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Abstract

In many spin glass models, due to the symmetry among sites, any limiting joint
distribution of spins under the annealed Gibbs measure admits the Aldous-Hoover
representation encoded by a function o : [0,1]* — {—1,+1} and one can think of this
function as a generic functional order parameter of the model. In a class of diluted
models and in the Sherrington-Kirkpatrick model, we introduce novel perturbations of
the Hamiltonian that yield certain invariance and self-consistency equations for this
generic functional order parameter and we use these invariance properties to obtain
representations for the free energy in terms of o. In the setting of the Sherrington-
Kirkpatrick model the self-consistency equations imply that the joint distribution of
spins is determined by the joint distributions of the overlaps and we give an explicit
formula for o under the Parisi ultrametricity hypothesis. In addition, we discuss some
connections with the Ghirlanda-Guerra identities and stochastic stability and describe
the expected Parisi ansatz in the diluted models in terms of o.

Key words: mean-field spin glass models, perturbation, invariance.

1 Introduction and main results.

In various mean-field spin glass models, such as the Sherrington-Kirkpatrick model and
diluted p-spin and p-sat models that we will focus on in this paper, one considers a random
Hamiltonian Hy (o) indexed by spin configurations o € Yy = {—1,+1}" and defines the
corresponding Gibbs measure Gy as a random probability measure on ¥ given by

Gy(o) = — exp(—Hy(0)) (1.1)
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where the normalizing factor Zy is called the partition function. Let (o');>; be an i.i.d.
sequence of replicas from measure Gy. Let py denote the joint distribution of the array
of all spins on all replicas, (¢!);<;<n 1<, under the annealed product Gibbs measure EG$™
which means that for any choice of signs a! € {—1,+1} and for any n > 1,

pn({ol=dl 1 <i<N,1<I<n})=EG{"({ol=d:1<i< N, 1<1<n}). (12)

In most mean-field spin glass models this distribution has the following two symmetries.
Clearly, it is always invariant under the permutation of finitely many replica indices [ > 1, but
in most models .y is also invariant under the permutation of coordinates ¢ € {1,..., N} since
the distribution of Hy (o) is symmetric under the permutation of coordinates of o, and this
invariance of uy is called symmetry among sites. Let us think of iy as a distribution on (o?)
for all 4,1 > 1 simply by setting o! = 0 for 4 > N. It is usually not known how to prove that
the sequence (py) converges (in the sense of convergence of finite dimensional distributions)
and, in fact, even the answer to a much less general question whether the distribution of one
overlap N7t 3. oto? under EGS? converges is known only in the Sherrington-Kirkpatrick
model with all p-spin interaction terms present, the proof of which relies on the Parisi
formula for the free energy (see [27], [28]). As a result, we will consider a family M of all
possible limits over the subsequences of (uy). Whenever we have symmetry among sites,
any limiting distribution 4 € M will be invariant under the permutations of both row and
column coordinates [ and i. Such two-dimensional arrays are called exchangeable arrays
and the representation result of Aldous [2] and Hoover [15] (see also [5]) states that there
exists a measurable function o, : [0,1]* — R such that the distribution p coincides with the
distribution of the array (s!) given by

st = o, (w, up, v, 7)) (1.3)
where random variables w, (w), (v;), (z;;) are ii.d. uniform on [0, 1]. This function o, is
defined uniquely up to some measure-preserving transformations (Theorem 2.1 in [16]) so
we can identify the distribution p of array (s!) with the function o,. Since we only consider
the case when spins and thus o, take values in {—1,+1}, the distribution p is completely
encoded by the function

ou(w,u,v) = Ezo,(w,u,v,x) (1.4)

where E, is the expectation in x only and we can think of this last coordinate as a dummy
variable that generates a Bernoulli r.v. with expectation &, (w,u,v). However, keeping in
mind that a function of three variables ¢, encodes the distribution of the array (1.3), for
convenience of notations we will sometimes not identify a Bernoulli distribution with its
expectation (especially, in the diluted models) and work with the function o, (w,u, v, x).

One can think of a function o, (or 7,) as what physicists might call a generic ” functional
order parameter” of the model and it is easy to see that information encoded by o, is
equivalent to the limiting joint distribution of all multi-overlaps

Rﬁ[,...,ln =N"! Z Uﬁl e Jﬁ” (1.5)
1<i<N
forall n > 1 and all Iy,...,l, > 1 under uy, which may be a more familiar object than the

joint distribution of spins. Indeed, by expanding the powers of (1.5) in terms of products of
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spins and using symmetry among sites, in the limit one can express the joint moments of
multi-overlaps in terms of the joint moments of spins and vice versa. By comparing these
moments, the asymptotic joint distribution of (1.5) over a subsequence of py converging to
1 coincides with the joint distribution of

ot = Ey a(w,uy,v)...a0(w,u,,v) (1.6)
for ¢ = 7,, for all n > 1 and all [;,...,l, > 1, where E, is the expectation in the last

coordinate v only. For n = 2, the corresponding quantity
Ry = Eyo(w,uw,v) o(w, up,v) (1.7)

is the asymptotic version of the overlap N~1Y"._\ olol’. With these notations it is clear
that the famous Parisi ultrametricity conjecture, which says that R3% > min(R7%, R%%) with
probability one, can be expressed in terms of 7, by saying that for all w € [0, 1] the family
of functions v — 7, (w, u,v) parametrized by u € [0,1] is ultrametric in £2([0, 1], dv).

An ultimate goal would be to show that the set of possible limits y € M and their
representations o, are described by the Parisi ultrametric ansatz. Even though this goal is
out of reach at the moment, in the setting of the Sherrington-Kirkpatrick and diluted models
we will obtain several results which demonstrate that the point of view based on the Aldous-
Hoover representation (1.3) provides a useful framework for studying the asymptotic behavior
of these models. First, we will narrow down possible limits M to some well-defined class of
distributions M, that will be described via invariance and self-consistency equations on o,,.
The proof of these invariance properties will be based on some standard cavity computations;
however, justification of these computations will rely on certain properties of convergence of
measures py that are not intuitive or, at least, do not easily follow from known results. In
both types of models we will introduce a novel perturbation of the Hamiltonian that will
force the sequence (uy) to satisfy these properties, and the ideas behind these perturbations
will constitute the main technical contribution of the paper.

Besides giving some constructive description of possible limits M, the invariance equa-
tions will play a significant role in other ways. First, using these equations we will be able
to prove representations for the limit of the free energy Fy = N 'Elog Zy in terms of o,
for p € My, which will automatically coincide with the corresponding Parisi formulas for
the free energy if one can show that all measures in M,,, satisfy the predictions of the
Parisi ansatz. These representations, proved in Sections 2.2, 2.3 for diluted models and in
Sections 3.2, 3.3 for the Sherrington-Kirkpatrick model, will arise from an application of the
Aizenman-Sims-Starr scheme introduced in [1] and, what is crucial, thanks to the invariance
equations we will only use this scheme with one cavity coordinate whereas all previous ap-
plications of this scheme (for example, in [1], [10] or [17]) only worked when the number of
cavity coordinates goes to infinity.

In the setting of the Sherrington-Kirkpatrick model we will utilize a Gaussian nature of
the Hamiltonian to give other important applications of the invariance properties of y € M.
First, we will prove in Theorem 5 below that the joint distributions of all spins, and thus
measure y, are completely determined by the joint distribution of the overlaps (1.7). Then in
Section 1.3 we will show that all limits 1 € M that satisfy the Parisi ultrametricity hypothesis



correspond to o, given by certain specific realizations of the Ruelle probability cascades.
This means that, under ultrametricity, we obtain a more detailed asymptotic description of
the model which includes the joint distribution of all spins or multi-overlaps and not only
overlaps, as in the usual description of the Parisi ansatz. Motivated by this special form of
o, in the Sherrington-Kirkpatrick model, in the second part of Section 1.3 we will try to
formulate a more general Parisi ansatz expected to hold in the diluted models in terms of
the Aldous-Hoover representation (1.3).

Finally, we would like to mention recent work [4] where the authors study asymptotic
behavior of spin glass models in the framework of Random Overlap Structures, or ROSts,
which in our notations correspond to the £2([0, 1], dv) structure of the family of functions
v — 0, (w,u,v). They obtain a number of interesting properties of ROSts and prove several
results which are similar in spirit to ours, for example, the Parisi formula in the Sherrington-
Kirkpatrick model under the assumption of ultrametricity.

Acknowledgement. The author would like to thank Tim Austin for motivating this
work and Michel Talagrand for asking good questions and making many suggestions that
helped improve the paper.

1.1 Diluted models.

To illustrate the main new ideas we will start with the case of the diluted models where many
technical details will be simpler. We will consider the following class of diluted models as in
[20]. Let p > 2 be an even integer and let o > 0. Consider a random function 6 : {—1,+1}? —
R and a sequence (0y)g>1 of independent copies of §. Consider an i.i.d. sequence of indices
(i1,%)16>1 with uniform distribution on {1,..., N} and let 7(a/N) be a Poisson r.v. with mean
aN. Let us define the Hamiltonian Hy (o) on ¥y by

—Hy(o)= Y Ok(oi,,....0,) (1.8)

k<m(aN)

Clearly, any such model has symmetry between sites. We will make the following assumptions
on the random function §. We assume that there exists a random function f : {—1,+1} - R
(i.e. f(o) = f"+ f"o for some random (f’, f”')) such that

expb(oy,...,0p) =a(l+bfi(o1) ... fp(op)) (1.9)
where f1,..., f, are independent copies of f, bis ar.v. independent of fi,..., f, that satisfies
the condition

Vn>1 E(-b)">0 (1.10)

and a is an arbitrary r.v. such that E|loga| < co. Finally, we assume that

bfi(o1) ... fp(op)] <1 aus. (1.11)
and 0 satisfies some mild integrability conditions

—o00 < Emin#(oy,...,0,), Emaxf(oy,...,0,) < +o00. (1.12)
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Two well-known models in this class of models are the p-spin and K-sat models.

Example 1. (p-spin model) Consider 5 > 0 and a symmetric r.v. J. The p-spin model
corresponds to the choice of

0(o1,...,0p) =BJoy...0p

(1.9) holds with a = ch(8J), b = th(8J) and f(c) = ¢ and condition (1.10) holds since we
assume that the distribution of J is symmetric. (1.12) holds if E|.J| < occ.

Example 2. (K-sat model) Consider 8 > 0 and a sequence of i.i.d. Bernoulli r.v. (J;);>1
with P(J; = £1) = 1/2. The K-sat model (with K = p) corresponds to

1+ Jo
9(0’1,...,O'p):—ﬁH 21 l.
I<p

(1.9) holds with a =1, b = e # — 1 and f;(0;) = (1 + J;07)/2 and (1.10) holds since b < 0.

O

It is well-known that under the above conditions the sequence N Fly is super-additive
and, therefore, the limit of Fly exists (see, for example, [10]). If we knew that (uy) has a
unique limit, i.e. M = {u}, then computing the limit of the free energy in terms of o, in
(1.3) would be rather straightforward as will become clear in Section 2.2. However, since we
do not know how to prove that (uy) converges, this will create some obstacles. Moreover, if
(un, ) converges to p over some subsequence (NNy) we do not know how to show that (1, 1n)
converges to the same limit for a fixed shift n > 1, even though we can show that it does
converge simply by treating n of the coordinates as cavity coordinates. Even if we knew that
uy converges, we would still like to have some description of what the limit looks like. To
overcome some of these obstacles, we will utilize the idea of adding a ”small” perturbation
to the Hamiltonian (1.8) that will not affect the limit of the free energy but at the same time
ensure that (un,+n) and (pn,) converge to the same limit. In some sense, this is similar to
the idea of adding p-spin perturbation terms in the Sherrington-Kirkpatrick model to force
the overlap distribution to satisfy the Ghirlanda-Guerra identities ([13], see also [11]). The
perturbation for diluted models will be defined as follows.

Consider a sequence (cy) such that ¢y — 0o, ey /N — 0 and |eyy1 — cy| — 0. Consider
an ii.d. sequence of indices (7;,;);xi>1 With uniform distribution on {1,..., N}, let m(cn)
be a Poisson r.v. with mean cy, (m(ap)) be ii.d. Poisson with mean ap and (6y,;) be a
sequence of i.i.d. copies of #. All these random variables are assumed to be independent of
each other and of everything else. Whenever we introduce a new random variable, by default
it is assumed to be independent of all other random variables. Let us define the perturbation
Hamiltonian H4 (o) on Xy by

—HY (o Z log Av, exp Z Ok (€, Ty gors - Tipy i) (1.13)
1<7(cn) k<m (ap)

where Av. will denote uniform average over € € {—1,+1} as well as replicas (g;) below. Let
us redefine the Hamiltonian in (1.8) by

—Hy(o)= Y Okloi,,....04,) — Hy(0) (1.14)

k<w(aN)



and from now on we assume that (uy) and M are defined for this perturbed Hamiltonian.
Obviously, condition (1.12) implies that the perturbation term does not affect the limit of free
energy since ¢y = o(N). The benefits of adding this perturbation term will first appear in
Lemma 3 below where it will be shown that thanks to this term (uy, ) and (pin,+n) converge
to the same limit for any fixed shift n > 1. Another important consequence will appear
in Theorem 1 below where the perturbation will force the limiting distributions © € M to
satisfy some important invariance properties that will play crucial role in the proof of the
representation for the free energy in Theorem 2.

Let us introduce some notations. We will usually work with o, for a fixed distribution
€ M so for simplicity of notations we will omit subscript p and simply write o. Let

(Viy..in), (@iy.4,) be 1.i.d. sequences uniform on [0,1] for n > 1 and 4y, ...,i, > 1 and let
Sityensin — O'('LU, Uy Uiy, s xil,...,in)- (115)
The role of multi-indices (i1, . . ., 4,) will be simply to select various subsets of array (1.3) with

disjoint coordinate indices ¢ without worrying about how to enumerate them. Let (6, ;)
be the copies of random function 6 independent over different sets of indices. In addition, let
0, z, 6 be independent copies of the above sequences and let

§i1,---,in = O'(UJ, u, @il,---,im jil,---ﬂn)' (116)

Notice that we keep the same w and u in both s and §. Throughout the paper let us denote
by m(\) Poisson random variables with mean A which will always be independent from all
other random variables and from each other. For example, if we write 7(a) and 7(f), we
assume them to be independent even if & = 5. Let (m;())) be independent copies of these
r.v. for 7 > 1. Let

Aie) = Z Or,i(€, S1iks - -+ > Sp—1,ik) (1.17)
k<m;(pa)
fori > 1and e € {—1,+1} and let
B = Z Ori(B1iks- - Spik)- (1.18)

k<m;((p—1)a)

We will express invariance and self-consistency properties of distributions p € M in terms of
equations for the joint moments of arbitrary subset of spins in the array (1.3). Take arbitrary
n,m,q,r > 1 such that n < m. In the equations below, the index ¢ will correspond to the
number of replicas selected, m will be the total number of coordinates and n the number of
cavity coordinates considered, and r will be the number of perturbation terms of certain type.
For each replica index | < ¢ we consider an arbitrary subset of coordinates C; C {1,...,m}
and split them into the cavity and non-cavity coordinates

Cl=Cn{l,....n}, C}=C,Nn{n+1,...,m}. (1.19)

Let E’ denote the expectation in u and in sequences x and Z and let

U, =EAv, H €; €xp Z A;(g) H $; €xp Z ék(§17k, ) (1.20)

ieCt isn ieC? k<r



and

V=FEAv.exp ) Ai()expd  O(S1,- -, 8pn)- (1.21)

i<n k<r

Then the following holds.

Theorem 1 For any limiting distribution i € M and o = o, we have

EHHsﬁzEHE’Hsi:EHZ‘j‘;Ul. (1.22)

1<q ieC I<q 1€Cy

We will say a few words about various interpretations of (1.22) below but first let us describe
the promised representation for the free energy. Let M,,, denote the set of distributions of
exchangeable arrays generated by functions o : [0,1]* — {—1,+1} as in (1.3) that satisfy
invariance equations (1.22) for all possible choices of parameters. Theorem 1 proves that

M g Minv- Let
A) = D Olesiks o Sporn)

k<m(pa)
for e € {—1,+1},
B = Z Hk:(Sl,k‘a Ce 73p,k)

k<m((p—1)a)
and let
P(n) =log2+ ElogE'Av. exp A(e) — Elog E' exp B. (1.23)

The following representation holds.

Theorem 2 We have,

A}l_I}I;OFN :#1;1/{177(#) = inf P(w). (1.24)

HEMiny
One can simplify the last term in (1.23) since we will show at the end of Section 2.3 that
ElogE'exp B = (p — 1)aElogE' exp 0(s1,. .., sp) (1.25)
for 1 € Mip,. To better understand (1.22) let us describe several special cases. Let us define
A; =log Av_exp A;(e). (1.26)

First, if we set r = 0 and let sets C; be such that C; C {n+ 1,...,m} for all [ < ¢ then
(1.22) becomes

E[[E [ o = plise iee %P Soign A

1.27
I<qg  i€Cy (B exp ) e, Ai)? 20
On the other hand, if we set n = 0 then (1.22) becomes
E . S; €X . ézéz,,§z
BT & [T s = Eibee® Lhico oD X BB ) (129

<q  ieC (E"exp <, 0i(51, - .-, 5pi))9
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These equations can be interpreted as the invariance of the distribution of (s!) under various
changes of density and they will both play an important role in the proof of Theorem 2.
Another consequence of (1.22) are the following self-consistency equations for the distribution
of spins. Let us set r =0 and n = m. Let

a_ Av_eexp A;(e)
' Av.exp A;(e)

S

Then (1.22) becomes

[1<, B TLicc, st exp > i, A
El[E =RE—=1 et =n 1.2

1<q 1€C

This means that the distribution of spins (s!) coincides with the distribution of "new” spins

(s;4 ’l) under a certain change of density. Even though we can not say more about the role
(1.29) might play in the diluted models, its analogue in the Sherrington-Kirkpatrick model
will play a very important role in proving that the joint overlap distribution under p de-
termines p and in constructing the explicit formula for & under the Parisi ultrametricity

hypothesis.

It will become clear from the arguments below that, in essence, the representation (1.24)
is the analogue of the Aizenman-Sims-Starr scheme in the Sherrington-Kirkpatrick model [1]
with one cavity coordinate. Previous applications of this scheme, for example in [1], [10] or
[17], only worked when the number of cavity coordinates goes to infinity, since considering one
cavity coordinate in general yields only a lower bound on the free energy. This lower bound
expressed in terms of the generic functional order parameter o, will be proved in Section 2.2.
Then the main new ideas of the paper - the roles played by the perturbation Hamiltonian
(1.13) and the consequent invariance in (1.22) - will help us justify that this lower bound
is exact and, moreover, represent it via a well-defined family M;,,. First, following the
arguments in [12], [20], in Section 2.3 we will prove a corresponding Franz-Leone type upper
bound which will depend on an arbitrary function o that defines an exchangeable array as
in (1.3). For a general o, this upper bound will depend on N. However, we will show that for
o, for p € M,,, the invariance of Theorem 1 implies that the upper bound is independent
of N and matches the lower bound. This is the main point where the invariance properties
will come into play. The same ideas will work in the Sherrington-Kirkpatrick model with the
appropriate choice of the perturbation Hamiltonian.

1.2 The Sherrington-Kirkpatrick model.

Let us consider mixed p-spin Sherrington-Kirkpatrick Hamiltonian

—Hy(o) == ByHy,(0) (1.30)
p>1
where .
_HN,p(U') = m Z gil,...,ipo—h s Jip> (131)
1<i,oip<N
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the sum is over p = 1 and even p > 2 and (g;, ip) are standard Gaussian independent for
all p>1 and all (41, ...,4,). The covariance of (1.30) is given by

EHy (o' ) Hy(0?) = NE(Ry») (1.32)

where {(z) = > o, ngp and we assume that the sequence (f,) satisfies }_ -, 2”62 < 0.
Let us start by introducing the analogue of the perturbation Hamiltonian (1.13) for the
Sherrington-Kirkpatrick model. Consider independent Gaussian processes G¢/(0) and Gy(o)
on Xy = {—1,+1}" with covariances

EGe(0')Ge(0?) = €' (R12), EGo(0')Go(0?) = (R, ) (1.33)

where 0(x) = z€'(x) — &(z) and let Gg k(o) and Gy (o) be their independent copies for
k > 1. For (cy) as above, let us add the following perturbation to the Hamiltonian (1.30),

—H%(O’): Z 10gChG§/7k(0')+ Z G@,k(")» (134)

k<m(cn) k<w'(cn)

where 7(cy) and 7'(cy) are independent Poisson random variables with means cy. Clearly,
this Hamiltonian does not affect the limit of the free energy since cy = o(N). We will
see that this choice of perturbation ensures the same nice properties of convergence as the
perturbation (1.13) in the setting of the diluted models. As a consequence, we will get the
following analogue of the invariance of Theorem 1. Given a measurable function & : [0, 1]> —
[—1,1], for any w € [0,1] let ge(o(w,u,-)) be a Gaussian process indexed by functions
v — o(w,u,-) for u € [0, 1] with covariance

Cov(gg(&(w, u, ))7 gﬁ’(a-(wa U/, ))) = 5/ (Eva-(wa Uu, U)a-(wv U/, U)) (135>
and go(c(w, u,-)) be a Gaussian process independent of g (&(w,u,-)) with covariance
COV(99(6<w7 u, ))a 90(6(w7 ulv ))) - H(Eva(wa u, U)a-(w7 ulv U)) . (136)

Let us consider independent standard Gaussian random variables z and 2’ and define

G§’<5(w7 U, )) = 95’(5(w7 u, )) + Z(£/<1) - fl(Ev5(w7 U, U>2))

1/2

(1.37)

and
Go((w, u,-)) = go(5(w, u,-)) + 2 (8(1) — B(E,a (w, u, v)?)) 2. (1.38)

For simplicity of notations we will keep the dependence of G¢ and Gy on z or 2’ implicit. Let
G¢; and Gy ; be independent copies of these processes. Random variables z and 2’ will play
the role of replica variables similarly to v and for this reason in the Sherrington-Kirkpatrick
model we will denote by E’ the expectation in u, z and z’. The main purpose of introducing
the second term in (1.37) and (1.38) is to match the variances of these Gaussian processes,
¢(1) and (1), to variances in (1.33) for o! = o

As in the setting of diluted models, consider arbitrary n,m,q,r > 1 such that n < m.
For each | < ¢ consider an arbitrary subset C; C {1,...,m} and let C} and C}? be defined
as in (1.19). Let 7; = o (w, u, v;). For | < ¢ define

Uy =E [] thGe(o(w,u,) [] 6:&nnr (1.39)

ieCt ieC?



where

Enr = exp Zlogch Ge (o )+ ZG“ )) (1.40)

i<n k<r

and let V = E'E,,. If M denotes the set of possible limits of py corresponding to the
Hamiltonian (1.30) perturbed by (1.34) then the following holds.

Theorem 3 For any n € M and 6 = 5, we have

ETTE [] o g iz (1.41)

Va
<q 1€C

Let My, be the family of distributions defined by the invariance properties (1.41), so that
Theorem 3 proves that M C M,,,. If we define

P(u) =1log2+ ElogE'ch G¢ (5, (w, u,-)) — ElogE exp Gy(7,(w, u,-)) (1.42)

then we have the following representation for the free energy in the Sherrington-Kirkpatrick
model.

Theorem 4 We have,
lim Fy = inf P(u) = inf P(p). (1.43)

N—oo ,LLEM MEMznv

As in the case of diluted models above, let us describe several special cases of (1.41). If r =0
and sets C; are such that C; C {n+1,...,m} for all | < ¢ then (1.41) becomes

/ _ Hl<qE Hze 0; Hz<n ch Gi’ (6( y Uy ))
BIIE o =B Gt w (144
If we set n = 0 then (1.41) becomes
, _ Hl<q HzEC J; exp Zk<7~ Gor(0(w,u,-))
B U e D/ | (1:49)

Again, these equations can be interpreted as the invariance of the spin distributions under
various random changes of density. Finally, if we set r = 0 and n = m then (1.41) becomes

EHE/ H ~ Hl<qIE HzeCl thGei(o(w, u,-)) HK” ch G i(@(w, u, )> (1.46)

I<q i€y (E/ H1<n ch GE' ( (’LU, u, )))q

The meaning of this self-consistency equation is that the joint distribution of spins generated
by a function &(w, u, v) coincides with the distribution of spins generated by th G¢ (6 (w, u, -))
under a properly interpreted random change of density and we will discuss this interpretation
in more detail below under the Parisi ultrametricity hypothesis. The choice of parameters in
equation (1.46), most importantly n = m, will be the key to the following special property
of the Sherrington-Kirkpatrick model.
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Theorem 5 For any i € My, the joint distribution of (Rj§)iy>1 defined in (1.7) for
o = 0, uniquely determines (1 and thus the joint distribution of all multi-overlaps.

The fact that the joint distribution of overlaps determines p leads to a natural addition to
the statement of Theorem 4. It will be clear early in the proof of Theorem 4 that P(u) for
i € M depends only on the distribution of the array (1.7) for ¢ = &, and, as a result,
one can express the free energy in (1.43) as the infimum over a family of measures M., ,
defined completely in terms of the invariance of the joint overlap distribution and such that
My € M., . For this purpose one does not need the self-consistency part of the equations
(1.41), so we will only use the case when C? = C} in (1.19) for all [. Let us consider processes
G and Gy in (1.37), (1.38) defined in terms of replicas (), (2) and (2]) of u, z and 2/,

namely,
1/2

G0 (w,w,-)) = ge (5w, w, ) + 2 (€'(1) — € (B (w, w, v)?))" (1.47)

and
1/2

Go(a(w,ur,-)) = go(d(w,w,-)) + 2 (0(1) — O(E,o (w, w,v)?)) (1.48)

Let F' = F((R}})ir<q) be an arbitrary continuous function of the overlaps on ¢ replicas. Let

UzE’FHexp(ZlogchGg- a(w,uy,-) +ZG9k a(w,uy, ))) (1.49)

1<q i<n k<r

Then the condition
EF =E(U/VY) (1.50)

for all g,n,r and all continuous bounded functions F' defines the family M’ . Equation
(1.50) is obviously implied by (1.41) which contains the case of polynomial F' simply by
making sure that C? = C}, so M, € M.,.. Then, one can add

muo’

lim Fy = inf P(u) (1.51)

N—oo neM’,

mv

to the statement of Theorem 4. This together with Theorem 5 shows that in the Sherrington-
Kirkpatrick model the role of the order parameter is played by the joint distribution of
overlaps rather than the joint distribution of all multi-overlaps or the generic functional
order parameter ,. This gives an idea about how close this point of view takes us to the
Parisi ansatz [24] where the order parameter is the distribution of one overlap. Since we
can always ensure that the Ghirlanda-Guerra identities [13] hold by adding a mixed p-spin
perturbation term (see (1.52) below), the remaining gap is the ultrametricity of the overlaps,
since it is well-known that the Ghirlanda-Guerra identities and ultrametricity determine the
joint distribution of overlaps from the distribution of one overlap (see, for example, [6] or
[8]). If one can generalize the results in [19] and [29] to show that the Ghirlanda-Guerra
identities always imply ultrametricity, (1.43) would coincide with the Parisi formula proved
in [27].

The Ghirlanda-Guerra identities and stochastic stability. Let us mention that
the Ghirlanda-Guerra identities and stochastic stability can also be expressed in terms of
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the generic functional order parameter . We will use a version of both properties in the
formulation proved in [29]. Let us now consider a different perturbation term

H (o) =0 Y BrpHy (o) (1.52)
p>1
where )
_HJIV,;D(0.> = m Z g,:l ..... Z-pO'il e Uip7 (153)
1<iy,...,ip<N

are independent copies of (1.31). When dy — 0 this perturbation term is of smaller order
than (1.30) and does not affect the limit of the free energy. However, the arguments in the
proof of the Ghirlanda-Guerra identities and stochastic stability in [29] require that éy does
not go to zero too fast, for example the choice of §y = N~/16 works. Then, Theorem 2.5 in
[29] states that one can choose a sequence By = (8y,) such that |Gy ,| < 277 for all N and
such that the following properties hold. First of all, if () is the Gibbs average corresponding
to the sum

—Hy(o) = —Hy(o) — H(o) (1.54)
of the Hamiltonians (1.30) and (1.52) and F is a continuous function of finitely many multi-
overlaps (1.5) on replicas o', ..., o™ then the Ghirlanda-Guerra identities

1 1 <
]}%}E FRY 1) — EE<F> E(RY2) — " Z]E<FR§),1>’ =0 (1.55)

hold for all p > 1. Now, for p > 1, let G(o) be a Gaussian process on Xy with covariance
EG,(0")G,(0?) = R, (1.56)
and for ¢t > 0 let (-); denote the Gibbs average corresponding to the Hamiltonian
—Hyy,(0) = —Hiy (o) — 1G, (o).
Then, in addition to (1.55), the following stochastic stability property holds for any ¢ > 0,
]\}1_{1;0 |E(F);, — E(F)| = 0. (1.57)

This property was also proved in [4] without perturbation (1.52) under the condition of
differentiability of the limiting free energy. Let puy be the joint distribution of spins (1.2)
corresponding to the Hamiltonian H) (o) and M be the set of all limits of (uy). Then both
(1.55) and (1.57) can be expressed in the limit in terms of ¢ = 7, for any u € M as follows.
First of all, (1.55) becomes the exact equality in the limit by comment above (1.6),

1
EF(RY, )" = —EFE(R) ZEF . (1.58)

Stochastic stability (1.57) can be expressed as follows. For w € [0, 1], let g,(o(w, u,-)) be a
Gaussian process indexed by u € [0, 1] with covariance

Cov (g, (& (w, 1. ), gy(6 (w, 1, ) = (oo (w, u,v)5 (w, o, 0))? (1.59)
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and, as in (1.37), let

Go(@(w, u, ) = g,(F(w, u, ) + 2(1 = (Buo (w, u, v)2)?) /. (1.60)
Then (1.57) implies the following analogue of Theorem 3.
Theorem 6 For any p € M and 6 = 7, we have for allp > 1 and t > 0,

EHE/ H _ Hl<qE HzGC 0;exptG), (5)( )) (1.61)

(B exp tGy(a(w, u,-)))?

The proof that (1.57) implies (1.61) will not be detailed since it follows exactly the same
argument as the proof of Theorem 3 (we will point this out at the appropriate step in Section
3.4). Note that (1.61) is more general than (1.45), which shows that the invariance of Theorem
3 is related to the stochastic stability (1.57). It is interesting to note, however, that the size of
the perturbation (1.34) that ensures the invariance in (1.41) was of arbitrarily smaller order
than the original Hamiltonian (1.30) since ¢y could grow arbitrarily slowly while perturbation
(1.52) must be large enough since dy can not go to zero too fast. Moreover, the form of the
perturbation (1.34) plays a crucial role in the proof of the self-consistency part (1.46) of
the equations (1.41) which will allow us to give an explicit construction of the functional
order parameter ¢ below under the Parisi ultrametricity hypothesis. The special case of the
stochastic stability (1.61) for the overlaps (rather than multi-overlaps as in (1.61)) was the
starting point of the main result in [3] under certain additional assumptions on &.

1<q 1€C)

Let us make one more comment about the Ghirlanda-Guerra identities (1.58) from the
point of view of the generic functional order parameter . Equation (1.55) always arises as

a simple consequence of the following concentration statement either for the perturbation
Hamiltonian (1.53) (see [29]),

) Hy, Hy,
Jvhi%o]E<‘ N < N >’>_0’ (1.62)
or for the Hamiltonian in (1.31),
) Hy o, Hy, B
Nhi%oEq N _E< N >’>_0’ (1.63)

which was proved in [23] for any p such that 8, # 0 in (1.30) (the case of p = 1 was first
proved in [9]). One can similarly encode the limiting Ghirlanda-Guerra identities (1.58) as a
concentration statement for the Gaussian process G,(a(w, u,-)) in (1.60) as follows.
Theorem 7 Assuming (1.61), the following are equivalent:

(1) the Ghirlanda-Guerra identities (1.58) hold;

(2) for all p > 1,
Gp(a-(w u, )) eXptG ( (w u, )) . (EGP(O'(U],U,')) eXptGp(O-(w7u7'))>2

E exptGp(a(w,u,-)) E exptGp(a(w,u,-))

1s uniformly bounded for all t > 0, in which case it is equal to 1.

E

(1.64)

The result will follow from a simple application of the Gaussian integration by parts and the
main reason behind this equivalence will be very similar to the proof of the Ghirlanda-Guerra
identities for Poisson-Dirichlet cascades in [30].
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1.3 Connections to the Parisi ansatz.

We will now discuss how the functional order parameter ¢(w,wu,v) fits into the picture of
the ”generic ultrametric Parisi ansatz” expected to hold in the Sherrington-Kirkpatrick and
diluted models and believed to represent some kind of general principle in other models
as well. We will begin with the case of the Sherrington-Kirkpatrick model where the joint
distribution of the overlap array (1.7) under the Parisi ultrametricity conjecture is well
understood and we will use it to give an explicit construction of a(w,u,v). This will serve
as an illustration of a more general case that will appear in the diluted models.

Parisi ansatz in the Sherrington-Kirkpatrick model. Let us go back to the self-
consistency equations (1.46) and show that they can be used to give an explicit formula for
the function &, or the distribution of spins, under the Parisi ultrametricity hypothesis and
the Ghirlanda-Guerra identities. In this section we will assume that the reader is familiar
with the Ruelle probability cascades [25] and refer to extensive literature on the subject
for details. Equation (1.7) defines some realization of the directing measure of the overlap
array in the following sense. If we think of &(w, u,-) as a function in H = £2([0, 1], dv) then
the image of the Lebesgue measure on [0, 1] by the map v — &(w,u,-) defines a random
probability measure 7,, on H. Equation (1.7) states that the overlaps can be generated by
scalar products in H of an i.i.d. sequence from this random measure. Any such measure 7,
defined on an arbitrary Hilbert space is called the directing measure of the overlap array
(R7)- It is defined uniquely up to a random isometry (see, for example, Lemma 4 in [22],
or in the case of discrete overlap the end of the proof of Theorem 4 in [19]). By Theorem 2
in [19], the Ghirlanda-Guerra identities imply that

E,o(w,u,v)? = ¢* a.s. (1.65)

where ¢* is the largest point in the support of the distribution of R{% and, therefore, equation
(1.46) can be slightly simplified by getting rid of the last term in (1.37),

E H E H ) HlSq E HieCz t}j gg/,i(a(w, u, )_) Hign ch gg,i(a(w, u, )) ‘ (166)
=1l (B Tz b g (7w, 0, )"

The key observation now is that the right hand side of (1.66) does not depend on the
particular realization of the directing measure since the Gaussian process ge is defined by
its covariance function (1.35) which depends only on the £2([0, 1], dv) structure of the family
o(w,u, ). Let us first interpret the right hand side of (1.66) when the overlap distribution is
discrete,

P(RT?Q = ql) =M1 — MYy (167)

forsome 0 < g < @< ...<q@g=¢ <land0=m; < ... < my < mgy; = 1. In
this case it is well-known that one directing measure of the overlaps is given by the Ruelle
probability cascades, of course, assuming the Ghirlanda-Guerra identities and ultrametricity
(see, for example, [3], [19], [29] or [30]) and, therefore, (ge ;) are the usual Gaussian fields
associated with the cascades. The Ruelle probability cascades is a discrete random measure
with Poisson-Dirichlet weights (w,) customarily indexed by o € N*, where k is the number
of atoms in (1.67), so that the Gaussian fields are also indexed by «, (ge (). By definition
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of the directing measure 7, the expectation E’ in u plays the role of averaging with respect
to these weights, so that the right hand side of (1.66) can be rewritten as

Engq >0 Wa HieCl th geri(a) Hign ch ger ()
(X0 wa ILicn chgeri(a))?
This in its turn can be rewritten using well-known properties of the Ruelle probability

cascades, in particular, Lemma 1.2 in [18] which is a recursive application of Proposition A.2
in [7]. If we denote

(1.68)

/ Wa Hign ch geri(a)
w g

“ Za Wa Hzgn ch gf’,l<a)

then the point processes

(s (92,:())in)) e = (Was (96ri(@))izn)) e (1.69)

have the same distribution, where (g ;(«)) is a random field (no longer Gaussian) associated
with the Ruelle probability cascades defined from the Gaussian field (g ;(a)) by an explicit
change of density (see equation (7) in [18]). Therefore, (1.66) can be rewritten as

EJ[E [[o:i=E]]D_wa]] thot(a) (1.70)

I<q €C I<qg « 1eCy

which can now be interpreted as the explicit construction of a(w,u,v). The first coordinate
w corresponds to generating the weights (wg)qaent Of the Ruelle probability cascade with the
parameters 0 = m; < ... < my < 1, the second coordinate u plays the role of sampling an
index a according to the weights (w,), and the last coordinate v corresponds to generating
the random field (gi(«)), so that the directing measure 7, carries weight w, at the point
th g () in £2([0,1], dv). Another way to write this is to consider a partition (Cy)aent of
[0, 1] into intervals of length |C,| = w, and let

a(w,u,v) = Z I(u € Cy)thge(a), (1.71)

a€NF

where we keep the dependence of (C) on w and (g () on v implicit. In particular, (1.70)
implies that the limiting distribution of the Gibbs averages (o;) of finitely many spins 1 <
1 < n coincides with the distribution of

Zwathgé/7i(a) for 1 <i <n. (1.72)

This can be thought of as the generalization of the high temperature result, Theorem 2.4.12
in [26], under the assumption of the Parisi ultrametricity. It will be clear from the proof of
Theorem 3 that the right hand side of (1.66) is continuous with respect to the distribution of
the overlap array (1.7) and, on the other hand, it is well-known that ultrametricity allows one
to approximate any overlap array by a discretized overlap array satisfying (1.67) uniformly
while preserving ultrametricity and the Ghirlanda-Guerra identities. Therefore, one can think
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of the case of an arbitrary distribution of the overlap simply as the limiting case of the above
construction for discrete overlaps.

Parisi ansatz in the diluted models. To make a transition to the case of diluted
models let us look more closely at the equation (1.71). Original Gaussian field (g¢ (o)) indexed
by a = (i, ..., a;) € N¥ associated to the Ruelle probability cascades is of the form ([3])

ger(@0) = ger(n) + ger (a1, 00) + ...+ ger(aa, . .. ag)

where random variables gg/(ay, . .., o) are Gaussian with variances &'(¢;) — &'(¢,—1) indepen-
dent for different 1 <1 < k and different (a,..., ). The field (gi(a)) on the right hand
side of (1.69) is again of the form

ger(@) = ger(an) + gir(on, o2) + ...+ golau, .., o)

and for each [ < k the sequence (g (ay, ..., 1))q,>1 is 1.i.d. from distribution defined by the
explicit change of density, equation (7) in [18], which depends on gf (), ..., ge (o, ..., i)

and these sequences are independent for different (aq,...,q;_1) conditionally on the se-
quences (gg (1)), -+, (ger(au, . .., au—1)). This means that one can generate the process (g (a))
recursively as follows. Let v(ay,..., ;) be random variables uniform on [0, 1] independent

for different 1 <[ < k and different (cv,..., ;). Then for 1 <[ < k we can define

ger(ou, . ap) = Qulger(an), - .., ger(an, ..., u), v, . .., op)) (1.73)

where (), as a function of the last variable is the quantile transform of the distribution defined
by the aforementioned change of density. Combining all the steps of the recursion we get

gor(a) = Q(uv(aa), ..., v(am, ..., ax)) (1.74)

for some specific function @). Equation (1.71) becomes

o(w,u,v) = Z I(u e Cy)p(v(ag),...,v(a,. .., a)) (1.75)

a€NF

where ¢ = tho @ and again, as in equation (1.71), we keep the dependence of (C,) on w and
(v(a,...,q)) on v implicit. Let us emphasize that the change of density that defines @; in
(1.73) and, therefore, the functions @, ¢ and & are completely determined by the parameters
of the distribution of one overlap in (1.67) which is the functional order parameter of the
Parisi ansatz in the Sherrington-Kirkpatrick model. What seems to be the main (and only)
difference in the Parisi ansatz for diluted models is that this function ¢ is allowed to be an
arbitrary (—1,1) valued function, which we will now explain.

The Parisi functional order parameter in the diluted models appears in the description
of the free energy and one can make the connection to the generic functional order parameter
o by comparing the Parisi formula for the free energy to the representation (1.23), (1.24).
For example, in the notations of [20] where the order parameter was encoded by the Ruelle
probability cascade weights (w,) and associated random field (z(«)) for a € N¥| it is easy to
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see that in order for (1.23) to match the Parisi formula in [20] & should be defined exactly
as in the equation (1.71),

o(w,u,v) = Z I(u € Cy) thz(a). (1.76)

a€NF

The only difference from (1.71) is how the random field (x(«)) is generated compared to
(9¢(c)) and once we recall how (z(«)) is generated according to the Parisi ansatz we will
realize that one can write exactly the same representation as (1.74),

z(a) = Q(ay),...,v(ag, ..., ax)), (1.77)

only now @ is allowed to be arbitrary. The field (z(«)) is customarily generated as follows.
Let Py be the set of probability measures on R, and by induction on | < k we define P;,; as
the set of probability measures on P;. Let us fix n € Py (the basic parameter) and define a
random sequence (n(ay),...,n(a1, ..., a5—1),z(cq, ..., a)) as follows. Given 7, the sequence
(n(c1))ay>1 of elements of Py_; is i.i.d. from distribution 1. For 1 <1 < k — 1, given all the
elements n(ayq, . .., a,) for all values of the integers a, ..., a5 and all s <1 — 1, the sequence
(m(a, ..., qp))a>1 of elements of Py_; is i.i.d. from distribution n(aq,...,a;—1), and these
sequences are independent of each other for different values of (ay,...,a;_1). Finally, given
all the elements n(ay,...,as) for all values of the integers ay,...,as and all s < k — 1
the sequence (z(avu,...,a))q,>1 is i.i.d. on R with distribution n(ay, ..., ak—1) and these
sequences are independent for different values of (ay,...,a,_1). The process of generating
x’s can be represented schematically as

n—nlan) = ... = nlag,...,o5—1) = z(aq, ..., q). (1.78)

Now, as above, let v(aq,...,q;) be random variables uniform on [0, 1] independent for dif-
ferent 1 <[ < k and different (a1, ..., q;). First, random variables (n(a1))aq,>1 are i.i.d. from
probability measure n on P;_; and, therefore, can be generated as

n(ar) = Qr-1(v(ar)) (1.79)

for some function Qg1 : [0, 1] — Px_;. Next, random variables (1(aq, a2))a,>1 are i.i.d. from
probability measure 7(cy) on Pr_5 and, therefore, can be generated as

n(on, ag) = qu(U(al),U(@l, az))
for some function Qy_s(n(y),-) : [0,1] = Pr_s. Combining with (1.79), we can write
n(ay, az) = Qr—a(v(on), v(on, az)) (1.80)

for some function Qj_» : [0,1]> — Pr_5. We can continue this construction recursively and
at the end we will get

z(ag,...,ap) = Q(a),...,v(aq,...,ax)) (1.81)
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for some function @ : [0,1]¥ — R, which is exactly (1.77). This representation gives some
choice of @ for a given n € Py, but any choice of () corresponds to some 7, which is obvious
by reverse induction and identifying a function of uniform r.v. on [0, 1] with the distribution
on its image.

To summarize, the Parisi ansatz can be expressed in terms of ¢ by saying that the
equation (1.75) must hold for some choice of (—1, 1) valued function ¢. Of course, in general
this statement should be understood in the limiting sense when the number (k—1) of replica-
symmetry breaking steps goes to infinity. Precise statement should be that in the diluted
models any limiting distribution © € M of the array (1.3) over a subsequence of (uy) can be
approximated by the distribution of the array generated by &(w,u,v) as in (1.75) for large
enough k, some function ¢ : [0, 1]¥ — (—=1,1) and some parameters 0 = m; < ... < my, < 1
of the distribution of weights (w,) in the Ruelle probability cascades.

This formulation clarifies another statement of the physicists, namely, that multi-overlap
7. in (1.6) is the function of the overlaps Ry in (1.7) for 1 <1 < I’ < n. According to
(1.75) the choice of uy, ..., u, corresponds to the choice of indices a?, ..., a™ € N¥ so that

* =FEpw(al),...,v(al,...,;ap) - o@@}),..., vl ... o).

1111

On the other hand, if we denote a* A o® = min{i : ] # o?} and o' Aa? =k +1if o' = a?
then the overlap takes finitely many values

% =Eo(v(ay),...,v(ay, . .. ca))p(v(ad),. .. v(al,. .., 03)) = Gaipe?
for some 0 < ¢1 < ... < g1 < 1. This means that the values of the overlaps ([})

determine (! A o) for 1 <1 < 1" < n. It is also clear that the multi-overlap R{° , is the
same for two sets of indices (o', ..., a”) and (B, ..., ") for which (a! Aa!) = (BP0 A pri))
for some permutation p the set {1,...,n}. In this sense, given representation (1.75), the
overlaps indeed determine the value of the multi-overlap. At the moment we have no idea
how (1.75) can be proved but it is helpful to have a point of view that formulates precisely
the predictions of the Parisi ansatz.
O
While many technical details will be quite different, the main line of the arguments in the
setting of the Sherrington-Kirkpatrick model in Section 3 will be parallel to the arguments in
Section 2 for diluted models. A reader only interested in the Sherrington-Kirkpatrick model
should read Lemma 2 before skipping to Section 3.

2 Diluted models.

2.1 Properties of convergence.

Let us first record a simple consequence of the fact that the distribution of the array in (1.3)
is the limit of the distribution of spins (¢!) under the annealed product Gibbs’ measure. As
usual, (-) will denote the expectation with respect to the random Gibbs measure. Also, recall
the definition of E’ before Theorem 1.
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Lemma 1 Let hy,... hy : {=1,+1}" = [ K, K| be some bounded functions of n spins and
let h be a continuous function on [—K, K|™. Let 0 = (0;)1<i<n and let 8 = (s})i<i<n defined
in (1.8) for some p € M. If un converges to u over subsequence (Ni) then

lim Eh((hi(0)), ..., (hn(0))) = EL(E'hi(s),...,E'hn(s)). (2.1)

Nk—><>o

Proof. Since it is enough to prove this for polynomials h and since each h; is a polynomial
in its coordinates, this statement is simply a convergence of moments

Jim B([T 1) =TT+

where the product is over a finite subset of indices (i,1).
O

We will often use this lemma for random functions h, (h;) independent of all other
randomness, simply by applying (2.1) conditionally on the randomness of these functions.
Justifications of convergence will always be omitted because of their triviality.

Another simple property of convergence of spin distributions under the annealed Gibbs
measure in diluted models is that adding or removing a finite number of terms to the Poisson
number of terms 7(a/N) or w(cy) in (1.14) does not affect the limit of these distribution over
any subsequence for which the limit exists. Let (Ng)r>1 be any such subsequence and let
n, m be fixed integers. In fact, it will be clear from the proof that one can let n, m grow with
Ny, but we will not need this. Let H) be defined exactly as (1.14) only with w(aN) + n
terms instead of m(aN) in the first sum and 7(cy) 4+ m instead of 7(cy) in the perturbation
term and let (-)" denotes the corresponding Gibbs’ measure.

Lemma 2 For any bounded function h of finitely many spins in array (co}) we have

lim [E(h)" — E(h)| = 0. (2.2)

N—oo

Proof. For certainty, let us assume that n,m > 0 and |h| < 1. If we denote by (-);; the
Gibbs average conditionally on m(a/N) =i and w(cy) = j then

E(h) = Y w(aN,i)w(cx, j)E(h)i

i,j>0
where from now on w(\, k) = \fe=*/k! and

E(h) = Y w(aN,i)m(cn, HEMR)isnim

1,520

= Y w(aN,i—n)r(en,j— m)E(h).

i>n,j>m
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Therefore,

[E(h) —E(h)| < Y m(aN,i)+> w(cx.j)

i<n j<m

+ Y Im(aN,i—n)w(en,j—m) —w(aN,i)w(cx, j)
i>n,j>m

< > owlaN,i) + Y wlew, )
i<n j<m

+ Z |7T(OéNai - n) - 7T(Od\]aiﬂ + Z |7T<CN7j - m) - Tr(Cij>|'
i>n j>m

The first two sums obviously go to zero. One can see that the third sum goes to zero as
follows. Poisson distribution with mean a/N is concentrated inside the range

aN —/NlogN <i<aN ++/NlogN. (2.3)
If we write
[r(alN,i —n) — w(aN, )] = (aN, )1 - (Z_L!n)!(a]\f)_" (2.4)
then it remains to note that
! mNyﬂ:i@—D”.@—n+1f%1

(i —n)!

uniformly inside the range (2.3). Similarly, the last sum goes to zero which finishes the proof.
O

(aN)"

Remark. Lemma 2 implies that (2.2) holds even if n is a random variable. We will use
this observation in the case when H), is defined exactly as (1.14) only with 7(aN +n) terms
instead of w(aN). In fact, in this case one can write

E(h)' =) w(aN +n,i)m(en, )ER): jom

1,50

and instead of (2.4) use

no\i
N +n,i) — m(aN,i)| = _M'h—(l ——>—”
|m(aN +n,i) — w(aN,i)| = 7(aN,i) + — e

and notice that again the last factor goes to zero uniformly over the range (2.3). Similarly,
one can have m(cy + n) instead of 7(cy) terms in the perturbation Hamiltonian without
affecting convergence.

O

Due to the perturbation term (1.13) the following important property of convergence
holds.
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Lemma 3 If uy converges to u over subsequence (Ny) then it also converges to p over
subsequence (Ny +n) for any n > 1.

Proof. We will show that the joint moments of spins converge to the same limit over sub-
sequences that differ by a finite shift n. Let h = [, h; where hj = [];cc, 07 over some

finite sets of spin coordinates C;. Let us denote by (-)n the Gibbs average with respect to
the Hamiltonian (1.14) defined on N coordinates. We will show that

lm |E(h)xsn — E(h)x| = 0.

N—o0

Let us rewrite E(h)y,, by treating the last n coordinates as cavity coordinates. Let us
separate the m(a(N + n)) terms in the first sum

> kloi,0u,,) (2.5)

k<m(a(N+n))

of the Hamiltonian Hy (o) in (1.14) into several groups:
(1) terms for k such that all indices i1 4, ..., i, < N;

For1<[<n:
(21) terms with exactly one of indices i1, ..., i,x equal to N + [ and all others < N;
(3) terms with at least two of indices iy, ..., i, > N.

The probabilities that a term is of these three type are

N \»r 1 N \p-1 X
pl_(—N+n>’p2’l_pN+n(N+n> » P3 = —pl—ZpZJ.

I<n

Therefore, the number of terms in these groups are independent Poisson random variables
with means

a(N+n)p; = a(N+n—np)+O(NY), a(N+n)py = ap+O(N™Y), a(N+n)ps = O(N1).

We can redefine the number of terms in each group to be exactly of means a(N +n—np), ap
and 0 since asymptotically it does not affect E(h)xn,, as in Lemma 2 or using assumption
(1.12). Thus, if we write o = (p,€) € X4, for the first N coordinates p = (p1, ..., pny) and

the last n cavity coordinates € = (g1, ...,¢,) then (2.5) can be replaced with
Z (‘)k(pilqk, R ,pip’k) + Z Z Qk,l(glu Piv -+ 7;0ip_1,k,z) (26)
k<r(a(N+n—np)) 1<n k<m(ap)
where indices 4k, ...,9p % and 1 g, ..., 414, are all uniformly distributed on {1,..., N}.

Let us now consider the perturbation term in (1.14)

Z log Av. exp Z Ok (€, T i+ O i) (2.7)
I<m(cN4n) k<#;(ap)
where j1 g, ..., jp—1,k,; are uniformly distributed on {1,..., N + n}. Here, we used indepen-

dent copies 7; and 6y since m; and 6, were already used in (2.6). The expected number of all
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such indices in (2.7) that belong to {N+1,..., N+n} is cyrnap(p—1)n/(N+n) — 0 which
means that with high probability all indices belong to {1,..., N}. As a result, asymptotically
E(h) n+n will not be affected if we replace the perturbation term (2.7) with

Z log Av, exp Z Ok (&5 Pirsss s Pjpir) (2.8)
I<7m(eN4n) k<#;(ap)
where j1 4, ..., jp—1,, are uniformly distributed on {1,..., N}. Thus, we can assume from

now on that E(h) ., is computed with respect to the Hamiltonian which is the sum of (2.6)
and (2.8). If (-)y denotes the Gibbs average on ¥y with respect to the Hamiltonian

_H§V(p) = Z ek(ph,k?"wpip,k)

k<m(a(N+n—np))

+ Z log Av, exp Z Ok (&5 Pjrsss s Pjprir)

I<7(eN4n) k<#;(ap)

then each factor in
(M) Nn = H(hj>N+n = H< H Ui>N+n - H<H Pi>N+n

Ji<q Jj<q i€Cj Ji<q i€C;

can be written as

<Hiecj Pi AVE exXp Zlgn Zkgm(ap) ek,l(gb Piv s pipfl,k,l>>N I
7 = <H Pi)n

<AV€ exp Zlgn Zkgm(ap) 0k,l<€l7 Piv >+ pip—l,k,l>>N ic€C;

!/

(hj) Nn =

where ()% is the Gibbs average on ¥y corresponding to the Hamiltonian

_H]/\/f(p) = _H]/V(p) + Z log AVE eXp Z ek,l(gv Piy s - 7pip71,k,l)'

I<n kE<m;(ap)

But this Hamiltonian differs from the original Hamiltonian (1.14) only in that the first sum
has m(a(N + n — np)) terms instead of m(aN) and the perturbation term has m(cyiy) +n
terms instead of 7(cy). Therefore, appealing to Lemma 2 and remark after it shows that
E(h)%; is asymptotically equivalent to E(h)y and this finishes the proof.

O
2.2 Lower bound.
Lemma 4 There ezists 1 € M such that limy_,o. Fx > P(u).
Proof. We will obtain the lower bound using the well-known fact that
. . . ZN11
]\}LI%OFN Zlﬂgf«N—i_l)FN“_NFN) :lﬂlnglog 7y (2.9)
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Suppose that this lower limit is achieved over subsequence (Ng) and let 1 € M be a limit
of (un) over some subsubsequence of (Ny). Let ¢ = ,. The considerations will be very
similar to the proof of Lemma 3. Let us consider Elog Zy,; and let us start by separating
the m(a(N 4 1)) terms in the first sum in the Hamiltonian Hy 4 in (1.14) into three groups:
(1) terms for k such that all indices i1, ..., i, < N; (2) terms with exactly one of indices
W s - - ipx equal to N +1; (3) terms with at least two of indices 4y, . . ., 4, equal to N + 1.
The probabilities that a term is of these three types are

N \p 1 N \p-1 ]
p1—<N—+1> ) pQ_pN—H<N—+1> y P3 =1 —P1 — P2

correspondingly. Therefore, the number of terms in these three groups are independent Pois-
son random variables with means

a(N+1pr=a(N—p+1)+ON "), a(N+ ps=ap+ O(N"),a(N +1)ps = O(N ).

For simplicity of notations, let us pretend that the number of terms in each group is exactly of
means (N —p), ap and 0 since it will be clear from considerations below that asymptotically
it does not affect the limit in (2.9). If we write o = (p,e) € Xy for p € Xy and ¢ €
{—1,+1} then we can write the first term in Hy (o) as

Z ek’(pil,k’ T 7pip,k) + Z ek(€7 Pjigs - 7pjp—1,k) (2'10)

k<m(a(N—p+1)) k<r(ap)

where indices iy, ..., %, and jig, ..., jp—14 are uniformly distributed on {1,..., N}. Simi-
larly, we could split the m(cn41) terms in the perturbation Hamiltonian (1.13) into indices {
for which all 14, ...,%—1,; < N and indices [ for which at least one of these indices equals
N + 1. However, as in the proof of Lemma 3, since with high probability all these indices
will be < N and |cy.1 — en| — 0, we can simply replace the perturbation term with

Z log Av. exp Z Ok (€, Pivss -3 Pipr i) (2.11)

1<m(en) k<m (ap)
where 43 k4, . . ., i1k, are uniformly distributed on {1,..., N}. Let (-)’ be the Gibbs average
on Xy corresponding to the Hamiltonian
_H]/V(p) = Z ek(pl&,k? s 7pip,k)

k<m(a(N—p+1))

+ Z log Av, exp Z Ok (e, Pisgors -+ - ,pip_l’kyl)

I<m(en) k<m;(ap)

and Z be the corresponding partition function. Then,

Z N /
év,+1 — Elog< Z exp Z Or(g, pjrps - - - 7/7jp71,k)> : (2.12)
N

e=+1 k< (ap)

Elog
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Conditionally on m(ap) and (ék) and on the event that all indices jy , . . ., j,—1x are different,
Lemmas 1 and 2 imply that (2.12) converges to

Elog E/ Z exp Z O (e, S1hy v Sp_1k)-

e=+1 k<m(ap)

For large N, indices jig, ..., jp—14 will all be different for all £ < 7(ap) with high prob-
ability and, therefore, this convergence holds unconditionally. Similarly, one can analyze
Elog(Zy/ZYy ). Let us split the first sum in the definition of —Hy(p) in (1.14) into two sums

Z ek(pil,m s 7pip,k) + Z 0k<10j1,k7 S 7pjp,k)

k<m(a(N—p+1)) k<m(a(p—1))
where indices i1, ..., %% and ji, ..., Jpk are uniformly distributed on {1,..., N}. There-
fore,
ZN . /
Elog Z_fv = Elog<exp Z Or(Pjy 1o» - ,pjpyk)> ) (2.13)

k<m(a(p—1))

Again Lemmas 1 and 2 imply that this converges to

Elog E exp Z (s - Spii)

k<m(a(p—1))

and this finishes the proof of the lower bound.
O
If we knew that 1 € M is the unique limit of the sequence (uy), this would finish
the proof of the first half of Theorem 2, since limy_ oo Fiy = limy_y00 Elog Zn11/Zx when
the limit on the right exists. However, the proof of the general case and the second half of
Theorem 2 will require more work. Before we move to the upper bound, let us record one
more consequence of the argument in Lemma 4. For n > 1, let us define

1 1
(1) = log2 + —~ Elog E'Av, Ai(e;) — —~ElogE’ B.. 2.14
Polp) =log2+ ~ElogE'Aveexp ) | Ai(z;) — ~ElogElexp ) | (2.14)

i<n i<n

The following holds.
Lemma 5 For all p € M, P,(n) = P(u) for alln > 1.

Proof. We will only give a brief sketch since this will be proved for all 4 € M;,,, in Lemma 7
below. What we showed in the proof of Lemma 4 is that if ;15 converges to p over subsequence
(Ng) then Elog Zn.1/Zn converges to P(u) over the same subsequence. Similarly, one can
show that, given n > 1, over the same subsequence

1
~(Elog Z+n — Elog Zy) — Pa(p).

The only difference is that we split the terms in the Hamiltonian Hy ., (o) into groups as in
Lemma 3, i.e. instead of group (2) we will have n groups each consisting of the terms with
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exactly one of the indices %1 4,...,%,, equal to N 41 for [ =1,...,n. On the other hand, if

we write
n

1
(Elog Znyn — Elog Zy) = - Z(E log Zn11 — Elog Zn41-1)
=1

1
n
then repeating the proof of Lemma 4 one can show that for each term on the right hand side

ZNk—H

lim Elog =P(u),

Np—o0 ZNy+1-1
where instead of p1n, — p one has to use that up, y;—1 — p which holds by Lemma 3. This
finishes the proof.

2.3 Upper bound and free energy.

Since the perturbation term in (1.14) does not affect the limit of free energy, we will now
ignore it and consider free energy Fly defined for the original unperturbed Hamiltonian (1.8).
Recall A;(e) and B; defined in (1.17) and (1.18).

Lemma 6 For any function o : [0,1]* — {—1,+1} we have

1 1
Fy <log2+ NElogE'Ava epoAi(gi) - NElog]E' expz B;. (2.15)

i<N i<N

Remark. In general, this upper bound does not decouple and depends on NV since all s;
and $; x; defined in (1.15) and (1.16) depend on the same variable u in the second coordinate.
We will see that the proof of the upper bound (2.15) does not to work if one tries to replace
u by independent copies u; in the definition of A;(¢) and B;. For 0 = o, for p € M, Lemma
5 implies that this upper bound does not depend on N and, thus, Fy < P(u). Together with
the lower bound of Lemma 4 this proves that
won =l P

To prove the second part of Theorem 2, we will show in Lemma 7 below that the invariance
properties in (1.22) imply that P,(u) = P(p) for p € M,,, as well which will finish the
proof of Theorem 2.

O

Proof of Lemma 6. A proof by interpolation is a slight modification of the proof in
[20]. For ¢ € [0, 1], let us define similarly to (1.17) and (1.18)

Al(e) = Z Or,i(€, Sijk1s s Sikp-1) (2.16)
k<m;((1—t)pa)
and .
Bl = Z Or,i(Bip1s- -5 Bikp)- (2.17)
k<m;(t(p—1)a)
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Consider an interpolating Hamiltonian

—Hyy(o)= > Okloi,, ...00,)+ > Alle:)+> B! (2.18)
k<m(taN) i<N i<N
and let

1
o(t) = NElog]E' ; exp(—Hn (o))
ocLN

Since, clearly,
1
o(1) = Fy + N Elog E exp Z B;

i<N
and

1
2(0) = log2 + - Elog ' Av. exp > Ae)

i<N
it remains to prove that ¢'(t) < 0. Let us consider the partition function
Z = Z exp(—Hpy(0))

[ AN

and define

T = Z|_ Zh, =7

(taN)=m’ t,m

and me =7

75 (1—t)pa)=m mi(t(p—1)a)=m’

If we denote the Poisson p.f. as 7()\, k) = (\*/k!)e™ then

ElogE'Z = ) w(taN,m)ElogE'Z,,

m>0
and, for any i < N,
ElogE'Z = w((1 - t)pa,m)ElogE'Z},,
m2>0

and
ElogE'Z = Y w(t(p — 1)a,m)Elog B'Zf,.

m>0
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Therefore, we can write

, or(taN,m) 1 , or((1 —t)pa,m) 1 ,
o) = Z%Nlﬁzloglﬁzzmjuzz ( 8t> )N]ElogIEme

m>0 i<N m>0

on(t(p — Da,m) 1 B
+Y Y o ~ ElogE'Z5,

<N m>0
= «a Z (taN,m — 1)I(m > 1) — 7(taN, m))Elog E'Z,
m>0
—pa— Z Z (1 = t)pa, m — 1)I(m > 1) — w((1 — t)pa,m))Elog E'Z},
1<N m>0
—1) a— Z > (x(tp — Doym = 1)I(m > 1) — x(t(p — 1o, m))Elog E'Z5,
z<N m>0
= a) w(taN,m)Elog(E'Zy1 /E Z,)
m>0
—pa— Z Z (1—t)pa,m)Elog(E'Z;}, ., /E'Z},,)
z<N m>0
—1a—zz (p — V)a,m)Elog(E'ZE, ., /E'ZE,)
i<N m2>0
EZ,, Bz EZ5,
= oElog 57 ~Poy ZElog o + (p — 1)aElog 57 (2.19)

where Z.1, Z,, and Z5, contain one extra term in the Hamiltonian in the corresponding

Poisson sum. Namely,

Zoq = Z exp (o, ...,05) exp(—Hny(0)),

O'EZN
z+1 Z exp (o4, $1,...,5p-1) exp(—Hpy (o)),
oEX N
78 = Z exp0O(sy,...,Sp) exp(—Hn. (o)),
oeXy
where random function ¢ and indices i1, . .., 4, uniform on {1,..., N} are independent of the

randomness of the Hamiltonian Hy,. If, for a function f of o, v and (z), we denote by (f);

the Gibbs average
1

EZ

(fle= E’ Z fexp(—Hn (o))

oEXN

then (2.19) can be rewritten as

1
ozIElog<exp O(oi,- .. ’Uip>>t —pa ZElog<exp 0(oi, 81, - - - 7SP—1>>1;

i<N
+ (p— DaElog(exp(sy, ..., sp)),- (2.20)
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By assumptions (1.9) and (1.11) we can write

log{exp6(0i,,...,0:,)), = loga+log(1+b{fi(0s).-. fo(03,)),)
= toga— 3" E X ilon) )]

n>1

Using replicas o', u; and (z'), we can write

<f1(0i1)' A Ulp <Hf1 11 )>t

I<n

and, thus,

SED DR GICORSACE) | | £

11500y ip <N i<p

Aj,n = Ajm(O'l, ce ,0'”) = %ZH‘]Z’(U[

i<N I<n

where

Denote by [Ey the expectation in fi,..., f,. Since fi,..., f, are i.i.d. and independent of the

randomness in (-),
0[] A, = (Eo [T Asn), = (B2

J<p J<p
where B,, = EgA;,. Therefore, since we also assumed that b is independent of fi,..., f,,
1 (=0)" ) rp
]Eom Z N10g<exp0(0i1,...,aip)>t =Egloga — ;T<B">t (2.21)
i1y0ip< n>

A similar analysis applies to the second term in (2.20),

log(exp 6(0;, s1,. .., Sp—l)>t =loga — Z (_le)n <fp(0i) H fj(sj)>

n>1 j<p—1
—b

zloga—z(
n

"L T IT 56),

n>1 I<n I<n j<p—1

n

t

where in the last equality We again used replicas o', u; and ('), for example, compared to
(1.15), s} is now defined by s} = o(w, u, v;, ). Thus,

% Zlog<exp 0(ci, 51, -, sp,1)>t =loga — Z (_7[;)” <Ap,n H H fj(3§)>t-

i<N n>1 j<p—11i<n

(Note: It was crucial here that sg do not depend on ¢ through independent copies u; rather
than the same w. It is tempting to define the interpolation (2.18) by using independent wu;
for i < N since this would make the upper bound in (2.15) decouple but the proof would
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break down at this step.) In addition to fi, ... f,, let Eq also denote the expectation in (v;)
and (z) in s}, but not in sequences (v), () in the randomness of (-);. Then,

Eo% Z log{exp 0(0, s1,. .., 3p71)>t = Eologa — Z (_:Z)n <Bn<Cn)p71>t (2.22)

<N n>1

where

Cn:On(w7u17---aun):EOHfj(Sl EOHfj o\w, ur, vy, ]))

I<n I<n

obviously does not depend on j. Finally, in absolutely similar manner
(=0)" /(v
Eolog{expf(sy, ..., SP)>t = Ejloga — Z T<(Cn> >t. (2.23)
n>1
Combining (2.21), (2.22) and (2.23) we see that (2.20) can be written as

Y @E@g — pB, O 4 (p— 1)(Cn)p>t <0 (2.24)

n>1

which holds true using condition (1.10) and the fact that 2? — pry?~! + (p — 1)y? > 0 for all
x,y € R for even p > 2. This finishes the proof of the upper bound.
O

Before proving the invariance properties of Theorem 1 let us finish the proof of Theorem
2 by showing that for invariant measures M;,, the upper bound decouples.

Lemma 7 For all p € My, Pn(p) = P(p) for alln > 1.

Proof. If we recall A; defined in (1.26) then we can rewrite (2.14) as
1 1
P.(p) =log2 + - Elog E' exp ; A — - ElogE' exp ; B;. (2.25)

The result will follow if we show that for any n > 1,

E exp Zi§n+1 A;

El ' ElogE exp A, 2.26
og E/ exp ZzgnA 0g L exp +1 ( )

and
E exp Zign—i-l B;

E'exp) . B
To prove this we will use the invariance properties (1.27) and (1.28). If in (1.28) we choose
r to be a Poisson r.v. with mean n(p — 1)a then it becomes

Elog = ElogE exp B,y1. (2.27)

E H E/ H Hl<q E/ HzEC Si €Xp Zz<n

/
1<q 1€Cy <E exp Zzgn )

(2.28)
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We will only show how (1.27) implies (2.26) since the proof that (2.28) implies (2.27) is
exactly the same. We only need to prove (2.26) conditionally on the Poisson r.v. m,1(pa)
and functions (6 1) in the definition of A, 1,

exp Ap41 = Av.exp Z 91@(5,81,n+1,k,---,Sp—1,n+1,k), (2.29)

k<mpn11(pa)

since we can control these functions uniformly with high probability using condition (1.12).
Approximating the logarithm by polynomials, in order to prove (2.26) it is enough to prove
that

E'exp Apy1exp) i, A
( Eexp) ., A

for all ¢ > 1. Condition (1.9) implies that the right hand side of (2.29) is a polynomial of
spins (s;,+1%) for k < m,41(pa) and j < p—1 and, therefore, (2.30) is obviously implied by
(1.27) if we simply enumerate spins (s;,11,x) as spins (s;) for n + 1 < i < m by choosing m
large enough. Averaging over random 7,41(pa) and (6 ,+1) proves (2.30) and finishes the
proof.

")q — E(E exp Ay 1) (2.30)

Let us note that, similarly, (1.28) implies

epoKnJr 0i(S14y -y 5pi)
E’epoK 0;(S14y- -, 5p4)

Elog = ElogE exp é1(§1,1, s 8pa)-

which obviously implies (1.25), i.e

ElogE expB = ElogE exp Z Ok(S1 s -5 Spk)
k<m((p—1)a)
= (p—1)aElogE expf(sy,...,sp).

2.4 Invariance and self-consistency equations.

Proof of Theorem 1. Let h = [],_, uy where by = [],¢, o} Consider € M which is
a limit of py over some subsequence (NVi). Using Lemma 3, the left hand side of (1.22)
is the limit of E(h) ., over subsequence (Nj). The right hand side of (1.22) will appear
as a similar limit once we rewrite this joint moment of spins using cavity coordinates and
"borrowing” some terms in the Gibbs measure from the Hamiltonian (1.14). The spins with
coordinates ¢ < n will play the role of cavity coordinates. Let us separate the w(a(N + n))

terms in the first sum
> Okloi,,0i,,) (2.31)
k<m(a(N-+n))

in (1.14) in the Hamiltonian Hy, into three groups:
(1) terms for k such that all indices i1, ..., %% > n;
For1<j<n:
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(27) terms with exactly one of indices iy, ..., i, equal to j and all others > n;
(3) terms with at least two of indices 4, ..., i, < n.

The probabilities that a term is of these three type are

N \p 1 N \r1 )
pl_<N+n>’p2’j_pN+n<N+n> » P3 = _pl_ZPQ,l-

I<n

Therefore, the number of terms in these groups are independent Poisson random variables
with means

a(N+n)p; = a(N+n—np)+O(N7Y), a(N+n)p2; = ap+O(N"), a(N+n)ps = O(N ).

We can redefine the number of terms in each group to be exactly of means a(N +n—np), ap
and 0 since asymptotically it does not affect E(h)ny,. Thus, if we write o = (g, p) € Lnin
for the first the first n cavity coordinates € = (e1,...,¢,) and the last N coordinates p =
(p1,...,pn) then (2.31) can be replaced with

Z ek(piLka s 7pip7k) + Z Z ek,j(gjv pil,;w-? cee 7pip_1,k,‘7'> (232)

kE<rm(a(N+n—np)) J<n k<m;(ap)
where indices 1, ..., and iy, ..., %14, are all uniformly distributed on {1,..., N}.
Let us now consider the perturbation term in (1.14)
Z log Av. exp Z Ori(e, Tivwar g nn) (2.33)
I<m(cN4n) k<#;(ap)
where ji ki, ..., Jp—1ks are uniformly distributed on {1,..., N + n}. Here, we used indepen-

dent copies 7; and 6, since m; and 6 ; were already used in (2.32). The expected number
of these indices that belong to {1,...,n} is eypnap(p — 1)n/N — 0 which means that with
high probability all indices belong to {n+1,..., N+n}. As a result, asymptotically E(h)np
will not be affected if we replace the perturbation term (2.33) with

Z log Av, exp Z Ok (€ Pjrsess s Piprin) (2.34)
lSﬂ—(CN+n) kgﬁ—l(ap)
where j1 4, ..., jp—1,, are uniformly distributed on {1,..., N}. Thus, we can assume from

now on that E(h)y, is computed with respect to the Hamiltonian which is the sum of (2.32)
and (2.34). If (-)y denotes the Gibbs average on ¥y with respect to the Hamiltonian

“Hyp) = S Ol i) (2.35)

k<n(a(N+n—np))

+ Z log Av, exp Z Ori (€, Pjrsess > Pipris)

I<m(cN+n) k<#;(ap)
then we can write M. U
1< N,l
E(h)sn = Bt (2.36)
N
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where

/
UN,Z = <AVE hl(ea p) exXp Z Z 9k,j<€j7 pil’k,ja s 7pip,1’;w-)>N

J<n k<w;(ap)

and /

VN = <AV5 expz Z Qkyj(sj, pil,lm,j’ N ’pip—l,k,j)>N'

J<n k<w;(ap)

Finally, given r > 1, let us borrow r terms from the first sum in (2.35) by splitting the last
r terms and replacing the first sum in (2.35) with

Z ek(pil,ka"wpip’k)+Zek(pj1,k7"'apjp,k)'
k<m(a(N+n—np))—r k<r
Here we ignore the negligible event when 7(a(N + n — np)) < r. If we define
~Hj(p) = > Ok(Pir -+ Piy ) (2.37)

k<m(a(N+n—np))—r

+ Z log Av, exp Z ek,l(&le,k,m~-->Pjp71,k,z)

I<m(cN+n) k<#;(ap)

and let (-)% denote the Gibbs average on ¥ with respect to this Hamiltonian then Uy ,;/Vy =
! /
N1/ Vy where

Uy, = <AvE hi(e, p) exp Z Z Ok,i (€5 Pivseys -+ s Pip_1s,) EXD Z Ok (P s - - - ,pjpyk)>

J<n k<m;(ap) k<r

"

N

and
1

v/ — <AV6 expz Z Or,i (€ Pivsys -+ s Pip_ir,) EXP Z Or (g po» - - 7Pjp,k)> )

- N
J<n k<n; (ap) k<r

By Lemma 2, the distribution of spins under the annealed Gibbs measure E(-)%; correspond-
ing to the Hamiltonian HY(p) still converges to p over the subsequence (Ny). Conditionally
on (m;(ap)), (6x), (6x) and on the event that all indices 71 4., . . ., ip_14; and j1k, . . ., Jpi are
different, Lemma 1 implies that the right hand side of (2.36) converges over subsequence (Ny)
to E]],c, Ui/V? where (U;) and V' are defined in (1.20) and (1.21) only now conditionally
on the above sequences. Since asymptotically all indices are different with high probability,
the same convergence holds unconditionally and this finishes the proof.

3 Sherrington-Kirkpatrick model.

3.1 Properties of convergence.

Of course, Lemma 1 still holds since it does not really depend on the model. However, the
role of this lemma in the Sherrington-Kirkpatrick model will be played by the statement
that we made at the beginning of the introduction which we now record for the reference.
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Lemma 8 The joint distribution of spins (o

1) and multi-overlaps (1.5) converges to the
joint distribution of spins (1.3) and multi-overlaps (1.6) over any subsequence along which

un converges to .

Lemma 2 also has a straightforward analogue for the Sherrington-Kirkpatrick model. Let ()
denote the Gibbs average with respect to the sum of an arbitrary Hamiltonian on ¥y and
a perturbation term (1.34) and let ()" denote the Gibbs average corresponding to the sum
of the same arbitrary Hamiltonian and a perturbation as in (1.34) only with the number of
terms replaced by 7(cy) + n instead of 7(cy) in the first sum and 7’(cy) + m instead of
7'(cy) in the second sum, for any finite m,n > 1. Then the following holds.

Lemma 9 For any bounded function h of finitely many spins, or finitely many multi-overlaps,
we have

lim [E(h)" — E(h)| = 0. (3.1)

N—oo

The proof is exactly the same as in Lemma 2. The role of the perturbation (1.34) will finally
start becoming clear in the following exact analogue of Lemma 3.

Lemma 10 If uy converges to pu over subsequence (Ny) then it also converges to u over
subsequence (N +n) for any n > 1.

Proof. We will show that the joint moments of spins converge to the same limit over sub-
sequences that differ by a finite shift n. Let h = J],., h; where hj = [];cc, 07 over some

finite sets of spin coordinates C;. Let us denote by (-)n the Gibbs average with respect to
the Hamiltonian (1.14) defined on N coordinates. We will show that

A}l_f)lgo [E(h) N4 — E(h)n| = 0.

Let us rewrite E(h)ny, by treating the last n coordinates as cavity coordinates. Let us
write & = (p,€) € Xy, for the first N coordinates p = (p1,...,pn) and the last n cavity
coordinates € = (e1,...,&,) and rewrite (1.30) as

~Hynlp) + Y eZi(p) + 8(0) (3.2)

i<n

where we define (slightly abusing notations)

. By
—Hyin(p) = Z (N +mn)=b/2 Z YirsesipPin -+ Pips (3.3)

p=>1 1<i,..,ip<N

the term €;Z;(p) consists of all terms in (1.30) with only one factor ¢; from e present, and
the last term ¢ is the sum of terms with at least two factors in €. It is easy to check that

EZi(p")Zi(p?) = € (R(p", p*)) + on(1)
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uniformly over all p', p* and the covariance of §(o) is also of small order uniformly over

o', 0% By the usual Gaussian interpolation one can therefore redefine the Hamiltonian

HN—HL(”) by
Hy () = ~Hyinlp) + 6 Zi(p) 34

i<n

where Gaussian processes Z;(p) have covariance &'( R(p!, p?)). We can replace the perturba-
tion term —HY (o) by

—HY(p)= > logchGer(p)+ > Goxlp (3.5)

k<7T(CN) k<7T/(CN)

without affecting E(h)y, asymptotically, since by Lemma 9 we can slightly modify the
Poisson number of terms using that |cy4, — cy| — 0 and then replace G¢ ;(0) and Gy (o)
by Gei(p) and Gg,(p) by interpolation using that cy = o(NV). If (-)’y denotes the Gibbs
average on Yy with respect to the Hamiltonian

—Hy(p) = —Hyin(p) — HY(p) (3.6)

then each factor in

<h>N+n = H< N+n = H H U’>N+n H<H pi>N+n

i<q i<q i€Cj 7<q i€Cj

(in the last equality we used that for large N all sets C; will be on the first N coordinates)
can be written as
<Hi€C]- pi Ave exp Zign 5iZl<p>>/]V "

= <H Pi) N

<h >N+n = /
J (Av. exp > i<n 5iZi<p)>N i€C;

where (-)% is the Gibbs average on Xy corresponding to the Hamiltonian
—H}(p) = —Hy(p) + Y _logch Zi(p)
i<n

Thus, E(h) Ntn = E(h). Since Z;(p) are independent copies of G (p), in distribution

—HY(p) = —Hy1n(p) — HY (p)

where

~HY'(p)= ) logchGerlp)+ > Goxrlp (3.7)

kSﬂ'(CN)—‘r k<7’l” CN)

Let us now consider E(h) . It is easy to check that, in distribution, the Hamiltonian Hy(p)
can be related to the Hamiltonian Hy.,(p) in (3.3) by

—Hyx(p) = —Hxn(p) + ) Yi(p) (3.8)

i<n
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where (Y;(p)) are independent Gaussian processes with covariance
EY;(p")Yi(p*) = 0(R(p', p*)) + on(1).

Again, without affecting E(h)y asymptotically, one can assume that the covariance of Y;(p)
is exactly 0(R(p', p?)) which means that they are independent copies of Gy(p). Therefore,
we can assume that E(h)y is taken with respect to the Hamiltonian

—HY(p) = —Hy1n(p) — HY(p)

where

—HY(p)= > logchGeulp)+ Y.  Goxlp). (3.9)
k<m(cn) k<r'(cn)+n
Lemma 9 then implies that both perturbation terms (3.7) and (3.9) can be replaced by the
"

original perturbation term (1.34) without affecting E(h)% and E(h)y asymptotically and
this finishes the proof.

3.2 Lower bound.

Lemma 11 There exists u € M such that limy_,o Fx > P(p).

Proof. We again use (2.9). Suppose that this lower limit is achieved over subsequence (N)
and let p© € M be a limit of (uy) over some subsubsequence of (Ny). Let Z}, and (-) be
the partition function and the Gibbs average on ¥y corresponding to the Hamiltonian H},
defined in (3.6) and let us compute the limit of

ZN+1 ZN
El — Elog —
og 7, og 7

along the above subsubsequence. Using (3.4) and (3.8) for n = 1 and the fact that, as in
(3.5), the perturbation Hamiltonian HY_ (o) in Zy, can be replaced by HY (p), the above
limit is equal to the limit of

log 2 + Elog(ch G¢ (p)) — Elog(exp Gy(p)).

It remains to show that

A}im Elog(ch G¢(p)) = Elog E'ch Ge (7, (w, u, -)) (3.10)
—00
and

A}im Elog(exp Go(p)) = ElogE' exp Go(7,(w, u, -)) (3.11)

where for simplicity of notations we will write limits for N — oo rather than over the above
subsubsequence. The proof of this is identical to Talagrand’s proof of the Baffioni-Rosati
theorem in [30]. First of all, if E, denotes the expectation in the randomness of Gg(p)
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conditionally on the randomness in (-) then standard Gaussian concentration implies that
(see, for example, Lemma 3 in [21])

Pg<‘log<ch Ge(p)) — E,log(ch G,g/(pm > A) < e~ eA?
for some small enough constant ¢ and since
0 < B, log(ch Ge(p)) < log(E,ch Ge(p)) < €(1)/2
for large enough A > 0 we get
P(|log{ch Ge (p))| > A) < e™*4°, (3.12)

Therefore, if we denote log, = max(—A, min(log x, A)) then for large enough A,

|Elog(ch Ge(p)) — Elog,(ch Ge (p))| < e (3.13)
Next, if we define chs x = min(ch z, ch A) then using that

|log,z —log,y| < etlz —y| and |chx —chyz| < chaI(|z] > A)

we can write

[Elog,(ch Ge(p)) — Elog,(cha Ge(p))| < e*E(|chGe(p) — cha Ge(p)|)

" E(ch Ge(p) I(|Ge(p)| = A)).
By Holder’s inequality we can bound this by
1/2 12 _en2
e (E(E,ch®Ge (p))) " (E(Py(|Ge (p)] > A)))"* < e
for large enough A since Py(|Ger(p)] > A) < e=°4’. Combining with (3.13) proves that

|Elog(ch Ge(p)) — Elog 4(cha Ge(p))| < e (3.14)

Approximating logarithm by polynomials on the interval [e=4,e4] we can approximate

Elog,(chs Ge(p)) by some linear combinations of the moments
E(cha Ge(p))" = E(] [ cha Ge(p")) = (B, [ [ cha Ge (p))
I<q I<q

for ¢ > 1. Since
By [ [ chaGe (') = F((Rir)ir<g) (3.15)

I<q

for some continuous bounded function F' of the overlaps (R )i <4, Lemma 8 implies that

lim E(E, [ [ cha Ge(p') = EF((R}))1r<q)-

N—o0
I<q
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Let us rewrite the right hand side in terms of the process G in (1.37). Recall the definition
of the processes in (1.37) and (1.38). If E¢ is the expectation in the Gaussian randomness
of these processes then the definition of the function F' in (3.15) implies that

EF (R )r<q) = BEq [ [ cha Ge (8u(w, w, ) = B(E'cha Ger (5, (w, u, -)))"
I<q

and, therefore,

Jim E log 4 (cha Ge (p)) = Elog, E'chy Ge (7, (w, u, -)).
—00

(Notice that this approximation by moments depended on functions of the overlaps only
which justifies the comment leading to the equation (1.51).) One can show similarly to
(3.14) that

|Elog E'ch G/ (5, (w, u, -)) — Elogy E'chy G (5,(w, u, )| < e (3.16)
which finishes the proof of (3.10). Equation (3.11) is proved similarly.

3.3 Upper bound and free energy.

Since the perturbation term in (1.14) does not affect the limit of free energy, we will now
ignore it and consider free energy Fy defined for the original unperturbed Hamiltonian (1.30).

Lemma 12 For any function & : [0,1]> — [—1, +1] we have

1 1
Fy <log2 -+ N ElogE' H ch G (o (w,u,-)) — N ElogE' expz Goi(o(w,u,-)). (3.17)

i<N i<N

Proof. This is proved by the Guerra type interpolation as in [14]. If for ¢ € [0, 1] we consider
the interpolating Hamiltonian

—Hyy(0) = —VtHy(o) +VI—t Y 0:Gei(0(w,u,) + VY _ Goi(a(w,u,-))
i<N i<N
and interpolating free energy
1
o(t) = NIElog E' ; exp(—Hyq(0))
oeXy

then to prove (3.17) it is enough to show that ¢'(¢) < 0. This is done by the usual Gaussian
integration by parts as in [14].
O

Before proving invariance properties of Theorem 3 let us finish the proof of Theorem 4
by showing that if we let

1 _ 1 _
Po(p) =log2 + - Elog E' H chGe (G, (w,u,-)) — - ElogE' expz Goi(a,(w,u,-))

i<n i<n

then the invariance of Theorem 3 implies the following.
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Lemma 13 For all p € My, Pn(p) = P(p) for alln > 1.

Proof. The result will follow if we show that for & = 7, for any n > 1,

E'Tlicpi1 ch Gei((w, u,))
Elog — = T Rlog Blch G (o(w, u, 1
©8 E/HignChGggi(?f(w,u,-)) oglE'ch G i1 (0(w, u, -)) (3.18)
and ]E/ Z G (_( ))
© i i w,u, -
Elog XP i<nt1 0,0 — ElOg E exp GG,n+1<5(w, u, )) (319)

E’ exp Zign Goi(o(w,u,-))

To prove this we will use invariance properties (1.44) and (1.45). Using truncation and
Gaussian concentration as in Lemma 11, to prove (3.18) it is enough to show that

E(E/ChA Gﬁ’,n-&-l (5’(10, u, )) Hz‘gn ch Gﬁ’,i(6(w7 u, ))
Y Hign ch G{',i(a(wv u, ))

>q = E(E'cha Ggr i1 (5(w,u, )"

Using replicas as in (1.47), the left hand side can be written as

E'F ngq Hign ch Gﬁ'vi(a-(wa Uur, ))
(]EI Hign ch Gfl,i(a—(wa u, )))q

(3.20)

where

F = F((Rﬁ/)l,l’gq) = EG HChA G§/7n+1(5(w, ur, ))

1<q

is a bounded continuous function of the overlaps defined in (1.7). Approximating F' by
polynomials of overlaps and using (1.44) proves that (3.20) is equal to

EF = EE¢ [ [ cha Gernsr (6(w, uy, ) = E(E'chy Gy (6(w, u, )

I<q

and this finishes the proof of (3.18). Equation (3.19) is proved similarly using (1.45) instead.
O

3.4 Invariance and self-consistency equations.

Proof of Theorems 3 and 5. Let h = [, s where by = [[ ¢, o} Consider 4 € M which
is a limit of py over some subsequence (NVy). By Lemma 10, the left hand side of (1.41) is the
limit of E(h) 51, over subsequence (Ny). The right hand side of (1.41) will appear as a similar
limit once we rewrite this joint moment of spins using cavity coordinates. The beginning of
the proof will be identical to the proof of Lemma 10, only the spins with coordinates ¢ < n will
now play the role of cavity coordinates instead of spins with coordinates N+1 <7 < N +n.
Let us write o = (g, p) € X4, for the first n cavity coordinates € = (ey,...,¢,) and and
the last N coordinates p = (p1,...,pn). Let us consider sequences of Gaussian processes
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(Zi(p)) and (Y;(p)) which are independent copies of G¢(p) and Gy(p) correspondingly. First
of all, we can replace the perturbation term —HY,,, (o) with

—HY(p)= Y logchGexlp)+ Y. Gorlp)+ > Yilp) (3.21)

k<m(cn) k<r'(cn) k<r

for a fixed r > 1 without affecting E<h> Nen asymptotically, since by Lemma 9 we can
slightly modify the Poisson number of terms and then we can replace G ;(0) and Gy (o)
with Ge ;(p) and Gg;(p) by interpolation using that ¢y = o(N). Then, as in (3.4), we can
redefine the Hamiltonian —Hy ., (o) by

—Hyyn(0) = —Hnin(p) + Zgizi(p) (3.22)

i<n

where Hy,(p) is defined in (3.3). Let (-) denote the Gibbs average corresponding to the
Hamiltonian

—Hy(p) = —Hyin(p)+ D logchGex(p)+ D Gox(p). (3.23)

k<m(cn) k<w'(cn)

Recalling the relationship (3.8) between Hy(p) and Hyi,(p), let us note that Lemma 9
implies, as in the proof of Lemma 10, that the joint distribution of spins iy corresponding
to the Hamiltonian (3.23) converges to the same limits (over subsequences) as the original
sequence py. Let us write the function k(o) in terms of € and p as

=lle=1lwnlln=11=1lx
i€C) ieCl  ieC? ieCl  ieC?

where we will abuse the notations and still write C? to denote the set of coordinates p;
corresponding to the original coordinates o, ;. Then we can write

U
E(h) ysn = E Hlﬁq—qm (3.24)
Vy
where
Un; = <AVa H € GXPZ€iZi(P) H pi GXPZYk(P)>
ieC} i<n ieC? k<r
and
Vy = <AV5 exp ¥ e Zi(p)exp Y Yi(p > {exp X (p))
i<n k<r
where we introduced
= "logch Zi(p) + > _Yilp
i<n k<r
It remains to show that I M. v
: I<q Un, _ 1<q Y1
i B e (29
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where

=TF'Av, H £; eXp Zeng : H 0; exp Z Gox(0 o))

zGCd i<n 2602 k<r
for 6; = o(w, u,v;) and

V=FEAv.exp) &G0 Jexp Gyl )

i<n k<r

which is, of course, the same equation as (1.41). (The proof that (1.57) implies (1.61) is
exactly the same of the proof of (3.25).) The proof of (3.25) is nearly identical to the proof
of (3.10) using truncation and Gaussian concentration, only instead of approximating a
truncated version of log x by polynomials we now need to approximate truncated version of
1/z by polynomials. If we denote

Y = log Viy = log(exp X (p))
then, as in (3.12), one can show that for large enough A > 0
P([Y| > A) < e, (3.26)
For A > 0 let (x)4 = max(—A, min(z, A)) so that
| exp(—gz) — exp(—q(x)4)| < max(e™", exp(—qz))I(|z] > A).

If we denote Z = ng o Un, then, obviously, EZ? < L for some large enough L > 0 that
depends on ¢,n,r and function &, and (3.26) implies that

IEZ exp(—qY) —EZ exp(—q(Y) )| < E|Z| max(e~%, exp(—qY))I([Y| > A) < e=** (3.27)

—A

for large enough A. Next, let exp 4, * = max(e~*, min(exp z, ¢”)) and let Y’ = log{exp 4 X (p)).

Since for all z,y € R

lexp(—q(z)4) — exp(—q(y)a)| < qe“"" V| expz — expy|

we get
|exp(—q(Y)a) — exp(—q(Y")a)| < ¢ V(| exp X (p) — exp, X (p)])-

Next, since for all x € R
lexpx — exp, x| < max(e ™, expx) I(|z| > A)
we obtain the following bound
[exp(—g(Y)a — exp(—q(Y") )| < gl (max(e™, exp X () [(|X (p)| > A)).
It is easy to see that P(| X (p)| > A) < e~¢4” for large enough A and using Holder’s inequality
EZexp(—a(V)a) — EZexp(—g(Y)a)| < el DAEZ) V2 (E(max(e, exp 4X (o)) !
< (E(I(IX(p)] = AV < e
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Combining this with (3.27) we proved that
[EZ exp(—qY) — BZ exp(—q(Y")a)| < e~

for large enough A. We can now approximate exp(—q(Y’)a) = (exp4 X(p))~? uniformly by
polynomials of (exp, X (p)) and therefore EZ exp(—¢q(Y’)4) can be approximated by a linear
combination of terms

EHUN,1<6XPA X(p)). (3.28)

I<q

If we write the product of the Gibbs averages using replicas and take expectation with respect
to the Gaussian processes (X;(p)) and (Yi(p)) inside the Gibbs average we will get a Gibbs
average of some bounded continuous function of finitely many overlaps in addition to the
spin terms H@'ecf pi that appear in the definition of Uy ;. Observe that if from the beginning
we chose m = n then factors Hiecf pi would not be present, which means that the linear
combination of (3.28) gives an approximation of E(h)y, (and thus E(h)y) by the annealed
Gibbs average of some functions of overlaps only. In particular, this proves Theorem 5. In
the general case, Lemma 8 implies that (3.28) converges to E[[,., Ui(Va)® where

Vi=E epr(Z log ch Geri((w, u, ) + Y Gola(w, u, -))).

i<n k<r

Since the same truncation and approximation arguments can be carried out in parallel for
the right hand side of (3.25) this proves (3.25) and finishes the proof of Theorem 3.

O

Proof of Theorem 7. Using Gaussian integration by parts and invariance in (1.61),
(1.64) can be rewritten as

1—¢ (E<R?2)2p — 2E(RTS)P(RTS)F + (E(Rcffz)py)

and the second term disappears whenever the Ghirlanda-Guerra identities (1.58) hold. On
the other hand, if (1.64) is uniformly bounded for all ¢ > 0 then for any bounded continuous
function F' of multi-overlaps (1.6) on n replicas

FGP(5<w> U1, )) €xp t Zlgn Gp(a(wv ug, )) _ Gp(5<wa u, )) exXp tGp(5(w> u, ))
E (E'exptG,(a(w,u,-)))” BEFE E exptG,(a(w,u,-))

(3.29)

is also uniformly bounded by invariance in (1.61) and Hoélder’s inequality. Using Gaussian
integration by parts and invariance in (1.61), this is equal to

t(z EF(R)? — nEF(R,,,)" + EF E(Rff’z)p> (3.30)
=2

which can be bounded only if (1.58) holds.
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