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Abstract. Let S be a Polish space and (Xn : n ≥ 1) an exchangeable se-

quence of S-valued random variables. Let αn(·) = P
(
Xn+1 ∈ · | X1, . . . , Xn

)
be the predictive measure and α a random probability measure on S such

that αn
weak−→ α a.s.. Two (related) problems are addressed. One is to give

conditions for α � λ a.s., where λ is a (non random) σ-finite Borel mea-

sure on S. Such conditions should concern the finite dimensional distributions
L(X1, . . . , Xn), n ≥ 1, only. The other problem is to investigate whether

‖αn − α‖
a.s.−→ 0, where ‖·‖ is total variation norm. Various results are ob-

tained. Some of them do not require exchangeability, but hold under the

weaker assumption that (Xn) is conditionally identically distributed, in the

sense of [2].

1. Two related problems

Throughout, S is a Polish space and

X = (X1, X2, . . .)

a sequence of S-valued random variables on the probability space (Ω,A, P ). We
let B denote the Borel σ-field on S and S the set of probability measures on B. A
random probability measure on S is a map α : Ω → S such that σ(α) ⊂ A, where
σ(α) is the σ-field on Ω generated by ω 7→ α(ω)(B) for all B ∈ B.

For each n ≥ 1, let αn be the n-th predictive measure. Thus, αn is a random
probability measure on S and αn(·)(B) is a version of P

(
Xn+1 ∈ B | X1, . . . , Xn

)
for all B ∈ B. Define also α0(·) = P (X1 ∈ ·).

If X is exchangeable, as assumed in this section, there is a random probability
measure α on S such that

αn(ω)
weak−→ α(ω) for almost all ω ∈ Ω.

Such an α can also be viewed as

µn(ω)
weak−→ α(ω) for almost all ω ∈ Ω,

where µn = 1
n

∑n
i=1 δXi

is the empirical measure. Further, α grants the usual
representation

P (X ∈ B) =

∫
α(ω)∞(B)P (dω) for every Borel set B ⊂ S∞

where α(ω)∞ = α(ω)× α(ω)× . . ..
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Let λ be a σ-finite measure on B. Our first problem is to give conditions for

(1) α(ω)� λ for almost all ω ∈ Ω.

The conditions should concern the finite dimensional distributions L(X1, . . . , Xn),
n ≥ 1, only.

While investigating (1), one meets another problem, of possible independent
interest. Let ‖·‖ denote total variation norm on (S,B). Our second problem is to
give conditions for

‖αn − α‖
a.s.−→ 0.

2. Motivations

Again, let X = (X1, X2, . . .) be exchangeable.
Reasonable conditions for (1) look of theoretical interest. They are of practical

interest as well thanks to Bayesian nonparametrics. In this framework, the starting
point is a prior π on S. Since π = P ◦ α−1, condition (1) is equivalent to

π
{
ν ∈ S : ν � λ

}
= 1.

This is a basic information for the subsequent statistical analysis. Roughly speak-
ing, it means that the ”underlying statistical model” consists of absolutely contin-
uous laws.

Notwithstanding the significance of (1), however, there is a growing literature
which gets around the first problem of this paper. Indeed, in a plenty of Bayesian
nonparametric problems, condition (1) is just a crude assumption and the prior
π is directly assessed on a set of densities (with respect to λ). See e.g. [11] and
references therein. Instead, it seems reasonable to get (1) as a consequence of
explicit assumptions on the finite dimensional distributions L(X1, . . . , Xn), n ≥
1. From a foundational point of view, in fact, only assumptions on observable
facts make sense. This attitude is strongly supported by de Finetti, among others.
When dealing with the sequence X, the observable facts are events of the type
{(X1, . . . , Xn) ∈ B} for some n ≥ 1 and B ∈ Bn. This is why, in this paper, the
conditions for (1) are requested to concern L(X1, . . . , Xn), n ≥ 1, only.

Some references related to the above remarks are [3] and [5]-[10]. In particular,
in [8]-[9], Diaconis and Freedman have an exchangeable sequence of indicators and
give conditions for the mixing measure (i.e., the prior π) to be absolutely continuous
with respect to Lebesgue measure. The present paper is much in the spirit of [8]-[9].
The main difference is that we give conditions for the mixands {α(ω) : ω ∈ Ω}, and
not for the mixing measure π, to be absolutely continuous.

Next, a necessary condition for (1) is

(2) L(X1, . . . , Xn)� λn for all n ≥ 1,

where λn = λ × . . . × λ. Condition (2) clearly involves the finite dimensional
distributions only. Thus, a (natural) question is whether (2) suffices for (1) as well.

The answer is yes provided α can be approximated by the predictive measures
αn in some stronger sense. In fact, condition (2) can be written as

αn(ω)� λ for all n ≥ 0 and almost all ω ∈ Ω.

Hence, if (2) holds and ‖αn − α‖
a.s.−→ 0, the set

A = {‖αn − α‖ → 0} ∩ {αn � λ for all n ≥ 0}
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has probability 1. And, for each ω ∈ A, one obtains

α(ω)(B) = lim
n
αn(ω)(B) = 0 whenever B ∈ B and λ(B) = 0.

Therefore, (1) follows from (2) and ‖αn − α‖
a.s.−→ 0. In addition, a martingale

argument implies the converse implication, that is

α� λ a.s. ⇐⇒ ‖αn − α‖
a.s.−→ 0 and L(X1, . . . , Xn)� λn for all n;

see Theorem 1. Thus, our first problem turns into the second one.

The question of whether ‖αn − α‖ a.s.−→ 0 is of independent interest. Among
other things, it is connected to Bayesian consistency. Surprisingly, however, this

question seems not answered so far. To the best of our knowledge, ‖αn − α‖
a.s.−→ 0

in every example known so far. And in fact, for some time, we conjectured that

‖αn − α‖
a.s.−→ 0 under condition (2). But this is not true. As shown in Example

5, when S = R and λ = Lebesgue measure, it may be that L(X1, . . . , Xn) � λn

for all n and yet α is singular continuous a.s.. Indeed, the (topological) support of
α(ω) has Hausdorff dimension 0 for almost all ω ∈ Ω.

Thus, (2) does not suffice for (1). To get (1), in addition to (2), one needs some
growth conditions on the conditional densities. We refer to forthcoming Theorem
4 for such conditions. Here, we mention a result on the second problem. Actually,

for ‖αn − α‖
a.s.−→ 0, it suffices that

P{ω : αc(ω)� λ} = 1

where αc(ω) denotes the continuous part of α(ω); see Theorem 2.
Finally, most results mentioned above do not need exchangeability of X, but the

weaker assumption

(X1, . . . , Xn, Xn+2) ∼ (X1, . . . , Xn, Xn+1) for all n ≥ 0.

Those sequences X satisfying the above condition, investigated in [2], are called
conditionally identically distributed (c.i.d.).

3. Mixtures of i.i.d. absolutely continuous sequences

In this section, G0 = {∅,Ω}, Gn = σ(X1, . . . , Xn) for n ≥ 1 and G∞ = σ
(
∪nGn

)
.

If µ is a random probability measure on S, we write µ(B) to denote the real random
variable µ(·)(B), B ∈ B. Similarly, if h : S → R is a Borel function, integrable with
respect to µ(ω) for almost all ω ∈ Ω, we write µ(h) to denote

∫
h(x)µ(·)(dx).

3.1. Preliminaries. Let X = (X1, X2, . . .) be c.i.d., as defined in Section 2. Since
X needs not be exchangeable, the representation P (X ∈ ·) =

∫
α(ω)∞(·)P (dω)

can fail for any α. However, there is a random probability measure α on S such
that

(3) σ(α) ⊂ G∞ and αn(B) = E
{
α(B) | Gn

}
a.s.

for all B ∈ B. In particular, αn
weak−→ α a.s.. Also, letting

µn =
1

n

n∑
i=1

δXi
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be the empirical measure, one obtains µn
weak−→ α a.s.. Such an α is of interest for

one more reason. There is an exchangeable sequence Y = (Y1, Y2, . . .) of S-valued
random variables on (Ω,A, P ) such that

(Xn, Xn+1, . . .)
d−→ Y and P

(
Y ∈ ·

)
=

∫
α(ω)∞(·)P (dω).

See [2] for details.
We next recall some known facts about vector-valued martingales; see [14]. Let

(Z, ‖·‖∗) be a separable Banach space. Also, let F = (Fn) be a filtration and (Zn)
a sequence of Z-valued random variables on (Ω,A, P ) such that E‖Zn‖∗ < ∞ for
all n. Then, (Zn) is an F-martingale in case (φ(Zn)) is an F-martingale for each
linear continuous functional φ : Z → R. If (Zn) is an F-martingale, (‖Zn‖∗) is a
real-valued F-submartingale. So, Doob’s maximal inequality yields

E
{

sup
n
‖Zn‖p∗

}
≤
( p

p− 1

)p
sup
n
E
{
‖Zn‖p∗

}
for all p > 1.

The following martingale convergence theorem is available as well. Let Z : Ω→ Z
be F∞-measurable and such that E‖Z‖∗ < ∞, where F∞ = σ

(
∪nFn

)
. Then,

Zn
a.s.−→ Z provided φ(Zn) = E

{
φ(Z) | Fn

}
a.s. for all n and all linear continuous

functionals φ : Z → R.

3.2. Results. In the sequel, λ is a σ-finite measure on B. When S = R, it may be
natural to think of λ as the Lebesgue measure, but this is only a particular case.
Indeed, λ could be singular continuous or concentrated on any Borel subset. In
addition, X is c.i.d. (in particular, exchangeable) and α is a random probability

measure on S such that αn
weak−→ α a.s.. Equivalently, α can be obtained as µn

weak−→ α
a.s.. It can (and will) be assumed σ(α) ⊂ G∞.

Theorem 1. Suppose X = (X1, X2, . . .) is c.i.d.. Then, α� λ a.s. if and only if

‖αn − α‖
a.s.−→ 0 and L(X1, . . . , Xn)� λn for all n.

Proof. The ”if” part can be proved exactly as in Section 2. Conversely, suppose
α� λ a.s.. It can be assumed α(ω)� λ for all ω ∈ Ω. We let Lp = Lp(S,B, λ) for
each 1 ≤ p ≤ ∞.

Let f : Ω × S → [0,∞) be such that α(ω)(dx) = f(ω, x)λ(dx) for all ω ∈ Ω.
Since B is countably generated, f can be taken to be A ⊗ B-measurable (see [4],
V.5.58, page 52) so that

1 =

∫
1 dP =

∫ ∫
f(ω, x)λ(dx)P (dω) =

∫
E
{
f(·, x)

}
λ(dx).

Thus, given n ≥ 0, E
{
f(·, x) | Gn

}
is well defined for λ-almost all x ∈ S. Since X

is c.i.d., condition (3) also implies∫
B

E
{
f(·, x) | Gn

}
λ(dx) = E

{∫
B

f(·, x)λ(dx) | Gn
}

= E
{
α(B) | Gn

}
= αn(B) a.s. for fixed B ∈ B.

Since B is countably generated, the previous equality yields

αn(ω)(dx) = E
{
f(·, x) | Gn

}
(ω)λ(dx) for almost all ω ∈ Ω.
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This proves that L(X1, . . . , Xn)� λn for all n. In particular, up to modifying αn

on a P -null set, it can be assumed αn(ω)(dx) = fn(ω, x)λ(dx) for all n ≥ 0, all
ω ∈ Ω, and suitable functions fn : Ω× S → [0,∞).

Regard f, fn : Ω → L1 as L1-valued random variables. Then, f : Ω → L1 is
G∞-measurable for

∫
h(x) f(·, x)λ(dx) = α(h) is G∞-measurable for all h ∈ L∞.

Clearly, ‖f(ω, ·)‖L1 = ‖fn(ω, ·)‖L1 = 1 for all n and ω. Finally, X c.i.d. implies

E
{∫

h(x)f(·, x)λ(dx) | Gn
}

= E
{
α(h) | Gn

}
= αn(h)

=

∫
h(x)fn(·, x)λ(dx) a.s. for all h ∈ L∞.

By the martingale convergence theorem (see Subsection 3.1) fn
a.s.−→ f in the space

L1, that is

‖αn(ω)− α(ω)‖ =
1

2

∫
|fn(ω, x)− f(ω, x)|λ(dx) −→ 0 for almost all ω ∈ Ω.

�

In the exchangeable case, the argument of the previous proof yields a little bit
more. Indeed, if X is exchangeable and α� λ a.s., then

sup
B∈Bk

∣∣∣P{(Xn+1, . . . , Xn+k) ∈ B | Gn
}
− αk(B)

∣∣∣ a.s.−→ 0,

where k ≥ 1 is any integer and αk = α× . . .× α.
The next result deals with the second problem of Section 1. For each ν ∈ S, let νc

and νd denote the continuous and discrete parts of ν, that is, νd(B) =
∑

x∈B ν{x}
for all B ∈ B and νc = ν − νd.

Theorem 2. Suppose X = (X1, X2, . . .) is c.i.d. and P{ω : αc(ω) � λ} = 1.

Then, ‖αn − α‖
a.s.−→ 0 if and only if

there is a set A0 ∈ A such that P (A0) = 1 and(4)

αn(ω){x} −→ α(ω){x} for all x ∈ S and ω ∈ A0.

(Recall that A denotes the basic σ-field on Ω). Moreover, condition (4) is automat-

ically true if X is exchangeable, so that ‖αn−α‖
a.s.−→ 0 provided X is exchangeable

and αc � λ a.s..

Proof. The ”only if” part is trivial. Suppose condition (4) holds. For each n ≥ 0,
take functions βn and γn on Ω such that βn(ω) and γn(ω) are measures on B for
all ω ∈ Ω and

βn(B) = E
{
αc(B) | Gn

}
, γn(B) = E

{
αd(B) | Gn

}
, a.s.,

for all B ∈ B. Since X is c.i.d., condition (3) yields αn = βn + γn a.s..

We first prove ‖βn − αc‖
a.s.−→ 0. It can be assumed αc(ω)� λ for all ω ∈ Ω, so

that αc(ω)(dx) = f(ω, x)λ(dx) for all ω ∈ Ω and some function f : Ω×S → [0,∞).
For fixed B ∈ B, arguing as in the proof of Theorem 1, one has

βn(B) = E
{∫

B

f(·, x)λ(dx) | Gn
}

=

∫
B

E
(
f(·, x) | Gn

)
λ(dx) a.s..

By standard arguments, it follows that βn � λ a.s.. Again, it can be assumed
βn(ω)(dx) = fn(ω, x)λ(dx) for all ω ∈ Ω and some function fn : Ω × S → [0,∞).
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Define L1 = L1(S,B, λ) and regard fn, f : Ω→ L1 as L1-valued random variables.

By the same martingale argument used for Theorem 1, one obtains fn
a.s.−→ f in the

space L1. That is, ‖βn − αc‖
a.s.−→ 0.

We next prove ‖γn − αd‖
a.s.−→ 0. Take A0 as in condition (4) and define

A1 = { lim
n
‖fn − f‖L1

= 0 and αn = βn + γn for all n ≥ 0}.

Then, P (A0 ∩A1) = 1 and

αd(ω){x} = α(ω){x} − αc(ω){x} = α(ω){x} − f(ω, x)λ{x}
= lim

n

(
αn(ω){x} − fn(ω, x)λ{x}

)
= lim

n

(
αn(ω){x} − βn(ω){x}

)
= lim

n
γn(ω){x}

for all ω ∈ A0 ∩A1 and x ∈ S. Define also

A = A0 ∩A1 ∩ {γn(S) −→ αd(S)}.

Since γn(S) = 1 − βn(S)
a.s.−→ 1 − αc(S) = αd(S), then P (A) = 1. Fix ω ∈ A and

let Dω = {x ∈ S : α(ω){x} > 0}. Then,

αd(ω)(Dω) ≤ lim inf
n

γn(ω)(Dω)

since Dω is countable and αd(ω){x} = limn γn(ω){x} for all x ∈ Dω. Further,

lim sup
n

γn(ω)(Dω) ≤ lim sup
n

γn(ω)(S) = αd(ω)(S) = αd(ω)(Dω).

Therefore, limn‖γn(ω)− αd(ω)‖ = 0 is an immediate consequence of

γn(ω){x} −→ αd(ω){x} for each x ∈ Dω,

αd(ω)(Dω) = lim
n
γn(ω)(Dω), αd(ω)(Dc

ω) = lim
n
γn(ω)(Dc

ω) = 0.

Finally, suppose X is exchangeable. We have to prove condition (4). If S is

countable, condition (4) is trivial for αn(B)
a.s.−→ α(B) for fixed B ∈ B. If S = R,

Glivenko-Cantelli theorem yields supx|µn(Ix) − α(Ix)| a.s.−→ 0, where Ix = (−∞, x]
and µn = 1

n

∑n
i=1 δXi

is the empirical measure. Hence, (4) follows from

sup
x
|αn(Ix)− µn(Ix)| a.s.−→ 0;

see Corollary 3.2 of [1]. If S is any uncountable Polish space, take a Borel isomor-
phism ψ : S → R. (Thus, ψ is bijective with ψ and ψ−1 Borel measurable). Then,
(ψ(Xn)) is an exchangeable sequence of real random variables and condition (4) is
a straightforward consequence of

P
{
ψ(Xn+1) ∈ B | ψ(X1), . . . , ψ(Xn)

}
= P

{
ψ(Xn+1) ∈ B | Gn

}
= αn

(
ψ−1B

)
a.s.

for each Borel set B ⊂ R. This concludes the proof. �

When X is c.i.d. (but not exchangeable) ‖αn−α‖
a.s.−→ 0 needs not be true even

if αc � λ a.s..

Example 3. Let (Zn) and (Un) be independent sequences of independent real
random variables such that Zn ∼ N (0, bn − bn−1) and Un ∼ N (0, 1 − bn), where
0 = b0 < b1 < b2 < . . . < 1 and

∑
n(1− bn) <∞. As shown in Example 1.2 of [2],

Xn =

n∑
i=1

Zi + Un
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is c.i.d. and Xn
a.s.−→ V for some real random variable V . Since µn

weak−→ δV a.s.,
then α = δV and αc � λ a.s. (in fact, αc = 0 a.s.). However, condition (4)
fails. In fact, L(X1, . . . , Xn)� λn for all n, where λ is Lebesgue measure. Hence,
αn(ω){V (ω)} = 0 while α(ω){V (ω)} = 1 for all n and almost all ω ∈ Ω.

We now turn to the first problem of Section 1. Recall that condition (2) amounts
to αn � λ a.s. for all n ≥ 0. Therefore, up to modifying αn on a P -null set, under
condition (2) one can write

αn(ω)(dx) = fn(ω, x)λ(dx)

for each ω ∈ Ω, each n ≥ 0, and some function fn : Ω× S → [0,∞). We also let

K = {K : K compact subset of S and λ(K) <∞}
and λB(·) = λ(· ∩B) for all B ∈ B.

Theorem 4. Suppose X = (X1, X2, . . .) is c.i.d. and L(X1, . . . , Xn)� λn for all
n. Then, α� λ a.s. if and only if, for each K ∈ K,

the sequence (fn(ω, ·) : n ≥ 1) is uniformly integrable,(5)

in the space (S,B, λK), for almost all ω ∈ Ω.

In particular, α� λ a.s. provided, for each K ∈ K, there is p > 1 such that

(6) sup
n

∫
K

fn(ω, x)p λ(dx) <∞ for almost all ω ∈ Ω.

Moreover, for condition (6) to be true, it suffices that

sup
n
E
{∫

K

fpn dλ
}
<∞.

Proof. If α � λ a.s., Theorem 1 yields ‖αn − α‖
a.s.−→ 0. Thus, fn(ω, ·) converges

in L1(S,B, λ), for almost all ω ∈ Ω, and this implies condition (5). Conversely, we
now prove that α� λ a.s. under condition (5).

Fix a nondecreasing sequence B1 ⊂ B2 ⊂ . . . such that Bn ∈ B, λ(Bn) <∞, and
∪nBn = S. Since λ(B1) <∞ and S is Polish, there is K1 ∈ K satisfying K1 ⊂ B1

and λ(B1 ∩ Kc
1) < 1. By induction, for each n ≥ 2, there is Kn ∈ K such that

Kn−1 ⊂ Kn ⊂ Bn and λ(Bn ∩Kc
n) < 1/n. Since X is c.i.d., condition (3) implies

α(Km) = lim
n
E
{
α(Km) | Gn

}
= lim

n
αn(Km) a.s. for all m ≥ 1.

Define H = ∪mKm and AH = {α(H) = 1}. If ω ∈ AH , then

α(ω)(B) = α(ω)(B ∩H) = sup
m
α(ω)(B ∩Km) for all B ∈ B.

Moreover, P (AH) = 1. In fact, λ(Hc) = 0 and αn � λ a.s. for all n, so that

α(H) = lim
n
E
{
α(H) | Gn

}
= lim

n
αn(H) = 1 a.s..

Thus, to prove α� λ a.s., it suffices to see that α(· ∩Km)� λ a.s. for all m.
Suppose (5) holds. Fix m ≥ 1, define K = Km, and take a set A ∈ A such that

P (A) = 1 and, for each ω ∈ A,

α(ω)(K) = lim
n
αn(ω)(K), αn(ω)

weak−→ α(ω),

(fn(ω, ·) : n ≥ 1) is uniformly integrable in (S,B, λK).
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Let ω ∈ A. Since λK(S) = λ(K) <∞ and (fn(ω, ·) : n ≥ 1) is uniformly integrable
under λK , there is a subsequence (nj) and a function ψω ∈ L1(S,B, λK) such that
fnj

(ω, ·) −→ ψω in the weak-topology of L1(S,B, λK). This means that∫
B∩K

ψω(x)λ(dx) = lim
j

∫
B∩K

fnj
(ω, x)λ(dx) = lim

j
αnj

(ω)(B ∩K) for all B ∈ B.

Therefore, ∫
K

ψω(x)λ(dx) = lim
j
αnj

(ω)(K) = α(ω)(K) and∫
F∩K

ψω(x)λ(dx) = lim
j
αnj (ω)(F ∩K) ≤ α(ω)(F ∩K) for each closed F ⊂ S.

By standard arguments, the previous two relations yield

α(ω)(B ∩K) =

∫
B∩K

ψω(x)λ(dx) for all B ∈ B.

Thus, α(ω)(· ∩K)� λ. This proves that condition (5) implies α� λ a.s..
Next, since p > 1, it is obvious that (6) =⇒ (5). Hence, it remains only to see

that condition (6) follows from supnE
{∫

K
fpn dλ

}
<∞.

Fix B ∈ B, p > 1, and suppose supnE
{∫

B
fpn dλ

}
< ∞. Let Lr = Lr(S,B, λB)

for all r. It can be assumed
∫
B
fn(ω, x)p λ(dx) <∞ for all ω ∈ Ω and n ≥ 1. Thus,

each fn : Ω→ Lp can be seen as an Lp-valued random variable such that

E
{
‖fn‖Lp

}
= E

{(∫
B

fpn dλ
)1/p} ≤ (E{∫

B

fpn dλ
})1/p

<∞.

Further,
∫
fn(·, x)h(x)λB(dx) = αn(IB h) is Gn-measurable for all h ∈ Lq, where

q = p/(p− 1). Since X is c.i.d., condition (3) also implies

E
{∫

fn+1(·, x)h(x)λB(dx) | Gn
}

= E
{
αn+1(IB h) | Gn

}
= E

{
E
(
α(IB h) | Gn+1

)
| Gn

}
= E

{
α(IB h) | Gn

}
= αn(IB h)

=

∫
fn(·, x)h(x)λB(dx) a.s. for all h ∈ Lq.

Hence, (fn) is a (Gn)-martingale. By Doob’s maximal inequality,

E
{

sup
n

∫
B

fpn dλ
}

= E
{

sup
n
‖fn‖pLp

}
≤ qp sup

n
E
{
‖fn‖pLp

}
= qp sup

n
E
{∫

B

fpn dλ
}
<∞.

In particular, supn

∫
B
fpn dλ <∞ a.s., and this concludes the proof.

�

Some remarks on Theorem 4 are in order.
First, for S = [0, 1] and a particular class of exchangeable sequences, results

similar to Theorem 4 are in [12] and [13].
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Second,

fn(ω, ·) =
gn+1

(
X1(ω), . . . , Xn(ω), ·

)
gn
(
X1(ω), . . . , Xn(ω)

) for almost all ω ∈ Ω,

where each gn : Sn → [0,∞) is a density of L(X1, . . . , Xn) with respect to λn.
Thus, more concretely, one obtains∫

K

fpn dλ =

∫
K
gn+1

(
X1, . . . , Xn, x)p λ(dx)

gn(X1, . . . , Xn)p
a.s..

Third, suppose X exchangeable and fix any random probability measure γ on S
such that P (X ∈ ·) =

∫
γ(ω)∞(·)P (dω). Then, γ � λ a.s. under the assumptions

of Theorem 4. In fact, α and γ have the same probability distribution, when
regarded as S-valued random variables.

A last (and important) remark deals with condition (2). Indeed, even if X is
exchangeable, condition (2) is not enough for α � λ a.s.. We close the paper
showing this fact.

Example 5. Let S = R and λ = Lebesgue measure. All random variables are de-
fined on the probability space (Ω,A, P ). We now exhibit an exchangeable sequence
X such that L(X1, . . . , Xn)� λn for all n ≥ 1 and yet P (α� λ) = 0. In fact, the
support of α(ω) has Hausdorff dimension 0 for almost all ω ∈ Ω.

Two known facts are to be recalled. First, if T and Z are independent Rn-valued
random variables, then

P (T + Z ∈ B) =

∫
P (T + z ∈ B)PZ(dz)

where B ∈ Bn and PZ is the distribution of Z. Hence, L(T + Z) � λn provided
L(T )� λn. The second fact is

Theorem 6. (Pratsiovytyi and Feshchenko). Let Z1, Z2, . . . be i.i.d. random
variables with P (Z1 = 0) = P (Z1 = 1) = 1/2 and b1 > b2 > . . . > 0 real num-
bers such that

∑
m bm < ∞. Then, the support of L

(∑
m bm Zm

)
has Hausdorff

dimension 0 whenever limm

(∑
j>m bj

)−1
bm =∞.

Theorem 6 is a consequence of Theorem 8 of [15] (which is actually much more
general).

Next, let Um and Ym,n be independent real random variables such that:

• Um is uniformly distributed on ( 1
m+1 ,

1
m ) for each m ≥ 1;

• P (Ym,n = 0) = P (Ym,n = 1) = 1
2 for all m, n ≥ 1.

Define Vm = Um
m and

Xn =

∞∑
m=1

Um
m Ym,n =

∞∑
m=1

Vm Ym,n.

Then, X = (X1, X2, . . .) is conditionally i.i.d. given V = σ(V1, V2, . . .). Precisely,
for ω ∈ Ω and B ∈ B, define

α(ω)(B) = P
{
u ∈ Ω :

∑
m

Vm(ω)Ym,1(u) ∈ B
}
.
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Then, α(B) is a version of P (X1 ∈ B | V) and P (X ∈ ·) =
∫
α(ω)∞(·)P (dω). In

particular, X is exchangeable. Moreover, µn
weak−→ α a.s. for

P
(
µn

weak−→ α | V
)

= 1 a.s..

The (topological) support of α(ω) has Hausdorff dimension 0 for almost all ω ∈ Ω.
Define in fact bm = Vm(ω) and Zm = Ym,1. By Theorem 6, it suffices to verify that

(7) lim
m

Vm(ω)∑
j>m Vj(ω)

=∞ for almost all ω ∈ Ω.

And condition (7) follows immediately from

(j+1)−j < Vj < j−j and
∑
j>m

Vj ≤
∑
j>m

j−j ≤
∑
j>m

(m+1)−j =
(m+ 1)−m

m
a.s..

We finally prove that L(X1, . . . , Xn) � λn for all n ≥ 1. Given the array
y = (ym,n : m, n ≥ 1), with ym,n ∈ {0, 1} for all m, n, define

Xn,y =
∑
m

Vm ym,n.

Fix n ≥ 1 and denote In the n× n identity matrix. If y satisfies ym+1,1 . . . ym+1,n

. . . . . . . . .
ym+n,1 . . . ym+n,n

 = In for some m ≥ 0,(8)

then

(X1,y, . . . , Xn,y) = (Vm+1, . . . , Vm+n) + (R1, . . . , Rn)

with (R1, . . . , Rn) independent of (Vm+1, . . . , Vm+n).

In this case, since L(Vm+1, . . . , Vm+n)� λn, then L(X1,y, . . . , Xn,y)� λn. Hence,
letting Y = (Ym,n : m, n ≥ 1), the conditional distribution of (X1, . . . , Xn) given
Y = y is absolutely continuous with respect to λn as far as y satisfies (8). To
conclude the proof, it suffices noting that

P
(
Y = y for some y satisfying (8)

)
= 1.
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