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Consider a branching random walk on R, with offspring distribu-
tion Z and nonnegative displacement distribution W . We say that
explosion occurs if an infinite number of particles may be found within
a finite distance of the origin. In this paper, we investigate this phe-
nomenon when the offspring distribution Z is heavy-tailed. Under an
appropriate condition, we are able to characterize the pairs (Z,W ) for
which explosion occurs, by demonstrating the equivalence of explosion
with a seemingly much weaker event: that the sum over generations of
the minimum displacement in each generation is finite. Furthermore,
we demonstrate that our condition on the tail is best possible for this
equivalence to occur.

We also investigate, under additional smoothness assumptions,
the behaviour of Mn, the position of the particle in generation n
closest to the origin, when explosion does not occur (and hence
limn→∞Mn = ∞).

1. Introduction. Our aim in this paper is to give a classification of
the displacement random variables in heavy-tailed branching random walks
in R for which explosion—a concept we will define shortly—occurs. Thus
consider a branching random walk on R. The process begins with a single
particle at the origin; this particle moves to another point of R according
to a displacement distribution W , where it gives birth to a random number
of offspring, according to a distribution Z. This procedure is then repeated:
the particles in a given generation each take a single step according to an
independent copy of the same distribution W , and then give birth to the
next generation. We consider the case where W is nonnegative (in which
case the process is also called an age-dependent process; the displacement of
a particle can also be interpreted as a birthdate). Let Γt be the number of
particles with displacement at most t; then we say that explosion occurs if
Γt =∞ for some finite t.
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Alternatively, let Mn be the displacement of the leftmost particle in the
n-th generation. If the process dies out and there are no particles remaining
in the n-th generation, then define Mn = ∞. Explosion is the event that
limn→∞Mn <∞. Note that, since Mn is monotone, it has a limit.

Taking a tree view of the above process, denote by TZ a random Galton-
Watson tree with offspring distribution Z, and let Zn be the number of
children at level n. To avoid the trivial case, we assume throughout that
P{Z = 1} < 1. Each edge of TZ is then independently given a weight
according to the nonnegative distribution W . The connection to the above
process is that the displacement of a node is simply the sum of the weights
on the path from the root to that node. From this perspective, which is the
one we will take in this paper, explosion is the event that there exists an
infinite path for which the sum of the weights on the path is finite.

In the process of studying the event of explosion, we first consider the
case where the offspring distribution has finite mean. The different cases
described in the next paragraph show that we can either trivially solve the
problem, or reduce to the most interesting case of an infinite mean.

Reduction to the case of an infinite mean. Consider a Galton-Watson
process with offspring distribution Z satisfying 0 < E{Z} < ∞. We still
assume P{Z = 1} < 1. Let W be a weight (or displacement) distribution on
the edges of the Galton-Watson tree.

Consider first the case where P{W = 0} = 1. In this case, explosion
is equivalent to the event that the Galton-Watson tree is infinite, i.e., the
survival of the Galton-Watson process. In that case, if E{Z} ≤ 1, there is
no survival, and if E{Z} > 1, there is a positive probability of survival [4].
From now on we will assume that P{W = 0} < 1 and assume that the
Galton-Watson process is supercritical.

In the case of a supercritical Galton-Watson process, under the assumption
E{Z} <∞, the results of Hammersley [21], Kingman [26], and Biggins [7]
show the existence of a constant γ such that conditional on the non-extinction
of the process, Mn/n tends to γ almost surely. This shows that the random
variables Mn, conditional on survival, behave linearly in n, i.e., Mn =
γn+ o(n). One consequence of the Hammersley-Kingman-Biggins theorem
is that if γ > 0, then explosion never happens. Now define

H := E{Z}P{W = 0}.

It can be shown that γ = 0 if and only if H ≥ 1. We consider in fact three
cases: H < 1, H > 1 and H = 1.
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• Case I: H < 1.

Here, as stated above, explosion occurs with probability zero. This can be
seen more simply as follows: fix an ε > 0 such that P{W < ε} < (E{Z})−1

and mark all edges with weight smaller than ε. Then each component in
the forest of marked edges is a subcritical Galton-Watson tree, and hence
has finite size almost surely. Thus any infinite path must contain an infinite
number of unmarked edges, and hence cannot be an exploding path.

• Case II: H > 1.

In this case, explosion happens with probability one. To see this, take a
sub-Galton-Watson tree by keeping only children for which W = 0. This tree
is supercritical and thus survives with some positive probability ρ. It follows
that with positive probability, there is an infinite path of length zero. Since,
conditional on survival, explosion is a 0 -1 event (for a proof see later in this
introduction), we infer that it happens with probability one. A theorem of
Dekking and Host [15] ensures the existence of an almost surely finite random
variable M such that Mn converges a.s. to M . Under the extra condition
E Z2 <∞, they determine stronger results on the limit distribution M .

• Case III: H = 1.

This threshold case is the most intriguing—it was already considered in
an earlier pioneering work of Bramson [10], and the work of Dekking and
Host [15]. In this case, the occurrence of explosion is a delicately balanced
event that depends upon the behavior of the distribution of W near the
origin and on the distribution of Z.

Bramson’s main theorem is the following result on the behaviour of Mn

under the assumption that there exists a δ > 0 such that E{Z2+δ} < ∞.
For any fixed λ, define σλ,n = p + (1 − p)e−λn where p = P{W = 0} < 1.
Then explosion happens if and only if there exists some λ > 1 such that∑∞

n=1 F
−1
W (σλ,n) < ∞. In the case of no explosion, and conditional on the

survival of the branching process, the following convergence result on the
asymptotic of Mn holds. Almost surely, we have

(1.1) lim
n→∞

Mn∑s(n)
k=1 F

−1
W (σ2,k)

= 1,

where s(n) = dlog logn/ log 2e. We refer to [15] for a generalization of Bram-
son’s theorem to the case of E{Z2} <∞, under some extra mild conditions.

Following Bramson [10], we first transform the tree TZ into a new tree
T ′ as follows. The roots are identical. First consider the sub-Galton-Watson
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tree rooted at the root of TZ consisting only of children (edges) that have
zero weight. This subtree is critical. For any distribution of Z satisfying the
threshold condition, note that the size S of the sub-Galton-Watson tree is
a random variable S ≥ 1 with E{S} =∞. In some cases, we know more—
for example, when Var{Z} = σ2 ∈ (0,∞), then P{S ≥ k} ∼

√
2/πσ2k as

k →∞ (see, e.g., the book of Kolchin [27]). All of the nodes in S are mapped
to the root of the new tree T ′. The children of that root in T ′ are all the
children of the mapped nodes in TZ that did not have W = 0.

Let Xi be the number of vertices of degree i in the sub-Galton-Watson
tree. The number of children of the root of TZ is distributed as

ζ =

∞∑
i=0

Xi∑
j=1

ζi,j ,

where ζi,1, ζi,2, . . . are i.i.d. random variables having distribution of a random
variable ζi. In addition the distribution of ζi is given by

P{ζi = k} = ci

(
k + i

i

)
(1− P{W = 0})k P{W = 0}i P{Z = k + i},

where ci is a normalizing constant. Note that
∑

i≥0Xi = S.
For each child of the root in T ′, repeat the above collapsing procedure. It

is easily seen that T ′ itself is a Galton-Watson tree with offspring distribution
ζ. The moment generating function Gζ(s) of ζ is easily seen to satisfy the
functional equation

(1.2) Gζ(s) = GZ

(
(1− P{W = 0})s+ P{W = 0}Gζ(s)

)
.

Furthermore, the displacement distribution is W conditional on W > 0.
Finally, one can verify that E{ζ} =∞. More importantly, explosion occurs
in TZ if and only if explosion happens in T ′. We have thus reduced the
explosion question to one for a new tree in which the expected number of
children is infinite, and in which W does not have an atom at zero.

Observe that the transformation described in Case III is valid whenever
W has an atom at the origin. In particular, this construction can also be
used to eliminate an atom at the origin when P{W = 0} > 0 and E{Z} =∞.
In this case, we still have E{ζ} =∞.

It follows from the above discussion that in the study of the the event of
explosion, we need to consider only the (most interesting) case where

E{Z} =∞, P{W = 0} = 0.
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All our results below are concerned only with this case.

A simple necessary condition for explosion. There is a rather obvious
necessary condition for explosion. Let Yi be the minimum weight edge at level
i in the tree. Then the sum of weights along any infinite path is certainly at
least

∑∞
i=1 Yi. We say that a fixed weighted tree is min-summable if this sum

is bounded; if a tree is not min-summable, it cannot have an exploding path.
For any fixed, infinite, rooted tree T , and distribution W on the nonneg-

ative reals, let TW denote a random weighted tree obtained by weighting
each edge with an independent copy of W . For a fixed tree T and weight
distribution W , it follows easily from Kolmogorov’s 0-1 law that explosion
and min-summability of TW are both 0-1 events. Thus, we make the following
definitions.

Definition 1.1. For any infinite rooted tree T ,

(i) let Wex(T ) be the set of weight distributions so that TW contains an
exploding path almost surely, and

(ii) let Wms(T ) be the set of weight distributions so that TW is min-
summable almost surely.

In this new notation, the observation above is simply that Wex(T ) ⊆
Wms(T ), for any tree T . Unsurprisingly, in general Wex(T ) may be strictly
contained within Wms(T ). For example, consider an infinite binary tree T
and a uniform weight distribution W on [0, 1]. Except with probability at
most exp(−2i/2) the minimum of 2i copies of W is at most 2−i/2. Thus, with
positive probability

∑
i≥1 Yi ≤

∑
i≥1 2−i/2 < 3, and so W ∈ Wms(Z). On the

other hand, we may easily prove that W 6∈ Wex(Z), i.e., that the probability
that there exists an exploding path is zero. To see this, consider the event
Ai that there exists a path from the root to level i of weight less than i/128.
The existence of an exploding path certainly implies that for all sufficiently
large i, Ai occurs. We now observe that P{Ai} ≤ 2−i. Indeed, the event Ai
implies that there is a path from the root to level i at least half of whose
edges have weight less than 1

64 . Since there are only 2i paths to level i and
at most 2i ways to choose a subset of the edges of a fixed path, and since
for each path and each fixed subset of at least i

2 edges, the probability that
all these edges have weight less than 1

64 is at most 8−i, the bound easily
follows. The same proof shows that for the exponential distribution E, no
explosion can happen (however, E ∈ Wms(T ); this follows from Example (iv)
of Section 4).
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Main results. It may appear that, aside from some trivial cases, Wms(T )
should always strictly containWex(T ). However, somewhat counter-intuitively,
this is not the case; there are examples of trees with generation sizes growing
very fast (double exponentially) for which Wex(T ) =Wms(T ). Consider for
example the tree T defined as follows: all nodes of generation n have 22n

children. In this case, for a given weight distribution W , the distribution of
the sum of minimum weights of levels is∑

n≥1

min
1≤i≤2(2

n−1)
W i
n,

where each W i
n is an independent copy of W . Also the path constructed by

the simple greedy algorithm which, starting from root, adds at each step the
lowest weight edge from the current node to one of its children, has total
weight distributed as ∑

n≥1

min
1≤i≤22

(n−1)
W i
n.

The property of these sums being finite almost surely is clearly equivalent, so
that Wex(T ) =Wms(T ). Our main result is that this phenomenon is in fact
quite general in trees obtained by a Galton-Watson process with a heavy
tailed offspring distribution. We call the distribution Z plump if for some
positive constant ε the inequality

(1.3) P{Z ≥ m1+ε} ≥ 1

m

holds for all m sufficiently large. Equivalently, Z is plump if its distribution
function FZ satisfies F−1

Z (1 − 1/m) ≥ m1+ε for m sufficiently large. We
remark that E Z =∞ for any plump Z.

Equivalence Theorem. Let Z be a plump distribution. Let T be a
random Galton-Watson tree with offspring distribution Z, but conditioned
on survival. Then

Wex(T ) =Wms(T ) with probability 1.

We now state a second form of the equivalence theorem. For this, we
must extend the definition of Wex and Wms to Galton-Watson offspring
distributions. Let Z be an offspring distribution and W a weight distribution.
We have
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Claim 1.2. For a given offspring distribution Z and weight distribution
W , and conditioning on survival of the Galton-Watson process, explosion
and min-summability are 0-1 events.

Proof. Let (Wi)
∞
i=1 be a sequence of independent copies of W , let (Si)

∞
i=1

be a random walk with jump distribution given by Z − 1, and let (Xi)
∞
i=1

be the increments. In the usual way, this random walk can be thought of
as representing (in breadth-first fashion) a sequence of one or more Galton-
Watson trees, with Xi + 1 giving the number of children at step i and Wi the
weight of the i-th edge. Since E Z > 1, one of these trees T ′ will be infinite
with probability 1, and this tree is exactly a Galton-Watson tree conditioned
on survival. The sequence ((Xi,Wi))

∞
i=1 clearly encodes all the information

about T ′, and the two events under consideration are tail events with respect
to this sequence; thus Kolmogorov’s 0-1 law applies. The same argument
holds for min-summability.

We can thus define Wex(Z) and Wms(Z) for an offspring distribution Z
as follows:

Wex(Z) :=
{
W |W ∈ Wex(TZ) almost surely conditioned on survival

}
,

and

Wms(Z) :=
{
W |W ∈ Wms(TZ) almost surely conditioned on survival

}
.

The alternative (though slightly weaker) formulation of the Equivalence
Theorem can now be stated as follows:

Equivalence Theorem—Second Version. For a plump distribution
Z,

Wex(Z) =Wms(Z).

Min-summability is clearly a simpler kind of condition than explosion; in
particular, it depends only on the generation sizes Zn rather than the full
structure of the tree TZ . Indeed, the Equivalence Theorem becomes more
interesting if one observes that it is possible to derive the following quite
explicit necessary and sufficient condition for min-summability.

Theorem 1.3. Given a plump offspring distribution Z, let m0 > 1 be
large enough such that the condition (1.3) holds for all m ≥ m0. Define the
function h : N→ R+ as follows:

(1.4) h(0) = m0 and h(n+ 1) = F−1
Z (1− 1/h(n)) for all n ≥ 1.
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Then for any weight distribution W , W ∈ Wms(Z), and hence also W ∈
Wex(Z), if and only if ∑

n

F−1
W (h(n)−1) <∞.

Given the Equivalence Theorem above, one may wonder if there is a way
to weaken the condition given in (1.3) such that the theorem still remains
valid. We show that this condition is to some extent the best we can ask for.
More precisely, we prove

Sharpness of Condition (1.3). Let g : N → N be an increasing
function satisfying

g(m) = m1+o(1).

Then there is an offspring distribution Z satisfying P{Z ≥ g(m)} ≥ 1/m for
all m ∈ N, but for which Wex(Z) 6=Wms(Z).

So far our results concerned the appearance of the event of explosion;
however, it is also natural to ask how fast Mn tends to infinity in the case there
is a.s. no exploding path. Although there is no reason to expect a convergence
theorem in the case of no explosion for general plump distributions in the
absence of any smoothness condition on the tails of Z, we show that a
stronger plumpness property allows to obtain a precise information on the
rate of convergence to infinity of Mn. To explain this, note that the plumpness
assumption on Z is equivalent to 1− FZ(k) ≥ k−η for η = 1

1+ε and for all k
sufficiently large. Consider now the stronger smoothness condition

(1.5) 1− FZ(k) = k−η`(k),

where ` is any continuous and bounded function which is nonzero at infinity.

Limit Theorem under Condition (1.5). Let Z satisfy the smoothness
condition, and let W be any weight distribution with W /∈ Wex(Z). Then a.s.
conditional on survival,

lim
n→∞

Mn∑n
k=1 F

−1
W

(
exp

(
−(1 + ε)k

)) = 1

for all ε > 0.
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Applying a Tauberian theorem (see Section 6 for more details), we find
that Condition (1.5) is equivalent to the condition

KZ(s) := 1−GZ(1− s) ∼ a sη`(1

s
)

near s = 0 for some a > 0; recall GZ is the moment generating function of
Z. Going back to Case III of the finite mean case, and the transformation
described there, we observe that the use of the functional Equation (1.2)
allows to translate the smoothness condition above, imposed on the modified
offspring distribution ζ of infinite mean (obtained after the transformation),
to a smoothness condition on Z, the original distribution of finite mean. In
particular,

Kζ(s) = 1−Gζ(1− s) ∼ as1/(1+ε)
(
1 +O(sβ)

)
for s near zero,

for some a, ε, β > 0 is equivalent to a condition of the form

(1.6) KZ(s) ∼ E{Z} s− c s1+ε(1 +O(sδ)) for s near zero,

for some c, δ > 0. We note that Condition (1.6) assumes some regularity on
the tails of Z but the variance could be infinite; thus, the above result can
be regarded as a strengthening of Bramson’s theorem [10].

Further related work. The literature on explosion is partially surveyed by
Vatutin and Zubkov [38]. The early work deals with exponentially distributed
weights: in this case, there is no explosion almost surely if and only if

∞∑
n=1

1

n
∑n

r=0 P{Z > r}
<∞

(see [22, V. 6], [17, 30]). This condition cannot be simplified; Grey [20] showed
that there does not exist any fixed function ψ ≥ 0 such that explosion would
be equivalent to E{ψ(Z)} =∞.

Some general properties of the event of explosion were obtained in [33] by
considering the generating functions of the number of particles born before
time t, parametrized by t, and looking at the nonlinear integral equation
satisfied by these generating functions. By using this analytic approach, and
under some smoothness conditions on the distribution function FW of the
displacement W , Sevast’yanov [33, 34], Gel’fond [19], and Vatutin [35, 36]
obtain necessary and sufficient conditions on the event of explosion. The result
of Vatutin [36] can be stated as follows. Consider the case P{W = 0} = 0
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and suppose that zero is an accumulation point of W , i.e., the distribution
function FW of W satisfies FW (w) > 0 for all w > 0. Assume the following
regular variation style condition holds: there exists λ ∈ (0, 1) such that

(1.7) 0 < lim inf
t↓0

F−1
W (λt)

F−1
W (t)

≤ lim sup
t↓0

F−1
W (λt)

F−1
W (t)

< 1.

Then explosion does not occur if and only if for all ε > 0,

(1.8)

∫ ε

0
F−1
W

( s

KZ(s)

)ds
s

=∞.

Condition (1.7) basically forces FW to behave in a polynomial manner near
the origin. Indeed, if FW (w) ∼ wα for some α > 0 as w ↓ 0, then F−1

W (t) ∼
t1/α as t ↓ 0, and so (1.7) holds. The exponential law corresponds to α = 1,
for example. The criterion given by (1.8) was earlier proved to be necessary
and sufficient for non-explosion by Sevast’yanov [33, 34] and Gel’fond [19]
under the slightly more restrictive condition that FW (w)/wα ∈ [a, b] for all w,
where 0 < a ≤ b <∞ and α ≥ 0. As soon as we leave that polynomial oasis,
Vatutin’s condition is violated. Examples include FW (w) ∼ exp(−1/wα) and
FW (w) ∼ 1/ logα(1/w) for α > 0.

A quite general sufficient (but not necessary) condition without any explicit
regularity assumption on W was proved by Vatutin [37] for explosion in
non-homogenous branching random walks. In the homogenous case, the result
states that if there exists a sequence of nonnegative reals (yn)n∈N such that
limn yn = 0 and

∞∑
n=1

F−1
W

(
yn/KZn(yn)

)
<∞,

then explosion occurs. This result is close in spirit to our equivalence theorem,
but we stress that the results are distinct—we see no way in which one may
be deduced from the other.

More precise information on the behaviour and convergence to infinity
of Mn can be obtained in the finite mean case and under extra conditions.
Recall that in the finite mean case, Mn = γn + o(n) for some γ ≥ 0.
McDiarmid showed in [28] that Mn − γn = O(log n) if E{Z2} <∞ and W
has an exponential upper tail. Recently, Hu and Shi [23] proved that if the
displacements are bounded and E{Z1+ε} <∞ for any ε > 0, then conditional
on survival, (Mn − γn)/ log n converges in probability but, interestingly, not
almost surely. (We note in passing that this work and the recent work of
Aı̈dekon-Shi [3] provide Seneta-Heyde norming results [9] in the boundary
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case.) Under the extra assumption that Z is bounded, Addario-Berry and
Reed [1] calculate E{Mn} to within O(1) and prove exponential tail bounds
for P{|Mn − E{Mn}| > x}. Extending these results, Aı̈dekon [2] proves the
convergence of Mn centered around its median for a large class of branching
random walks. For tightness results in general, under some extra assumptions
on the decay of the tail distribution or weight distribution, see Bachmann [5]
and Bramson-Zeitouni [11, 12].

Organization of the paper. Section 2 will concern some preliminaries,
mostly involving what we call the speed of an offspring distribution. In
Section 3, we prove the Equivalence Theorem. The proof is somewhat algo-
rithmic in nature, and shows that a certain (infinite) algorithm will always
find an exploding path under the given conditions. In Section 4, we prove
Theorem 1.3, and give some examples calculating the condition for specific
cases. In Section 5 we provide a generic counterexample that shows that the
equivalence does not hold if we weaken the conditions in any substantial way,
proving the sharpness of Condition (1.3). Finally, in Section 6 we prove the
limit theorem under Condition (1.5).

2. Preliminaries. In this section we present some definitions and results
needed for the proof of the Equivalence Theorem. That theorem (in its
second form) is concerned with the equivalence of Wms(Z) and Wex(Z) for
certain offspring distributions Z. Thus it will be important to have a good
characterization of whether a weight distribution W belongs to Wms(Z);
in other words, whether

∑
n≥1 min{W 1

n , . . . ,W
Zn
n } is finite, each W i

n being
an independent copy of W . To do this we will introduce two notions. The
first is the concept of the speed of a branching process, from which we will
obtain an understanding of the growth of the generation sizes Zn. The second
is the concept of summability with respect to an integer sequence, which
concerns the behaviour of sums of the form

∑
n≥1 min{W 1

n , . . . ,W
σn
n } for a

given integer sequence (σn)n∈N.

Speed of a Galton-Watson branching process. We introduce the concept
immediately and then give a number of examples.

Definition 2.1. An increasing function f : N→ R+, taking only strictly
positive values, is called a speed of a Galton-Watson offspring distribution Z
if there exist positive integers a and b such that with positive probability

Zn/a ≤ f(n) ≤ Zbn for all n ∈ N.

(Here, we set Zx = Zbxc for x ∈ R.)
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Note that there is a small issue of extinction here, and that is why we
insist that f is strictly positive, otherwise f(n) = 0 would be a speed for any
distribution with P{Z = 0} > 0.

Examples of speeds. Here we give examples of speeds for various distribu-
tions Z.

(i) If E{Z} ≤ 1 then almost surely Zn = 0 for all sufficiently large n, and
so Z does not have a speed.

(ii) If E{Z} = m ∈ (1,∞), then Doob’s limit law states that the random
variable Vn = Zn/m

n form a martingale sequence with E Vn ≡ 1, and
Vn → V almost surely, where V is a nonnegative random variable.
Furthermore, in the case that Z is bounded the limit random variable
V has mean 1 (and so in particular P{V ≥ 1} > 0). From this we
may easily verify that mn is a speed of Z. Indeed Doob’s limit law
implies that the inequality Zn ≤ (M+1)mn holds for all n large enough,
with probability at least P (V ≤M). Taking M sufficiently large, this
probability may be made arbitrarily close to 1. For the lower bound,
one may consider a truncation Z ′ of Z such that E{Z ′} ≥

√
m. Since

Z ′ is bounded, we deduce that in the truncated branching process
associated with Z ′ there is a positive probability that Z ′n ≥ mn/2/2
for all sufficiently large n. Since there is a natural coupling such that
Zn ≥ Z ′n for all n, this completes our proof that mn is a speed of Z.

(iii) If Z is defined by P{Z ≥ m+1} = m−β for each m ≥ 1, where β ∈ (0, 1),
then Z is plump (one may take ε = β−1− 1 in Condition (1.3)) and the
double exponential function f(n) = 2(β−1)n is a speed of Z. Heuristically,
this follows from the fact that conditioned on the value of Zn one

would expect Zn+1 to be of the order Zβ
−1

n . A formal proof follows
from Theorem 2.4 together with the observation that the function h
appearing in that theorem is equivalent to f as a speed (i.e., there
exist a′, b′ ∈ N such that the inequalities f(bn/a′c) ≤ h(n) ≤ f(b′n)
hold for all n). Indeed, as we will explain in Section 6, a much stronger
statement holds in this case.

(iv) If Z is defined by P{Z ≥ m} = 1/ log2m for each m ≥ 2, then Z is
plump. Applying Theorem 2.4 we find that the tower function h(n)
defined by h(0) = 2 and h(n+ 1) = 2h(n) for n ≥ 0 is a speed of Z.

Summable weight distributions with respect to an integer sequence. Let
W be a random variable with nonnegative values. Let σ = (σn)n∈N be a
sequence of positive integers and W j

n be a family of independent copies of
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W for n, j ∈ N. Define the sequence of minima

Λn := min
1≤j≤σn

W j
n.

The random variable W is called σ-summable if there is a positive probability
that

∑
n Λn is finite.

Note that the event in the above definition is a 0 -1 event. Thus, if W
is σ-summable, then

∑
n min1≤j≤σn W

j
n is finite with probability one. For

a characterization of σ-summable weight distributions see Proposition 4.1.
Examples are given at the end of Section 4.

We note that if W is σ-summable and τ -summable, then W is σ ∪ τ -
summable, and if σn ≤ τn for all n, σ-summability implies τ -summability.
We also have

Lemma 2.2. Let σ be any increasing sequence, and let τ be defined by
τn = σγn for some constant γ, a positive integer. Then W is σ-summable iff
it is τ -summable.

Proof. Write σ = σ0 ∪ σ1 ∪ · · · ∪ σγ−1, where σi := {σγn+i : n ∈ N}.
Since σ is increasing, if W is σi-summable and i < j, then W is σj-summable.
So if W is τ = σ0-summable, then it is σi-summable for all 0 ≤ i ≤ γ − 1,
and thus σ-summable. The other direction follows trivially since τ ⊆ σ.

The following proposition relates the condition of the Equivalence Theorem
to the notion of σ-summability under the presence of a speed function for
the Galton-Watson distribution.

Proposition 2.3. Let W be a weight distribution and Z an offspring
distribution. Suppose that f : N→ R+ is a speed for Z. Then W ∈ Wms(Z)
if and only if W is σ-summable for the sequence σ = (f(n))n∈N.

Proof. Since f is a speed for Z, the event

R :=
{
Zn/a ≤ f(n) ≤ Zbn for all n

}
occurs with positive probability. Let σa be the sequence given by σan = f(an),
and σb the sequence defined by σbn = f(bn/bc). Suppose W is σ-summable;
then by Lemma 2.2, W is σb-summable. Whenever R occurs, Zn ≥ σbn for
all n, and hence TZ has the min-summability property almost surely. Thus,
W ∈ Wms(TZ) with positive probability, and hence W ∈ Wms(Z).

Conversely, if W is not σ-summable, then again by Lemma 2.2, it is not
σa-summable. Thus, even when conditioning on survival, W /∈ Wms(TZ) with
positive probability, and hence W /∈ Wms(Z).
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Definition of a speed function for plump distributions Z. We are now in
a position to partially explain the mysterious function h defined in (1.4),
which recall was defined by

h(0) = m0 and h(n+ 1) = F−1
Z (1− 1/h(n)).

It will turn out that this function defines a speed function for the offspring
distribution Z in the sense of Definition 2.1.

Theorem 2.4. If the offspring distribution Z is plump, then the function
h is a speed of Z.

Although it is possible to present a proof at this stage, to avoid redundancy
we postpone it until Section 3.

It will actually be convenient in our proofs to consider a slight variation
on h. Let α = (1 + ε)−1/2, and define f by

(2.1) f(0) = m̃0 and f(n+ 1) = F−1
Z (1− f(n)−α),

where m̃0 is the least integer such that Condition (1.3) holds with m0 = m̃α
0 ,

and the following inequalities hold: m̃1−α
0 ≥ 16(1− α)−1 + 16 and m̃α−1−1

0 ≥
4d(α

−1−1)−1e+1.
The functions h and f are essentially equivalent as far as we are concerned.

The following lemma demonstrates their equivalence as speeds.

Lemma 2.5. For any plump distribution Z, h is a speed for Z if and only
if f is.

Proof. Since h is increasing, for some constant c we have h(c) ≥ m̃0 =
f(0). Inductively, we then have f(n) ≤ h(n+ c) for all n. Since Z is plump,
we have from the definition of f that

f(n+ 1) ≥ f(n)α(1+ε) = f(n)1/α for any n.

Thus,
f(n+ 2) = F−1

Z (1− f(n+ 1)−α) ≥ F−1
Z (1− f(n)−1).

It follows that if f(n) ≥ h(m), then f(n+ 2) ≥ h(m+ 1). So by induction,
we have f(2n) ≥ h(n).

Considering the definition of a speed for Z, we see that if one is a speed,
so is the other.
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In the following lemma, we state some direct consequences of Condi-
tion (1.3) (i.e. the assumption Z is plump), and the definition of f , that will
be helpful later.

Lemma 2.6. Let Z be a plump distribution and let f(n) be defined as
in (2.1).

(i) For all n,

(2.2) f(n+ 2) ≥ F−1
Z (1− 1/f(n)).

(ii) f(n+ 1) ≥ 4n+1f(n) for all n ≥ 0. In particular, f(n)1−α ≥ 16n+ 16
for all n ≥ 1, and for any positive r, f(n) = Ω(rn).

(iii) For each k ≥ 2 and for all n,

(2.3) f(n+ 2dlog k/ log(1 + ε)e) ≥ f(n)k.

Proof. Part (i) follows immediately from the proof of Lemma 2.5. To
prove Part (ii) we begin by noting that the ratio f(n+ 1)/f(n) is at least
f(n)α

−1−1, as α(1 + ε) = α−1. We therefore prove that f(n)α
−1−1 ≥ 4n+1 for

all n. Let n0 = d(α−1 − 1)−1e, and note that since m̃α−1−1
0 ≥ 4d(α

−1−1)−1e+1,

the inequality f(n)α
−1−1 ≥ 4n+1 holds trivially for n ≤ n0. For n > n0, the

result follows easily by induction as

f(n)α
−1−1 ≥ (4nf(n−1))α

−1−1 = 4(α−1−1)nf(n−1)α
−1−1 ≥ 4f(n−1)α

−1−1.

To conclude the proof of Part (ii), we have to show f(n)1−α ≥ 16n+ 16 for
all n. For n ≤ (1− α)−1, we trivially have

f(n)1−α ≥ f(0)1−α = m̃1−α
0 ≥ 16(1− α)−1 + 16.

For n ≥ (1 − α)−1 + 1, we have f(n)1−α/f(n − 1)1−α ≥ 4, and the result
easily follows by induction.

To prove Part (iii), we note that

f(n+ 2) = F−1
Z (1− 1/f(n)) ≥ f(n)1+ε.

An inductive argument now easily yields that

f(n+ 2`) ≥ f(n)(1+ε)`

for any n and `. It follows that f(2n) ≥ m
(1+ε)n

0 . We conclude by setting
` = dlog k/ log(1 + ε)e.
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3. Proof of the Equivalence Theorem. In this section we prove the
Equivalence Theorem. We first prove it in the second (technically weaker)
form and then describe how the first form may be deduced.

Let Z be a plump offspring distribution, and let ε and m0 be such that
Condition (1.3) holds for the triple Z, ε, and m0. Fix an arbitrary W ∈
Wms(Z). We shall prove that W ∈ Wex(Z) (and the theorem will follow).
We define an algorithm which selects a path in the tree in a very precise
way; then using the properties of W , we prove that with positive probability
this path is an exploding path. Since, conditioned on survival, the event
that there is an exploding path is a 0 -1 event, this is enough to prove the
theorem.

The algorithm depends on a parameter α, defined in the previous section:
α := (1 + ε)−

1
2 . The reason for this choice of exponent will be clarified later

in the proof.

Algorithm FindPath:

Let x0 be the root of the tree.

For n = 0, 1, 2, . . . ,

– Consider node xn, which is the lowest node in the candidate exploding
path we are constructing. Let Yn+1 denote the number of children of xn.

– Order the children of xn by how many children they in turn have, from
largest to smallest. Let Xn+1 := d(Yn+1)(1−α)/2e. We define the options
from xn to be the first Xn+1 children of xn in the ordering.

– If Xn+1 = 0, the algorithm terminates in failure. Otherwise, of the Xn+1

choices, pick the option whose edge from xn has the smallest weight, and
set xn+1 to be this child.

The analysis of the algorithm, and the proof that it provides with positive
probability an exploding path, will be based on the following assertion.

Claim 3.1. There exists a positive integer a such that, with positive
probability, Zn ≤ f(an) and Yn ≥ f(n) hold simultaneously for all n ∈ N,
where f is the function defined in Equation (2.1).

Indeed, given this, we may deduce immediately that with positive prob-
ability Zn/a ≤ f(n) ≤ Zn for all n ∈ N, implying that f(n) is a speed of
Z. Furthermore, since Xn, the number of options of xn−1, is defined by
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Xn = dY (1−α)
n /2e, there is a positive probability that Xn ≥ f(n − γ) for

all n ∈ N, where γ = 2dlog (1− α)−1/ log(1 + ε)e + 1 (this follows from
Lemma 2.6 (iii)).

We now observe that conditional on the inequality Xn ≥ f(n− γ) holding
for all n ∈ N, the path x0, x1, x2, . . . is an exploding path almost surely. The
distribution of the sum of weights along the path x0, x1, x2, . . . , dependent
on X1, X2, X3, . . . , is given by∑

n≥1

min
{
W 1
n , . . . ,W

Xn
n

}
,

where the W j
n are i.i.d with distribution W . Thus, conditional on the event

that Xn ≥ f(n − γ) for all n ∈ N, this sum is stochastically smaller than∑
n≥1 min

{
W 1
n , . . . ,W

f(n−γ)
n

}
. Moreover, Lemma 2.2 implies that W is σ-

summable for the sequence σ = (f(n))n∈N, and since the contribution of
any finite number of terms is finite, W is also σ-summable for the sequence
σ = (f(n − γ))n∈N. This proves that x0, x1, x2, . . . is an exploding path
almost surely.

So it remains to prove Claim 3.1, which we will do for the choice a =
3 + 2dlog 2/ log(1 + ε)e.

Define the two families of events {An}n≥1 and {Bn}n≥1 by

An :=
{
Yn < f(n)

}
, Bn :=

{
Zn > f(an)

}
.

We are led to prove that there is a positive probability that none of the
events An or Bn occur. Let C = Ac1 ∩ Bc

1. The definition of f implies that
Z assigns a positive probability to the range [f(1), f(a)], so that P{C} > 0.
We will show below that

P{A2 | C } ≤ 1/16 and P{An+1 | Acn } ≤ 4−n−1 for n ≥ 2;(3.1)

P{B2 | C } ≤ 1/16 and P{Bn+1 | Bc
n } ≤ 4−n−1 for n ≥ 2.(3.2)

Assuming the above inequalities, we infer that

P
{
C ∩

⋂
n≥1

Acn+1

}
= P{C}

∏
n≥1

P
{
Acn+1 | Acn, Acn−1, . . . , A

c
2, C

}
= P{C}P

{
Ac2 | C

} ∏
n≥2

P
{
Acn+1 | Acn

}
(Since the sequence Y1, Y2, Y3, . . . is Markovian)

≥
(
1−

∑
n≥1

4−n−1
)
P{C}.
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In the same way, we obtain P
{
C ∩

⋂
n≥1B

c
n+1

}
≥
(
1−

∑
n≥1 4−n−1

)
P{C}.

Since both the events C ∩
⋂
n≥1A

c
n+1 and C ∩

⋂
n≥1B

c
n+1 are contained in

C, we conclude that with positive probability none of the events An and Bn
occur, finishing the proof of the claim.

All that remains is to prove inequalities (3.1) and (3.2). We first prove
the bound on P

{
An+1 |Acn

}
(it will be seen that the bound on P

{
A2 |C

}
follows by the same proof). Call a child of xn good if it has at least f(n+ 1)
children, and write Gn for the number of good children of xn. We note that
given Yn, the distribution of Gn is Bin(Yn, p) where p, the probability that a
given child is good, is at least 1− FZ(f(n+ 1)) = f(n)−α. By the way the
algorithm chooses the vertex xn+1, we also note that An+1 can occur only if
Gn < Y 1−α

n /2. Thus, conditional on Yn ≥ f(n), if An+1 occurs then

Gn < Y 1−α
n /2 ≤ Ynf(n)−α/2 ≤ E{Gn}/2.

Hence

P
{
An+1 | Acn

}
≤ P

{
Gn ≤

Y 1−α
n

2

∣∣∣ Yn ≥ f(n)
}

≤ exp
(−f(n)1−α

8

)
≤ 1

4n+1
. (By Lemma 2.6 (ii))

We now prove P{Bn+1 | Bc
n} ≤ 4−(n+1) (the proof bounding P{B2 | C}

being identical). Note that by Lemma 2.6 (iii),

f(an+ a) ≥ f(an)f(an+ 3).

Thus in order for the event Zn+1 ≥ f(an + a) to occur, conditional on
Zn ≤ f(an), there must be some node in generation n having at least
f(an+ 3) children. Taking Z(i) to be an independent copy of Z for each i,
the probability of this is bounded as follows:

P
{

max{Z(1), . . . , Z(f(an))} > f(an+ 3)
}
≤ f(an)P

{
Z > f(an+ 3)}

≤ f(an)
(
1− FZ(f(an+ 3)

)
≤ f(an)f(an+ 1)−1

(By Lemma 2.6 (i))

≤ 1

4n+1
. (By Lemma 2.6 (ii))
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The proof of the Equivalence Theorem (in its second form) is complete.
Note that in the process, we have also proved that f is a speed of Z; thus by
Lemma 2.5, Theorem 2.4 also follows.

First form of the Equivalence Theorem. One might hope that the first
form of the Equivalence Theorem could be deduced from the second by some
very simple reasoning, perhaps considering for each weight distribution W
the set of trees T for which Wex(T ) 6=Wms(T ). However, the fact that there
are uncountably many possible weight distributions seems to be problematic
for such a direct approach.

Taking T to be a random Galton-Watson tree with offspring distribution Z
conditioned to survive, we will prove that the following chain of containments
holds almost surely:

Wms(T ) ⊆ Wms(Z) ⊆ Wex(T ).

From this the Equivalence Theorem in its first form immediately follows.
That the first inclusion holds almost surely follows from the fact that the

rate of growth of generation sizes of T may almost surely be bounded in
terms of the speed f of Z. Specifically, taking a = 3 + 2dlog 2/ log(1 + ε)e
as in Claim 3.1, we will show that almost surely there exists a constant c
such that Zn ≤ f(an+ c) for all n. For z ∈ N, let r(z) denote the greatest
r for which z ≥ f(r). If no bound of the form Zn ≤ f(an + c) holds, then
there must be infinitely many n for which r(Zn+1) > r(Zn) + a. However,
our proof of (3.2) demonstrates that the probability that Zn+1 ≥ f(r + a)
given that Zn ≤ f(r) is at most 4−r. Since f is a speed of Z, the sequence
of probabilities 4−r(Zn) is summable almost surely, and so this event has
probability zero.

That the second inclusion holds almost surely follows from the fact that
we may apply the above algorithmic approach to finding an exploding path
to any rooted subtree of T which survives. For a node v, let Tv denote the
subtree of its descendants. Denote by s(n) the number of nodes of generation
n for which Tv is infinite. As T is conditioned on survival, the function s(n)
is unbounded almost surely [4, Ch. 10–12]. Let now W ∈ Wms(Z). The above
algorithm, applied independently to each node of generation n for which Tv
is infinite, has positive probability p > 0 of producing an exploding path in
each. Thus the probability of no exploding path is at most (1− p)s for all s,
and so is 0.

The set of weights of infinite rooted paths. The following theorem charac-
terizes the set of all possible values the weights of infinite rooted paths can
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take conditioned on the survival of the Galton-Watson tree. Note that the
theorem is valid in general and does not require the plumpness condition.

Theorem 3.2. Let Z be an offspring distribution and W a nonnegative
weight distribution which is not a.s. zero. Then almost surely conditioned on
survival the set of weights of infinite rooted paths is [A,∞] where A is the
infimum weight of infinite rooted paths.

Proof. By applying the transformation discussed in the introduction if
necessary, we may assume that W has no atom at zero. Note that clearly
the transformation does not change the weights of infinite rooted paths.

The theorem is clearly true if W /∈ Wex(Z) since in this case, conditioned
on survival, all infinite rooted paths have infinite weight. So in the following
we assume W ∈ Wex(Z).

By a straightforward compactness argument, it suffices to show that for
any ε′ > 0, there exists (almost surely) an infinite path with weight in
[a, a+ ε′], for all a ≥ A.

Let ε ≤ ε′/4 be such that P{W ∈ (ε, 2ε)} > 0; such an ε must exist since
W ∈ Wex(Z) and W has no atom at zero. Define the path-weight pw(v) of a
node v to be the sum of the edge weights on the path from v to the root.
Now let

Si = {v ∈ T | pw(v) ∈ [iε, (i+ 1)ε)}.

The choice of ε is such that if v ∈ Si, then for any given child w of v,
w ∈ Si+1 ∪ Si+2 with a constant positive probability.

Since explosion occurs, there is some least integer ` such that S` is infinite;
we then have A ≥ `ε. We may explore S0, S1, . . . in turn, each time uncovering
all of Si, as well as all children of nodes in Si. In the process of exploring
S`, each node we explore whose parent is in S` will have a constant positive
probability of being in S`+1 ∪ S`+2; thus a.s. at least one of S`+1 and S`+2

is infinite too. Moreover, since explosion occurs, each such node will have a
positive probability of being the root of an infinite path of length at most
ε. Thus S`+1 ∪ S`+2 ∪ S`+3 must contain an infinite path a.s. Continuing
inductively, we find that a.s. for any integer j ≥ `, one of the sets Sj or Sj+1

should be infinite, and there is an infinite path of total weight in [jε, (j+ 4)ε).
Now choosing j such that a ∈ [jε, (j + 1)ε), we infer the existence of an

infinite path with length in the interval [a, a+ 4ε] ⊆ [a, a+ ε′].

4. Equivalent conditions for min-summability. In the previous
section, we proved an equivalence theorem between explosion and min-
summability for branching processes with plump offspring distributions.
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Though, the existence of such a result is certainly nice in its own, one may
wonder if the property of min-summability is in any sense substantially sim-
pler than that of explosion. The aim of this section is to answer this question
in the affirmative by proving Theorem 1.3, which provides a necessary and
sufficient condition for min-summability that involves a calculation based
only on the distributions. We then provide some examples at the end of this
section.

Let W be a random variable taking values in [0,∞) and let σ = (σi)i≥0

be a sequence of positive integers. Then we have

Proposition 4.1. The nonnegative random variable W is σ-summable
if and only if the following two conditions are satisfied:

(i)
∑
n

(
P{W > 1}

)σn <∞, and

(ii)
∑
n

∫ 1

0

(
P{W > t}

)σn dt <∞.
Proof. As in Section 2, let W j

n be an independent copy of W for each
n, j ∈ N and let

Λn := min
1≤j≤σn

W j
n.

Clearly, Λn is a sequence of nonnegative and independent random vari-
ables. By Kolmogorov’s three-series theorem (see, e.g., Kallenberg [24] or
Petrov [29]), we have

∑
n Λn <∞ almost surely if and only if∑

n

P{Λn > 1} <∞,∑
n

E
{

Λn 1[Λn≤1]

}
<∞,

and
∑
n

Var
{

Λn 1[Λn≤1]

}
<∞.

Since W is nonnegative, random variables Λn 1[Λn≤1] take value in [0, 1],
and so the third condition follows from the second one. Now, P{Λn > 1} =

(P{W > 1})σn , and E
{

Λn 1[Λn≤1]

}
=
(∫ 1

0 (P{W > t})σn dt
)
− P{Λn > 1},

thus proving the theorem.

In the case of a random integer sequence given by the generation sizes, it
is also possible to give a result analogous to Proposition 4.1 (whose proof is
omitted).
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Proposition 4.2. Let {Zn} be a Galton-Watson process with an offspring
distribution Z, satisfying Z ≥ 1 almost surely. Let Λn be the minimum weight
of the n-th generation. We have

P
{∑

n

Λn <∞
}

= 1

if and only if the following two conditions are satisfied

(i) P
{∑

n

(
P{W > 1}

)Zn <∞
}

= 1, and

(ii) P
{∑

n

∫ 1

0

(
P{W > t}

)Zn dt <∞
}

= 1.

Otherwise, P
{∑

n Λn <∞
}

= 0.

The two above propositions are likely the most general form of necessary
and sufficient conditions on min-summability one may hope for. However,
under some extra conditions on the sequence σ, it is possible to unify the
two Conditions of Proposition 4.1 into one single and simpler condition.

Corollary 4.3. Let σ be a sequence of integers such that there exists
c > 1 with the property that for all large enough values of n, σn+1 ≥ c · σn
(think of the speed function f , see Lemma 2.6). Then W is σ-summable if
and only if

∑
n F
−1
W ( 1

σn
) <∞.

Proof. Note that, under the assumption of the corollary on the growth
of σn, Condition (i) of Proposition 4.1 always holds, provided that P{W >
1} < 1.

Let σ be a sequence satisfying the condition σn+1 ≥ c · σn for all n. Let
a0 = 0 and an = F−1

W ( 1
σn

) for n ≥ 1, and suppose that
∑

n≥0 an <∞. In this
case, trivially P{W > 1} < 1. We show that Condition (ii) of Proposition 4.1
holds. We have∫ 1

0

(
P{W > t}

)σndt =

∫ an−1

0

(
P{W > t}

)σndt+

∫ 1

an−1

(
P{W > t}dt

)σn
≤ an−1 +

n∑
m=1

am−1

(
(P{W > am})σn − (P{W > am−1})σn

)
≤ an−1 +

n∑
m=1

am−1(1− 1/σm)σn .
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Thus,

∑
n

∫ 1

0

(
P{W > t}

)σndt ≤∑
n

an +
∑
m

am−1

∑
n≥m

(1− 1/σm)σn

≤
∑
n

an +
∑
m

am−1

∑
n≥m

(1− 1/σm)c
n−mσm

≤
∑
n

an +
∑
m

am−1

∞∑
j=0

e−c
j

= O(1)
∑
n

an <∞.

This shows that W is σ-summable.
To prove the other direction, suppose that W is σ-summable, so that by

Proposition 4.1, ∑
n

∫ 1

0

(
P{W > t}

)σn dt <∞.
Since W is σ-summable, we have FW (1) > 0 and so there exists an integer

N such that for n ≥ N , an ≤ 1. Thus,

∑
n

∫ 1

0

(
P{W > t}

)σn dt ≥ ∑
n≥N

∫ an

0

(
P{W > t}

)σn dt
≥
∑
n≥N

∫ an

0

(
1− P{W ≤ an}

)σn dt
=
∑
n≥N

∫ an

0

(
1− 1

σn

)σn
dt

= Ω(1)
∑
n≥N

an.

It follows that
∑

n an <∞ and the corollary follows.

Combining the above corollary with Theorem 2.4 and Proposition 2.3, we
infer a proof of Theorem 1.3.

Examples and special cases. Here we give a family of examples of appli-
cations of Proposition 4.1. The notations are those of Proposition 4.1. (In
particular, Λn is the minimum of σn copies of the weight distribution W .)
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(i) If W ≥ a > 0, then Condition (ii) of Proposition 4.1 does not hold, and
so
∑

n Λn =∞. (This also trivially follows from Λn ≥ a.) This example
shows that the only interesting cases occur when 0 is an accumulation
point of the distribution.

(ii) If W = 0 with probability p > 0, then both the conditions of Propo-
sition 4.1 hold if

∑
n(1− p)σn <∞. On the other hand,

∑
n Λn <∞

implies that
∑

n(1− p− ε)σn <∞ for every ε ∈ (0, p). This case is not
of prime interest either. The case p = 0 with 0 being an accumulation
point of W is the most interesting.

(iii) If W is uniform on [0, 1], then the conditions of Proposition 4.1 are
equivalent to ∑

n

1

σn + 1
<∞.

(iv) If W is exponential, then Λn
L
= E/σn, where E is exponential. The

sequence Λn has almost surely a finite sum if and only if∑
n

1

σn
<∞.

(v) For the sequence σn = n, assuming that there is no atom at the origin
and that 0 is an accumulation point for W , it is easy to verify that∑

n Λn <∞ almost surely if and only if∫ 1

0

1

P{W > t}
dt <∞.

(vi) For the sequence σn ∼ cn, with c > 1 a positive constant, and assuming
no atom at the origin, but with 0 an accumulation point for W , it is
easy to verify that

∑
n Λn <∞ almost surely if and only if∫ 1

0
ln

(
1

P{W > t}

)
dt <∞.

5. Sharpness of the condition in the Equivalence Theorem. The
main result of this article, the Equivalence Theorem, gives a sufficient con-
dition on a distribution Z for the equality Wex(Z) = Wms(Z) to occur.
This condition, that for some ε > 0, the inequality P{Z ≥ m1+ε} ≥ 1/m
holds for all sufficiently large m ∈ N, demands that Z has a heavy tail, and,
furthermore, that the tail is consistently heavy. This condition ensures that
the generation sizes (equivalently, the speed) of the corresponding branching
process are at least double exponential. Furthermore, it ensures that the
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rate of growth is always at least the rate associated with double exponential
functions (i.e. f(n+ 1) ≥ f(n)1+ε). It is therefore natural to ask:

(i) Could a weaker version of our condition still imply Wex(Z) =Wms(Z)?
(ii) Could a lower bound on the speed of Z alone (e.g., Z has a speed f

which is at least double exponential) be sufficient to guarantee
Wex(Z) =Wms(Z)?

Theorem 5.1 answers (i) in the negative (almost completely) by showing
that no substantially weaker version of our condition implies Wex(Z) =
Wms(Z). Theorem 5.2 answers (ii), completely, in the negative. In a sense,
these results show the Equivalence Theorem to be best possible.

Theorem 5.1. Let g : N→ N be an increasing function satisfying g(m) =
m1+o(1). Then there is a distribution Z, satisfying P{Z ≥ g(m)} ≥ 1/m for
all m ∈ N , but for which Wex(Z) 6=Wms(Z).

Theorem 5.2. Let s : N→ N be any function. Then there is a function
f : N → N, satisfying f(n) ≥ s(n) for all n ∈ N, and a distribution Z for
which f is a speed, such that Wex(Z) 6=Wms(Z).

There does not seem to be an obvious intuitive way to judge, for a given
distribution Z, whether the equality Wex(Z) =Wms(Z) should hold or not.
So before giving our proof of Theorem 5.1, we establish a sufficient condition
for the equality to fail, see Proposition 5.4 below.

We recall that a function f : N→ N is a speed of a distribution Z if there
exist a, b ∈ N such that with positive probability the bounds Zn/a ≤ f(n) ≤
Zbn hold for all n. We shall say that f is a dominating speed if we may
take a = 1. We shall say that f is swift if, for some c > 1, the inequality
f(n+ 1) > cf(n) holds for all n ≥ 0. It will be useful (for technical reasons)
to restrict our attention to swift dominating speeds. The following direct
consequence of Corollary 4.3 and Proposition 2.3 will be useful in our proof
of Proposition 5.4.

Lemma 5.3. Let Z be a distribution with mean greater than 1, f a swift
speed of Z, and W a weight distribution for which the sum

∑∞
n=1 F

−1
W (f(n)−1)

is bounded. Then W ∈ Wms(Z).

Proposition 5.4. Let Z be any distribution with a swift dominating
speed f satisfying

(5.1) lim inf
n→∞

2nf(n)f(dn/ω(n)e)−n/2 = 0,

for some function ω(n)→∞ as n→∞. Then Wex(Z) 6=Wms(Z).



26 OMID AMINI, LUC DEVROYE, SIMON GRIFFITHS & NEIL OLVER

Proof. We must prove the existence of a weight distribution W such
that W ∈ Wms(Z) but W 6∈ Wex(Z). Before defining W , we first define some
sequences on which its definition will be based. From our assumption on f ,
there exists an increasing sequence ni such that

(5.2) lim
i→∞

2nif(ni)f(dni/ω(ni)e)−ni/2 = 0.

Let us define the sequence ωi by ωi = ω(ni) and the sequence βi by βi =
√
ωi.

We note that βi →∞ as i→∞, and so we may choose a subsequence βij
with the property that βij ≥ 2j for each j ≥ 1. Finally, set mi := dni/ωie.
We now define the weight distribution W to satisfy

P
{
W <

1

βijmij

}
=

1

f(mij )
for all j ≥ 1,

by placing probability mass f(mij )
−1−

∑
j′>j f(mij′ )

−1 at position 1/βij+1mij+1

for each j ≥ 1, and probability mass 1−
∑

j′≥1 f(mij′ )
−1 at 1.

We first observe that W ∈ Wms(Z). Indeed, this follows immediately from
Lemma 5.3 and the observation that∑

n≥1

F−1
W (f(n)−1) ≤

∑
j≥1

mij ·
1

βijmij

≤
∑
j≥1

1

βij
≤
∑
j≥1

1

2j
= 1.

We now observe that W 6∈ Wex(Z). We must prove that P{E} < 1, where
E denotes the event of an infinite path of finite weight. Let G be the event
that Zn ≤ f(n) for all n ∈ N; since f is a dominating speed of Z, G has
positive probability. Thus it suffices to prove that P{E | G} = 0.

Let Aj be the event that there exists a path from the root to generation
nij of weight less than βij/2. The event E may occur only if Aj occurs for
all sufficiently large j, so it suffices to prove that P{Aj | G} → 0 as j →∞.

For the event Aj to occur there must exist a path from the root to
generation nij at least half of whose edges have weight less than βij/nij .
Since under event G there are at most f(nij ) such paths, and for each path
there are less than 2nij choices for a subset of half its edges, we have

P{Aj | G} ≤ 2nij f(nij )
(
P{W < βij/nij}

)nij
/2
.

Since
P{W < βij/nij} = P{W < 1/(βijmij )} = 1/f(mij ),

it follows from (5.2) that P{Aj | G} → 0 as required.
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Proof of Theorem 5.1. Let g be any increasing function satisfying the
condition of the theorem, i.e., g(m) = m1+o(1). We define a distribution Z
satisfying P{Z ≥ g(m)} ≥ 1/m for all m ∈ N, which has a swift dominating
speed f satisfying lim infn→∞ 2nf(n)f(dn1/2e)−n/2 = 0; the proof is then
complete by Proposition 5.4.

There is a sense in which it is difficult to achieve these two objectives
simultaneously. The first asks that Z has a sufficiently heavy tail, while the
second would seem to get more likely to occur if the tail of Z were less heavy.
Our approach to achieving the objectives simultaneously is to define Z to
have a heavy, but not at all smooth, tail. In the resulting Galton-Watson
branching process the growth of generation sizes does not at all resemble a
smooth fast growing function (such as a double exponential), but instead
consists of a number of periods of exponential growth, each period much
longer than all proceeding periods, and with a multiplicative factor very
much larger (in fact the lengths will be (2ni)i≥1 and the multiplicative factors
(mi)i≥1; these sequences are defined below)

Define ni = 1010i for each i ≥ 1, and εi = 1/10ni = 10−(10i+1). As
g(m) = m1+o(1), there exists, for each εi, a natural number mi such that

g(m) ≤ m1+εi for all m ≥ m1/2
i . Furthermore, we may choose (mi)i∈N to in

addition satisfy

(5.3) mi ≥ 16n2
iM

2
i−1 for all i ≥ 1,

where M0 = 1 and Mj :=
∏j
i=1m

2ni
i for j ≥ 1. Next define sequences (Nj)j∈N

and (Lj)j∈N by

Nj :=

j∑
i=1

ni and Lj := mj

j−1∏
i=1

m2ni
i .

As we mentioned above, we shall define the distribution Z so that the
growth of generation sizes of TZ consists of a number of periods of exponential
growth, each period much longer than all proceeding periods, and with
multiplicative factor very much larger. (The jth period of growth will have
length (approximately) 2nj and multiplicative factor mj .) In this context Lj
is approximately the generation size at the start of this jth period of growth
(in fact after the first step of this period) and Mj the generation size when it
ends (i.e., at the point at which we shall switch into the next, faster, period
of growth). One may observe that Lj = mjMj−1; note however that Lj is
much larger than Mj−1, since (5.3) implies that mj is already much larger.
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Define the distribution Z by

P{Z ≥ L1} = 1;

P{Z ≥ m1+εi} =
1

m
, L

1/(1+εi)
i < m ≤Mi, i ≥ 1;

P{Z ≥ Li+1} =
1

Mi
, i ≥ 1.

It is easily verified that this distribution satisfies P{Z ≥ g(m)} ≥ 1/m for all
m ∈ N. Now define the function f : N→ N (which will be a speed for Z) by

f(n) = Li+1m
2(n−Ni)−1
i+1 with i chosen so that Ni < n ≤ Ni+1.

It is also quite easily verified that f satisfies (5.1), using ω(n) = n1/2. In

particular, we observe that f(ni) ≤ Lim2ni
i , and, since dn1/2

i e−Ni−1 ≥ ni−1,

we have that f(dn1/2
i e)ni/2 ≥ Limni−1ni

i . It is also easily observed that f is
swift. Thus, in light of Proposition 5.4, all that is required to complete the
proof is to demonstrate that f is a dominating speed of Z. Though it is
conceptually straightforward, the proof is rather long; we stress that it is
really just a technical detail.

We prove that with positive probability the bounds Zn ≤ f(n) ≤ Z4n

hold for all n ∈ N. Let E be the event that Zn > f(n) for some n, and let
F be the event that Z4n < f(n) for some n. Let us subdivide these events
by the minimum n for which the required inequality fails. Let En to be
the event that n is minimal such that Zn > f(n), and Fn the event that n
is minimal such that Z4n < f(n). We will show that

∑
n≥1En ≤ 1/4 and∑

n≥1 Fn ≤ 1/4, which will complete the proof.
We have stated that our example is designed to exhibit a number of periods

of exponential growth. Once the number of nodes of a given generation is
much larger than Mi−1, it is clear that, from this point on, the growth should
always be at least geometric (i.e., exponential) with multiple mi. Indeed,
among m�Mi−1 nodes, one expects about m/Mi−1 to have Li = miMi−1

children. Considering these children alone we see that the size of the next
generation should be at least mi times as large.

Our bound on the probability of the event F is therefore relatively straight-
forward, requiring us to formalize the above statement. The bound on the
probability of E is more difficult as we are required to control all ways in
which the process could grow faster.

Claim. P{E} ≤ 1/4.
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Proof. We shall define two sequences pi,j,k and qi of probabilities, corre-
sponding to the probabilities of certain unlikely events (events that would
cause faster than expected growth). We then prove a bound on the probability
of E based on the pi,j,k and qi, specifically that this probability is at most
their sum. It then suffices to bound by 1/4 the sum

∑
i,j,k pi,j,k +

∑
i qi.

For each triple i, j, k ∈ N0 such that i ≥ 1, 1 ≤ j ≤ ni − 1 and 0 ≤ k ≤ 4j,
we define pi,j,k to be the probability that amongst Mi−1m

2j
i independent

copies of Z, at least Mi−1m
k/2
i exceed Mi−1m

2j+1−k/2
i . We define q1 to be

the probability that Z ≥ m2
1, and, for i ≥ 2, we define qi to be the probability

that amongst Mi−1 copies of Z, at least one of them exceeds Mi−1m
3/2
i .

We prove the bound

P{E} =
∑
n≥1

P{En} ≤
∑
i,j,k

pi,j,k +
∑
i

qi.

Notice that for the event ENi−1+1 to occur, we must have

ZNi−1 ≤ f(Ni−1) = Mi−1 and ZNi−1+1 > f(Ni−1 + 1) = Mi−1m
2
i .

This in turn implies that at least one of the nodes in generation Ni−1 has

more than Mi−1m
3/2
i children (as Mi−1 ≤ m1/2

i , see Condition (5.3)). Thus
we may bound for each i the probability of the event ENi−1+1 by qi.

Next, for n of the form Ni−1 + j + 1 for some i ∈ N and 1 ≤ j ≤ ni − 1,
we note that the occurrence of En implies that

Zn−1 ≤Mi−1m
2j
i and Zn > Mi−1m

2j+2
i .

It follows that for some 0 ≤ k ≤ 4j, there are at least Mi−1m
k/2
i nodes of

generation n − 1 with more than Mi−1m
2j+1−k/2
i children. Indeed, if this

were not the case, then we would have

Zn ≤
4j∑
k=0

(Mi−1m
k/2
i )(Mi−1m

2j+3/2−k/2
i )

= (4j + 1)M2
i−1m

2j+3/2
i

≤Mi−1m
2j+2
i (since (4j + 1)Mi−1 ≤ 4niMi−1 ≤ m1/2

i ).

It easily follows that P{En} ≤
∑

0≤k≤4j pi,j,k.

We now prove the bound
∑

i,j,k pi,j,k +
∑

i qi ≤ 1/4. By the bounds (5.3)
it suffices to prove for each triple i, j, k ∈ N0 with i ≥ 1, 1 ≤ j ≤ ni − 1 and
0 ≤ k ≤ 4j, that

(5.4) pi,j,k ≤ (mi/e
2)−Mi−1m

k/2
i /2
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and

qi ≤
Mi−1

mi
.

The bound on qi is trivial; since 1/(1 + εi) ≥ 2/3, it follows that

P{Z ≥Mi−1m
3/2
i } = (Mi−1m

3/2
i )−1/(1+εi) ≤ m−1

i .

We bound the probability pi,j,k (that amongst Mi−1m
2j
i independent copies

of Z at least Mi−1m
k/2
i exceed Mi−1m

2j+1−k/2
i ) using a union bound. By the

familiar estimate
(
s
t

)
≤ (es/t)t, the number of choices of the set of Mi−1m

k/2
i

copies is (
Mi−1m

2j
i

Mi−1m
k/2
i

)
≤ (em

2j−k/2
i )Mi−1m

k/2
i .

For each copy of Z we have

P{Z > Mi−1m
2j+1−k/2
i } = (Mi−1m

2j+1−k/2
i )−1/(1+εi) ≤ m−(2j+1/2−k/2)

i ,

where for the final inequality we have used that εi = 1/(10ni) and (since
2j + 1/2− k/2 ≤ 2ni)

2j + 1− k/2 = 2j + 1/2− k/2 + 1/2 ≥ (2j + 1/2− k/2)(1 + 1/(4ni)).

Thus the probability that a given set of Mi−1m
k/2
i copies of Z all exceed

Mi−1m
2j+1−k/2
i is at most

m
−(2j+1/2−k/2)Mi−1m

k/2
i

i ,

and (5.4) now follows by a union bound.

Claim 5.5.
∑

n≥1 P{Fn} ≤ 1/4.

Proof. Our approach is similar to that used in the previous proof. For
i ≥ 1 and 2 ≤ j ≤ 4ni, we define pi,j to be the probability that from a

collection of Mi−1m
j/2
i copies of Z, fewer than Mi−1m

j/2−1/2
i exceed mi. For

each i ≥ 1, we define qi to be the probability that the maximum of Mim
1/2
i

copies of Z is less than Li+1. We prove for n of the form n = Ni + 1 that

P{Fn} ≤ pi,4ni + qi + pi+1,2 + pi+1,3,

and for n of the form n = Ni + k, k = 2, . . . ni+1, that

P{Fn} ≤ pi+1,4k−4 + pi+1,4k−3 + pi+1,4k−2 + pi+1,4k−1.
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It will then suffice to bound by 1/4 the sum
∑

i,j pi,j +
∑

i qi. For n = Ni +k,

k = 2, . . . , ni+1, if the event Fn occurs then Z4n−4 ≥ f(n−1) = Mim
2k−2
i+1 and

Z4n < f(n) = Mim
2k
i+1. The required bound now follows, as the probability

for a given 0 ≤ l ≤ 3 that l is minimal such that Z4n−l < Mim
2k−l/2
i+1 is at most

pi+1,4k−l−1. The case n = Ni + 1 is similar, differing only in that we do not

consider the events Z4n−l < Mim
2k−l/2
i+1 for 0 ≤ l ≤ 3, but rather the events

Z4n−3 < Mim
1/2
i , Z4n−2 < Li+1, Z4n−1 < Li+1m

1/2
i and Z4n < Li+1mi.

Finally we prove the bound
∑

i,j pi,j +
∑

i qi < 1/4. It is trivial, using the

inequality (1−p)n ≤ e−pn, that qi ≤ exp(−√mi). To bound pi,j we first note

that P{Z > mi} ≥ 1/Mi−1, so from a collection of Mi−1m
j/2
i copies of Z

the distribution for the number exceeding mi is Bin(Mi−1m
j/2
i , 1/Mi). Since

this binomial has expected value m
j/2
i ≥ 2Mi−1m

j/2−1/2
i , an application of

Chernoff’s inequality yields

pi,j ≤ exp
(−mj/2

i

8

)
.

The proof of Theorem 5.1 is now complete.

The proof of Theorem 5.2 is essentially identical to the above. The only
change required is that the following extra condition should be included in
(5.3):

mi ≥ max
n≤ni

s(n) i ≥ 1.

This ensures that the inequality f(n) ≥ s(n) holds for all n ∈ N. Since the
proofs that f is a speed of Z and that Wex(Z) 6=Wms(Z) are unaffected by
this change, Theorem 5.2 does indeed follow.

6. Limit theorem in the case of no explosion. So far we only
considered the appearance of the event of explosion. In this section, we
consider the case of weight distributions for a heavy-tailed branching random
walk for which explosion does not happen, and obtain a precise limit theorem
for the minimum displacement Mn under some quite strong (smoothness)
assumption on the tails of Z. To explain this, let Z be a plump random
variable, and denote by GZ(.) the moment generating function of Z as before.
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Note that

KZ(s) = 1−GZ(1− s) =
∞∑
k=0

(
P{Z = k} − (1− s)kP{Z = k}

)
= s

∞∑
k=1

P{Z = k}(1 + · · ·+ (1− s)k−1)

= s
(

1− P{Z = 0}+
∞∑
k=1

(1− s)k(1− FZ(k))
)
.(6.1)

Consider now the smoothness Condition (1.5) on Z:

1− FZ(k) = k−η`(k),

for some function ` which is continuous-bounded-and-non-zero at infinity. In
particular, note that one can define `(∞) 6= 0,∞. Using Equation (6.1) and
applying a Tauberian theorem (see for example Feller [18, XIII. 5, Thm. 5]),
we see that Condition (1.5) is equivalent to the condition

(?) KZ(s) ∼ a sη`(1

s
)

near s = 0 for some a > 0 (indeed, a = Γ(1− η)). This in particular implies
that Z is plump and

(??) F−1
Z (1− 1

m
) = m1+ε ˜̀(m),

for a slowly growing function ˜̀ and 1 + ε = η−1. We have

Theorem 6.1. Let Z be an offspring distribution satisfying (?). Let W be
a nonnegative weight distribution and assume that W /∈ Wex(Z). Conditional
on the survival of the Galton-Watson process,

lim
n→∞

Mn∑n
k=1 F

−1
W

(
1

h(k)

) = 1.

Here h(k) = exp
(

(1 + ε)k
)
, where ε is as in (??) and η = (1 + ε)−1 as in (?).

The proof will essentially use the algorithm we presented in Section 3.
However, we first need to obtain a more precise information on the speed of
the Galton-Watson tree under Condition (?).
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Definition 6.2 (Additive speed). An increasing function h : N → R+

is an additive speed for a Galton-Watson offspring distribution Z if the
probability of the increasing events Er defined as

Er :=
{

h(n− r) ≤ Zn ≤ h(n+ r) for all large enough n
}

tend to one as r goes to infinity conditional on survival.

Lemma 6.3. Let Z be an offspring distribution satisfying Condition (?).
Then the function h : N→ R+ defined by h(n) = exp

(
(1+ε)k

)
is an additive

speed for Z.

Proof of Theorem 6.1. Since h(n) is an additive speed for Z, we ob-
tain by Lemma 6.3 that conditional on survival,

lim
r→∞

P{Er} = 1.

Fix the integer r and suppose the event Er holds. This means Zn ≤ h(n+r)
for large enough n. This implies that the minimum of level n is at least
F−1
W ( 1

h(n+r)) for all large enough n. Since by our Equivalence Theorem we

have a.s.
∑
F−1
W (1/h(n)) =∞, we obtain

lim inf
n→∞

Mn∑n
k=1 F

−1
W

(
1

h(k)

) = lim inf
n→∞

Mn∑n
k=1 F

−1
W

(
1

h(k+r)

) ≥ 1,

on Er. We infer that on the union of Er, i.e., on the event of non-exctinction,
we have

lim inf
n→∞

Mn∑n
k=1 F

−1
W

(
1

h(k)

) ≥ 1.

We now show that on the union of Er, we have

lim sup
n→∞

Mn∑n
k=1 F

−1
W

(
1

h(k)

) ≤ 1.

This will finish the proof of the theorem above.
It will be enough to show this on each Er. In addition, we can also fix

an n0 and suppose that for all n ≥ n0, we have Zn ≥ h(n − r) (and then
make n0 tend to infinity). Fix a small δ > 0. One can now apply a variant
of the algorithm of Section 3, by modifying α to (1 + ε)−δ, started at some
large N > n0, and show that w.h.p., as N goes to infinity, we have for all
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n ≥ N , Xn ≥ h((1 − δ)n) (this follows from a variant of the inequalities
(3.1) and (3.2)). In addition, given the double exponential growth of h(n), a
union bound argument shows that we can assume with height probability
that for large enough n, the weight of the n-th edge on the path constructed
in the algorithm is bounded above by F−1

W (1/h((1− 2δ)n)). Applying now
the Equivalence Theorem, since both Mn and

∑n
k=1 F

−1
W

(
1

h((1−2δ)k)) tend to
infinity, we obtain that

lim sup
n→∞

Mn∑n
k=1 F

−1
W

(
1

h((1−2δ)k)

) ≤ 1.

Since this holds for any small enough δ > 0, and since the function F−1
W (1/m)

is a decreasing function of m, a simple argument shows that

lim sup
n→∞

Mn∑n
k=1 F

−1
W

(
1

h(k)

) = lim
δ→0

lim sup
n→∞

Mn∑n
k=1 F

−1
W

(
1

h( (1−2δ)k )

) ≤ 1.

The theorem follows.

Proof of Lemma 6.3. Under some extra conditions on ` as in Seneta [31]
or [32], a combination of the results of Darling [14] and Cohn [13] with the
above mentioned results of Seneta [31, 32] ensures the existence of a limiting
random variable V such that

(1 + ε)−n log(Zn + 1)→ V almost surely,

for V having a strictly increasing continuous distribution v, V > 0 a.s. on the
set of non-extinction of the process, and v(0+) = q, where q is the extinction
probability of the Galton-Watson process. In the general case of a function
` continuous bounded and non-zero at infinity, the above limit theorem
still holds as we now briefly explain by following closely Bramson’s strategy
in [10]. Define α = 1 + ε = η−1. The general idea in proving such a limit
theorem is to prove first the convergence of the sequences K(n)

(
exp(−αns)

)
uniformly on compact sets. Here, K(n)(·) = K

(n)
Z (·) = KZn(·) is the n-times

composition of KZ (and KZ is as in Equation (6.1)). For this, define

H(s) := − logK
(
exp(−s)

)
,

and notice that H(n)(s) = − logK(n)
(
exp(−s)

)
, so that we are left to prove

the convergence of the sequence H(n)(αns) as n goes to infinity, for s ≥ 0.
By an abuse of the notation (from Condition (?)), assume that KZ(s) =

sη`(1
s ) for a function ` continuous bounded and non-zero at infinity, and

define
L(s) = − log `(exp(s)).
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By the assumptions on `, it follows that L is continuous at infinity and
L(∞) 6= ±∞, and so for each a > 0, there is an Na such that for s1 and s2

larger than Na, we have |L(s1)− L(s2)| ≤ a. A simple induction shows that

(6.2) H(m)(αms) = s+

m∑
k=1

1

αm−k
(−1)kL

(
H(k−1)(αm−k+1s)

)
.

By the definition of H, one can easily verify that H is 1-Lipschitz, i.e.,

for any two s1, s2 ≥ 0, |H(s1)−H(s2)| ≤ |s1 − s2|.

We now show that the sequence {H(n)(αns), n ∈ N} is Cauchy, proving
the point-wise convergence. The same argument shows that the sequence is
uniformly Cauchy on compact intervals of [ 0,∞) concluding the proof of the
uniform convergence.

Fix a large m ∈ N and note that replacing s by αns in (6.2), we get

H(m)(αn+ms) = αns+
m∑
k=1

1

αm−k
(−1)kL

(
H(k−1)(αm−k+1+ns)

)
.

We claim that as n goes to infinity each term H(k−1)(αm−k+1+ns) tends
to infinity. Indeed, more precisely, the rate of convergence to infinity of this
term is as αn+m−2k+2s+O(1); this can be shown by a simple induction from
(6.2), using the bounded continuity of L at infinity.

For two fixed m and M , we have∣∣∣H(m)(αn+ms)−H(M)(αn+Ms)
∣∣∣ =

∣∣∣ m∑
k=1

1

αm−k
(−1)kL

(
H(k−1)(αm−k+1+ns)

)
−

M∑
k=1

1

αM−k
(−1)kL

(
H(k−1)(αM−k+1+ns)

)∣∣∣.
For n large enough, we can assume that each term L

(
H(k−1)(α(m−k+1+n)s)

)
differs from L(∞) by an arbitrary small positive number a. It follows then

∣∣∣H(m)(αn+ms)−H(M)(αn+Ms)
∣∣∣ ≤ a

[ m∑
k=1

1

αm−k
+

M∑
k=1

1

αM−k

]
+
∣∣∣ m∑
k=1

1

αm−k
(−1)kL(∞ )−

M∑
k=1

1

αM−k
(−1)kL(∞)

∣∣∣.
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Since α > 0 and L(∞) <∞, and a can be chosen arbitrarily small, obviously
the right term of the above inequality can be made arbitrarily small, provided
that n is sufficiently large and the constants m and M are large enough. We
conclude that for any a > 0, there exist integer constants Na and Ma such
that∣∣H(n+m)(αn+ms)−H(n+M)(αn+Ms)

∣∣ ≤ ∣∣H(m)(αn+ms)−H(M)(αn+Ms)
∣∣

≤ a

for any n larger than Na, provided that m and M are larger than Ma. This
shows that the sequence is Cauchy. In the same way, we can easily prove
that the sequence is uniformly Cauchy on compact subsets of [ 0,∞). This
shows the existence of a continuous limit w for the sequence H(n)(αns).

We now show that w is strictly increasing and w(∞) =∞. For this, note
that for s1 < s2, the above arguments show that for large enough m and
n, one has H(m)(αn+msi) = αnsi + O(1). In particular for n large enough
constant and for all m, H(m)(αn+ms2)−H(m)(αn+ms1) > 1

2α
n(s2−s1). Since

H is itself strictly increasing, and so H(n) is, one conclude that the limit w
is strictly increasing. A similar argument shows that w(∞) =∞.

Finally, we observe that w(0+) = − log(1− q). This follows from a simple
fixed point argument: fix an s > 0 and note that

w(0+) = lim
m→∞

w(α−ms) = lim
m→∞

lim
n→∞

H(m)H(n−m)(αn−ms)

= lim
m→∞

H(m)(w(s)),

by the continuity of H(m) for each fixed m.

Since H(m)(w(s)) = − logK
(m)
Z (exp(−w(s))) and w(s) ≥ 0, it follows

easily that for each s > 0, when m goes to infinity, H(m)(w(s)) tends to the
unique finite fixed point of H. This is − log(1 − q), a consequence of the
corresponding statement for K(m) given that the unique fixed point of KZ

in (0, 1) is 1− q.
These then allow us to conclude the proof of the above convergence

result by first proceeding as in Darling [14] to obtain the convergence in
distribution, and next by applying the result of Cohn [13] to obtain the
almost sure convergence.

To conclude the proof of the lemma, note that for two constants δ,∆ > 0,
δ < ∆, the event

Eδ,∆ :=
{
δ(1 + ε)n ≤ log(Zn + 1) ≤ ∆(1 + ε)n for large enough n

}
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happens with a probability tending to 1 − q as δ → 0 and ∆ → ∞. For
two fixed constants δ and ∆, we have for r large enough, (1 + ε)−r ≤ δ and
(1 + ε)r ≥ ∆. This shows that the event Eδ,∆ is contained in the event Er
for r sufficiently large, and the lemma follows.

7. Conclusion. We have proved the equivalence ofWex(Z) andWms(Z)
for plump offspring distributions Z, and shown that the plumpness condition
is essentially best possible, in terms of conditions of the form FZ(1− 1/m) ≥
g(m). However, this is very far from being a characterization of all offspring
distributions for which explosion and min-summability are equivalent. For
example, a simple adaptation of the proof of the Equivalence Theorem shows
that Wex(Z) =Wms(Z) for Z defined by

P
{
Z ≥ m exp

(
exp

(
log logm−

√
log logm+ 1

2 log log logm
))}

=
1

m
.

The function

f(n) = ee
log2 n

is a speed of Z. This illustrates that the equivalence can occur for distributions
with speeds very much slower than doubly exponential. By contrast, any
plump distribution has a speed that grows at least as fast as a double
exponential.

We remark that the above example is extremely close to best possible. It
follows from Proposition 5.4 that the equivalence cannot hold for an offspring
distribution which has a speed of the form

f(n) = ee
o(log2 n)

.

We do not know how general the equivalence of Wex(Z) and Wms(Z)
should be when Z has speed slower than doubly exponential. Obtaining a
complete characterization of offspring distributions where equivalence occurs
remains an interesting open question.
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Montréal, Québec, H3A 2A7, Canada
E-mail: luc@cs.mcgill.ca

IMPA
Est. Dona Castorina 110, Jardim Botânico
Rio de Janeiro, Brazil
E-mail: sgriff@impa.br

Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139-4397, USA
E-mail: olver@math.mit.edu

mailto:oamini@math.ens.fr
mailto:luc@cs.mcgill.ca
mailto:sgriff@impa.br
mailto:olver@math.mit.edu

	Introduction
	Preliminaries
	Proof of the Equivalence Theorem
	Equivalent conditions for min-summability
	Sharpness of the condition in the Equivalence Theorem
	Limit theorem in the case of no explosion
	Conclusion
	References
	Author's addresses

