1 (WEAK LOCAL SEMICIRCLE LAW FOR H). Let H satisfy Definition 2.1. Then there are
constants v > 0 and C > 0 such that the following statements hold for any & satisfying (2.4) and L satisfying

(3.2).
The events
log N)%
M { max|Gyy(2)] < ¢, CllosN)= (3.3)
z€Dy, 7 q NT]
and

ﬂ {m?X|Gii(Z) —m(2)] < (3.4)

Cllog N)$ | C(log N)* }
z€Dyp,

q VN7

hold with (&, v)-high probability. Furthermore, we have the weak local semicircle law: the event

o) £ o) %
N {|m(z)msc(2')| < ol jle) 4 C((Zlv;g])fy/l } (3.5)

z€Dy,

holds with (§,v)-high probability.
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Roughly, Theorem 3.1 states that

1 1
e R— (3.6)

|Gij —5”m(z)| p \/W

and 1 1

+ . 3.7
NARRERE 7
Comparing with the strong local semicircle law, Theorem 2.8, we note that the error bound in (3.6) for G;;
is already optimal in the bulk. However, unlike Theorem 2.8, the quantity G;; is compared to m and not
M.

On the other hand, the estimate (3.7) is considerably weaker than the corresponding bound in (2.18).
The smaller power 1/3 in the factor (N 77)’1/ 3 reflects the instability near the edge; it appears because we
insist on having uniform bounds up to the edge. If we were interested only in the bulk, it would be easy
to repeat the proof of Theorem 3.1 to obtain (Nnx)~1/2, thus replacing the power 1/3 with 1/2. The price
would be a coefficient which blows up at the edge.

As in Theorem 2.8, the estimates of Theorem 3.1 are stable down to the optimal scale n > N ~! uniformly
up to the edge. Thus, the difference between Theorems 2.8 and 3.1 lies only in the precision of the estimates.

In order to prove Theorem 3.1, we first collect some basic tools and notations.

‘m<z) - mSC(Z)‘ N

3.1 Preliminaries
The following lemma collects some useful properties of myg. defined in (2.13).

LEMMA 3.2. For z = E +in € Dy, abbreviate k = kg. Then we have

Imse(2)| ~ 1, 11— mae(2)?| ~ VE+7. (3.8)

Moreover,
VE+n if|E] <2
Immg.(z) ~ " ;
=T |E| > 2.
Here the implicit constants in ~ depend on ¥ in (2.10).
PROOF. The proof is an elementary calculation; see Lemma 4.2 in [22]. O

In order to streamline notation, we shall often omit the explicit dependence of quantities on the spectral
parameter z € Dy; thus we write for instance G;;(z) = G;;. Define the z-dependent quantities

AO = r?;?j)dGU' 5 Ad = mLaX|G” — msc| 5 A = |m — msc\ , vV = Gii — Mg - (39)

DEFINITION 3.3. Let T C {1,...,N}. Then we define H™ as the (N —|T|) x (N — |T|) minor of H obtained
by removing all rows and columns of H indezxed by i € T. Note that we keep the names of indices of H when
defining H™.

More formally, fori € {1,..., N} we define the operation w; on the probability space by

(mi(H))g = 1(k #D)L( #£ i) hg (3.10)
For T C {1,...,N} we also write wr := [[,cp 7. Then we define
HD = ((wr(H))ij)i e

The quantities G(T)(z), A&T), ug), etc. are defined in the obvious way using H™. Here a = 1,..., tumax,
where amax == N — |T|.

11



Moreover, we use the notation

(T) N
> -3
T

and abbreviate (i) = ({i}) as well as (Ti) = (T U {i}).
We also set

(T)
1
(M) .— (T)
m = E G’ . (3.11)

Note that we choose the normalization N~! instead of the more natural (N — |T|)~! in (3.11); this is
simply a convenient choice for later applications.

The next lemma collects the main identities of the resolvent matrix elements GZ(-;T). Its proof is elementary
linear algebra; see e.g. [21].

LEMMA 3.4. Fori,j # k we have
GG

(k)
ij = Gy 12
Gig = Gij) + =5 (312)
For i # j we have '

Gij = _GiiG;Zj) (hij — Zij) , Gy = (hy —z— ZZ--)’1 (3.13)

where we defined, for arbitrary i,j € {1,... N},

N (ij) B
Zij = h; - G(U)hj — Z hikG](;lj)hlj ) (314)
k,l

Here h; denotes the vector given by the i-th column of H. Note that in expressions of the form (3.14) it is
implied that the i-th and j-th entries of h; and h; have been removed; we do not indicate this explicitly, as
it is always clear from the context.

REMARK 3.5. Lemma 3.4 remains trivially valid for the minors H(™) of H. For instance (3.12) reads
T) ~(T
Gz('k)G( )

kg

T Tk
Gz(‘j) = ng '+ (T
Gkk

fori,j,k ¢ T and 4,5 # k.

DEFINITION 3.6. We denote by E; the partial expectation with respect to the variables h; = (hij)j-vzl, and set
IE; X := X —E; X.
We abbreviate
(@) ‘ (@) 1 A
Zi = EiZi = IE S haGPhy =Y (hikhli _ Nékl)G,(jl). (3.15)

k.l k.l
The following trivial large deviation estimate provides a bound on the matrix elements of H.
LEMMA 3.7. For C large enough we have with (§,v)-high probability

C
lhij] < T

12



PROOF. The claim follows by choosing p = v(log N)¢ in (2.5) and applying Markov’s inequality. O

We collect here the large deviation estimates for random variables whose moments decay slowly. Their
proof is given in Appendix A.

LEMMA 3.8. (i) Let (a;) be a family of centred and independent random variables satisfying

cr

P 2
Ela;[? < Nagert

(3.16)

for all 2 < p < (log N)Aoloslog N yhere o > 0 and 3,y € R. Then there is a v > 0, depending only on
C in (3.16), such that for all & satisfying (2.4) we have with (€, v)-high probability

A < 3 sup,;| A;| 1 A2 12
2 sa;| < (logN) s + NgFrEa E | A . (3.17)
(i) Let ay,...,an be centred and independent random variables satisfying
cr
|P =
Ela;|P < N2 (3.18)

for 2 < p < (log N)Aologloe N = Then there is a v > 0, depending only on C in (3.18), such that for all
¢ satisfying (2.4), and for any A; € C and B;; € C, we have with (§,v)-high probability

al ¢ | max;| A 1 & 5 1/2
Aja;| < (logN)s | ————= - A; 3.19
> ] < oy | P (G S ae) (3.19)
N N B
Z a;B;a; — Z U?Bii < (log N)EJ (320)
i=1 i=1 q
) Bo 1 ) 1/2
1< <N 9 i
where o? denotes the variance of a; and we abbreviated
By := max|By;|, B, := max|B,|.
i i
(iii) Let a1,...,an and by,...,by be independent random variables, each satisfying (3.18). Then there is

a v >0, depending only on C in (3.18), such that for all { satisfying (2.4) and B;; € C we have with
(&,v)-high probability

< (log N)*

N
Z aiBijbj

ij=1

B, B, 1 S\ 2
PR (N2 > IByj| ) : (3.22)

i#]

REMARK 3.9. Note that the estimates (3.19) and (3.20) are special cases of (3.17). The right-hand side
of the large deviation bound (3.17) consists of two terms, which can be understood as follows. The first
term gives the large deviation bound for the special case where A; vanishes for all but one i; in this case
it is immediate that |A;a;| < (log N)¢|A4;|¢g~* with (&, v)-high probability. The second term is equal to the
variance of ), A;a,. In particular, (3.17) is optimal (up to factors of log V). The estimates (3.19) — (3.22)
can be interpreted similarly. (Note that the powers of ¢ in the estimates (3.21) — (3.22) are not optimal; this
is however of no consequence for later applications.)

13



For a family Fi,..., Fy we introduce the notation

1 N
=1

The following lemma contains the self-consistent resolvent equation on which our proof relies.

LEMMA 3.10. We have the identity

1
Gii = ; 3.23
—z =g — (1= 1) (329
where
Ty = hi—Zi + A,
and ey
;= i gt 3.24
A N G (3:24)
PROOF. The proof is a simple calculation using (3.13) and (3.12). O
3.2 Basic estimates on the event ()(z)
DEFINITION 3.11. For z € Dy, introduce the event
O(z) = {Ad(z) + Au(2) < (log N)~¢ } (3.25)
and the control parameter
A(2) + Immg.(z)
v = . 2
(=) ¢ Nn (3.26)
Note that ¥(z) is a random variable. Moreover, on 2(z) we have ¥(z) < C(log N)~% by (3.2).
Throughout the following we shall make use of the fundamental identity
SNGyE = S telald) $o Z el _ Ly, (3.27)
- ! — 4 Az 45 Aﬁ— e —z|2 n

A similar identity holds for H(™. Using the lower bound |m.(z)| > ¢ from (3.8) and the definition (3.25)
we find

¢ < |Giu(2)] < C (3.28)
on (z). Using (3.12) repeatedly we find that on £(z) we have
<167 @) < C (3:29)
for |T| < 10 (here 10 can be replaced with any fixed number). Similarly, we have on Q(z) that
max |G ()] < OMo(z) < CllogN)~¢ (3.30)

for |T| < 10
LEMMA 3.12. Fizing z = E +in € Dy, we have for any i and T C {1,...,N} satisfying i ¢ T and |T| < 10
that

m{ (z) = m(T)(z)—i-O(]\}n) (3.31)

holds in Q(z).
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PROOF. We use (3.12) to write
(iT) (zT) G(T G(T

1 Z Gl = Z o Z

M) MG
gi_ g

1 @ o 1
- NZGJ‘J' _ﬁz

(T) (T)
i G i i G
Therefore
) (i 1 O . ™ (T) @ 1 @
NZG = NZGM +0< Z|G ) NZij +0(N771m0“. )
J J J
The claim now follows from (3.29). O

LEMMA 3.13. For fixed z € Dy, we have on Q(z) with (§,v)-high probability

Ao(2) < C(; + (log N)25W(z)) , (3.32)
miaX\Zi(z)\ < C’<(10gN)E + (log N)2E\Il(z)) . (3.33)

PROOF. We start with (3.32). Let ¢ # j. Using (3.13), (3.29), (3.30), and (3.12) we get on Q(z), with
(&, v)-high probability,

(i5)

Z hsz(” ) hlj

C
|Gij] < C(|hij|+|Zij|) E+C
k,l

C A @ 1/2
< -+ Cllog N)% ? + C(log N)* (N2 ZG,S;)F) . (3.34)
k1

where the last step follows using (3.22) and (2.6). Using (3.12) repeatedly and recalling (3.29), we find on
Q(2) that G\ = Gy + O(A2). Thus we get on Q(z), by (3.27),
i (i5)
1 J (33) 2 Imm CAi
FZ|GM 2 = N2 ZI Gl < N TN (3.35)
k,l

Taking the maximum over ¢ # j in (3.34) therefore yields, on Q(z) with (&, v)-high probability,

Imm

C
Ay < = +0(1)Ay + Clog N)?¢ | ——,
-+ o)A, + Cllog V)% [0

where we used (2.6) and the fact that Nn > (log N)8 by (3.2). This concludes the proof of (3.32).
In order to prove (3.33), we write, recalling the definition (3.15),

@ @
1 i i
Zi = Z<|hkk|2 - N>G,(€;2 + ZhikG;(d)hli-

k k£l

Using (3.20), (3.21), and (3.29) we therefore get, on €(z) with (£, v)-high probability,

(1) 1/2
C(log N)¢ A, 1 i
2 < SREEE L cpog e |22 4 (g DIl ]
k.l
C(log N)¢  C(log N)*¢A, 9 [Imm
< + + C(log N)®, | ——,
q VN7 ( ) Nn
similarly to above. Invoking (3.32) and recalling (3.2) finishes the proof. O
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We may now estimate Ay in terms of A.
LEMMA 3.14. Fix z = E+in € Dy. On Q(z) we have with (§,v)-high probability

(log N)*

max |Gii(z) —m(z)] < C'< + (log N)QE\I'(Z)> . (3.36)

PROOF. We use the resolvent equation (3.23). On Q(z) we have |A4;| < CAZ and |h;;| < C/q with (€, v)-high
probability by Lemma 3.7. Thus, Lemma 3.13 yields on Q(z) with (£, v)-high probability

£
T < C((logcjv) (log N)25W (2 > < 1. (3.37)
From (3.23) we therefore get on Q(z) with (£, v)-high probability
G = Gl = (GGl 03] < (LR 4 ognysuca)) (339)

Since m = + _: G, the proof is complete. O

Note that (3.36) implies
log N )&
Aa(z) < A2) + c((ogq) + (log N)?é@@)) . (3.39)
on Q(z) with (&, v)-high probability.

3.3 Stability of the self-consistent equation of [v] on (2)

We now expand the self-consistent equation into a form in which the stability of the averaged quantity [v]
may be analysed. Recall the definition v; := G;; — me.

LEMMA 3.15. Fiz z € Dy. Then we have on Q(z) with (§,v)-high probability

log N)2+1 A?
(1= m2)le] = mi ] +m2[Z] + O (“gq) + (log NY*H1 w2 1 lgN> . B40)

PROOF. Recall that on Q(z) we have v; = o(1). Moreover, (2.13) and (3.8) imply that |ms.(z) + z| =
Imse(2)|~t = ¢ for z € D. With (3.37) we may therefore expand (3.23) on €(z) up to second order to get,
with (&, v)-high probability,
vi = me([v] = To) +mi([v] = To)* + O([v] = T3)°. (3.41)
Averaging over i in (3.41) yields, with (&, v)-high probability,
(1=m2)[] = —mZ[X] +m[v]2 = 2m2 o] [X] + m2[T?] + O([v] + max]| ;)"

Recall the definition (3.24) of A;. Using (3.19) and (3.29) we find on Q(z), with (&, v)-high probability,

o) o §
| = 2 Sz + 4] = —i2)+ o Lk N2Z|GU|2) — —iz1+ 0 BEE 1 w2).

where in the last step we used (3.27). Moreover, recalling that |[v]| = A, we get by Young’s inequality

2

2 BI[T) = O g + (os MY
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Recalling (3.37), we therefore have

log V)¢ A2
(1= m2)] = md o+ m, (2] + O YENE L g2 4 (log N)[TIP + max| ol + A +
N 2 10gN
— 3 []2 2 (log N>+ 46412 A2
- msc[v} + msc[Z] + O( (]2 + (IOg N) \Ij + lOgN ’
where we used that on (z) we have A < Ay < (log N)~¢ < (log N)~L. O

Note that, together with (3.33), Lemma 3.15 implies a weak self-consistent equation on [v]:

2 oz N)E
(1—m2)[v] = m3[v]* + 0(101;]\7) + O(agqN) + (logN)2§W> . (3.42)

on (z) with (&, v)-high probability. Here we used (2.6) and (3.2). For the proof of the weak semicircle law,
Theorem 3.1, we shall only use the weaker form (3.42) of the self-consistent equation.
3.4 Initial estimates for large 7

In order to get the continuity argument of Section 3.6 started, we need some initial estimates on Ay + A, for
large 7. In other words, we need to prove that Q(E + in) is an event of high probability for n ~ 1.

LEMMA 3.16. Letn > 2. Then for z = E +in € Dy we have

C(log N)& n C(log N)*

Aa(2) + Ap(2) < . Wi

< C(log N)~*

with (&, v)-high probability.

PrROOF. Fix z = F +in € Dy, with n > 2. We shall repeatedly make use of the trivial estimates

1 1 1
GPl< = mP < = el < = (3.43)
Ui Ui n
where T C {1,..., N} is arbitrary. These estimates follow immediately from the definitions of G and m,.

We begin by estimating A,. For i # j we get, following the calculation in (3.34) and recalling (3.27),
with (&, v)-high probability,

Tm m (i) C C(log N)%*
—— < — 4 oA, + ————.
Nn q L VN

Taking the maximum over ¢ # j yields, with (&, v)-high probability,

Gyl < §+o<1>Ao+c<1ogN>Zf

2¢
A, < O ClogNp*
q

VN

What remains is an estimate on A4. We begin by estimating, with (£, v)-high probability,

C
T, < E +1Zi| + | Al -

In order to estimate |.A;|, we observe that (3.13) implies

Gij i .,
GTZ = —GS)(hij = Zy) i #7).
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Therefore we have, with (&, v)-high probability,

C

1 c
|A;| < N|Gu-|+ Z|G I|Gjil(|hij| + 1Zi5]) < +CA <q+sip|Z”|) 7 (3.44)
where we used that with (¢, z/)—high probability
C A, C
Zij| < 1oN25[ + =2 +},

as follows from (3.22) and (3.27). Similarly, from (3.15) and using (3.20) and (3.21), we find with (&, v)-high
probability

C(log N)¢ N C(log N)*
q VN

Thus we have proved that with (&, r)-high probability |T;| < C(log N)é¢~! + C(log N)¥N—1/2,
Next, using (2.13), we write the self-consistent equation (3.23) in the form
[v] = s

v = Gt et 0] =T T ma) (3.45)

|Zi] <

The denominator of (3.45) is with (&, v)-high probability larger in absolute value than
(2 —1-0((log N)éq~! + (log N)2EN*1/2))2 > 3/2,
since |z + mge| = |mse| ™! = 2 and |[v]| < 1 by (3.43). Thus,

Ag+O((log N)éq~t + (log N)XN~1/2)

[ < )
i e

which yields, after taking the maximum over i,

Ag+O((log N)¢g=t + (log N)*2N~1/2)
3/2 '
This completes the estimate of Ay, and hence the proof. O

Ag <

3.5 Dichotomy argument for A

The following dichotomy argument serves as the basis for the continuity argument of Section 3.6.
We introduce the control parameters

1—m?

sc
3
mg.

(log N)¢  (log N)*/2
Va (N8
where o = a(z) and § = (z) depend on the spectral parameter z. For any z € Dy we have the bound
B < (logN)~¢
From Lemma 3.2 it also follows that there is a constant constant K > 1, depending only on ¥, such that
1
K

B =

(3.46)

a;:‘

k+n < alz) < Kve+n (3.47)

for any z € Dy,.

We shall fix E and vary 7 from 2 down to (log N)XN—1. Since \/k + 7 is increasing and B(E + in)
decreasing in 7, we find that, for any U > 1, the equation /k + n = 2U?K3(FE + in) has a unique solution
71, which we denote by 7 = (U, E) (recall that x = ||E| — 2| is independent of 1). Moreover, it is easy to see
that for any fixed U we have

n < 1. (3.48)
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LEMMA 3.17 (DicHOTOMY). There exists a constant Uy such that, for any fized U > Uy, there exists a
constant Cy(U), depending only on U, such that the following estimates hold for any z = E +in € Dy:

AG) < UBE) or AGR) > M i 0 > AU.E) (3.49)

Alz) < C1(U)B(2) if m < U E) (3.50)

on Q(z) with (§,v)-high probability and for sufficiently large N.
PROOF. Fix z = E+1in € Dy. From (3.42) and Lemma 3.2 we find

Lm0 log V)¢
R +O(logN>+O(q+ 53“630‘)’

with (&, v)-high probability. The third term on the right-hand side is bounded by C*(8A+ a8+ 3?) for some
constant C* > 1. We set Uy := 9(C* + 1). We conclude that in Q(z) we have with (£, v)-high probability

2
1—m3,

< O( A >+C*(6A+a5+ﬁ2). (3.51)

o] = [o]? s ¥

3
Mise

Depending on the size of 3 relative to «, which is determined by z, we shall estimate either [v] or [v]2

using (3.51). This gives rise to the two cases in Lemma 3.17.
Case 1: n = 1. From the definition of 77 and C* we find that

« e
2 < 2% <. 3.52
vz S 20x S ¢ (3:52)
Recalling that A = |[v]|, we therefore obtain from (3.51) with (&, v)-high probability

p <

A
ah < 202+ C*(BA+aB + %) < 2A% + 0‘7 1 2C%ag,
which gives
al < 4A% +4C*ap.

Thus, either «A/2 < 4A% which implies A > a/8 > «/U, or aA/2 < 4C*af which implies A < 8C*B < UB.
This proves (3.49).
Case 2: m < 7). In this case the definition of 7 yields o < 2U?K?23. We express |[v]|? = A? from (3.51) and

we get
A? < 20A +20*(BA +af + B?%) < C'BA+C'B?, (3.53)

for some constant C’ depending on U. Now (3.50) is an immediate consequence. O

3.6 Continuity argument: conclusion of the proof of Theorem 3.1

We complete the proof of Theorem 3.1 using a continuity argument in 7 to go from n = 2 down to n =
N~Y(log N)L. We focus first on proving (3.5). We use Lemma 3.16 for the initial estimate, and the dichotomy
in Lemma 3.17 to propagate a strong estimate on A to smaller values of 7.

Choose a decreasing finite sequence ng, k = 1,2, ..., ko satisfying kg < CN8, |nr — mra1| S N8, m1 = 2,
and ng, = N~ 1(log N)E. We fix E € [-%, Y] and set z;, := E +ing. Throughout this section we fix a U > Uy
in Lemma 3.17, and recall the definition of (U, E') from Section 3.5.

Consider first z;. It is easy to see that, for large enough N, we have n; > (U, E), for any F € [-X, X].
Therefore Lemmas 3.16 and 3.17 imply that both Q(z;) and

A(z1) < UB(=1)

hold with (&, v)-high probability. This estimate takes care of the initial point n;. The next lemma extends
this result to all £ < kq.
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LEMMA 3.18. Define the event
Qp = Q(Zk) N {A(Zk) < C(k)(U)ﬁ(Zk)} ,
where

cM(U) = u if e = n(U, E)
TG i <H(ULB).

Then
P(QS) < 2ke (e (3.54)

PROOF. We proceed by induction on k. The case k = 1 was just proved. Let us therefore assume that (3.54)
holds for k. We need to estimate

P(Q%,1) < P(Q N Qzki) N2 )+ P(Q N (ze1))S) +P(Q) = B+ A+PQF), (3.55)
where we defined
A= P[nk N {Ad(zkH) + Ao(z41) > (1ogN)—fH :
B = P[Qk N Q(zps1) N {A(zkH) > c(k+1>(U)ﬂ(zk+1)}] .

We begin by estimating A. For any i, j, we have
8Gij (Z)

1
5 N~% sup < NS, (3.56)

z€Dp (Im Z)2

N

|Gij (26 41) — Gij(zk)| < |2p41 — 2k| sup
z€Dy,

Therefore, by (3.32) and (3.39), we have on € with (&, v)-high probability

Aa(zks1) + Mo(zp1) < Aalzr) + Ao(z) +2N7°¢ < C’<(10gqN)f + (log N)zf‘lf(zk)> + A(zy)

< CB(z) < (logN)~¢.

Thus we find that A < e—¥(lo8 N
Next, we estimate B. Suppose first that n, > 7(U, E). Then, similarly to (3.56) we find |A(zg41) —
A(z)] < N=6. Thus we find on € with (&, v)-high probability

A(Zk+1) < A(Zk)+N76 < Uﬁ(zk)+N76 < %ﬁ(zkﬂ) (357)

Suppose now that nx+1 = N(U, E). Then from (3.57) and (3.52) we find A(zx41) < % Now the
dichotomy of (3.49) yields on Qf N Q(zx41) with (&, v)-high probability that A(zx4+1) < UB(2k+1). On the
other hand, if i1 < 77(U, E) then (3.57) immediately implies A(zx+1) < C1(U)B(2k+1). This concludes the
proof of B < e~v(10eN)* jf > (U, E).

Finally, suppose that n; < 77(U, E). Thus we also have 1,11 < (U, E). In this case we immediately get
from (3.50) on Q(zx4+1) with (£, v)-high probability A(zk+1) < C1(U)B(zk+1)-

We have therefore proved, for all &, that P(Qf_ ;) < 2ev(los N)¢ 4 P(€27), and the claim follows. O

In order to complete the proof of Theorem 3.1, we invoke the following simple lattice argument which

strengthens the result of Lemma 3.18 to a statement uniform in z € Dy. The main ingredient is the Lipschitz
continuity of the map z — G;;(z), with a Lipschitz constant bounded by n~2 < N2
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COROLLARY 3.19. There is a constant C such that

P[ U @) | +2| U {6 > Cﬁ(Z)}] < Tt (3.58)

z€Dp, z€Dy,

+P

PROOF. Take a lattice £L C Dy, such that |£| < CN® and for any z € Dy, there is a 7 € £ satisfying
|z — 2| < N=3. From the definition of G it is easy to see that for z,Z € Dy,

1

Gij(2) = G ()] < 72z — 2 < & (3.59)
The same bound holds for |m(z) — m(Z)|. Moreover, Lemma 3.18 immediately yields
c ¢
N —B(3 > _ —v(logN) .
P ﬂ {ae) <3 ,6’(2)}] > 1-e (3.60)

for some C' large enough and some v > 0. From (3.59), (3.60), and N~! < 3(z) we get

Pl U {A(z) >C’6(z)}] < e Vllos M)

z€Dyp,
The first term of (3.58) is estimated similarly. O
We have proved (3.5). In order to prove (3.3), we note that (3.5), (3.32), and (3.58) imply
C n C(log N)%
q VN

with (&, v)-high probability. Now a lattice argument a analogous to Corollary 3.19 yields (3.3). The diagonal
estimate (3.4) follows similarly using (3.36). This concludes the proof of Theorem 3.1.

Ao(z) <

4 Proof of Theorem 2.8

In the previous section we proved Theorem 3.1, which is weaker than the main result Theorem 2.8 (strong
local semicircle law), but will be used as an a priori bound in the proof of Theorem 2.8. The key ingredient
that allows us to strengthen Theorem 3.1 to Theorem 2.8 is the following lemma, which shows that [Z],
the average of the Z;’s, is much smaller than of a typical Z;. (Notice that in the proof of Theorem 3.1, to
arrive at (3.42), [Z] was estimated by the same quantity as each individual Z;.) This lemma is analogous to
Lemma 5.2 in [22] and Corollary 4.2 in [23], but we will present a new proof (in Section 5.3), which admits
sparse matrix entries and effectively tracks the dependence of the exponent p. Our new proof is based on an
abstract decoupling result, Theorem 5.6 below, which is useful in other contexts as well, such as for proving
Proposition 7.11 below.

LEMMA 4.1. Recall the notation [Z] = % >, Z;. Suppose that & satisfies (2.4), ¢ = (log N)%* and that there
exists D C Dy, with L > 14 such that we have with (&, v)-high probability

A(z) € v(2) for ze D, (4.1)

where v is a deterministic function satisfying v(z) < (log N)~¢. Then we have with (¢ —2,v)-high probability
1 1 Immg.(2) + v(2) ~

Z|(z)] < (log N)*¢ <+ + (log N)*¢ e for z€ D. 4.2

1260 < (Qor N (5 + s + (o Ny (1.2

In particular, by (3.40), we have with (§ — 2,v)-high probability

1—m? 9 A? 1 1 Immg. + vy

% [v] — <C C(log N)* | = + — + (log N)* —2 11 4.3

oy [v] = [v] g N (log V) q2+(Nn)2+(og ) N (4.3)

for any value of the spectral parameter z € D.
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The proof of Lemma 4.1 is given in Section 5. In this section we use it to prove Theorem 2.8 and to
derive an estimate on ||H|| (Lemma 4.4).

The basic idea behind the proof of Theorem 2.8 using Lemma 4.1 is to iterate (4.2) in order to obtain
successively better estimates for A. Each step of the iteration improves the power 1 — 7 of the control
parameter (¢~ + (Nn)~1)1=7. The iteration is started with the weak local semicircle law, Theorem 3.1,
which yields 1 — 7 = 1/3. At each step of the iteration, 7 is halved at the expense of reducing the parameter
& to & — 2, thus reducing the probability on which the estimate holds. This iteration procedure is repeated
an order loglog NV times, which allows us effectively to reach 7 = 0.

The iteration step is based on the following lemma, which is entirely deterministic.

LEMMA 4.2. Let 1 < & <& and ¢ > 1. Let 0 <7 <1 and L > 1. Suppose that there is a number vy(z)
satisfying
1 1

1-7
v(z) < (log N)'& (q + N77) for z€ Dy, (4.4)

such that (4.1) holds with D := Dy,. We also assume that

2

log N

2
1—m3,

1 1 a+y
[v] - [v]?| € C + C(log N)14&1 <q2 + (N)? + (logN)451Nn> for z€ Dy, (4.5)

3
Mse

where a was defined in (3.46). Finally, we assume that if n ~ 1, then

Alz) < 1. (4.6)
Then we have
1o¢ 1 1 1-7/2
< 2 — .
A(z) < (logN) (q + Nﬁ) (4.7)

for z € Dy, and large enough N.

PROOF. The proof is based on a dichotomy argument. Define

. 1 1 1-7/2
= (log N)YI8tD)& (= 4 . 4.
ao(2) (log N)\*5a q+Nn (4.8)

We consider two cases.
Case 1: o < 10ag. Using the estimate (4.4) we find

— +
®  (Nn)?

2—T1
Y 23¢ 1 1
+ (log N)*1—— < 2(log N)?3¢2 (+ . 4.9
( ) Nn ( ) q Nn (4.9)

Now in (4.5) we may absorb the term A?/log N into the term |[v]|?> on the left-hand side, at the expense of
a constant 2. Then we complete the square on the left-hand side and take the square root of the resulting
equation; this yields

1-7/2
1 1 «
A < da+ClogN)Fe (= 4 — C(log N)%, [— 4.10
o+ CllogN)=> | =+ 1 +Cllog N)™ [, (4.10)
where we used (4.9). Now (4.7) follows from (4.10).

Case 2: o > 10ap. Let us assume that A < /2. Then in (4.5) the terms [v]> and A? can be absorbed into
the term «l[v]|, so that we get

(log N)14&: (1 1

2
1
A< Sy log N)186 1 log N)186 411
oS + >+C’(og) Ny Cllog ) (4.11)

q Nn 7
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By the definitions of v and «ag, we have

v Qg 10«

C(log N)18& < <
(log ) Nna (log N)1/4 (log N)1/4

(4.12)

and the first term in the right-hand side of (4.11) is bounded by «/log N thanks to (4.8). The last term can
be estimated similarly. Hence (4.11) implies that A < /4 provided that A < a/2.

In other words, if o > 10cg then either A > «/2 or A < a/4. Using the continuity of A(z) and a = a(z)
in 7 = Im 2z, and the assumption

Alz) < 1 = O(a)
for n ~ 1, we get A < a/4 on the whole Dy,. Together with (4.11), we obtain (4.7). O

PROOF OF THEOREM 2.8. The main work is to prove Theorem 2.8 for spectral parameters z € Dy, where
L = 120¢. (4.13)

Once this is done, the extension to all z € D is relatively straightforward, and is given at the end of the
proof. Recall the definition (3.26) of ¥ and (3.25) of Q(z). It is clear that if D is replaced everywhere by
Dy, then (2.17) follows from (2.16), (3.32) and (3.36). Therefore we only need to prove (2.16).
We begin by introducing
£ = 2(loglog N/log2) + €. (4.14)

By the assumptions (2.15) and (4.13), we have Eg 3¢/2 < Aploglog N, L > 608, and ¢ > (log N)Gog. To
prove (2.16) with D replaced by Dy, it therefore suffices to establish

< (lop N2 (i (0B NPT 1Y 1
igL{|( )=t < g 07 (i (Bt ) o

with (&, v)-high probability.
The weak local semicircle law, Theorem 3.1 with & replacing &, yields

~ /1 1\ /3 ~ /1 1\ 1-2/3
A < (log N)* <q + N77> < (log N)'% <q + Nn> for z € Dr, (4.16)
with (€, v)-high probability. Thus (4.1) holds with
1 1 \B
v(z) = (log N)'9¢ (q + Nn) : (4.17)

With L > GOg and ¢ > (log N)Gog, we also have v < (log N)*g. Thus Lemma 4.1 implies that, with E
replacing £ and D = Dy, the statement

2 2
1—mZ,

for z € Dy,

(4.18)
holds with (£ — 2, v)-high probability. This implies (4.5), with the choice & = ¢ in (4.5), since Imm,. < Ca.
Moreover, v satisfies (4.4) with & = { and 7 = 2/3. We also find that A satisfies (4.6), since A < v <
(log N)~¢ (see (4.16)). We may therefore apply Lemma 4.2 with & = & = £ to get that

W] - WP < 02

1 1 4§~Im Mse + 7Y
log N

+010N145<++10N
(log N) 2 (Nn)Q(g) N

3
Mse

-~ 1\
A < (log N)1% ( + N) for z € Dy, (4.19)
q n
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holds with (§~ —2,v)-high probability. We now repeat this process M times, each iteration yielding a stronger
bound on A which holds with a smaller probability. After M iterations we get that

1_2(1)M
A < (lo N)lgg 1—&—i o for ze D (4.20)
X g q N7 L .
holds with (5— 2M, v)-high probability.
To clarify the iteration, we spell out the details of the second step. We start from (4.19) and define ~ as
the right-hand side of (4.19),

- 1-1/3
v(z) = (log N)'9% (; + ]\}77) . (4.21)

Thus Lemma 4.1, with 5 — 2 replacing &, implies that

L m, A’ fa(l, 1 £ lmmy
&[U] —[v)?*| < ClogN +C(log N)14(E=2) ( +—— +(log N)4(£—2)M

f D
¢  (Nn)? Nn ) or e oL

(4.22)
holds with (£ — 4, v)-high probability. We now apply Lemma 4.2 with & = £ — 2, & = £ and 7 = 1/3.
(Similarly, in the k-th step we set & =& —2(k — 1), & = &, and 7 = (2/3)(1/2)*~.) This shows that

3
Mse

e 1 \1-1/6
A< (logN)¢ (= + — f D 4.2
(log N) . + Nu or z€ Dy, (4.23)

holds with (5— 4,v)-high probability. This is (4.20) for M = 2.
Now we return to (4.20) and choose M := [loglog N/log2] —1 (where [-] denotes the integer part). Using
¢+ (Nn)~t = eN~V2 (by (2.6)), we get

1 1 *%(%)M -
(+N> < C < (log N)E2,
q n
Thus
sog (1 1
A< (logN)%5 (q + N77> for z € Dy, (4.24)

holds with (£ + 2, v)-high probability. Recalling (3.47) we find that (4.24) implies (4.15), unless

39

1
(log N)~=¢a >

1

- = —. 4.25
. > Nn (4.25)
Let us therefore assume that (4.25) holds. Then it remains to prove that with (£, v)-high probability

g1 g1
A < (log N)‘l()ga—q2 + (log N)205N—77 for z € Dy,. (4.26)

Defining  as the right-hand side of (4.24), we use Lemma 4.1, with £ 4+ 2 replacing &, to get

1—m? 9 A?
SC _ <
- b < O

+ C(log N)13€ (1 + a) (4.27)

mi, ¢>  Npy

with (&, v)-high probability, where we used (4.25) and |Imm,.(z)| < Ca(z). We can estimate the term [v]?
by (4.24) and (4.25), so that

-1 e’
_ 39 18
al = a|[v]] < C(logN) f—q2 + C(log N) fan. (4.28)
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This yields (4.26) and hence completes the proof of (2.16) with D replaced with Dy. (Recall the simple
lattice argument of Corollary 3.19.)

What remains is to extend (2.16) and (2.17) from z € Dy to z € D. Let us therefore assume that
z=FE+ine€ D with 0 < <7 := (log N)!N~L. For any i,j = 1,..., N we get the bound

g .

|Gij (E +in)| =

Ug, (z)ua
A

[e%

«

We define the dyadic decomposition of the eigenvalues
={a:\a—El<n}, Uy :={a:2""'n<a—E[<2"}  (k>1).

This yields

u, u U 2
Z|| - = Z | o cy ZI “)'1%7 < CY ImGy(E +i2ky).

k>0 acUy k>0 acUy k>0

Next, we break the summation over k into three pieces delimited by k; := max{k : 2¥n < 77} and ko :=
max{k : 28n < 3}. By spectral decomposition, it is easy to see that the function y — y Im Gy (E + iy) is
monotone increasing. Therefore we get

k1~ k2

Nt 1
ZImG”(E—&—iQ ) ZiImG” (E+1in) + Z Im Gy (E + i2" ) Z —
k>0 —0 A k=k1+1 kot 2
( N)“E
ko — k
N +C(ky — k1) +C
¢ (og V)%
Nn

with (£, v)-high probability, where in the second step we used (2.17) for z € Dy,. Therefore we have proved
that

. (log N)“¢
Gii(E+ < ——
max|Gyj (B + in)| N
with (£, v)-high probability. This concludes the proof of Theorem 2.8. O

4.1 Estimate of || H||

In this section we derive an upper bound on the norm of H. A standard application of the moment method
yields the following weak bound on || H||. Its proof is given in Appendix A.

LEMMA 4.3. Suppose that H satisfies Definition 2.1, that £ satisfies (2.4), and that q satisfies (2.6). Then
with (§,v)-high probability we have
IH| < 2+ (log N)Sq~'/2. (4.29)

Using the local semicircle law, Theorem 2.8, we may prove a much stronger bound on ||H||. Lemma 4.3
will be used as an apriori bound in the proof of Lemma 4.4.

LEMMA 4.4. Suppose that H satisfies Definition 2.1, and that & and q satisfy (2.15). Then with (£, v)-high
probability we have

IH| < 2+ (log N)©¢ (q’2+N’2/3) . (4.30)
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PROOF OF LEMMA 4.4. We only consider the largest eigenvalue Ay = max, A,; the smallest eigenvalue \;
is handled similarly. Set L = 120£. Using (2.16) with £+ 2 replacing &, we get with (£ +2, v)-high probability

1 1
< a4 —). .
A(2) < (log N) <q + N77> (4.31)
Then applying, Lemma 4.1 with
1 1
— (log N4 ( ) 4.32
1) = (og M) (24 - (132
and & 4 2 replacing &, we have with (£, v)-high probability
1—m? 9 A? c 1 1 Imm
5] — < logN)“'¢ [ = 4+ —— + ——= f Dy, 4.
. [v] = [v] ClogN + C(log N) (q2 + )2 + Nn ) or z € Dp, (4.33)

where C is a sufficiently large constant. Now if E > 2 and & > 7, then Lemma 3.2 and (3.47) yield

Immg. ~ %, a ~ k. (4.34)
Inserting (4.34) into (4.33), we find with (&, v)-high probability
1—m? ) 2 ce [ 1 1 1
€ [v] — <C C(log N)“¢ | = — - 4.35
g, ol log v+ Cog ) (q2 e T Nx/E) (4:3)

Next, for any fixed C7 > 0, we can find a large enough constant Cs > 2C such that if F satisfies
2 + (log N)C2¢ (q_2 + N—2/3) < E <3 (4.36)

then
min{ N=1V25140 NT1.2¢2 ) k) > (log N)G8H 2N 112, (4.37)

(Here k = kg = E — 2.) From now on we assume that E satisfies (4.36). We define
n=ng = (log N)O$HIN"1~1/2, (4.38)

Note that 7 depends on E via k. From (4.37) we have

kK =m. (4.39)
Using (4.37), (4.38), and (4.34) we get
Lo 0 tmme(E +in) (4.40)
— — ~ Im . .
N7y \/E Msc m
Similarly, using (4.37) we have
1 1
—- > —. 4.41
Nn = ¢k (4.41)
Next, with the lower bound « > /k/K from (3.47) and (4.39) we find, using (4.31), that
a > c(log N)Ciet! LI I S (4.42)
g Nny ’

with (£, v)-high probability, where we used (4.36) to obtain the first term ¢~* on the right-hand side and we
used Nny/k = (log N)C1¢+1 (see the definition (4.38) of 1) for the second term. Now we can assume

q > (log N)%s¢ (4.43)
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for some large C3 > 0 (otherwise (4.30) holds for some constant C' by Lemma 4.3). We have E +in € Dy,
(recall that E satisfies (4.36)). Using (4.42), we can neglect the terms A% and [v]? in (4.35) to get, with
(&, v)-high probability,

1 1 1
C
A < C(log N)O:E (aqz o aN\/E) . (4.44)

Since a > K+/k, the last term is bounded by

1 e 1 M e 1 1
< (log N)~ @871 = < (log N)~ 61—
aN (log V) Tn (log N) No’

where we have used (4.40). The first term on the right-hand side of (4.44) can be estimated similarly using
(4.41) and (4.37). Finally, the middle term on the right hand side of (4.44) can be estimated by using (4.42).
Putting everything together, we obtain, for any F satisfying (4.36), that

1 .
Az) < N for z = E+ine Dy, (4.45)

with (¢, v)-high probability. Furthermore, with (4.34) and (4.40), we obtain that for any E in (4.36)

1
Imm(z) < Imm.(2) +A(z) < o for z=E+in€ Dy, (4.46)

with (¢, v)-high probability. Since
_ n
Imm(z) = i g BT (4.47)

we have c

No
if there is an eigenvalue in [F —n, E+n]. Then (4.47) and (4.46) imply that, for any E satisfying (4.36), there

is no eigenvalue in [E — n, E + n] with (£, v)-high probability. The regime E > 3 is covered by Lemma 4.3.
This completes the proof. O

Imm(z) >

5 Abstract Decoupling Lemma and Applications

In this section we prove an abstract decoupling lemma which is independent of the random matrix model.
We shall apply this abstract result to random matrices in Sections 5.2, 5.3, and 7.4.

5.1 Abstract decoupling lemma

Throughout this section we use the letters A and B to denote abstract random variables. Note that A in
this context has nothing to do with the matrix A from Definition 2.2. We work on the probability space
generated by the N x N random matrices H. Let (A[Y) be a family of random variables indexed by subsets
Uc{1,...,N}, and denote A := Al’l, For Uc S c {1,..., N} we define the random variable

ASU . Z(_l)lTlA[(S\U)UT] — (_1)\S\U\ Z (—1)W‘AM. (5.1)
TCU V:S\UCVCS

LEMMA 5.1 (RESOLUTION OF DEPENDENCE). For any S we have

A=) A, (5.2)

Uucs
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PROOF. The proof is a standard inclusion-exclusion argument. O

DEFINITION 5.2. Let A := A(H) be a random variable. Then we define the new random variable A through
AD(H) = A(rr(H)), (5.3)
where mr was defined in (3.10).

REMARK 5.3. Note that the operation (-)(T) is compatible with algebraic operations in the sense that
(A+B)® = A® 4+ M (AB)D = AMBD (5.4)

Since 7y o my = myuy we also have (A(V)(V) = AULY),

REMARK 5.4. The matrices H(™ and G(T) defined through (5.3) are N x N matrices. We adopt this
convention only in this section. This is in contrast to Definition 3.3, where the same notation was used for
the (N —|T|) x (N —|T|) minors of the same matrices. This slight abuse of notation will not cause ambiguity,
however, because we shall only consider matrix elements Hi(;r ) and GZ(-;T) for i, 7 ¢ T; for these matrix elements
the two definitions coincide.

DEFINITION 5.5. We say that a random variable A is independent of the set U C {1,...,N} if A = A
(or, equivalently, if A is independent of the family (h;; : i € U or j € U)).

We shortly explain the idea behind these definitions. In many applications we choose AVl := AU 5o
that AV is independent of U. In this case, the decomposition (5.2) can be interpreted as follows. We first
fix a reference set S. From (5.1) it is clear that A%V is independent of S\ U, i.e. it depends only on the set U
(among the variables in S). Therefore (5.2) can be viewed as a resolution of dependence of A on subsets of S.
We shall see that when we apply this decomposition to resolvent matrix elements, i.e. set A = G5, then ijz“
will be comparable in size with a product of at least |[U|+ 1 off-diagonal resolvent matrix elements, which are
small with high probability. Hence, in this case, the decomposition (5.2) is effectively a graded resolution
with a trade-off between dependence and size. A larger U means that GZSJ’,U is smaller, but it depends on
more variables. For smaller U’s we will exploit that G>U is independent of more variables.

The purpose of this graded decoupling is to obtain large deviation estimates on the average [Z] := % > 2
of N weakly dependent centred random variables Z;. The precise result is given in Theorem 5.6 below. Before
stating it, we outline the main ideas.

In our applications, the covariances between different variables Z; are too large to be controlled in terms
of their variances, and hence standard methods for sums of weakly dependent random variables relying on
such ideas do not apply. Instead, the weak dependence will be expressed in terms of the smallness of ZiS Utor
large U; the size of Zis U reflects how strongly Z; depends on the set U. The basic strategy is a high-moment
estimate

Bzl = 5 ¥ Eu©@2, - )

on some high-probability event =, whereby each term Z;, is expanded according to the graded expansion

of (5.2). The right-hand side is controlled using the two following facts. (i) ZzS Y is small for large U (weak
dependence of Z; on U). (ii) The expectation vanishes if all factors are independent. Note that this graded
expansion differs from the conventional martingale-type arguments used to establish central limit theorems
for correlated random variables.

The basic idea of a graded expansion to control large deviations of sums of weakly dependent random
variables was introduced in Lemma 5.2 of [22] in context of Wigner matrices. This result considers the special
case Z; = Z; (as defined in (3.15)) and uses expansions in full rows and columns to detect dependencies. For
the applications in [22], only large but N-independent powers p were considered. Hence in [22] it was not
necessary to keep track of the p-dependence or the probability of =.

A new proof was given in Lemma 4.1 of [23], where the p-dependence and the probability of = were
tracked precisely. This proof relied on an expansion in terms of invidual matrix elements and not full rows
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and columns. Thus the expansion was more economical but its combinatorial structure was considerably
more involved.

In this paper we present an abstract generalization of the row and column expansion method of [22]. It is
formulated for an arbitrary family of random variables Zq,..., Zy. As input, it needs bounds on the terms
of the graded expansion of Z;. The abstract formulation thus streamlines the argument by dissociating two
unrelated steps of the proof: (i) the moment estimate using the graded expansion (a probabilistic estimate
given in Theorem 5.6) and (ii) controlling the size of the graded terms for a concrete application (in the case
of resolvent matrix elements, a deterministic, almost entirely algebraic, argument given in Section 5.2).

For our purposes, this increased generality is needed for two reasons. First, it allows for an efficient
control of the strong fluctuations associated with sparse matrix entries. Second, we use it to control the
average of not only Z; (Lemma 5.13) but also quantities like (7.27) with a different algebraic structure. In
the special case Z; = Z; and ¢ = N'/2 (Wigner matrix), our result reduces to that of Lemma 4.1 in [23].

THEOREM 5.6 (ABSTRACT DECOUPLING LEMMA). Let Z1,..., ZN be random variables and recall the nota-
tion
LN
Zl = — Zi.
2] = ;

Let = be an event and p an even integer. Suppose that there exists a family of random variables (ZZ-[U])LM

indexed by i € {1,...,N} and U C {1,...,N} satisfying i ¢ U, such that Zi[@] = Z; and the following
assumptions hold with some constant C'.

(i) Recall the partial expectation E; from Definition 3.6. For i ¢ U we have that Zi[U] is independent of U
and
EzY = 0. (5.5)

(i) (L"-norm in Z). For any U, S with U C S and i ¢ S we consider ZZS’U defined by (5.1) from the family
Zi[U]. Then for any numbers r < p with |S| < p we have

E(1(5)|Z§’U|T) < (Y(Cxu)")',  withu:=[U]+1, (5.6)

where X and 'Y are deterministic and X satisfies

< m. (5.7)
(iii) (Rough bound on the L*-norm in [Z);). Define
[E]; = (77 om)(E). (5.8)
For any U, S satisfying U CS, i ¢ S, and |S| < p we have
E (1(E)I27°12) < N, (5.9)
(iv) (Rough bound on Z;). For any U we have
1®)2"| < yNC, (5.10)
(v) (E has high probability). We require that
P[E] < e cUesN)*’p (5.11)
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Then, under the assumptions (i) — (v), we have
P(1E)[2] > p2Y (X2 + N 7)) < = (5.12)
p
for some C > 0 and sufficiently large N. The constant in (5.12) depends on the constants in (5.6), (5.10)
and (5.11).

The key assumptions in Theorem 5.6 are (i) and (ii); the key (small) parameter is X. Assumption (i)
simply ensures that all terms of the graded expansion of Z; have zero expectation. Assumption (ii) defines
the decay of ZZ-S Uin the size of U; roughly, it states that

‘ZiS’U’ 5 X\UH—I

in the sense of high moments. This is in accordance with the principle outlined above that terms of the
graded expansion which depend on many variables have a small size, while those which are independent of
many variables may be larger. The parameter Y is trivial in our applications, where we shall take it to be a
logarithmic factor. In Lemma 4.1 of [23], the role of X was played by the parameter ¥ defined in (3.26).

PROOF OF THEOREM 5.6. We find

N

E1E)IZP) = N? > E 1(E)sz§*§ (5.13)

a,az,...,ap=1

where # stands for either nothing or complex conjugation. Let o« = (a1, ..., ;) and define S = S(a) :=
{a1,a9,...,a,}. Then we have
p p
E(1(E)|Z|P) < NP N max [E|1E)|]2# ||. 5.14
a@lzr) < NN w8 (1@ 112 (514)

Abbreviating S; := S\ {a;} we find from (5.2) that

- ¥ zY (5.15)

U’CS
Thus (5.14) implies
p p ,
E1E)|Z/P) < N7PpPY N* max [E(1E) > - > [[#]Y% (5.16)
s=1

a:|S(a)|=s .
| | Ui CSy U;,CSp j=1

(abbreviating ASU = ASY). Writing U; := U} U {a;} we have

E(1(2)|2]?) ( ) ZZNSS"npmaX{’ ( =) ﬁz# SU)‘ : |S(a):s,U;ch,§p:|Uj|:n}.

s=1n=1 Jj=1 j=1
(5.17)
Now we claim that
P P
Nss”npmax{’ ( =) H )‘ D S(e)]| =5, U CS;y, Z|Uj| = n} < (CNp"Y (X? —|—N_1))p
j=1 j=1
(5.18)
for some C > 0. Then inserting (5.18) into (5.17), we find
E(1(E)2PP) < (Cp''Y(X2+N )7, (5.19)
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which implies (5.12) by Markov’s inequality.
It only remains to prove (5.18). We consider two cases: n > 2s and n < 2s — 1.
We begin by proving (5.18) for the case n > 2s. Using Holder’s inequality we find

P P b l/r
1@ 11 < |TIE(x® |iz2%]) (5.20)
j=1 j=1
Applying (5.6) to the right-hand side, we obtain that
1/p
P
H ( #1500 ) < YP(CnX)" (5.21)

since ) (U5l +1) = > IUj] = n. Combining (5.20), (5.21) and the factor n > p, we have bounded the
left-hand side of (5.18) as follows,

o fe

N¥s™nP max{
=1

p
>’ D S(a)| =5, Uj C Sy, Z\U;\ n} < NSYP(Cn2Xs)®

j=1

< NSYP(Cn*Xs)?
< (ONpY (X2 4+ Ny,
where in the second inequality we used
Cn’Xs < CXsp? < CXp° <« 1

(see (5.7)) and n > 2s, and in the third inequality s < p and n < sp. This completes the proof of (5.18) for
the case n > 2s.

Now we prove (5.18) for the case n < 2s — 1. Fix sets U} with } .|U;| = n, where we recall that
U; :=Uj U{a;} and |U;| = |U}| + 1. By definition of U;, we have a; € U; for all j. Since n < 2s — 1, we
therefore find that there exists a k such that aj € Uy and oy ¢ Uj for j # k. By the definition (5.1) and
(5.5), [Zgi]sf U5 is independent of S; \ Uy, i.e. of S\ Uj. We conclude that

P
[Tiz% 5% (5.22)
J#k
is independent of {ay}. Therefore,
p ! p ’
(Zla) [[12Z 1% ) = B | []1221%% | 1([Elay) B[22 | = 0. (5.23)
i=1 J#k
Thus,
p ! p !
(1@ 225" | = & (1= \2) [J12£5% | . (5.24)
j=1 j=1
which yields
L ! P ’
1(2) Hz# Pl | < E{1([Ele, \2) [] 1225

/ ) . (5.29)
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Since (5.22) is independent of oy, we get

p p p
(= \D) [ |22 %]| < |1E@e) TT 2R = 1@ T 12215 (5.26)
ik . ik o ik 5
Using the definition of ZiS’U in (5.1) and (5.10), we have
’1(5)[2@]81"“3 < YNC2IUl (5.27)
and .
‘”E)H[Zii’ilgf’“? < (YNl < (YNO)P- 1%, (5.28)
J#k

where we used s < p and n < 2s in the last inequality. Combining (5.25), (5.26), and (5.28), we get

) . (5.29)

e (1@ [[1227% )| < N2 (250 \ D) (B1(Za) (22

28,1

P
E|1E) 2215 || < (vNOypt2 (El([z]ak \ )
j=1
Applying Schwarz’s inequality on the right-hand side, we find

2) 2 (5.30)

Using (5.7), (5.11), (5.9), and that n < 2s — 1 < 2p, we get, for any C>0
P , _
- #1S;,U0% C 2 —c\1/2 —-C
E(1E) [[2% %% || < (vNOP2*PE)/? < YPN P, (5.31)
j=1

Since s < p, the proof of (5.18) in the case n < 2s — 1 is complete. O

5.2 Decomposition of G;

In order to apply Theorem 5.6 to estimate [Z], we need to derive bounds, and hence formulas, for the
decomposition GZSJ’-U of resolvent matrix elements G;;. As usual, G refers to the resolvent of H at a fixed
spectral parameter z (which is suppressed in the notation), i.e. G = G(H) is viewed as a function of H. The
main result of this section is the bound (5.73) below.

Note that the results in this subsection are entirely deterministic.

LEMMA 5.7. Let z = E +in € D where D C C is some compact domain. Let U C {1,2,...,N} and
1

U] < BT A)TogN (5.32)
Then for any i,j ¢ U, we have
G —macdis] < (16 =)Aa+A,). (5.33)
In particular, if Ag + Ay < (log N)~1, then
nf Gy > . (5.34)

Here the constants ¢ and C depend only on D.

32



PROOF. Define
Bm = max{‘GS/) — 6ijGii : i,j % V, |V| = m} . (535)

In the case m = 0, (5.33) follows from the definition of A, and A4. The estimate (5.34) follows from (5.33)
noting that |ms.(z)| > ¢ on a compact domain z € D with ¢ depending on D. Next, from (3.12) we get

o e
ik “kj .o
-, wherei,j ¢ {k}UT and k ¢ T. (5.36)

Assuming (5.34) for |U| = m, we therefore obtain
Bmi1 < By, +CoB2 (5.37)

for some constant Cy > 0 independent of m. This implies that

By < CoY Bi+By. (5.38)
k=0
By induction on m one obtains B,, < 2By as long as ComBy < 1/2. O]

In order to state the next result, we introduce a class of rational functions in resolvent matrix elements.
Fix two sets U C S satisfying U # ). For fixed n € N let the following be given:

)n+1

(i) a sequence of integers (i, satisfying iy # ixy1 for 1 < k < n;

(i) a collection of sets (Uy,)"_; satisfying iq,ia+1 ¢ Uy as wellas S\U C U, C Sfor 1 < a < n;
(iif) a collection of sets (Tg)j_, satisfying ig ¢ Ty as well as S\ U C Tg C Sfor 2 < 8 < n.
Then we define the random variable, parametrized by (i,)"*], (Ua)"_;, (T5)B=as

P

P72 Ua)a, (To)hoa) = (5.30)

where
H (2 Za+1 ? Q = H Glﬁﬁw
a=1 B=2

Note that F' depends on the randomness via the resolvent matrix elements. All matrix elements are off-
diagonal in the numerator and diagonal in the denominator; n counts the number of off-diagonal elements
in the numerator. The sequence of indices of these matrix elements is consecutive if P/Q is written as an
alternating product of off-diagonal elements from the numerator P and reciprocals of diagonal elements from
the denominator @, i.e. in the form

Lo e e ) e (5.40)

Q 1112 1212 1213 1313 tnin+1

DEFINITION 5.8. For U C {1,...,N} and i,j ¢ U define G[U = G( ). Fori,j ¢S and U C S define ij’-U
through (5.1).

LEMMA 5.9. LetSC {1,...,N} and i,j ¢ S. Then

S,0 (S)
i =al. (5.41)
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If) AU CS then Gi’-U can be written as

2|U] Ky
G = > F..  F.=) Fu, (5.42)

n=|U|+1 k=1
where ZiEI‘UIH K, < 4YU|! and each F, is of the form (5.39) (with a possible minus sign), with
i2y...in € U, i1 = i, int1 = j, and with some appropriately chosen sets (Ua)n—y and (Tg)ji_y which

may be different for each F, .

Note: The index n in F;, and F, j refers to the number of off-diagonal elements appearing in the rational
functions (5.39), while k is just a counting index.

PRrROOF. First, (5.41) follows from (5.1).
It remains to prove (5.42) in the case U # (). Using Definition 5.8 and Remark 5.3, one readily sees that,
for a set T satisfying TNU =0 and 7,5 ¢ SUT, we have

S,U SUT,U

(GO = a7mr (5.43)

Thus, if a € U C S, we get from (5.1) and (5.43) that

(a)

GszU _ stj\{aLU\{a} _ Gi’-U\{a} _ G?j\{a}’m\{a} _ (ij\{a}vU\{a}) for i,j¢S. (5.44)

In the special case [U| = 1, writing U = {a}, we have

SU _ ~SA{a} _ ~(S\{a}) ()

G = G = Gy -G (5.45)

Using (3.12), we obtain (5.42) for the case |U| =1, i.e.,

Sia _ ey _ @ _ G G
Aa} a}) o ia aj
Gt = b G5 = = e (5.46)

For a general set U with [U| > 2, using (5.44) we can write G5V iteratively as F — F(®) where F itself is
of the form E — E® for some appropriate E. For example, for a,b € U we have

S, U __ S\{a},U\{a} S\{a},U\{a}

® o @
_ Stk U\ab) _ (8\{ab}, U\ {ab} 8\{ab}. U\{ab} _ (S\{ab}. U\{ab}
G}, - (6] ) (Gij - (65 ) ) :

Recall F(* = F on, from Definition 5.2. Then to prove (5.42) in the case U with |U| > 2, we use induction
on |U]. The key step is Lemma 5.10 below, which contains the required properties of F — F(@) Tts proof will
be given later.

LEMMA 5.10. Let F be of the form (5.39). We assume that
n n 1
U, | U o) < ——— 1. 5.47
<aL-J1 ) (g ﬁ) (Ao + Ag)log N (5.47)
If

s & {i1,i2,13,...,0nt1} U (O Ua> U (nUITB) (5.48)

a=1 p=1
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then F — F®) is equal to the sum (with signs £) of 2n — 1 terms of the form (5.39),

= PO = SR (G (UL, (TRl ) + ZFZ (GEIZE (OE)RZL (TEE) s (5.49)
=1

where the new arguments, carrying a tilde, satisfy the following relations:

(i)
2 =n+1 and P = n+2. (5.50)

(i) For 1 <1< n, the family (2;‘;) is given by
(T il o Bin) o= (G152, 00, 8,041,y B - (5.51)

For1 <1< n—1, the family (i} T) is given by
~“B B °B “B T .o . . .
(11151020835 -+ - s iimy3) o= (T1502, ooy 00, 0141, 8, 00415 81425 - -+ 5 Ing1) - (5.52)

iii) All sets UA , TA , U3 , and T3 appearing in (5.49) are subsets of
Lar 11,8 Yia NG
<UU> (U ﬁ)u{s}. (5.53)
p=2

Now we return to complete the proof for Lemma 5.9. Using (5.44), we get for s € U and ¢,5 ¢ S that
(s)
S, U _ ~S\{s},U\{s} S\{s}, U\{s}
G~ = Gy - (Gij ) . (5.54)

Using induction on |U| and applying the decomposition (5.42) to ij\{s}’U\{s}7 we get

2|U|—2

G?]\{s}7U\{S} _ Z F,, F, = ZFn’k’ (5.55)
n=|U]|

where ZZ‘UI‘UIZ K! < 4VI=1(|JU| — 1)! and each F, , is of the form (5.39) (with a possible minus sign) with

i2,...,in € U\ {s}, i1 =4, iny1 = j, and with some appropriately chosen sets (Ua)n_1, (Tg)j5-, satisfying
S\U c U,, Tg C S\ {s}, 1 <a<n, 2 < B <n.

Now from (5.54) we get
2[U]-2 K,

Gl =y Z( e — )(S)) . (5.56)
n=|U| k=1
Moreover, using (5.49) we get
n n—1
Fp— (Fun)® = S FA L+ Y FE. (5.57)
=1 =1

where each FA,” and FBkl is of the form (5.39) (with a possible minus sign) with i1 = 4, 4,,41 = j, where
=n+2for FA k, and m =n+3 for FB ').,1» and the other indices belong to U. Here the sets (Uy)™, and
(T6)5=2 satisfy
S\U c U,, Ts C S, 1< a<m, 2 <8 <m.
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Furthermore, with (5.50), the number of off-diagonal elements in the numerators of Frfk, ;and F ff gy aren+l
and n + 2, respectively. Hence, together with (5.56), we obtain

2|U|-2 K, n—1
S,
6 = 3 S (Tt )
n=|U| k=1 =1
With the assumption of Z2IU|\U|2 K! < 4lVI=1(|U| — 1)! for the summation bounds in (5.55), we know that
G?;U can be written in the form (5.42) with Z2‘U||1U|+1 < 4lYI|U|!. This completes the proof of Lemma
5.9. O

PROOF OF LEMMA 5.10. Using (3.12) it is easy to derive the following two identities for s ¢ U:

) w ) G(U)G(U)
o s is sj .o
Giw = Gij W , for i,j ¢ UU{s}, (5.58)
() ~(U)
1 1
= + Gks Gsk for k ¢ UuU {S} ) (559)

U Us Us U)’
eI e r e TRle e el

Now (5.58) implies that Lemma 5.10 holds in the case n = 1. We shall first prove it for the case n = 2, and
then give the proof of the general case. If n = 2 then by assumption F' has the form

Wty
Fo= 2L (5.60)
Gjj
with some sets U, V, T, and indices 4, j, k. For s ¢ UUVUT U {ijk} we get from (5.58) that
(Us) ~(V) (U) ~(U) ~(V)
r_ Gi; Gy " Gy Gy Gy, (5.61)
G(T) G(U)G(T) ’ ’
Jj 88 33
Next, using (5.59) on the first term, we obtain
(Us) ~(V) (Us) ~(T) ~(T) ~(V) (U) (W) ~(V)
o Gijs Gk n Gijs G Gy G n Gy Gy Gy (5.62)
o G(TS) G(TS)G(T)G(T) G(U)G(T) ’ ’
Ji Ji 88 iy 88 Mjj
Using (5.58) again on the first term, we have
(Us) ~(V) ~(V) (Us) ~(T) ~(T) ~(V) (U) ~(0) ~(V)
F = F(s) + Gij st Gsk Gij st st G]k Gis st ij (563)

+
(Ts) (V) (Ts) (T) ~(T) U) ~(T)
Gji Gos Gij G’ Gy Gss'Gyj

One can easily check that the last three terms are of the form (5.39), and the indices satisfy (5.50)-(5.53).
This completes the proof for Lemma 5.10 in the case n = 2.
Now we consider the case of a general n. Inserting (5.58) and (5.59) into the each term in (5.39), we have

()2, (Ua)imr, (Tp)hn) = (5.64)

P
Q b
where

T ) (v, G Gl
_ a o s Ta,8 7 Shat1
P = H Gintian = H (Gia,iaﬂ JFG(UQ)>

a=1 a=1
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and

n (Tg) ~(Tp)
Q_l _ H( Tg)) _ H ngs Gsm
18,18 (T s) (T T ) (T S)
B=2 Zﬁﬂlﬁ G%fﬁG ’ Glﬁfﬁ
On the other hand,
. . . W\ PO
(PG Uaimn (T)h2)) = Gy

where
s Uas s)\ — Tgs) \
P( : = H G'EOHZQ)Jrl and (Q( )) ' = H (Ggffi/3)>
a=1 B=2

For m € N, we write, using (5.58) and (5.59),

(Um) = Agmy + Bomoa

7fl7n7i7n+1
where
(Um) ~(Um)
A L G(U mS) d B o Gim,s Gs,im+1
2m—1 - Imyimyr QL 2m-1 "= T @,y -
GSS

Similarly, we write

-1
(G(TWI+1 ) = A2m + B2m )

Tm+1,tm+1

where
_1 (Tm+1)G(T7n+1)
A - (G(Tm+18) ) and B . Im1S 7 Stmy1
2m - Tt 1stm1 2m - GZ(-T7”+1-1) Ggé,,L+1)Gl "L+218)
m+1tm+1 m+41tm+41
Then
2n—1 2n—1
F=J]An+Bn), F9 =] 4n.
m=1 m=1
To complete the proof, we use the identity
2n—1 2n—1 2n—1 [m—1 2n—1
IT 4 + B. HA > A B | TT 45+ By
m=1 m=1 j=1 j=m+1
It is easy to check that, for any term of the form
m—1 2n—1
T4 | Bn| ] (45+B))
j=1 j=m+1

in the sum (5.70), the desired properties (5.49)-(5.53) hold.

We may now easily obtain the following bound on G%U.
LEMMA 5.11. LetUCS C {1,2,...,N} and

1

S| € ——F—+——.
S| (Ao + Ag)log N

Then
1G5 = e iy < C(10 = )Aa+A).
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If in addition U # 0 and i,j ¢ S, then

G5F] < i (5.73)
and
1(1/Gi)®Y| < (CJU AT (5.74)

PROOF. The estimate (5.72) follows (5.41) and (5.33). In order to prove (5.73), we apply Lemma 5.9 to each

G%U, and get

2[U] K,
Gyl = Y Fu,  Fu=) Fu, (5.75)
n=|U|+1 k=1
where Zi|E|U|+1 K, < 4Y|U|l. Here each F, is of the form (5.39) (with a possible minus sign), where

n counts the number of off-diagonal elements in the numerator; the indices satisfy is,...,7, € U, i3 = 1,
int1 = j. Note that the factors P in (5.39) are the product of off-diagonal terms and the factors @ the
product of diagonal terms. Applying (5.33) and (5.34) on the off-diagonal and diagonal terms in P and @,
we get

(CAL)™

Fnk< 1

)

< (CAL)™. (5.76)

C’I’L

Together with Zig‘lwﬂ K, <4Vl|UJ!, this implies (5.73).

In order to prove (5.74), we observe that, similarly to Lemma 5.9, we have

[Ul+1
(maxk,jgéT,TCS | Gﬁf? !)

|(1/Gia)>"] < (CupPi - (5.77)
: @)U+
(mlnj¢T7TC5’ij )
provided that
(T) : (T)
k,j{élﬁcsmkj | < jﬁﬁrncs‘% '
Hence (5.74) follows. O

5.3 Proof of Lemma 4.1

Observe first that (4.3) follows immediately from (4.2) and Lemma 3.15. It therefore remains to prove (4.2).
We define the event Z by requiring that on it (4.1) and the following two events hold:

(i) For every z € D we have

. Lo 2 (5 Lo 2e [Immie(2) +7(2)
Ao(2) < C’<q+(l g N ( )) < C<q+(1 g N) \/ Nu ) (5.78)
(ii) For every z € D we have
O 5
wx(Ga(z) — ()| < € (L 4 og )
(log N)¢ Immg.(2) +v(2)
< C (q + (log N)Qi\/ N ) ) (5.79)
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Now Theorem 3.1, Lemmas 3.13 and 3.14, as well as (4.1) and D C Dy, imply that Z holds with (£ —1/2, v)-
high probability. Note that here we reduced the £ to £ — 1/2 to account for the intersection of three events
of (¢, v)-high probability. It is crucial that v remain constant in this step, as in some applications, such as
Theorem 2.8, it is interated.

We write Z; as

(1) (3)
1\ .
= 2~ () (i)
Z; = zk:(hk N)Gkk + ;ﬂ hiwGy hui - (5.80)

Lemma 4.1 follows from the next two lemmas. As before, we shall consistently omit the spectral parameter
z € D from the notation in the following arguments.

LEMMA 5.12. On Z we have, with (&, v)-high probability,

(@)
1 9 1 () 4 1 1 Immg. + v
1(:)]\[22(’% - N)Gkk < (log N)% Rl o . (5.81)
i k

LEMMA 5.13. On Z we have, with (£ — 2,v)-high probability,

4glmmsc+7) . (5.82)

(@)
1 ; 1 1
13~ 3 hiaGihu| < (log V)1 ( L St
N2 AT o
PROOF OF LEMMA 5.12. We split the sum inside the absolute value on left-hand side of (5.81) as
! 2 1 1 2 1 (@) 1 2 1 (4) (4)
ik ik ik

In order to estimate the first term of (5.83), we use the estimate (3.17) (with (h%, — N~') playing the role
of a;, and setting A; = N7, a =2, 8= —2, and v = 1) to get, with (£, v)-high probability,

1 , 1 ¢ 1
N ék (hlvk — N) < (log N) m (5.84)
Therefore
e 1 2 1 13 = m 13 1
1(2) ¥ > (h“‘“_N> m| < (logN) ’1(H)Nl/2q < C(logN) NiZg (5.85)

i#k
Similarly, in order to estimate the second term of (5.83), we fix ¢ and sum over k, which yields, with
(&, v)-high probability,
(7) 1
mgxzk: <hfk - N) < (log N)Sq ", (5.86)

where the sum over k was estimated by (3.17). This yields, with (£, v)-high probability,

(4)
1 1 . 1 .
1S5 2.2 <h?k - N) (m® —m)| < £ ‘I(E)(log NYeqg~ (m® — m)‘ . (5.87)
ik i
Using (3.31) we have in =
. 1 GGl Im G
@ _ | _ LN GG Im G
‘m m‘— NZ Gii gO(W>.

J
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Thus we get, with (£, v)-high probability,

= 1 2 1 (z) 5Immsc+'7
=)= 2 - < — e T .
1( )NZ;(M N) (m m) < Cllog )= (5.88)

Finally, we estimate the third term of (5.83). First, with (3.12) and |ms.| > ¢, we note that if Ay < 1
then

’Gij—c:g?) < CON2 for i,j#k. (5.89)

Together with (5.79) we get, with (&, v)-high probability,

1 Immsc—i—'y) (5.90)

(i) _ (1) ‘ < 2 2
rilgic‘(Gkk m ) < C(logN) q+ N

Then we use (3.19) (with (h?, — N~') playing the role of a; and G,(;g — m() playing the role of Ay, and
setting & = 2, 8 = —2, and v = 1) to get, with (&, v)-high probability,

(&)
1 (i) : 2 [ 1 Immgee +7\ 4
max E (h?k—> Gl —mWD)| < (logN)* | =4[ ——221 ) ¢t (5.91)
i - N ( ) q Nn

Hence we have, with (£, v)-high probability,

(@)

125 S (X (- 5 ) (68 -m))| < aoxmye (j} " I‘“”}Vn”> (592

% k

Note that, in applying (3.19), we used that the family {h? —N '} is independent of the family {G,(;,z —m},.
Combining (5.85), (5.88), and (5.92), we obtain (5.81). O

Proor oF LEMMA 5.13. We shall apply Theorem 5.6 to the quantities

(1) (iV)
Zi= Y haGih, 27 =1 V)Y haGl s, (5.93)
k£l k£l

and define = as in the beginning of Section 5.3, i.e. = is defined by requiring that (4.1) and (5.78)—(5.79)

hold. Recall that the collection of random variables ZiW] generates random variables ZZS Y for any U C S by
(5.1). Let
p = (logN)*=%/2, (5.94)

Next, choose
Immg. +
Nn ’
Y = (logN)*. (5.95)

X

1
P + (log N)*

(In other words, X is defined as the right-hand side of (5.78) up to a constant.) We now derive a bound
which implies both (5.6) and (5.9), i.e. we establish the assumptions (ii) and (iii) of Theorem 5.6. To this
end, we shall prove the stronger statement that, for ¢ ¢ S, < p and any sets U C S with [S| < p, we have

E(l([E]i) |z§’[”|r) < (Y(Cxu)")"  for u = [U[+1. (5.96)

40



Using the assumptions of Lemma 4.1, we have in D that
g = (logN)»®,  Nnp > (logN)'*, 5 < (logN)™°. (5.97)

It is therefore easy to check that Z; and Z satisfy the assumptions (i), (iv), and (v) of Theorem 5.6. Thus,
the conclusion of Theorem 5.6, (5.12), implies the claim (5.82).

It remains to prove (5.96). By the definition of Z-S’U in (5.1) and (5.93), for ¢ ¢ S, we have

(V)
e s DS I N G § I N P e Ay % (5.98)
V:S\UCVCS [

(1US\U)

S D DD DI G VAl e v

k#l  V:S\UCVCS\{k,l}

(1US\U) )
= > e Y (DRI MGE”
k#l V:S\UCVCS\{k,!}
(1US\U)
_ Z hiwhii |G (Sl)\{k Ok
k#l
where in the last equality we used definition of GSV, Definition 5.8. Thus we may write
ZY = A+ Ap+ Az + A, (5.99)
where
(Sik)
A, = Z Z hinh: | (Sl)\{k 1}, U\{kl} Ay = Z Z hinhi: (Gl (Si)\{k}, U\{k}
keU leU\{k} keU
(Sil) R (Si) -
Az = Z Z haghy [Gr) SN M Ay = Zhikhli NN
€U &k k£l
Now we have
4
E (102 277") = B(1(Z0) |41+ 43 + g + i) < 47> E(1((E0) 14,]"), (5.100)
j=1

and we are going to bound E(l ([E]:) |Aj\r) for each j = 1,2,3,4. Using the assumption (4.1), i.e

A < v < (logN)™¢, (5.101)
(5.78), and (5.79), we get A, + Ag < C(log N)~¢, which implies the assumption (5.71) of Lemma 5.11.
Throughout the following we set u := |U| + 1. We begin by estimating the contribution of A;. Observe
that if i # kI, i € A and i ¢ B, then [G4]*" is independent of the i-th row and column of H. (The same
argument will be repeatedly used in the rest of the proof below.) Thus we have

Hl (1Z]) [le](Si)\{kJ},U\{k,l}HOO _ HI(E) ](Sl)\{k 13 U\ {k, l}H C|U|X)‘U‘ 1

where in the second step we used (5.73) and A, < CX on Z. Thus we find, using |U| < [S| < p = (log N)&~3/2
and q_1 < X, that

N

E1([Z]) A" < (log N)* maxE[ha|"|hus|" ((C|UIX)! 1)

< (log N)2§q72r((C|U|X)|U|71)r
< (Y(CXU)U)T . (5.102)
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In order to bound the contribution of A we estimate, as above,

Hl([E]i) [le](Si)\{k},U\{k}H Hl ) [Gx ](SZ)\{k} U\{k}H (c|u|x)v!,

where in the last step we used (5.73) and A, < CX on =. Thus we may apply the moment estimate (A.4)
from Appendix A with

By = 1(k € ULl ¢ SU{i}1([E];) [Gra) NI

This yields
1/2 r .
E1((Z)) [ 4sl" < <0r>2’“<(1+(N2<logN>5N) )<c|ru|x>““') < (er (x(cwx))

where we used that [U| < (log N)¢, that the By, defined above are independent of the randomness in the
i-th column of H, and that

1 (log N)f/2 1 0e [Immyg,
== <~ +(logN)® [ — < X,
q VN q (log ) Nn
as follows from Immg. > /7 and n < 3. Thus we get
E1([E],) 42" < (Y(CXu)") . (5.103)
(Recall that u = |U| + 1.)
Exchanging k£ and [ in the above estimate of As, we obtain
E1([E]:) 43" < (Y(CXu)")" . (5.104)

Finally, we estimate the contribution of A4. As above, we estimate
[1E0) Y| = @Y < cux,
by (5.73) and A, < CX on =. We may now apply the moment estimate (A.4) from Appendix A with

Bu = (k0 ¢ SU{i}) 1((E]:) [Gul ™

This yields
E1([E])14:)" < (r2(Cux)UH)

where we used that the By; are independent of the randomness in the i-th column of H. This gives
E1([Z];) 42| < (Y(CXu)") . (5.105)

Combining (5.102), (5.103), (5.104), and (5.105), we obtain (5.96). This completes the proof. O

6 The largest eigenvalue of A

6.1 Eigenvalue interlacing

We now concentrate on the spectrum of A. We begin by proving the following interlacing property. Recall
that Ay < ... < Ay denote the eigenvalues of H and py < ... < gy =! Umax the eigenvalues of A. The
associated eigenvectors of H are denoted by uy,...,uy, and those of A by vi,..., vy =! Vax. Also, we set

G(z):=(A—2)"L.
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LEMMA 6.1. The eigenvalues of H and A are interlaced,
A< € A2 < e <L < pnvot € Av < N (6.1)
PrROOF. We use the identity
(e,Ge)™! = f+(e,Ge) 7", (6.2)

which follows by taking (e, - e) in

G(2)(A=2)G(z) = G()(H — 2)G(2) + [G(2)e){e|G(2).

From (6.2) we get
<Z w> T (Z W) - (63)

It is easy to see that the left-hand side of (6.3) defines a function of z € R with N — 1 singularities and N
zeros, which is smooth and decreasing away from the singularities. Moreover, its zeros are the eigenvalues
of A. The interlacing property now follows from the fact that z is an eigenvalue of H if and only if the
right-hand side of (6.3) is equal to f. O

6.2 The laws of (i, and vy,

In this section we establish the basic properties of pmax and viax. We make the assumption that f > 1+¢g
uniformly in N (see (6.4) below), which is necessary to guarantee that py_1 and uy are separated by a gap
of order one. Note that in [26] it was for proved, in the case where H is a Hermitian Wigner matrix, that if
f <1 no such gap exists.

The following result collects the main properties of pyax and viyay for the rank-one perturbation A =
H + fle)(e| of the sparse matrix H. The most important technical result is (6.9). It states that, for large
f, the eigenvector vi,.x is almost parallel to the perturbation e. Consequently, e is almost orthogonal to
the eigenvectors v, for « = 1,..., N — 1 (Corollary 6.7). As it turns out, this near orthogonality is the key
input for establishing the local semicircle law for A in Section 7. We refer to the discussion at the beginning
of Section 7.1 for more details on the use Corollary 6.7.

THEOREM 6.2. Suppose that A satisfies Definition 2.2 and that in addition to (2.8) we have the lower bound

f = 1+¢e (6.4)
for some constant g > 0.
Then we have with (&, v)-high probability
1
fmax = [+ 7 +o(1). (6.5)
In particular, there is a constant ¢, depending on g, such that with (&, v)-high probability we have
fmax = 2+cC. (6.6)
Also, we have
1 1 1 1
Eumax:f++0(++>7 6.7
f 2 fq  fN (6.7)
as well as, with (&, v)-high probability,
1 1 1 (logN)¢
umax:f++0(r++ . 6.8
f 2 fa VN (68)
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Note that (6.7) and (6.8) locate fimax more precisely than (6.5) in the large-f regime.
Moreover, the phase of Vimax can be chosen so that we have with (§,v)-high probability

Vi, €) = 12;+0<;+W). (6.9)
Finally, there is a constant Cy such that if
f = Co(logN)* and ¢>2, (6.10)
then we have with (&, v)-high probability

20y,

1
max:Emax"'* hz+0
8 pwc + 35 2 ( VN

4,3

In particular if (6.10) holds we have (by the central limit theorem),

\/g(,umax — Eptmax) — N(0,1) (6.12)

in distribution, where N'(0,1) denotes a standard normal random variable.

REMARK 6.3. In analogy to Definition 3.3, we define A(™) as the (N —|T|) x (N —|T|) minor of A obtained by
removing all columns of A indexed by i € T; here T C {1,...,N}. If A satisﬁes Definition 2.2, then so does
(N/(N |'}1‘|))1/2 (1), Therefore all results of this section also hold for A(™ provided |T| < 10. (Here 10
can be any fixed number.) Throughout Sections 6 and 7 we abbreviate ul(mzx = Mg) Im| and vggx = vg\qfr) I

REMARK 6.4. Statistical properties of the k largest eigenvalues of a random Wigner matrix with a large rank-
k perturbation have been studied in [3,5,26,35]. Theorem 6.2 collects analogous results for the more singular
case of sparse matrices. We restrict our attention to the special case where the perturbation is f|e)(e|. (Note
that in [3,5,35], the authors allow quite general finite-rank perturbations of Wigner matrices.)

The rest of this section is devoted to the proof of Theorem 6.2. It is based on the following standard
observation. Let p be an eigenvalue of A with associated normalized eigenvector v. This means that

(n—H)v = fle,v)e.

Suppose now that p is not an eigenvalue of H. Thus we can choose v and K > 0 such that
v = K(u—H) e, (6.13)
1= fle,(u—H)e). (6.14)

Using the spectral decomposition of H we rewrite (6.14) as

Z (e “" . (6.15)

It is easy to see that (6.15) has a unique solution, pmax, greater than Ay. Moreover, (6.15) readily yields
Hmax — )‘N < f < Hmax — A17 ie.

,umax S [f+ /\1,f+)\N] . (616)
Our proof is based on the series expansions
Hmax = fz H/,U/max >7 (617)
k>0
Vinax = K Y (H/pmax)"e. (6.18)
k>0
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Note that the expansions (6.17) and (6.18) can be interpreted as perturbative corrections around the matrix

fle)(el-
In order to control the expansions (6.17) and (6.18), we shall need the following large deviation bound,
proved in Appendix A.

LEMMA 6.5. Let 1 < k <logN. Then

(log N)*¢
‘(e,er> - E<e,er>‘ < O (6.19)
with (€, v)-high probability provided that 1 < ¢ < CN'Y/2.
PROOF OF (6.5). The key observation is that
C(k
‘E(e,H’“e} —/a:k ose(x) dz| < E]), (6.20)

for some constant C'(k) depending on k. Indeed, a standard application of the moment method (see e.g. [29],
Section 1.2) shows that E(e, H*"e) = C,, + O,(q™?), where C,, := n+1( ") = [2?"0c(x) dz is the n-th
Catalan number. If k is odd, one finds by a similar moment estimate that E(e, H*e) = O(¢'). We omit
the details.

For the following we work on the event of (£, v)-high probability on which (4.29) holds. We consider
solutions p of (6.14) in the interval I := [2 + £2/20,00). By monotonicity of the right-hand side of (6.15)
in I, we know that (6.14) has at most one solution in I. For any kg € N, using (6.19) and (6.20) we may
expand (6.14) in I (see (6.17)) as

fZ/( > 0sc(x dx+0<fz (||5|>k+0(;0)+ko(lc§]]v\7)fko>

/‘L:

k>ko
_ IR Ty Ol | hallog
el +O<fk§k:(2+60/20) +fz<2+50/20) e T )

where the first term comes from extending the sum over k to infinity and using that

Z/()Qsc xzu/w

for p > 2. Tt is easy to see that the second term is o(1) by an appropriate choice of ko(N). Thus we have
proved that, for u € I, the equation (6.14) reads my.(u) = —f ! + r(u), where 7(u) — 0 as N — oo
uniformly in p.

Next, the function p — ms.(p) is continuous and monotone increasing on (2, c0), with range (—1,0).
Let ji be the unique solution of my.(j1) = —f~!. (Note that here we need the assumption f > 1.) Using
(2.13) we find that @ = f + f~! > 2 +£3/10. We therefore find that, for N large enough, the equation
mse() = —f~1 4+ r(p) (which is equivalent to (6.14) on I) has a unique solution p € I which satisfies
1= f+ o(l). Since u is the only solution of (6.14) in I, we must have g = pimax. O

Note that (6.5) remains valid if e in (2.7) is replaced with any £2-normalized vector. It is a simple matter
to check that (6.20) is valid for arbitrary vectors e. Moreover, Lemma 6.5 remains correct for arbitrary e
provided one replaces N~/2 on the right-hand side of (6.19) with ¢~'. We omit the details as we shall not
need this result.

From (6.6) and (4.29) we find that, with (£, v)-high probability,

1H]]

Hmax

<l-c (6.21)

for some constant ¢ > 0. In particular, (6.17) and (6.18) converge with (&, v)-high probability.
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PROOF OF (6.8). From (6.17) and Lemma 4.3 we find pimax = f(1+7(f)) with (£, v)-high probability, where
lim_,o 7(f) = 0. Together with the simple identities

E(e,He) = 0, Ele,H%) = 1, (6.22)

(6.17), (6.21), and Lemma 6.5 yield, with (&, v)-high probability,

Pmax = f+}+W+O<;>+O<M\/%)£). (6.23)

By explicit computation we find that
Ele, H) = O(¢ ). (6.24)
Thus (6.8) follows. O

PROOF OF (6.7). From (6.17) and (6.21) we get with (&, v)-high probability

f f 1
Imax = f+Mmax<e,He)+Mﬁlax(e7H2 >+O<f3 f2q>’ (6.25)

where we used (6.24). Iterating (6.25) yields with (&, v)-high probability

fmax = f+ (e,He) — (e, He)?/f + (e, He)?/f*> — (e, He)(e, H?e)/ f*

1
et/ ~ 2o, He) (e H2e) [+ O( 15+ 132 ) (0:20)
where we used Lemma 4.3. In order to complete the proof of (6.7), we use the rough estimate estimate
Eu?, <ETrA2 < ONf?+4+ N < N¢, by (2.8). Recalling (6.19), we also get

C C C
2 3 2
|E(e,He)?| < i |E(e, He)?| < Ng’ |E(e, He)(e, He)| < N
by explicit calculation using (2.5). Now taking the expectation in (6.26) using (6.22) yields (6.7). O

PROOF OF (6.9). We compute the normalization constant K in (6.18) from

= 3 K (e HF o) = 14 2upk (e, He) + 32, (e, H2e) + Ol

k,k' >0
3 1 (log N)2 )
+ O( 6.27
FEET ) O
with (&, v)-high probability, where we used Lemmas 6.5 and 4.3, as well as (6.8) and (6.21). Now (6.9) is an
easy consequence of (6.18), (6.8), and Lemmas 6.5 and 4.3. O

What remains is to prove (6.11).

PROOF OF (6.11). We assume (6.10), and in particular fimax > <2 (log N)? by (6.5). Thus from Lemma 4.3
we get, with (£, v)-high probability,

lH 6

Hmax h CO (log N)2£ ’

From (6.17) and (6.8) we therefore get, with (£, v)-high probability,

cologN H
e e
§ —co log N loglog N
Hmax = f O(e 08 celos )a

/J/max
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where ¢g < 1 is a positive constant to be chosen later. Thus we find with (£, v)-high probability

co log N co log N k k
H* H —E(e, H
Hmax = f E Efe,f7e) , _f (e,He)+ [ ) (e, H7e) - (e, He) + O(ecoloa N loglog V)
N’max Mmax k—2 /J‘max

Therefore we get, for any 0 < ¢y < 1 and using (6.8) and Lemma 6.5, that with (£, v)-high probability we
have

co logN k 2
E(e,H"e f (log N)
Hmax = f eaHe +O( .
Z /J“max ,umax< > f\/ N
Here the constant in O(-) depends on cg.
Next, Lemma 4.3 yields
[E(e, H"e)| < (5/2)" + NCFe vUosN)® < 3k (6.28)

for k < (v/C)(log N)¢~1. (Here we used Schwarz’s inequality and the trivial estimate E(e, He) < N¢ to
estimate the contribution of the low-probability event on which (4.29) does not hold.) By the assumption
(6.10) on &, (6.28) holds for k < ¢glog N for ¢y small enough. It is therefore easy to see that the equation

co log N

k
fz eH

has a unique solution fi > 0, which satisfies ji = f + O(f~1). Writing pimax = fi + ¢, we get with (&, v)-high
probability

R (S BT B

Next, by (6.8) we find ¢ = O(f~!) with (&, v)-high probability. Moreover, (6.22) and Lemma 6.5 imply
that (e, He) = O((log N)$N~1/2) with (£, v)-high probability, and that the sum in (6.29) starts at k = 2.
This yields the expression with (£, v)-high probability

¢ = (e,He) + ZalCl+O( (log N')* )

z>1 fVN

for some coefficients a; = O(1), by (6.28). We conclude that with (&, v)-high probability we have

- (log N)* (log V)*

¢ = (ete)1+0(7) + O — (e, He) + 0 LBNTY.
( ) VN VN
where we used that |(e, He)| < (log N)$N—/2 with (¢, v)-high probability.
Summarizing, we have proved that with (£, v)-high probability we have
_ 1
Hmax = M + N Z hij + Ra (630)

4,9

where |R| < O((lc}gi\Nﬁ]\;%). Using Eu2,,. < N¢ we therefore get E|R| < O(Ucfifvﬁ\)[%), and (6.11) follows by

taking the expectation in (6.30). O

This concludes the proof of Theorem 6.2.
For future reference, we record two simple corollaries which we shall use in Section 7 to control the matrix
elements of G.
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COROLLARY 6.6. Suppose that A satisfies Definition 2.2. Then we have with (&, v)-high probability

1l < max|As| = |H|| < 2+ (log N)&q~1/? for a=1,...,N—1. (6.31)

ProOOF. Use (6.1) and Lemma 4.3. O

COROLLARY 6.7. Suppose that A satisfies Definition 2.2 and that, in addition, f < CoN'/2. Then we have
with (&, v)-high probability
D va,e)P = O(f7?). (6.32)

a# N

PROOF. The statement is trivial unless f > 1 + &, in which case we use (6.9) and |le|| = 1. O

7 Control of G: Proofs of Theorems 2.9 and 2.16

In this section we adopt the convention that if F = F(H) is any function of H then F(A) is denoted by F,

i.e. we use the tilde () to indicate quantities defined in terms of A = H + f|e){e|. Thus, for example, we
have

A=H, pa=e va=ie Q)= (A-27, ) = o3 Gule),

and

KO = 1’£17?,JX|6U|, Kd = miax|éii—msc|, K = |77~1—msc 5 V; = Gii—msc. (71)

Note that G and m were already introduced in (2.19).
We begin by using the interlacing property (6.1) to derive a bound on A. Recall the convention that if
F = F(H) is any function of H then F is defined as F'(A), where, we recall, A = H + fle)(e|.

LEMMA 7.1. Let A satisfy Definition 2.2. Then for any z € Dy, we have

A(z) = AG)] < Ny

PROOF. Define the empirical density o(z) := % > 0 0(x = pta). Thus the integrated empirical density defined

in (2.23) can be written as n(E) = f_EOQ o(z) dz. Similarly, define the quantities ¢ and n in terms of the
eigenvalues A1,..., Ay of H. Using integration by parts we find

Xe) - AG) = /de _ /H(x)—"(f”)dx_

x—z (x —2)?
By (6.1) we have |n(x) — n(x)| < N~! for all z. Thus we find

™

~ 1 1
_ < = — = —.
Ao -46) < § [ ot = 1 =

We note that the claim (2.20) of Theorem 2.9 is now an immediate consequence of Lemma 7.1 and the
strong local semicircle law (2.16) for H.

The rest of this section is devoted to the proof of the estimate (2.22) for the matrix elements of G. From
now on we consistently assume the upper bound (2.21) on f.
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7.1 Basic estimates on the good events

In this section we control the individual matrix elements é” in terms of 1~\, which in turn will be estimated
using Lemma 7.1. Our basic strategy is similar to that of Section 3, but, owing to the non-vanishing expecta-
tion of a;;, the self-consistent equation for G;; has several additional error terms as compared to Lemma 3.10;
see Lemma 7.2 and Proposition 7.6 below. The most dangerous of these error terms is estimated in Lemma
7.5 below. We will use the spectral decomposition of H, combined with bounds on (e, v,) and ||v4||s. The
former quantities are estimated using Corollary 6.7, while the latter are estimated by bootstrapping. The
spectral decomposition requires simultaneous control of all eigenvectors, whose associated eigenvalues are
distributed throughout the spectrum. Since bounds on ||v, ||« (delocalization bounds) may be derived from
a-priori bounds on /N\d(z) for Re z being near the corresponding eigenvalue, we will therefore need bounds
on /NXd(z) that are uniform for all z € Dy, with a fixed imaginary part. Hence the bootstrapping now occurs
simultaneously for all E € [-X, X] (see Definition 7.3 below).

We use the following self-consistent equation for G , whose proof is an elementary calculation using (3.12)
and (3.13) applied to G; see also Lemma 3.10.

LEMMA 7.2. We have the identity

Gy = -, (7.2)
—Z = Msc ([m - Ti)
where N N N
Tz - hu Zi + Az )
and
(1) 5 - ~
5 TS N g 0 i L FN-1  Fag ., 1§ GG
Zz = ]I]El ; aszkl ajg Al = N — F <e,G e> + N zj: T“ . (73)

Recall that in expressions such as (7.3) the vector e stands for ey_1; see (2.2).

DEFINITION 7.3. For N~1(log N)* < n < 3 introduce the set D(n) := {2z € Dy, : Imz = n}. We define the
event

Q) = { sup (Aa(2) + Ao(2)) < (1ogN)—f}. (7.4)

z2€D(n)

Recall the definition of A from Remark 6.3. Similarly to Lemma 3.12, we have the following result for
the matrix A.

LEMMA 7.4. Fizing z = E +in € Dy, we have for any i and T C {1,...,N} satisfying i ¢ T and |T| < 10
that

m(z) = m™(z) + O<J\}'n> : (7.5)
holds in Q(n).

The following lemma is crucial in dealing with error terms arising from the non-vanishing expectation of
a;;. Recall that, when indexing the eigenvalues and eigenvectors of AM | we defined amayx := N — |T).

LEMMA 7.5. Fizing z = E +1in € Dy, we have for any T C {1,..., N} satisfying |T| < 10 and for anyi € T

that
g): Lam, | o C(log N)E 1 + Im /i + S (7.6)
~ N ki M| X og p Nn Nn .

on ﬁ(n) with (&, v)-high probability.
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PROOF. For technical reasons, it is convenient to avoid the situation where .y is close to 2. In order to
ensure this, we may if necessary increase Y slightly and hence assume that f <X —3 or f > ¥+ 3. We start
by proving the following delocalization bound. Define

R = max max m]aX\u(T)( Dy Rumax = ‘%%Omjaxwggx(j)\. (7.7)

First we claim that on €(1)) we have with (£, r)-high probability

R < Cyy (7.8)
and, assuming f < ¥ — 3, we have with (&, v)-high probability
Ruax < Cy/. (7.9)

In order to prove (7.8) and (7.9), we note that on (1)) we have, in analogy to (3.29),
~(T)
c < |G/ (2)] £ C (7.10)

for all z € Dy, such that Imz = 5 and N large enough. From (6.31) we find that z := ,u( )+ in € Dy, with
(&, v)-high probability for a@ # aumax; see Remark 6.3. Thus we get with (&, v)-high probability

(T) (12 (T)
~ nlvg ()]

¢ > ImGg)( (T)‘Hn) = Z (T) B(T) 24 2 = [va ()P

5 (ng —pa’)?+n n

This concludes the proof of (7.8). Next, if f < 3 — 3 then by (6.5) and Lemma 4.3 we have uﬁ,“f.(lx €%, 3]
with (£, v)-high probability. Thus we get (7.9) just like above.

Having established (7.8) and (7.9), we may now estimate the left-hand side of (7.6), using the spectral
decomposition of é(T), by

(T)
e Vmax>
T Z Ui (D | +
Hmax — 2

(T)
)

Z (’]I‘) Z Ve hli .
l

aFomax —F

/ /
VN T N

By the delocalization bound (7.8) and the large deviation estimate (3.19), we find for o # amax on (1)
with (£, v)-high probability

(7.11)

(T)

> v
l

<ot (2 )

(T)
R 1
§:<T> < ( Nf( ma"+>
vmax ~ Og
( ) q VN

Next, we estimate the first term of (7.11). If f < ¥ —3 then f < C, and the first term of (7.11) is bounded,

with (£, v)-high probability, by
c V1 1 1

lo N5<+) < C(lo N5< +>
VNN T R ) S ClEN T

If f > ¥+ 3 then by (6.5) and (6.8) we get |umax - z’ > cf with (&, v)-high probability. Thus the first term
of (7.11) is bounded, with (£, v)-high probability, by

ﬂ(logN)f (1+ 1 ) < C(log N)*
q

VN VN VNgq

Similarly, we have
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where we used the trivial bound Ryax < 1. We therefore get that the left-hand side of (7.6) is bounded with
(&, v)-high probability by

11 f (R 1 (e, v{D)]
C(lo N’5<+)+Clo Nf<+) =
Qo)+ 3 ) + s T (G U)X

1/2 1/2
11 f (R 1 2 !
<Cﬂogmg(qﬂw)*C“"g”m@*m)(Z“e’vg)”) (ZW—|> |

QaF max a [Ha

By (6.32) this becomes

1/2
1 1 1 (R 1 1
Clong(+)+ClogN5(+> —_— . 7.12
tog ) ( + 7y) + Clos M (2 ) (D (7.12)
Using (7.5) we get
1 1 1 1 ~ N ~ 1
ZTf = flmz? = ~ImTrG™ = Imm+0<2),
—~ D~z o D " "

which therefore yields the bound

C(log N)* (; + J\/1'77> + C(log N)¢ (\/{qu + ]1[) <W+ 717> ’

on €(n) with (¢, v)-high probability. Here we used (7.8). The claim follows. O

For the following statements it is convenient to abbreviate

B(z) = er(logN)zf( mm(z) | 1 > (7.13)

q Ny " Np

PROPOSITION 7.6. Assume (2.21). Then for z = E 4 in € Dy, we have

Ao(2) < CO(2), 7.14
max|Z;(z)] < C®(z), (7.15)
<

in §~2(77) with (&,v)-high probability.

PRrROOF. We start with (7.14). Let ¢ # j. Using (3.13) for A instead of H, and writing a,; = f/N + h;;, we
get with (&, v)-high probability
I
> hiGi g
k,l

(i9)

i £
> haGil
k.l

@) ;-
+ 120 5G| + +

~ 1
CHGyl < =+
q k.l

(i5)

f sn f
ZNGEJ)N‘7 (7.17)
k.l

by Lemma 3.7 and (7.10).
The second term of (7.17) is bounded exactly as in (3.34) and (3.35); using (3.22) and (7.10) we estimate

it by
C Imm 1
log NYé= + C(log NY% [ | —— + —
(log )q (log N) No T Ng
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on ﬁ(n) with (&, v)-high probability.
The last term of (7.17) is bounded with (£, v)-high probability by

f2

ol vaa® (e, Vi) |?
Nz ——t e

N |M(”) | N | (@5) — 2

max Ué7£(¥max

Ccf F2 (i) |2 Ccf C
< 7+7+7 i) < — 4+ — .
SN T Ng TNy > e v < » (718)

(N—2)’<e,é(ij)e>‘

aFmax

where in the first step we used (6.8), and in the last step (6.32). Here we estimated the term arising from
p$) by C(Np)~tif £ < 2%, and by Cf/N if f > 2%

Using Lemma 7.5, the third and fourth terms in (7.17) are bounded on Q(n) with (£, v)-high probability
by the right-hand side of (7.6). This concludes the proof of (7.14).

Next, we prove (7.15). By definition,

(i)
= ~6) S [ =)

Z; = Z hikaﬁl N + Z Gl:l hy; + IE; Z hlkal his . (719)
k,l

)

The first two terms are bounded using Lemma 7.5, and the last one exactly as (3.33).

Finally, we prove (7.16). Using (6.8), (6.9), (6.32), and (7.10), we find on £2(n), with (&, v)-high proba-
bility,
(@)

- 2N —1|(e,vih)? fEN-1 e,v 1« Gi;Gji
A= Lo LA eyl FHCL 5 Heweil, L Gyl
Hmax — 2 QFmax Ko™ — i i
foOfEN-11 1 1 £2 (2 I~
== —-—"———=|1+0 o @) ! ol = Gij
NN FtolF) | olan )t Nnag (e, v)* | + szjl il
=0 ! (7.20)
= ) i
where in the second step we distinguished the two cases f < 2% and f > 2%, as in (7.18). O

We may now estimate /~\d in terms of A.

LEMMA 7.7. Assume (2.21). For z = E +in € Dy, we have

max Gii(z) —m(z)| < CP(z) (7.21)

on Q(n) with (€,v)-high probability. In particular, on Q(n) we have, with (¢, v)-high probability,
Aa(2) < A(2) + Cd(z). (7.22)
ProOOF. Using (7.15), (7.16), and Lemma 3.7 we find

~ C Imm 1
max|Y;| < (logN)¢= + C(log N)* | | —— + — 7.23
; ;| < (logN) . (log V) No T Ny (7.23)

on Q(n) with (¢, v)-high probability. From (7.2) we therefore get

~ S~ = C Imm 1
G| = . Y — T < £ 2¢ )
Git =G| = GG, I T = Ty < (log M) +Cllog N) (,/ o +Nn) (7.24)

on (2(17) with (&, v)-high probability. Since m = % Zj C:’jj, the proof is complete. O



7.2 Establishing Q(n) with high probability

What remains to complete the proof of Theorem 2.9 is to prove that the events Q(n) hold with (£,)-high
probability. We do this using using a simplified version of the continuity argument of Sections 3.4 and 3.6.
LEMMA 7.8. Ifn > 2 then Q( ) holds with (&, v)-high probability.

PRrooF. The proof is similar that of Lemma 3.16; we merely sketch the modifications.

Let z = E+1in € Dy, for n > 2. We estimate A,(z) following closely the proof of (7.14), using (7.6) and
setting R =1 in (7.12). Using the rough bound |G;;| + |m| < 1 as in (3.43), we find
2 € CF

+ L < C(logN)~%

~ C
A, < (log N)E¢= + (log N
(log )q (log N) N

with (£, v)-high probability. Similarly, we find

. C C
Zi| < (logN)*= + (log N)¥ — < (logN)~%
Z1 < (o N)EC + (0g N < < (log V)
with (£, v)-high probability. In order to estimate A;, we proceed similarly to (3.44) and find

Al < L+ Lo, @00 + D IGH B ool + 12

The term Z-j is estimated exactly as A, above; using the calculation of (7.18) we therefore get
~ C cf
Ail € (logN) = + (log N)* —= + - < C(logN)™**
II(g)q(g)\/NN (log )
with (&, v)-high probability.
Now we may follow the proof of Lemma 3.16 to the letter, starting from (3.45) to get Ay < C(log N)~?2
with (&, v)-high probability.
Thus we have proved that Ag(z) + A,(2) < C(log N)~2¢ with (&, v)-high probability. A simple lattice
argument along the lines of Corollary 3.19 then concludes the proof. O

The following simple continuity argument establishes ﬁ(n) with (&, v)-high probability for smaller 1. Let
Mk be a sequence as in Section 3.6.

Note that, unlike in Section 3.6, each step & — k + 1 of the continuity argument has to establish a
statement for all z € D(ng4+1).

LEMMA 7.9. We have _ .
P(Q(my)¢) < ke vos N

PrRoOOF. We proceed by induction on k. The case k = 1 was proved in Lemma 7.8. We write
P(Qmk11)) < P(Qmk) N Qmey1)”) +P(QAm)°) -

Now for any w € D(n;) and on Q(n;) we have, using (7.14), (7.22), and (2.20),

Ag(w) + Ro(w) < Cllog N)~*
with (&, v)-high probability. Using the estimate (3.56) we find, for any z € D(ni41),

Aa(2) + Ao(2) < Clog N)~%
with (£, v)-high probability. Using a lattice argument similar to Corollary 3.19 we therefore find

B(Qm) N Qmesr)) < e 08NS

The claim follows. O

This estimate (2.22) now follows from (7.14), (7.22), (2.20), and the lattice argument of Corollary 3.19.
This concludes the proof of Theorem 2.9.
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7.3 Eigenvector delocalization: proof of Theorem 2.16

We may now prove Theorem 2.16. Delocalization for the eigenvectors vq,...,vy_1 is an immediate conse-
quence of the weak local semicircle law. From (6.1) and Lemma 4.3 we find that u1,...,un—1 € [-X, Y]
with (£,v)-high probability. Let L = 8¢ and set  := (log N). Using (3.5), Lemma 7.1, and (7.22), we
therefore find with (&, v)-high probability

~ . nlvs (7)1 va (5)]
C > ImGjj(pa +in) = > (¢ < N). (7.25)
S %: (1 = pa)® + 777 n
This concludes the proof of (2.32). Moreover, the same argument (with a = N in (7.25)) proves (2.34) if
f <X — 3, since in that case pmax € D with (£, v)-high probability by (6.5) and Lemma 4.3.
Next, we note that (2.33) is an immediate consequence of (6.9).
In order to prove (2.35), we use the following large deviation estimate which is proved in Appendix A.

LEMMA 7.10. For k <log N and fized © we have with (§,v)-high probability

|(H"e)(i)| = < (log N)* . (7.26)

D hiishiis iy
11,0000k
Now from the expansion (6.18) we get, with (&, v)-high probability,

and (2.35) follows since K = 1+O(f~2) (see (6.27)). In this argument we used that f ~ pmax = Co(log N)&
for some large enough Cj to overcome the logarithmic factors in (6.18) that arise from (7.26). This concludes
the proof of Theorem 2.16.

Finally, we outline the proof of (2.36) for 1 < f < C(log N)¢. The idea is to use the same proof as for
(2.34), relying on the estimate (7.25). In order to do this, we need the pointwise bound C' > Gyi(un + in)
which we get by extending the proof of Theorem 2.9 to a larger set Dy. Here Dy, has to contain ppy, so that
we have to choose ¥ = C(log N)¢ in the definition (3.1) of D, with some large constant C.

This extension requires some modifications in our proof of the local semicircle law. Now instead of the
bounds (3.8), we have c(log N)™¢ < |my.(2)] < 1 for 2 € Dr. We modify the definitions (3.25) of Q(2)
and (7.4) of Q(n) by replacing (log N)~¢ with (log N)~2%. Then, on these events, we get the lower bound
|Gii(2)] = c(log N)~¢ instead of (3.28). Ome can then check that all estimates of Sections 3 — 7 remain
valid with some deterioration in the form of larger powers of (log N)¢, provided that L > C¢ for some large

enough C'; we omit the details.

7.4 Control of the average of >, 4i ég’k)hm

In this final section, we estimate the averaged quantity

= %ZZ@Q%. (7.27)

i#£1 ki

The estimate of II is not needed for the local semicircle law, but we give its proof here as it is a natural ap-
plication of the abstract decoupling lemma, Theorem 5.6. The expression (7.27) arises as an error term when
controlling resolvent expansions of the non-centred matrix A. Such expansions are used in the companion
paper [13] to establish the universality of the extreme eigenvalues; see Section 6.3 in [13].

Note that a naive application of the large deviation bound (3.19) yields |II| < (log N)“¢q~! with (¢, v)-
high probability. In order to establish universality of the extreme eigenvalues in [13], it is crucial that the
factor ¢~ be improved to ¢~ 2. This is the content of the following proposition.
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PROPOSITION 7.11. Suppose that the assumptions of Theorem 2.9 hold. Then for any z € D13g(¢42) we have
with (&, v)-high probability

|H(z)\ < (logN)CE <qlz + ImT]T\L;;(Z) + (N1'17)2> . (7.28)

PrOOF. We shall apply Theorem 5.6 to the quantities

(U7)

(i #1) ZG heis 20 = 130 £1)1(3,1 ¢ U) Zle hi - (7.29)

Thus, I = [2] and 2 = Z,.
We define the deterministic control parameters

1 Imms.(2) 1
X(z) == (log N)*EH |~ 222 4 — ) Y (2) := (logN)*,
(2) = (logN) . N Nn () = (logN)

and the event

(1]

.. <
N {1<I2?§N‘G” () — 5wmsc(z)\\X(z)}.
z2€D120(¢+2)

Recall that the collection of random variables (ZZ-[U]

choose p := (log N)¢ in Theorem 5.6. It is immediate that the assumptions (i) and (iv) of Theorem 5.6 are
satisfied. By Theorem 2.9, the assumption (v) of Theorem 5.6 holds as well.
We shall prove that, for any U C S with 1,7 ¢ S, |S| < p, and r < p we have

. s,
)U generates random variables Z; Y through (5.1). We

E(l([E]i) ‘Z?’U]T) < (Y(Cux)™)", (7.30)

where u := |U| + 1. Supposing (7.30) is proved, both assumptions (ii) and (iii) of Theorem 5.6 are satisfied.
Then the claim of Theorem 5.6, (5.12), and Markov’s inequality yield (7.28).

It remains to prove (7.30). Throughout the following we abbreviate u := |U| + 1. By the definition of
z2Y in (5.1) and (7.29) we find, for 1,i ¢ S,

(V2)

ZV = 1A DR "”ZG‘“ i

V'S\UCVCS
((2S)\U) .
SIS SEOTSTECID ST
V:S\UcCVcCS\{k}
((ES)\U)

Wit 3 hGENB R
k

where in the last step we again used (5.1), as well as Definition 5.8 and the fact that ((Si)\ {k})\ (U\{k}) =
(Si) \ U. We split
23V = Dy + Dy,

where

Dl = 1(’L ;é 1) Z hkzégil)\{k}’w\{k} ; D2 7é 1 Z hk;z S’L) U )
kel
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Thus we may estimate
E(1([E]i)\z§“y’") < QTZE( O1D;" )

To that end, we shall make use of (5.73). Note that Lemma 5.11 is entirely deterministic. In particular, it
applies if all quantities are defined in terms of A rather than H (and hence bear a tilde in our convention).
We shall apply it to the Green function G.

We start by estimating D;. Since éﬁi)\{k}’m{k} in D, is by definition independent of the i-th column
of H, for |U| < |S| < p = (log N)¢ we get from (5.73) that

Hl G(SO\{k}U\{k}H HIE (Sz)\{k}U\{k}H < (C[u|x)IYI.

Here we used that A, < X on Z. Now we may estimate, using |U| < (log N)¢,

E(1(E))ID1")

N

(log N)"® max E|hyi| (clujx)™

N

(Clog M)E (ClUIX)™)
(Y(Cux)")".

Next, we estimate Dsy. As above, since éﬁi)’m
H, for |U| < (log N)¢ we get from (5.73) that

N

in D5 is by definition independent of the i-th column of

Hl ij) H Hl () GE UH < (Cux)U+
o0
Now we use the moment estimate (A.2) with a =1, = -2,y =1, and

1k ¢ SU{iD1(E:) GG
This yields T
E(1(EDIDS) < (r(Clujx)P+)

Here we used that A defined above is independent of the randomness in the i-th column of H. Thus we
conclude that

E(L(EIDal") < (Y (Cux)") .

This completes the proof of (7.30), and hence of (7.28). O

8 Density of states and eigenvalue locations

8.1 Local density of states

The following estimate is the key tool for controlling the local density of states — and hence proving Theorems
2.10 and 2.12.

LEMMA 8.1. Recall the definition (2.14) of the distance kg from E to the spectral edge. Suppose that the

et Q {,m(z) — Mie(2)| < (log N)“¢ (min {qz\/;ETn , 2} + 1\}77) } (8.1)

holds with (&, v)-high probability for L := Co&, where Cy is a positive constant. For given Ey < Eq in [—X, Y]
we abbreviate

Kk = min{kg,, kg, }, & = max{E, — By, (log N)*N~'}. (8.2)
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Then, for any =X < E1 < Fy < X, we have
BB~ RE) — (1B~ malB0)| < o) L -] (33)
Ve +E
with (§,v)-high probability.
PROOF. Recall the definitions (2.11) and (2.12). Similarly, we have

— 00

N E
o) = 5 D0 —m). WE) = [ Fw)de = 1l < B

Thus we may write

m(z) = %TrG(z) = /M

T —z
We introduce the differences
QA = §_QSCa mA = m_msc~

Following [14], we use the Helffer-Sjostrand functional calculus. Set 7 := (log N)!N~!. (Recall that
L = Cp€.) Let x be a smooth cutoff function equal to 1 on [-&, ] and vanishing on [—2&, 2€]¢, such that
IX'(y)] < CE7L. Set np:= N~! and let f be a characteristic function of the interval [Ey, E5] smoothed on
the scale n: f(z) =1 on [Ey, Es], f(z) =0 on [Ey —n, B2 + )%, |f(z)] < Cn~', and |f”(z)| < Cn~2. Note
that the supports of f' and f” have measure O(7).

Then we have the estimate (see Equation (B.13) in [14])

[t <c‘/dx/ W)+l D)X ) o+ )
—&—C‘/dx/ dy f"(x)x(y) y Imm™ (z + iy) ’—i—C‘/dw/ dy f"(z)x(y )yImmA(x—i—iy)’. (8.4)
Since x’ vanishes away from [£, 2£], the first term on the right-hand side of (8.4) is bounded, with (&, v)-high
probability, by
1 1

Clar["a '(2)|(log N)“¢ | —= < (log NS (2 4
& [ae [ alr) +urog ) (q2 WHNE) < (log V) (q2 K+5+N)7

where we abbreviated x := min{kg,, kg, }. In order to estimate the two remaining terms of (8.4), we estimate
Imm® (x +iy). If y > 7 we may use (8.1). Consider therefore the case 0 < y < 7. From Lemma 3.2 we find

Imms.(z+1iy)] < Cvez +y. (8.5)

By spectral decomposition of A, it is easy to see that the function y — y Imm(z +1iy) is monotone increasing.
Thus we get, using (8.5),  + i) € Dy, and (8.1), that

1 > < (log N)©¢

_ . IO . ~ = 1
yImm(z +iy) < flmm(z + i) < (logN)an< /@x+n+§+Nfﬁ N (y<m) (8.6)

with (¢, v)-high probability. From (8.5), m® = m — my., and the definition of 7, we find

. log N)¢¢ _
ymmA @) < BT < (8.7

with (&, v)-high probability. Since n < 7 we therefore find that the second term of (8.4) is bounded, with

(&, v)-high probability, by
C(log N)“¢ / 1 (log N)“*
d ) & ———.
~ z)| / yx(y N

o7



In order to estimate the third term on the right-hand side of (8.4), we integrate by parts, first in 2 and
then in y, to obtain the bound

C‘/dxf’(w)nRemA(x+in)’ +C’/dx/noo dyf'(x)x’(y)yRemA(x-i-iy)‘
+C"/d:z:/ dy f'(2)x(y) Rem®(z +iy)| . (8.8)

The second term of (8.8) is similar to the first term on the right-hand side of (8.4), and is easily seen to be

bounded by
£ 1
! NC5<+>.
(log V) AiiE N

In order to bound the first and third terms of (8.8), we estimate, for any y < 7,
A A 7 ~
|m2(z +iy)| < |m™(z+i7)| —|—/ du (yaum(x—i—iuﬂ + |3umsc(x+iu)|> .
y
Moreover, using (8.6) and (3.27), we find for any v < 7 that

|Oum(z + iu)| = %Tr G?(x + iu)

1 N 1. ) 1 .
< N;|Gij($+lu)| = aImm(x—I—lu) < E?ﬂmm(x—&—lm
with (&, v)-high probability. Similarly, we find from (2.12) that

1 .
|8umsc(x—|—iu)| < EnImmsc(x—i—lﬁ).

Thus (8.1) yields

m ] < Qos%(1+ [Ta k) < oM< T < (39)

with (&, v)-high probability.

Using (8.9), we may now bound the first term of (8.8) by (log N)“¢ N1,

What remains is the third term of (8.8). We first split the y-integration domain [, c0)] into the pieces
[n,m] and [77, 00). Using (8.9), we estimate the integral over the first piece, with (£, v)-high probability, by

7 log N')C€
/d$|f/($)|/ dy|mA(x+iy)’ < %
n

Using (8.1), we may therefore estimate the third term of (8.8), with (&, v)-high probability, by

&
L Tty

(log N)¢ ce / ) /25 11 /25 1
< =L + (log N da | f'(z dy —+— [ d
N (log V) |f ()] Yyt Y

s (IOgN)Cg(l +q \/iT)

Summarizing, we have proved that

1 £
—+

e a < Goemes|

(8.10)
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with (£, v)-high probability.
In order to estimate [n(E) — ng.(F)|, we observe that (8.6) implies
~ ~ - . log N)¢¢
et )~ i - o) < Cylmi(e+in) < N2

with (¢, v)-high probability. Thus we get

~ - ~ ~ C(log N)¢¢
R(E)) —A(E2) — /f()\) o(\) d/\’ < O (B +n) —A(E —1) < (gT)
i=1,2
with (£, v)-high probability. Similarly, since gs. has a bounded density, we find
C
Nse(E1) = nse(E2) — | f(A) 0sc(A)dA| < Cnp = N
Together with (8.10), we therefore get (8.3). O

We draw two simple consequences from Lemma 8.1.

PROPOSITION 8.2 (UNIFORM LOCAL DENSITY OF STATES). Suppose that A satisfies Definition 2.2 and that
¢ and q satisfy (2.15). Then, for any By and Ey satisfying Eo > Ey + (log N)°S N~ we have

N(Ey, Ey) = Nyo(E1, E») (8.11)

log N)“¢ N E,—-FE
Nsc(ElvEQ) q V/€+E27E1
with (&, v)-high probability, where we abbreviated k := min{kg,, kg, }.

PrROOF. By (2.20), the estimate (8.1) holds. Assuming —¥ < E; < Ey < X, we get from (8.3), with
(&, v)-high probability,

- N E,-E;
N(E1, Ey) = Noo(Er, B2)| < (log N)“8 (14 & ——— ),
VB, Bo) = Noel B, B2)| < (log N)FH (14 o e

from which the claim follows. If F; < —¥ and Eg < ¥, the claim follows by replacing £; with —% and using
Lemma 4.4. The other cases where —% < F; < Es < X does not hold are treated similarly using Lemma
4.4, O

The proof of Theorem 2.10 is completed by observing that both its statements, (2.25) and (2.24), are
special cases of (8.11). (Recall that in the bulk we have N.(F1, F2) ~ N(Fy — E1); at the spectral edge we
have Ny (E1, Fy) > N(Eo — Fy)3/2, which is sharp for E; = —2.)

PROOF OF THEOREM 2.12. Let us assume that £ < 0; the case E > 0 is treated similarly. Setting
Ei == —2— (logN)%¢(q72 + N~%/3)

for some constant C; > 0, we find that n.(E;) = 0 and n(E7) = 0 with (£, v)-high probability for C; large
enough, by Lemma 4.4. We may assume that £ > Fj.
By (2.20), the estimate (8.1) holds. Therefore setting E; = E in Lemma 8.1 yields

n ! ! 1 1
5E) — neo(B)| < (o N)%¢ (g + /B B+ (Hog N)PN 1) < (1og M)+ o+ V)

with (£, v)-high probability. This holds for any fixed E. The claim (2.27), which is uniform in F, now follows
by a lattice argument similar to Corollary 3.19, whereby we choose a lattice of points E; € [—X, Y] with
|Eiv1 — E;] < N7 we omit the details. O
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8.2 Eigenvalue locations

The following result contains the main estimate on the locations of the eigenvalues u, of A. Recall the
definition (2.28) of the classical location 7, of the a-th eigenvalue.

PROPOSITION 8.3. Suppose that A satisfies Definition 2.2 and that & satisfies (2.15). Let ¢ be an exponent
satisfying 0 < ¢ < 1/2 and assume that ¢ = N?®. Then the following statements hold with (&,v)-high
probability for alla« =1,..., N — 1, for some sufficiently large constant K.

(i) If max{k,,, k-, } < (log N)KE(N~2/3 + N729) then
o = Yol < (log N)OS(N72/3 4 N72¢) (8.12)
(i) If max{r,,, ki, } = (log N)EKE(N=2/3 4 N=2%) then
e —Yal < (log N)C¢ (N—2/3a—1/3 + N?/3-405-2/3 4 N-2¢) (8.13)
where we abbreviated & := min{a, N — a}.
ProoF. To simplify the presentation, we concentrate only on the eigenvalues ji1, ..., pn/2. The remaining
eigenvalues fin/241,- .-, pin—1 are dealt with similarly, using Lemma 4.4 and the estimate py > 2 + ¢ which

holds with (¢, »)-high probability.
We define the event € as the intersection of the events on which (4.30) holds and on which

[A(E) — nse(E)| < (log N)“e¢ (jlv + qig + ‘{f) (8.14)

holds for all E € [-%,%] and some positive constant Cy. Recalling (2.27) and (4.30), we find that € holds
with (&, v)-high probability for large enough Cjy. Note that on Q we have #ny2 < 1. Indeed, the condition
pny2 < 1is equivalent to n(1) > 1/2, which follows from (8.14) and the fact that n. (1) > 1/2.

Abbreviate ¢ := min{2¢,2/3} and let C; > Cy. We use the dyadic decomposition

2log N

{117N/2}: U Uk»
k=0

where we defined
Uy = {a < N/2: 2 + max{vq, fla} < 2(10gN)ClEN7C} ,

Uy = {a < N/2:2F(1og N)CE N~ < 2 4 max{ya, fta} < 2k+1(10gN)CI§N_C} for k>1.

By definition of Uy and Lemma 4.4, on Q we have
o —Yal < (logN)N~C  (aeUy).

This proves (8.12). B
Next, let k& > 1. From (8.14) we find that on Q we have
o

N = Nee(Va) = (fta) = Nse(pta) + (log N)C08 O(i[ + q% + \/;I) . (8.15)

On Q and for « € Uy, the second term on the right-hand side of (8.15) may be estimated as

1+1+ Riie
N ¢ q?

(log N)CO& O( > < (log N)COE(N*1 + N*3¢) + 02(k+1)/2(10g N)(CoJrCl/Q)EN*C/?*M7
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since K, < 2+ po. Moreover, Q and for a € Ui we have
Nse(Va) + Nse(fta) = 23k /2 (log N)(3/2)CIEN_3</2 )

where we used the simple estimate ng.(—2 + ) ~ 23/2 for 0 < 2 < 3. Thus we have, on € and for a € Uy,

1 1 N
(IOg ]\/v)CO€ O(N + ? + qQH > < nsc(’YQ) + nsc(ﬂa) )

from which we deduce using (8.15) that
Nselfta) = nsc(%)@ + O[(log N)—(cl—co)g]) .

Thus we find, on © and for o € Uy, that 2 + 74 ~ 2 + jia, and hence n..(x) ~nl.(vq) for any = between 7,
and p,. Here we used that n’ () ~ (ns.(x))"/? ~ 2+ z for —2 < x < 1. Thus the mean value theorem
and (8.15) imply, on  and for « € Uy,

C|nsc(/~’4a) - nsc(’)/a)|
e (Vo)

C(log N)“o¢
< ST (v e )

c
< C(log N)“o¢ (N‘2/3+N1/3_3¢+N_2¢a1/3+N1/3_2¢m>,

‘:uoz _'Va‘ X

al/3

where we used that k,, < k., + |a — Va| and k., ~ (a/N)?/3. Thus we find, on Q and for a € Uy,
‘,uoz o ,yal < (1OgN)C£ <N2/3a1/3 +N2/374¢C¥72/3 + N2¢> )

This proves (8.13). O
PRrROOF OF THEOREM 2.13. We apply Proposition 8.3. As before, we only deal with the eigenvalues a <
N/2; the proof for the eigenvalues N/2 < o < N — 1 is the same. Suppose that « satisfies Case (i) of
Proposition 8.3. Using a/N = ns.(Va) ~ (2 + 7a)?/? we find that

a < (log N)KE(1 + N1739) (8.16)

Therefore we get, squaring (8.12) and (8.13) and summing over «,
N-1
. 2 < loe N (613 1+N1—3¢ N—4/3 +N—4¢ + loe N (613 N—l +N4/3—8¢+N1—4¢
2 Y g g
a=1

with (¢, v)-high probability. This concludes the proof of (2.29).
Finally, we note that (2.30) follows from (8.12) and (8.13) as well as the above observation that Case (i)
in Proposition 8.3 implies (8.16). O

A Moment estimates: proofs of Lemmas 3.8, 4.3, 6.5, and 7.10

In order to prove Lemma 3.8, we prove the following high moment bounds, which are also independently
useful.
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LEMMA A.1. (i) Let (a;) be a family of centred and independent random variables satisfying

cr

P =
Ela;[P < Ngar s

(A1)

for all 2 < p < (log N)Aologloe N “yphere o > 0 and B,y € R. Then for all even p satisfying 2 < p <
(log N)Aologlog N 46 hape

A Sup2|AZ| 1 A 2 1z " A
Z e e + N1ghiaa Z| il ) (A.2)

for some constant C > 0 depending only on the constant in (A.1).

p

< (Cp)?

E

(i) Let ay,...,an be centred and independent random variables satisfying
cP
Ela;|P < W (A.3)

for all 2 < p < (log N)Aologloe N = Then for all even p satisfying 2 < p < (log N)Aoloeloe N gnd q]]
B;; € C we have

p

E < (Cp)*P

E EiBijaj

i#j

max;| Bij| 1 N2

i)
for some C' depending only on the constant in (A.3).
PROOF. We begin with (i). To prove (A.2), we set p = 2r and compute

Z Aiai
i

Each configuration of labels (iy,...,i2,) defines an equivalence relation (or partition) I' on the index set
{1,...,2r} by requiring that the indices j and k are in the same equivalence class if and only if their labels
satisfy i; = i,. We organize the summation over the labels i1, ..., 42, by (i) prescribing a partition I' of the
set of indices, (ii) summing over all label configurations yielding the partition I', and (iii) summing over all
partitions I'. Thus, let a partition I' be given. Let [ denote the number of equivalence classes of I', and
order the equivalence classes in some arbitrary fashion. Let r; the size of equivalence class s; clearly, we
have r{ + - - - 4+ r; = 2r. Moreover, since the random variables a; are centred, we find that each equivalence
class has size at least 2; in particular, s > 2 for each s and hence | < r. Using the independence of the a;’s,
we thus find that the contribution of the partition I" to (A.5) is bounded in absolute value by

! 1 o
Z H‘Az "< 1_[1<ZAZ|TSW> (A.6)

il,...,’il s=1
Abbreviating A := max;|4;|, we find that (A.6) is bounded by
! 1 1
q((CAq—a)rsA—QN—Wq—ﬁ Z'Ai2> (CAq—a)2r (W Z|Ai2>
-« T 1 "

2r
A 1 N\ Y2
q> + <N7qﬂ+2a Z|Ai‘ )

i

2r

E

Trt1 P2

= Z Zil .. 'ZiTA Ay By, a0, iy, - (A.5)

i1,00502p

"Ela;,

CT

N
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Next, it is easy to see that the total number of partitions of 2r elements is bounded by (Cr)?", so that

we get
A 1 , 1/2
i+ (e 24

o 2r

E < (Cr)?r

Z Aja;

This concludes the proof of (A.2).
The proof of (A.4) needs more effort. Without loss of generality, we set B;; = 0 for all i. As above, we
set p = 2r. We find

E EiBijaj

i#]

2r
= E Biliz T Bi27‘—1i27‘Bi21‘+1i21‘+2 T Bi4r—1i4r

(ERTI TN

E

x E Ay Qg+ Qg g Qi Qg g Ay o * " iy, g Ay, - (A7)

As above, we associate a partition I'(i) = I' = {7} of the index set {1,...,4r} with every label configuration
i= (i1,...,%4r) by requiring that k and [ are in the same equivalence class of T" if and only if i, = ;. We
rewrite (A.7) by first specifying a partition I and summing over all label configurations i satisfying I'(i) = T,
and subsequently summing over all partitions I'. Note that a partition I" yields a nonzero contribution to the
right-hand side of (A.7) only if (i) each equivalence class contains at least two indices, and (ii) [2k — 1] # [2k]
for all k =1,...,2r; here [n] denotes the equivalence class v > n of n in T.

Next, we encode I' using a multigraph (i.e. a graph which may have multiple edges) G = G(T") defined
as follows. The vertex set of G is the set of equivalence classes {7} of I'. Each factor Bi,, ,i,. OF Biy,_ i
gives rise to an edge of G connecting the vertices [2k — 1] and [2k]. Note that, by property (ii) of I', no edge
of G connects a vertex to itself. Moreover, G has 2r edges.

Let G be a multigraph with v vertices. We define the value of G through

V(G) = Z ( H |Biwi7/|> HW, (A.8)

i1,esio \{7,7 }EE(G) =1

where d, is the degree of v in G.

Fix a partition I". We claim that the contribution to the right-hand side of (A.7) of all label configurations
i satisfying I'(i) = T is bounded in absolute value by C" ¥ (G(T")). This is an easy consequence of the
definition of G(I'): Each vertex +y carries a label i, and the contribution of vertex -y is bounded by E|a;_ % <
C% (Ng%~2)~L. (Note that, by the property (i) of I', we have ., > 2. Here we also used that Do, 0y =4dr.)

Next, we estimate ¥ (G(T')). Let Gy := G(T'). The idea is to construct a sequence of multigraphs
Go,G1,...,G, by successively removing edges incident to vertices of degree greater than two, until all
vertices have degree at most two.

If all vertices of Gy have degree at most two, set s = 0. Otherwise, pick a vertex ¥ of Gy with degree
greater than two, and let 5’ be adjacent to 5. Define R(Gy) as the multigraph obtained from Gy by removing
an edge connecting 7 and 7. We claim that

V(Go) < DV (R(Go) (A.9)

(regardless of the choice of the removed edge). Here we abbreviated B, := max;;|B;;|. The estimate (A.9)
is obtained by estimating [B; ;.| < B, in (A.8), and by noting that [6, — 2]4 in Gy is strictly greater than
in R(Gy). Now set G := R(Gy).

We continue inductively in this manner, generating a sequence Gy, ..., G of multigraphs with the prop-
erties that Gj11 = R(Gy) (for an immaterial choice of R), G5 has 2r — s edges, and all vertices of G5 have
degree at most two. By (A.9), we have

¥ (Go) < (i")sv(as). (A.10)
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Next, it is immediate from its definition that G is a disjoint union of simple closed and open paths. Here a
simple open path of length I > 0 is the graph with vertices 1,...,l+1 and edges {1, 2}, ..., {l,I+1}; similarly,
a simple closed path of length | > 2 is the graph with vertices 1,...,l and edges {1,2},...,{l — 1,1} {i,1}.

From the definition (A.8) we immediately find

V(GUG) = ¥(G)V(G), (A.11)

where U denotes disjoint union. We shall now prove that, if G is a simple (open or closed) path of length I,
we have

1/2
Y (G) < (Z;Zmij?) . (A.12)

Using (A.10), (A.11), and (A.12), we find that

(2r—s)/2

rem) < () (5 ;|Bij|2) . (A.13)

q

Let us now prove (A.12). We start with a simple closed path of length I, whose value (A.8) is given by

1
G = N Z |Bi1i2|"'|Bil—1i1,||Bili1"

LERTR ]

Assume first that [ = 2k is even. Then

1/2 1/2
1
Cor < W( Z |Bi1i2|2|Bi3i4|2"'|Bi2k1i2k|2> ( Z |Bi2i3|2|Bi4i5|2"'|Bi2ki1|2>

0150002k 11,0502k
1 1/2
< (]\72 Z|Bz'j|2> :
%,
If ] =2k + 1 is odd we find

1
C2k+1 = ]\72/€—&-12|BZ”2|< Z |Bi2i3|"'|Bi2k+1i1>

11,12 :

1340uey i2k+1
) 1/2 1/2
W(ZIBM) ( > o Bz-ﬂ-.g-~|Bz-2k+”-1||Bi2ig|-~~|Bi;k+li1)

11,19 T1,ee k41 'Lg ..... i/2k+1

N

N

1 1/2 1 l/2
1/2
(NQ ZlBiﬂQ) e’ < (Nz Z|Bij|2) :
7 0

This proves (A.12) for closed simple paths. Consider now an open simple path of length [, whose value (A.8)
is
1
O = NI Z |Bi1i2|"'|Bizil+1|'

G5y B4 1

If | = 2k is even we get

1/2 1/2
1
O < N2k+1 < Z |Bi1i2||Bi3i4| T Bi2k1i2k|> ( Z ‘Bi2i3”Bi4i5| e |Bi2ki2k+1|>

i1,eey 82k 41 i1,y 02k 41

1 1/2
< (NQ Z|Bij|2> .
%,
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Finally, if [ = 2k 4 1 is odd we find

O < N2k+2 Z|B1112| ( Z |Bi2i3| o |Bi2k+1i2k+2|>
13

11,82 \13,..e, i2k42

) 1/2 1/2
< W <Z|Bi1i2 |2> ( Z Z |Blgls|2 ’ ‘ 12k4102k42 |2|Bm'g |2 e |Bi’2k+1i’2k+2 |2>
i1,

11,12 colak42 ih,eihy o

1 L 1
< <N22|Biﬂ) 047 < <N22|Bij|2)
%, %,

This concludes the proof of (A.12).
Thus we get from (A.13) that the contribution to the right-hand side of (A.7) of all label configurations
i satisfying I'(i) = I is bounded in absolute value by

B 1 1/2 2r
T 2
C(ﬁ(ngle) ) -

i#j

In order to conclude the proof of (A.4), we need a combinatorial bound on the number of multigraphs of
the above type containing 2r edges, as well as on the number of partitions I' associated with any given
multigraph G. Their product is easily seen to be bounded by (Cr)4". This completes the proof of (A.4). O

1/2 1/2

PRrROOF OF LEMMA 3.8. The proof is a simple application of Lemma A.1 and Markov’s inequality.

In order to prove (i), we choose p = v(log N)¢ in (A.2) and apply a high moment Markov inequality.

Next, we prove (ii). The bound (3.19) follows immediately from (i) by setting « =1, 8 = —2, and v = 1.
Similarly, the bound (3.20) follows easily by applying (i) to the random variables |a;|? — 07 and setting
A; = By;; here a« = 2, f = =2, and v = 1, as can be easily seen using (3.18). Morover, the claim (3.21)
follows by setting p = v(log N)¢ in (A.4) and applying a high moment Markov inequality.

Finally, we prove (iii). Write

-+ ZaiBijbj

ZaiBijbj ZazBubz
i i i#j

The first term is dealt with by noting that the random variables a1b1,...,anxby are independent and satisfy
(3.16) for @ = 2, B = —4, and v = 2. Therefore (3.17) yields with (£, v)-high probability

/2
B
> aiBib; *zd <N2 Z|Bn|2> ]S Q(IOgN)éqjd-

In order to bound the off-diagonal terms, we set A; := 3., B;;b;. Then we may again apply (3.17) to
get with (€, v)-high probability
/2
B (somr) ] .
J#i

Since A; is independent of a;, we therefore get from (3.17)

Z aiBijbj

< (logN)*

|A;| < (log N)*

i#£] i
maxZ\A | /2
< (o e | 2Ry (1 S, |2)
B, 1 1/2
g C(logN)Qg ?—F (]VQ Z|Bij|2) ‘| s
i#]
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with (&, v)-high probability. We remark finally that the constant C' may be absorbed into the small constant
v when applying the high moment Markov inequality used to prove (3.17). O

PROOF OF LEMMA 6.5. To prove (6.19) for k = 1, we estimate with (£, v)-high probability

1
|(e,He)| = ‘Nzhij

4,3

= O((log N)gN_l/Q) ,

where we invoked (2.5) and applied (3.17) to the O(N?) variables {h;; : i < j} (and similarly for i > j) with
a=1,=-2,and v = 1.
If £ > 2 we use a high moment expansion. The following notation will prove helpful. We abbreviate
a = (i,j) and write hq := h;j. Defining
By = Ok

we may thus write

1
IE(e, H"e) = ¥ > BaasBasas * Bay_ra0 [E(ha, - hay ) (A.14)
ay

----- o

where IE(-) := (-)—E(-). In order to make all matrix entries independent of each other, we split H = H'+ H"
into two triangular matrices, where

This results in a splitting of (A.14) into 2* terms, of which we only consider

ey

(the other terms are dealt with in exactly the same manner and the resulting factor 2* is immaterial).

We abbreviate o = (o, . .., o) and write
X =Y (Ca—Fla),
where we defined )
Ca = NBOQO&QBOQO@ o Bay_yay, hfll e h;k .
For even p € N we get therefore
ExX? = E{(gal CECat) - (Car — Egap)] . (A.15)
al,..aP

s

By independence of the family {A/ }, we find that a summand in (A.15) indexed by a vanishes if there is an
r such that [@"] N [a" ] =0 for all 7’ # r. Here [(a1,...,ax)] :== {oq,...,ar}. Thus we find

EX? = Z E[(Cal _Ecal)...(cap—Egap)}x(al,...7ap), (A.16)

al,..,aP

where

=
Q»—A
o
=
il
:] s

l(EIr’ e N[er] # @) .

Il
-

T

For each given label configuration o = (") = (¢ ), we define a partition I'(ax) of the index set {(r,1) :
r=1,...,p,l=1,...,k} by imposing that (r,1) and (+/,1’) are in the same equivalence class of I'(ex) if and
only if a,; = a;rpr. We now perform the sum over ¢ in (A.16) by first specifying a partition I" and summing
over all e satisfying I' = I'(e), and then summing over all partitions I". Note that any partition I yielding
a nonzero contribution to (A.16) satisfies the two following conditions.

—~
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(i) Each equivalence class of I' contains at least two elements.

(ii) For each r = 1,...,p there are v’ = 1,...,p and [,I' = 1,...,k such that (r,l) and (+/,l') are in the
same equivalence class of T'.

Condition (i) follows from the fact that h/, is centred, and Condition (ii) from the definition of x.
Let us fix a partition I" satisfying (i) and (ii). Its contribution to (A.16) is

> E[(Car —Blar) - (Cay — Eéar) | (@)

al'(a)=I"

< Y B[l +ElCa ) (Karl + Eléar ] (@)

a:l'(a)=T

(A.17)
Next, we note that I' gives rise to a multigraph G = G(T") defined as follows. The vertex set V(G) is
given by the equivalence classes of I'. Each pair {(r,1), (r,{+ 1)}, 1 =1,...,k—1, gives rise to an edge that
connects the vertices v 3 (r,1) and 4’ 3 (r,l + 1). Thus, the set of edges E(G) of G contains p(k — 1) edges.
The interpretation of the edges is that each factor B on the right-hand side of (A.17) is represented
with an edge.
The expectation on the right-hand side of the identity

Q1O 141

1 k—1
E (|<a1| +E|ga1|)(|6al" +E‘Cap|)} = ]\”’[H Ba;‘a{+1 E
=1

11 (f[m;; +Ef{lh;;|)]

r=1 \l=1
is bounded by
chl
o 1 s
[v[=2~
sevie) V4"

where |y| denotes the size of the equivalence class ; this is a simple consequence of (2.5) and the constraint
q < CN'/2. By construction of G, each vertex v of G carries a label a. Thus we may bound (A.17) by

op chl
NP Z [ H Ba,a, H Nghl-2’

{7 }EE(G) YEV(G)

where v = |V(G)| denotes the number of vertices of G. Here we dropped the factor y, and the restriction
that aq,...,a, be distinct, to obtain an upper bound. By property (i) above, we have |y| — 2 > 0 and we

get the bound
2PCPH
o 2 Il Baa (A.18)
a1y {7,/ }EE(G)

Next, we split G = G1 U---U G| into its connected components; here [ denotes the number of connected
components. An immediate consequence of the property (ii) of I' is the bound

1 < p/2, (A.19)

Thus (A.18) becomes
!

crk
Np+v H Z H Bawow ’ (A~20)

J=1 | a1, e, {y,7'}EE(G))

where v; = [V(G,)| denotes the number of vertices in G.

In order to estimate the contribution of the j-th connected component, we pick a root r; € V(G,) and
a spanning tree Tj of Gj. First, we use the trivial bound Baw%' < 1 for edges that do not belong to 7}.
Second, we sum over all of the v; —1 non-root labels a,, starting from the leaves of T}, and using the identity

> Baya, = N
Ot,yl
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at each step. Third, we sum over the root label ..., which yields a factor bounded by N 2. Putting everything
together yields
> I B, <t
oy {7,7}EE(G5)

Returning to (A.20), we thus find that the right-hand side of (A.17) is bounded by

Crk NoH < Crk
Np+v = O Np/27

where we used (A.19).
Since the number of partitions I' is bounded by (kp)*?, we get the bound

(Ckp)F\*®
EXI:S < < N1/2 .

Choosing p = ﬁ(log N)& and applying a high moment Markov inequality completes the proof. O
PrROOF OF LEMMA 7.10. The proof is similar to (in fact considerably simpler than) the proof of Lemma
6.5. We only sketch the argument, using the notation of the proof of Lemma 6.5 without further comment.

Write

Xy = E hiil hi1i2 T hik,lik = § Baoaleaz e Bak—lakh‘ll e hak ’
115tk

1yeensl [ 2NN ag

where « := (1,7). Then, as in the proof of Lemma 6.5, we write EX} as a sum over partitions I' which
give rise to multigraphs G = G(I") whose edges are given by the factors B and whose vertices are given by
equivalence classes 7 of the set {1,...,k} x {1,...,p}, to which has been adjoined a distinguished vertex ~o.
The vertex g corresponds to the fixed label g, and it has degree p. Each multigraph G has pk edges, and
is connected. In this fashion we find that the contribution of the multigraph G to EX} is bounded by

ST s,

(‘%r)“r#’vo {7V }EE(G)

I Eha (A21)
YEV(G)\{vo}

where the first sum ranges over families (a),cv(a)\ (v} Of labels; every vertex v # 7 carries a label o,
which is summed over. The vertex g carries the label ag which is fixed.

Since Eh, = 0, it is easy to see that |y| > 2 for all 4. Choosing a spanning tree of the connected graph
G, one therefore finds that (A.21) is bounded by

NIV @)=t H (max Elho[?) = 1.
YEV(G)\ {7}

Since the number of partitions I' is bounded by (kp)*?, we find EX} < (Ckp)*? for p < (log N)¢. Choosing
p= ﬁ(log N)& and applying Markov’s inequality completes the proof. O

PROOF OF LEMMA 4.3. Our proof is a standard application of the moment method, along the lines of [21],
Lemma 7.2.
In a first step, we truncate the entries h;;. Let C; = C be a constant for which Lemma 3.7 holds. Define

pij = Ehijl(Jhi;] < Cig™).
Choose an independent family (Xj;;) of random variables, independent of H, such that

P(X;

a ") = piq, P(Xi; =0) = 1 — pq.
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Now set N
hij = hij1(|hij| < Cqul) — Xij.

It is easy to see that |u;;| < e V(o8 N)¥and therefore
P(hij # hij) < e 71EM", (A.22)
Moreover, we have
~ ~ Ci+1 ~ 1
Ehy =0,  |hyl < 1q+ By < e e, (A.23)

By (A.22), it suffices to prove that ||ﬁ|\ < 24 (log N)&q~1/2 with (&, v)-high probability. We shall prove
that, for even k < ¢,/q, we have

[ETr H*| < 3Nk2". (A.24)
In order to prove (A.24), we write

o~ o~

ETr fi\lk = Z EﬁiliQ ce hik—likhikil (A25)

81y nsik

and apply a graphical expansion to the right-hand side. Before giving its precise definition, we outline
how it arises from (A.25). Let the label configuration i1, ...,4; be fixed. We represent each index j =
1,...,k by a vertex [j], whereby two indices j and j’ correspond to the same vertex if their labels agree,
i; = i;. Let p be the number of vertices. We then construct a closed walk through the sequence of edges
(1, 12D, (2], [3])s - - - ([k], [1]). The walk has k steps. We name the p vertices 1,...,p, whereby vertex v is
reached after all vertices 1,...,v—1. Since E/i;ij =0, it is easy to see from (A.25) that each edge of the walk
must appear at least twice.

We may now give a precise definition of such walks. Let w = (wy,...,wx) be a sequence with w, €
{1,...,p}. With w we associate a multigraph G(w) as follows. The vertex set of G(w) is {1,...,p}; the
edge set of G(w) is given by the undirected edges {wy,wa},. .., {wg—1,wr}, {wk, w1}. (Note that G(w) may
contain multiple edges as well as loops). We say that w is an ordered closed walk of length k on p vertices if

(i) A vertex that is visited for the first time at time j is greater than all vertices visited before time j:
max; g ; Wy < max; «; wj + 1.

(ii) All vertices are visited: {ws,...,wr} ={1,...,p}.
(iii) Every edge of G(w) appears at least twice.

Let W(k,p) denote the set of ordered closed walks of length k on p vertices. The key combinatorial
estimate of our proof is the bound

k
k < 2(/9—2p+2)22p—2
Wikl < ()" ,)r ,

proved in [39]. Using the notion of ordered closed walks, it is not hard to see that (A.25) may be rewritten

as
k/2+1

ETr H* = Z Z Z Ehé(’Wl)é(’UJg) cee h@(u}k,l)é(wk)he(wk)e(wl) , (A.26)
p=1 weW(k,p) £eL(p)

where L(p) is the set of all p-tuples £ = (¢(1),...,4(p)) € {1,...,N}P whose components are disjoint.
See [21], Section 7.1, for a detailed proof.

Next, associate with the multigraph G(w) its skeleton S(w), obtained from G(w) by discarding the mul-
tiplicity of every edge (i.e. by successively removing edges until it has no multiple edges). For e € E(S(w)),
we denote by v(e) the multiplicity of the edge e in G(w). We have the obvious relation } . 5wy ¥(€) = k.
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If e = {w,v'}, we write £(e) := (£(v),£(v")) (the chosen order of the pair £(e) is immaterial). Then it is easy
to see that

~

Ehgw yews) =+ Peqwr_1)ewe) Peqwy)yewr) | < H Elhg(e) |

e€E(S(w))
1 —ullo " Cu(e)f2
< H N(]. +e (log N) )m
ecE(S(w)) q

N

2 Es k
q —u(log N)¢ ] (C)
1+e ,
[CQN( ) q

where we used (A.23), and introduced the shorthand Eg := |E(S(w))|. Therefore summing over £ € L(p) in
(A.26) yields
k/2+1 Es k
ETr O%| < NP q° 1 & o—cllog N)* ¢
’ ! ‘ = Z Z C’QN( +e ) P

p=1 weW(k,p) q

Next, it immediate that we have the relations p — 1 < Eg < k/2; these inequalities follow from the above
properties (ii) and (iii) respectively. Since d?/N < 1, we therefore get

N k/2+1 . C k—2p+2
ETr B < N > [W(k,p)|(1+e (N )p(> .
p=1 9
For k < N this yields
k/2+1
[ETe H*| < 3N ) S(k.p),
p=1

where

k B B C k—2p+2

It is elementary to check that S(k,k/2 + 1) = 2¥ and

Ko\
Stk < 55 () st ).

Therefore choosing k < ¢,/q implies S(k,p) < 2*. This concludes the proof of (A.24).
The claim now follows by setting k = c,/q with a sufficiently small constant ¢, applying a high moment
Markov inequality, and recalling that /g > (log N)* by (2.6). O
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