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Abstract. In this article, we introduce the notion of free subexponentiality,

which extends the notion of subexponentiality in the classical probability setup

to the noncommutative probability spaces under freeness. We show that distri-
butions with regularly varying tails belong to the class of free subexponential

distributions. This also shows that the partial sums of free random elements

having distributions with regularly varying tails are tail equivalent to their
maximum (in the sense of Ben Arous and Voiculescu, 2006). The analysis

is based on the asymptotic relationship between the tail of the distribution

and the real and the imaginary parts of the remainder terms in Laurent se-
ries expansion of Cauchy transform, as well as, the relationship between the

remainder terms in Laurent series expansions of Cauchy and Voiculescu trans-
forms, when the distribution has regularly varying tails.

1. Introduction

A non-commutative probability space is a pair (A, τ) where A is a unital complex
algebra and τ is a linear functional on A satisfying τ(1) = 1. A non-commutative
analogue of independence, based on free products, was introduced by Voiculescu
(1986). A family of unital subalgebras {Ai}i∈I ⊂ A is called free if τ(a1 · · · an) = 0
whenever τ(aj) = 0, aj ∈ Aij and ij 6= ij+1 for all j. The above setup is suitable for
dealing with bounded random variables. In order to deal with unbounded random
variables, we need to consider a tracial W ∗-probability space (A, τ) with a von
Neumann algebra A and a normal faithful tracial state τ .

A self adjoint operator X is said to be affiliated to a von Neumann algebra A,
if f(X) ∈ A for any bounded Borel function f on the real line R. A self adjoint
operator affiliated with A will also be called a random element. For an affiliated
random element (that is, a self-adjoint operator) X, the algebra generated by X
is defined as AX = {f(X) : f bounded measurable}. The notion of freeness was
extended to this context by Bercovici and Voiculescu (1993). A set of random
elements {Xi}1≤i≤k affiliated with a von Neumann algebra A, are called freely
independent, or simply free, if {AXi}1≤i≤k are free.

Given a random element X affiliated with A, the law of X is the unique probabil-
ity measure µX on R satisfying τ(f(X)) =

∫∞
−∞ f(t)dµX(t) for every bounded Borel

function f on R. If eA denote the projection valued spectral measure associated with
X evaluated at the set A, then it is easy to see that µX(−∞, x] = τ(e(−∞,x](X)).
The distribution function of X, denoted by FX , is given by FX(x) = µX(−∞, x].

Let M be the family of probability measures on R. On M, two associative
operations ∗ and � can be defined. The measure µ∗ν is the classical convolution of
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µ and ν, which also corresponds to the probability law of a random variable X+Y ,
where X and Y are independent and have laws µ and ν respectively. Also, given two
measures µ and ν, there exists a unique measure µ� ν, called the free convolution
of µ and ν, such that whenever X and Y are two free random elements on a tracial
W ∗ probability space (A, τ) with laws µ and ν respectively, X + Y has the law
µ�ν. The free convolution was first introduced in Voiculescu (1986) for compactly
supported measures, extended by Maassen (1992) to measures with finite variance
and by Bercovici and Voiculescu (1993) to arbitrary Borel probability measures
with unbounded support. The classical and free convolutions of distributions are
defined and denoted analogously.

The relationship between ∗ and � convolution is very striking. They have many
similarities like characterizations of infinitely divisible and stable laws (Bercovici
and Pata, 1999, 2000a), weak law of large numbers (Bercovici and Pata, 1996) and
central limit theorem (Maassen, 1992, Pata, 1996, Voiculescu, 1985). Analogues of
many other classical theories have also been derived. In recent times, links with ex-
treme value theory (Ben Arous and Kargin, 2010, Ben Arous and Voiculescu, 2006)
and de Finetti type theorems (Banica et al., 2009) have drawn much attention in
the literature. However there are differences too — for example, Cramer’s theorem
(Bercovici and Voiculescu, 1995) and Raikov’s theorem (Benaych-Georges, 2005)
fail in the non-commutative setup.

Now we consider an interesting family of distributions in the classical setup called
subexponential distributions. The main endeavor of this article is to obtain an ana-
logue of this concept in the non-commutative setup under freeness. A probability
measure µ on [0,∞) with µ(x,∞) > 0 for all x ≥ 0, is said to be subexponential, if
for every n ∈ N,

µ∗n(x,∞) ∼ nµ(x,∞) as x→∞.

For a random variable X with distribution F and subexponential law µ, X and F
are also called subexponential. The above definition can be rephrased in terms of
the complementary distribution functions. For a distribution function F , we define
its complementary distribution function as F = 1 − F . Then a subexponential
distribution function satisfies, for each natural number n, F ∗n(x) ∼ nF (x) as x→
∞. The definition can be extended to probability measures µ and equivalently
distribution functions F defined on the entire real line. A distribution function F
on the real line is called subexponential, if the distribution function F+, defined
as F+(x) = F (x), for x ≥ 0 and F+(x) = 0, for x < 0, is subexponential. Thus
to discuss the subexponential property of the probability measures, it is enough
to consider the ones concentrated on [0,∞). The subexponential random variables
satisfy the principle of one large jump as well. If {Xi} are i.i.d. subexponential
random variables, then, for all n ∈ N,

P[X1 + · · ·+Xn > x] ∼ nP[X1 > x] = P[max1≤i≤nXi > x] as x→∞.

Such a property makes subexponential distributions an ideal choice for modeling
ruin and insurance problems and has caused wide interest in the classical probability
literature (cf. Embrechts et al., 1997, Rolski et al., 1999).

The classical definition of subexponential distributions can be easily extended
to the non-commutative setup by replacing the classical convolution powers by free
convolution powers. We shall define a free subexponential measure on [0,∞) alone,
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but the definition can be extended to probability measures on the entire real line, as
in the classical case. Formally, we define a free subexponential measure as follows:

Definition 1.1. A probability measure µ on [0,∞) with µ(x,∞) > 0 for all x ≥ 0,
is said to be free subexponential if for all n,

µ�n(x,∞) = (µ� · · ·� µ)︸ ︷︷ ︸
n times

(x,∞) ∼ nµ(x,∞) as x→∞.

The above definition can be rewritten in terms of distribution functions as well. A
distribution function F is called free subexponetial if for all n ∈ N, F�n(x) ∼ nF (x)
as x → ∞. A random variable X affiliated to a tracial W ∗-probability space is
called free subexponential if its distribution is so. One immediate consequence of
the definition of free subexponentiality is the principle of one large jump.

Ben Arous and Voiculescu (2006) showed that for two distribution functions F
and G, there exists a unique measure F ∨G, such that whenever X and Y are two
free random elements on a tracial W ∗-probability space, F ∨G will become the
distribution of X∨Y . Here X∨Y is the maximum of two self-adjoint operators de-
fined using the spectral calculus via the projection-valued operators, see Ben Arous
and Voiculescu (2006) for details. Ben Arous and Voiculescu (2006) showed that
F ∨G(x) = max((F (x) + G(x) − 1), 0), and hence F ∨n(x) = max((nF (x) − (n −
1)), 0). Then, we have, for each n, F ∨n(x) ∼ nF (x) as x→∞. Thus, by definition
of free subexponentiality, we have

Proposition 1.1 (Free one large jump principle). Free subexponential distributions
satisfy the principle of one large jump, namely, if F is freely subexponential, then,
for every n,

F�n(x) ∼ F ∨n(x) as x→∞.

While the class of free subexponential distributions possess the above important
property, it remains to be checked whether the class is nonempty. The answer to
this question, which is the main result of this article, is given in Theorem 1.1. The
distributions with regularly varying (right) tails of index −α, with α ≥ 0, form an
important class of examples of subexponential distributions in the classical setup.
(In further discussions, we shall suppress the qualifier “right”.) A (real valued)
measurable function f defined on nonnegative real line is called regularly varying
(at infinity) with index α if, for every t > 0, f(tx)/f(x)→ tα as x→∞. If α = 0,
then f is said to be slowly varying (at infinity). Regular variation with index α at
zero is defined analogously. In fact, f is regularly varying at zero of index α, if the
function x 7→ f(1/x) is regularly varying at infinity of index −α. Unless otherwise
mentioned, the regular variation of a function will be considered at infinity. For
regular variation at zero, we shall explicitly mention so. A distribution function F
on [0,∞) has regularly varying tail of index −α if F (x) is regularly varying of index
−α. Since F (x)→ 0 as x→∞, we must necessarily have α ≥ 0. As in the case of
subexponential distributions, a distribution F on the entire real line is said to have
regularly varying tail if F+ has so. Note that, for x > 0, we have F+(x) = F (x). A
probability measure with regularly varying tail is defined through its distribution
function. Equivalently, a measure µ is said to have a regularly varying tail if µ(x,∞)
is regularly varying.

Other than distributions with regularly varying tails, Weibull distributions with
shape parameter less than 1 and lognormal distribution are some other well known
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examples of subexponential distributions in the classical setup. The last two dis-
tributions have all moments finite unlike the distributions with regularly varying
tails of index −α, which have all moments higher than α infinite.

The distributions with regularly varying tails have already attracted attention
in the non-commutative probability theory. They play a very crucial role in deter-
mining the domains of attraction of stable laws (Bercovici and Pata, 1999, 2000a).
In this article, we shall show that the distributions with regularly varying tails form
a subclass of the free subexponential distributions.

Theorem 1.1. If a distribution function F has regularly varying tail of index −α
with α ≥ 0, then F is free subexponential.

The class of distribution functions with regularly varying tails is a significantly
large class containing stable distributions, Pareto and Fréchet distributions. For all
α ≥ 0, there are distribution functions, which have regularly varying tail of index
−α. The class of distribution function with regularly varying tail of index −α
have found significant application in finance, insurance, weather, Internet traffic
modeling and many other fields.

While it need not be assumed that the measure is concentrated on [0,∞), both
the notions of free subexponentiality and regular variation are defined in terms of
the measure restricted to [0,∞). Thus we shall assume the measure to be supported
on [0,∞) except for the definitions of the relevant transforms in the initial part of
Subsection 2.2 and in the statement and the proof of Theorem 1.1. Due to the lack
of coordinate systems and expressions for joint distributions of non-commutative
random elements in terms of probability measures, the proofs of the above results
deviate from the classical ones. In absence of the higher moments of the distribu-
tions with regularly varying tails, we cannot use the usual moment-based approach
used in free probability theory. Instead, Cauchy and Voiculescu transforms become
the natural tools to deal with the free convolution of measures. We recall the no-
tions of these transforms in Section 2. We then discuss the relationship between
the remainder terms of Laurent expansions of Cauchy and Voiculescu transforms
of measures with regularly varying tail of index −α. We need to consider four
cases separately depending on the maximum number p of integer moments that the
measure µ may have. For a nonnegative integer p, let us denote the class of all
probability measures µ on [0,∞) with

∫∞
0
tpdµ(t) <∞, but

∫∞
0
tp+1dµ(t) =∞, by

Mp. We shall also denote the class of all probability measures µ inMp with regu-
larly varying tail of index −α byMp,α. Note that we necessarily have α ∈ [p, p+1]
(cf. Embrechts et al., 1997, Proposition A3.8(d)). Theorems 2.1–2.4 summarize the
relationships among the remainder terms for various choices of α and p. These
theorems are the key tools of this article. Section 2 is concluded with two Abel-
Tauber type results for Stieltjes transform of measures with regularly varying tail.
We then prove Theorem 1.1 in Section 3 using Theorems 2.1–2.4. We use the final
two sections to prove Theorems 2.1–2.4. In Section 4, we collect some results about
the remainder term in Laurent series expansion of Cauchy transform of measures
with regularly varying tails. In Section 5, we study the relationship between the re-
mainder terms in Laurent expansions of Cauchy and Voiculescu transforms through
a general analysis of the remainder terms of Taylor expansions of a suitable class
of functions and their inverses or reciprocals. Combining the results of Sections 4
and 5, we prove Theorems 2.1–2.4.
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2. Some transforms and their related properties

In this section, we collect some notations, definitions and results to be used later
in the article. In Subsection 2.1, we define the concept of non-tangential limits.
Various transforms in non-commutative probability theory, like Cauchy, Voiculescu
and R transforms are introduced in Subsection 2.2. Theorems 2.1–2.4 regarding
the relationship between the remainder terms of Laurent expansions of Cauchy and
Voiculescu transforms are given in this subsection as well. Finally, in Subsection 2.3,
two results about measures with regularly varying tails are given.

2.1. Non-tangential limits and notations. The complex plane will be denoted
by C and for a complex number z, <z and =z will denote its real and imaginary
parts respectively. We say z goes to infinity (zero respectively) non-tangentially to
R (n.t.), if z goes to infinity (zero respectively), while <z/=z stays bounded. We
can then define that a function f converges or stays bounded as z goes to infinity
(or zero) n.t. To elaborate upon the notion, given positive numbers η, δ and M ,
let us define the following cones:

(1) Γη = {z ∈ C+ : |<z| < η=z} and Γη,M = {z ∈ Γη : |z| > M},
(2) ∆η = {z ∈ C− : |<z| < −η=z} and ∆η,δ = {z ∈ ∆η : |z| < δ},

where C+ and C− are the upper and the lower halves of the complex plane re-
spectively, namely, C+ = {z ∈ C : =z > 0} and C− = −C+. Then we shall
say that f(z) → l as z goes to ∞ n.t., if for any ε > 0 and η > 0, there exists
M ≡ M(η, ε) > 0, such that |f(z) − l| < ε, whenever z ∈ Γη,M . The boundedness
can be defined analogously.

We shall write f(z) ≈ g(z), f(z) = o(g(z)) and f(z) = O(g(z)) as z →∞ n.t. to
mean that f(z)/g(z) converges to a non-zero limit, f(z)/g(z) → 0 and f(z)/g(z)
stays bounded as z → ∞ n.t. respectively. If the non-zero limit is 1 in the first
case, we write f(z) ∼ g(z) as z → ∞ n.t. For f(z) = o(g(z)) as z → ∞ n.t., we
shall also use the notations f(z)� g(z) and g(z)� f(z) as z →∞ n.t.

The map z 7→ 1/z maps the set Γη,1/δ onto ∆η,δ for each positive η and δ. Thus
the analogous concepts can be defined for z → 0 n.t. using ∆η,δ.

2.2. Cauchy and Voiculescu Transform. For a probability measure µ ∈M, its
Cauchy transform is defined as

Gµ(z) =
∫ ∞
−∞

1
z − t

dµ(t), z ∈ C+.

Note that Gµ maps C+ to C−. Set Fµ = 1/Gµ, which maps C+ to C+. We shall
be also interested in the function Hµ(z) = Gµ(1/z) which maps C− to C−.

By Proposition 5.4 and Corollary 5.5 of Bercovici and Voiculescu (1993), for all
η > 0 and for all ε ∈ (0, η ∧ 1), there exists δ ≡ δ(η) small enough, such that Hµ is
a conformal bijection from ∆η,δ onto an open set Dη,δ, where the range sets satisfy

∆η−ε,(1−ε)δ ⊂ Dη,δ ⊂ ∆η+ε,(1+ε)δ.

If we define D = ∪η>0Dη,δ(η), then we can obtain an analytic function Lµ with
domain D by patching up the inverses of Hµ on Dη,δ(η) for each η > 0. In this
case Lµ becomes the right inverse of Hµ on D. Also it was shown that the sets of
type ∆η,δ were contained in the unique connected component of the set H−1

µ (D). It
follows that Hµ is the right inverse of Lµ on ∆η,δ and hence on the whole connected
component by analytic continuation.
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We then define R and Voiculescu transforms of the probability measure µ re-
spectively as:

Rµ(z) =
1

Lµ(z)
− 1
z

and φµ(z) = Rµ(1/z). (2.1)

Arguing as in the case of Gµ(1/z), it can be shown that Fµ has a left inverse,
denoted by F−1

µ on a suitable domain and, in that case, we have

φµ(z) = F−1
µ (z)− z.

Bercovici and Voiculescu (1993) established the following relation between free
convolution and Voiculescu and R transforms. For probability measures µ and ν,

φµ�ν = φµ + φν and Rµ�ν = Rµ +Rν ,

wherever all the functions involved are defined.
We shall also need to analyze the power and Taylor series expansions of the

above transforms. For Taylor series expansion of a function, we need to define the
remainder term appropriately, so that it becomes amenable to the later calculations.
In fact, for a function A with Taylor series expansion of order p, we define the
remainder term as

rA(z) = z−p

(
A(z)−

p∑
i=0

aiz
i

)
. (2.2)

Note that we divide by zp after subtracting the polynomial part.
For compactly supported measure µ, Speicher (1994) showed that, in an appro-

priate neighborhood of zero, Rµ(z) =
∑∞
j=0 κj+1(µ)zj , where {κj(µ)} denotes the

free cumulant sequence of the probability measure µ. For probability measures µ
with finite p moments, Taylor expansions of Rµ and Hµ are given by Theorems 1.3
and 1.5 of Benaych-Georges (2006):

Rµ(z) =
p−1∑
j=0

κj+1(µ)zj + zp−1rRµ(z), and Hµ(z) =
p+1∑
j=1

mj−1(µ)zj + zp+1rHµ(z),

(2.3)
where the remainder terms rRµ(z) ≡ rR(z) = o(1) and rHµ(z) ≡ rH(z) = o(1)
as z → 0 n.t. are defined along the lines of (2.2), {κj(µ) : j ≤ p} denotes the
free cumulant sequence of µ as before and {mj(µ) : j ≤ p} denotes the moment
sequence of the probability measure µ. When there is no possibility of confusion,
we shall sometimes suppress the measure involved in the notation for the moment
and the cumulant sequences, as well as the remainder terms. In the study of stable
laws and the infinitely divisible laws, the following relationship between Cauchy
and Voiculescu transforms of a probability measure µ, obtained in Proposition 2.5
of Bercovici and Pata (1999), played a crucial role:

φµ(z) ∼ z2

[
Gµ(z)− 1

z

]
as z →∞ n.t. (2.4)

Depending on the number of moments that the probability measure µ may have,
its Cauchy and Voiculescu transforms can have Laurent series expansions of higher
order. Motivated by this fact, for probability measures µ ∈ Mp (that is, when µ
has only p integral moments), we introduce the remainder terms in Laurent series
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expansion of Cauchy and Voiculescu transforms (in analogy to the remainder terms
in Taylor series expansion):

rGµ(z) ≡ rG(z) = zp+1

Gµ(z)−
p+1∑
j=1

mj−1(µ)z−j

 (2.5)

and

rφµ(z) ≡ rφ(z) = zp−1

φµ(z)−
p−1∑
j=0

κj+1(µ)z−j

 , (2.6)

where we shall again suppress the measure µ in the notation if there is no possibility
of confusion. In (2.6), we interpret the sum on the right side as zero, when p = 0.
Using the remainder terms defined in (2.5) and (2.6) we provide extensions of (2.4)
in Theorems 2.1–2.4 for different choices of α and p. We split the statements into
four cases as follows: (i) p is a positive integer and α ∈ (p, p+ 1), (ii) p is a positive
integer and α = p, (iii) p = 0 and α ∈ [0, 1) and (iv) p is a nonnegative integer and
α = p+ 1 giving rise to Theorems 2.1–2.4 respectively.

We first consider the case where p is a positive integer and α ∈ (p, p+ 1).

Theorem 2.1. Let µ be a probability measure in the class Mp and α ∈ (p, p+ 1).
The following statements are equivalent:

(i) µ(y,∞) is regularly varying of index −α.
(ii) =rG(iy) is regularly varying of index −(α− p).
(iii) =rφ(iy) is regularly varying of index −(α − p), <rφ(iy) � y−1 as y → ∞

and rφ(z)� z−1 as z →∞ n.t.
If any of the above statements holds, we also have, as z →∞ n.t.,

rG(z) ∼ rφ(z)� z−1; (2.7)

as y →∞,

=rφ(iy) ∼ =rG(iy) ∼ −
π(p+1−α)

2

cos π(α−p)
2

ypµ(y,∞)� 1
y

(2.8)

and

<rφ(iy) ∼ <rG(iy) ∼ −
π(p+2−α)

2

sin π(α−p)
2

ypµ(y,∞)� 1
y
. (2.9)

Next we consider the case where p is a positive integer and α = p.

Theorem 2.2. Let µ be a probability measure in the class Mp. The following
statements are equivalent:

(i) µ(y,∞) is regularly varying of index −p.
(ii) =rG(iy) is slowly varying.

(iii) =rφ(iy) is slowly varying, <rφ(iy) � y−1 as y → ∞ and rφ(z) � z−1 as
z →∞ n.t.

If any of the above statements holds, we also have, as z →∞ n.t.,

rG(z) ∼ rφ(z)� z−1; (2.10)

as y →∞,

=rφ(iy) ∼ =rG(iy) ∼ −π
2
ypµ(y,∞)� 1

y
(2.11)
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and

<rφ(iy) ∼ <rG(iy)� 1
y
. (2.12)

In the third case, we consider α ∈ [0, 1).

Theorem 2.3. Let µ be a probability measure in the class M0 and α ∈ [0, 1). The
following statements are equivalent:

(i) µ(y,∞) is regularly varying of index −α.
(ii) =rG(iy) is regularly varying of index −α.
(iii) =rφ(iy) is regularly varying of index −α, <rφ(iy) ≈ =rφ(iy) as y →∞ and

rφ(z)� z−1 as z →∞ n.t.
If any of the above statements holds, we also have, as z →∞ n.t.,

rG(z) ∼ rφ(z)� z−1; (2.13)

as y →∞,

=rφ(iy) ∼ =rG(iy) ∼ −
π(1−α)

2

cos πα2
µ(y,∞)� 1

y
(2.14)

and

<rφ(iy) ∼ <rG(iy) ∼ −dαµ(y,∞)� 1
y
., (2.15)

where

dα =

{ π(2−α)
2

sin πα
2
, when α > 0,

1, when α = 0.

Finally, we consider the case where p is a nonnegative integer and α = p+ 1.

Theorem 2.4. Let µ be a probability measure in the class Mp and β ∈ (0, 1/2).
The following statements are equivalent:

(i) µ(y,∞) is regularly varying of index −(p+ 1).
(ii) <rG(iy) is regularly varying of index −1.

(iii) <rφ(iy) is regularly varying of index −1, y−1 � =rφ(iy) � y−(1−β/2) as
y →∞ and z−1 � rφ(z)� z−β as z →∞ n.t.

If any of the above statements holds, we also have, as z →∞ n.t.,

z−1 � rG(z) ∼ rφ(z)� z−β ; (2.16)

as y →∞,

y−(1+β/2) � <rφ(iy) ∼ <rG(iy) ∼ −π
2
ypµ(y,∞)� y−(1−β/2) (2.17)

and
y−1 � =rφ(iy) ∼ =rG(iy)� y−(1−β/2). (2.18)

It is easy to obtain the equivalent statements for Hµ and Rµ through the simple
observation that Gµ(z) = Hµ(1/z) and φµ(z) = Rµ(1/z). For p = 0, Theorems 2.3
and 2.4 together give a special case of (2.4) for the probability measures with
regularly varying tail and infinite mean. However, Theorems 2.1–2.4 give more
detailed asymptotic behavior of the real and imaginary parts separately, which is
required for our analysis.
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2.3. Karamata type results. We provide here two results for regularly varying
functions, which we shall be using in the proofs of our results. They are variants of
Karamata’s Abel-Tauber theorem for Stieltjes transform (cf. Bingham et al., 1987,
Section 1.7.5) and explain the regular variation of Cauchy transform of measures
with regularly varying tails.

The first result is quoted from Bercovici and Pata (1999).

Proposition 2.1 (Bercovici and Pata, 1999, Corollary 5.4). Let ρ be a positive
Borel measure on [0,∞) and fix α ∈ [0, 2). Then the following statements are
equivalent:

(i) y 7→ ρ[0, y] is regularly varying of index α.
(ii) y 7→

∫∞
0

1
t2+y2 dρ(t) is regularly varying of index −(2− α).

If either of the above conditions is satisfied, then∫ ∞
0

1
t2 + y2

dρ(t) ∼
πα
2

sin πα
2

ρ[0, y]
y2

as y →∞.

The constant pre-factor on the right side is interpreted as 1 when α = 0.

The second result uses a different integrand.

Proposition 2.2. Let ρ be a finite positive Borel measure on [0,∞) and fix α ∈
[0, 2). Then the following statements are equivalent:

(i) y 7→ ρ(y,∞) is regularly varying of index −α.
(ii) y 7→

∫∞
0

t2

t2+y2 dρ(t) is regularly varying of index −α.

If either of the above conditions is satisfied, then∫ ∞
0

t2

t2 + y2
dρ(t) ∼

πα
2

sin πα
2

ρ(y,∞) as y →∞.

The constant pre-factor on the right side is interpreted as 1 when α = 0.

Proof. Define dρ̃(s) = ρ(
√
s,∞)ds. By a variant of Karamata’s theorem given in

Theorem 0.6(a) of Resnick (1987), as α < 2, we have

ρ̃[0, y] ∼ 1
1− α

2

yρ(
√
y,∞) (2.19)

is regularly varying of index 1− α/2. Then, we have,∫ ∞
0

t2

t2 + y2
dρ(t) = y2

∫ ∞
0

∫ t

0

2sds
(s2 + y2)2

dρ(t)

= y2

∫ ∞
0

2sρ(s,∞)
(s2 + y2)2

ds = y2

∫ ∞
0

dρ̃(s)
(s+ y2)2

.

Now, first applying Theorem 1.7.4 of Bingham et al. (1987), as ρ̃[0, y] is regularly
varying of index 1− α/2 ∈ (0, 2] and then (2.19), we have∫ ∞

0

t2

t2 + y2
dρ(t) ∼

(
1− α

2

)
πα
2

sin πα
2

y2 ρ̃[0, y2]
y4

∼
πα
2

sin πα
2

ρ(y,∞).

�
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3. Free subexponentiality of measures with regularly varying tails

We now use Theorems 2.1–2.4 to prove Theorem 1.1. We shall first look at the
tail behavior of the free convolution of two probability measures with regularly
varying tails and which are tail balanced. Theorem 1.1 will be proved by suitable
choices of the two measures.

Lemma 3.1. Suppose µ and ν are two probability measures on [0,∞) with regularly
varying tails, which are tail balanced, that is, for some c > 0, we have ν(y,∞) ∼
c µ(y,∞). Then

µ� ν(y,∞) ∼ (1 + c)µ(y,∞).

Proof. We shall now indicate the associated probability measures in the remainder
terms, moments and the cumulants to avoid any confusion. Since µ and ν are
tail balanced and have regularly varying tails, for some nonnegative integer p and
α ∈ [p, p+ 1], we have both µ and ν in the same class Mp,α. When α ∈ [p, p+ 1),
depending on the choice of p and α, we apply one of Theorems 2.1, 2.2 and 2.3
on the imaginary parts of the remainder terms in Laurent expansion of Voiculescu
transforms. On the other hand, for α = p + 1, we apply Theorem 2.4 on the real
parts of the corresponding objects. We work out only the case α ∈ [p, p + 1) in
details, while the other case α = p+ 1 is similar.

For α ∈ [p, p+ 1), by Theorems 2.1–2.3, we have

rφµ(z)� z−1 and rφν (z)� z−1 (3.1)

<rφµ(−iy)� y−1 and <rφν (−iy)� y−1 (3.2)

=rφµ(iy) ∼ −
π(p+1−α)

2

cos π(α−p)
2

ypµ(y,∞) and =rφν (iy) ∼ −
π(p+1−α)

2

cos π(α−p)
2

ypν(y,∞).

(3.3)

For p = 0 and α ∈ [0, 1), we further have

=rφµ(iy) ≈ <rφµ(iy) ≈ µ(y,∞) and =rφν (iy) ≈ <rφν (iy) ≈ ν(y,∞). (3.4)

We also know that both Voiculescu transforms and cumulants add up in case of
free convolution. Hence,

rφµ�ν
(z) = rφµ(z) + rφν (z). (3.5)

Further, we shall have κp(µ � ν) < ∞, but κp+1(µ � ν) = ∞ and similar results
hold for the moments of µ � ν as well. Then Theorems 2.1–2.3 will also apply for
µ � ν. Thus, applying (3.5) and its real and imaginary parts evaluated at z = iy,
together with (3.1)–(3.4) respectively, we get,

rφµ�ν
(z)� z−1 as z →∞ n.t.,

<rφµ�ν
(iy)� y−1 as y →∞

and

=rφµ�ν
(iy) ∼ −(1 + c)

π(p+1−α)
2

cos π(α−p)
2

ypµ(y,∞) as y →∞, (3.6)

which is regularly varying of index −(α− p). Further, for p = 0 and α ∈ [0, 1), we
have

=rφµ�ν
(iy) ≈ <rφµ�ν

(iy).
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In the last two steps, we also use the hypothesis that ν(y,∞) ∼ cµ(y,∞) as y →∞.
Thus, again using Theorems 2.1–2.3, we have

−
π(p+1−α)

2

cos π(α−p)
2

ypµ� ν(y,∞) ∼ =rφµ�ν
(iy). (3.7)

Combining (3.6) and (3.7), the result follows. �

We are now ready to prove the subexponentiality of a distribution with regularly
varying tail.

Proof of Theorem 1.1. Let µ be the probability measure on [0,∞) associated with
the distribution function F+. Then µ also has regularly varying tail of index −α.
We prove that

µ�n(y,∞) ∼ nµ(y,∞), as y →∞ (3.8)

by induction on n. To prove (3.8), for n = 2, apply Lemma 3.1 with both the
probability measures as µ and the constant c = 1. Next assume (3.8) holds for
n = m. To prove (3.8), for n = m+ 1, apply Lemma 3.1 again with the probability
measures µ and µ�m and the constant c = m. �

4. Cauchy transform of measures with regularly varying tail

As a first step towards proving Theorems 2.1–2.4, we now collect some results
about rG(z), when the probability measure µ has regularly varying tails. These
results will be be useful in showing equivalence between the tail of µ and rG(iy).
It is easy to see by induction that

1
z − t

−
p∑
j=0

tj

zj+1
=
(
t

z

)p+1 1
z − t

.

Integrating and multiplying by zp+1, we get

rG(z) =
∫ ∞

0

tp+1

z − t
dµ(t). (4.1)

We use (4.1) to obtain asymptotic upper and lower bounds for rG(z) as z →∞ n.t.
Similar results about rH can be obtained easily from the fact that rG(z) = rH(1/z),
but will not be stated separately. We consider the lower bound first.

Proposition 4.1. Suppose µ ∈Mp for some nonnegative integer p, then

z−1 � rG(z) as z →∞ n.t.

Proof. We need to show that, for any η > 0, as |z| → ∞ with z in the cone Γη, we
have |zrG(z)| → ∞. Note that, for z = x + iy ∈ Γη, we have |x| < ηy. Now, as
|z − t|2 = (z − t)(z̄ − t) and z(z̄ − t) = |z|2 − zt, using (4.1), we have,

zrG(z) = z

∫ ∞
0

tp+1

z − t
dµ(t) = |z|2

∫ ∞
0

tp+1

|z − t|2
dµ(t)− z

∫ ∞
0

tp+2

|z − t|2
dµ(t),

which gives

<(zrG(z)) = |z|2
∫ ∞

0

tp+1

|z − t|2
dµ(t)−<z

∫ ∞
0

tp+2

|z − t|2
dµ(t) (4.2)
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and

=(zrG(z)) = −=z
∫ ∞

0

tp+2

|z − t|2
dµ(t). (4.3)

On Γη and for t ∈ [0, ηy], |t− x| ≤ t+ |x| ≤ 2ηy. Thus, we have,∫ ∞
0

|z|2tp+1

|z − t|2
dµ(t) ≥

∫ ηy

0

y2tp+1

(t− x)2 + y2
dµ(t) ≥ 1

1 + 4η2

∫ ηy

0

tp+1dµ(t)→∞,

(4.4)
as y →∞, since µ ∈Mp.

Now fix η > 0, and consider a sequence {zn = xn + iyn} in Γη, such that
|zn| → ∞, that is, |xn| ≤ ηyn and yn → ∞. Assume towards contradiction that
{|znrG(zn)|} is a bounded sequence. Then both the real and the imaginary parts
of the sequence will be bounded. However, then the boundedness of the real part
and (4.2) and (4.4) give ∣∣∣∣<zn ∫ ∞

0

tp+2

|zn − t|2
dµ(t)

∣∣∣∣→∞.
Then, using (4.3) and the fact that |<z| ≤ η=z on Γη, we have

=(znrG(zn)) ≥ 1
η

∣∣∣∣<zn ∫ ∞
0

tp+2

|zn − t|2
dµ(t)

∣∣∣∣→∞,
which contradicts the fact that the imaginary part of the sequence {znrG(zn)} is
bounded and completes the proof. �

We now consider the upper bound for rG(z). The result and the proof of the
following proposition are inspired by Lemma 5.2(iii) of Bercovici and Pata (2000b).

Proposition 4.2. Let µ be a probability measure in the class Mp,α for some non-
negative integer p and α ∈ (p, p+ 1]. Then, for any β ∈ [0, (α− p)/(α− p+ 1)), we
have

rG(z) = o(z−β) as z →∞ n.t. (4.5)

Remark 4.1. We consider the consider principal branch of logarithm of a complex
number with positive imaginary part, while defining the fractional powers in (4.5)
above and elsewhere.

Remark 4.2. Note that (4.5) holds also for p = α with β = 0, which can be readily
seen from Theorem 1.5 of Benaych-Georges (2006).

Proof of Proposition 4.2. Define a measure ρ0 as dρ0(t) = tpdµ(t). Since µ ∈ Mp,
ρ0 is a finite measure. Further, since p < α, using Theorem 1.6.5 of Bingham et al.
(1987), we have ρ0(y,∞) ∼ α

α−py
pµ(y,∞), which is regularly varying of index

−(α− p).
Now fix η > 0. It is easy to check that for t ≥ 0 and z ∈ Γη, t/|z− t| <

√
1 + η2.

For z = x + iy, we have |z − t| > y and hence for t ∈ [0, y1/(α−p+1)], we have
t/|z − t| < y−(α−p)/(α−p+1). Then, using (4.1) and the definition of ρ0,

|rG(z)| ≤
∫ y1/(α−p+1)

0

∣∣∣∣ t

z − t

∣∣∣∣ dρ0(t) +
√

1 + η2ρ0

(
y1/(α−p+1),∞

)
≤ y−(α−p)/(α−p+1)

∫ ∞
0

tpdµ(t) +
√

1 + η2ρ0

(
y1/(α−p+1),∞

)
= o(y−β),
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for any β ∈ [0, (α−p)/(α−p+ 1)), as the second term is regularly varying of index
−(α − p)/(α − p + 1). Further, for z = x + iy ∈ Γη, we have |z| =

√
x2 + y2 ≤

y
√

1 + η2, and hence we have the required result. �

Next we specialize to the asymptotic behavior of rG(iy), as y → ∞. Observe
that

<rG(iy) = −
∫ ∞

0

tp+2

t2 + y2
dµ(t) and =rG(iy) = −y

∫ ∞
0

tp+1

t2 + y2
dµ(t). (4.6)

Proposition 4.3. Let µ be a probability measure in the class Mp.
If α ∈ (p, p+ 1), then the following statements are equivalent:

(i) µ has regularly varying tail of index −α.
(ii) <rG(iy) is regularly varying of index −(α− p).

(iii) =rG(iy) is regularly varying of index −(α− p).
If any of the above statements holds, then

sin π(α−p)
2

π(p+2−α)
2

<rG(iy) ∼
cos π(α−p)

2
π(p+1−α)

2

=rG(iy) ∼ −ypµ(y,∞) as y →∞.

Further, <rG(iy)� y−1 and =rG(iy)� y−1 as y →∞.
If α = p, then the statements (i) and (iii) above are equivalent. Also, if either

of the statements holds, then

=rG(iy) ∼ −π
2
ypµ(y,∞) as y →∞. (4.7)

Further, =rG(iy)� y−1 as y →∞.
If α = p+1, then the statements (i) and (ii) above are equivalent. Also, if either

of the statements holds, then

<rG(iy) ∼ −π
2
ypµ(y,∞) as y →∞. (4.8)

Further, for any ε > 0, <rG(iy)� y−(1+ε) as y →∞.

Remark 4.3. Note that, for α = p + 1, <rG(iy) is regularly varying of index −1
and the asymptotic lower bound <rG(iy) � y−1 need not hold. This causes some
difficulty in the proofs of Propositions 5.1 and 5.2. The lack of the asymptotic
lower bound has to be compensated for by the stronger upper bound obtained in
Proposition 4.2, which holds for α = p+ 1. This is reflected in the condition (R4′′)
for the class Rp,β with β > 0, defined in Section 5. Further note that, the situation
reverses for α = p, as Proposition 4.2 need not hold. The case, where α ∈ (p, p+ 1)
is not an integer, is simple, as the asymptotic lower bounds hold for both the real
and imaginary parts of rG(iy) (Proposition 4.3), as well as, the stronger asymptotic
upper bound works (Proposition 4.2). However, the case of non-integer α ∈ (p, p+1)
is treated simultaneously with the case α = p as the class Rp,0 (cf. Section 5) in
Propositions 5.1 and 5.2.

Proof of Proposition 4.3. The asymptotic lower bounds for the real and the imagi-
nary parts of rG(iy) are immediate from (ii) and (iii) respectively. So, we only need
to show (4.8) and the equivalence between (i) and (ii) when α ∈ (p, p+ 1] and (4.7)
and the equivalence between (i) and (iii) when α ∈ [p, p+ 1).

Let dρj(t) = tp+jdµ(t), for j = 1, 2. Then, by Theorem 1.6.4 of Bingham et al.
(1987), we have, for α ∈ [p, p + 1), ρ1[0, y] ∼ α/(p + 1 − α)yp+1µ(y,∞), which is
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regularly varying of index p + 1 − α ∈ (0, 1], and, for α ∈ (p, p + 1], ρ2[0, y] ∼
α/(p + 2 − α)yp+2µ(y,∞), which is regularly varying of index p + 2 − α ∈ [1, 2).
Further, from (4.6), we get

<rG(iy) = −
∫ ∞

0

1
t2 + y2

dρ2(t) and =rG(iy) = −y
∫ ∞

0

1
t2 + y2

dρ1(t).

Then the results follow immediately from Proposition 2.1. �

While asymptotic equivalences between <rG(iy) and tail of µ for α = p and
=rG(iy) and tail of µ for α = p+ 1 are not true in general, we obtain the relevant
asymptotic bounds in these cases. We also obtain the exact asymptotic orders when
p = 0.

Proposition 4.4. Consider a probability measure µ in the class Mp.
If µ has regularly varying tail of index −p, then, for any ε > 0, <rG(iy)� y−ε

as y →∞. Further, if p = 0, then <rG(iy) ∼ −µ(y,∞) as y →∞.
If µ has regularly varying tail of index −(p+1), then =rG(iy) is regularly varying

of index −1 and y−1 � =rG(iy)� y−(1−ε) as y →∞, for any ε > 0.

Remark 4.4. Note that =rG(iy) is regularly varying for the case α = p + 1 in
contrast to <rG(iy) for the case α = p > 0. Further, for the case α = p + 1, the
lower bound for =rG(iy) is sharper than that for <rG(iy) and coincides with that
of =rG(iy) for the case α ∈ [p, p+ 1) discussed in Proposition 4.3.

Proof of Proposition 4.4. First consider the case where µ has regularly varying tail
of index −p. We use the notation dρ0(t) = tpdµ(t) introduced in the proof of
Proposition 4.2. However, in the current situation Theorem 1.6.4 of Bingham et al.
(1987) will not apply. If p = 0, then ρ0 = µ and ρ0(y,∞) is slowly varying. If
p > 0, observe that, as

∫
tpdµ(t) <∞, we have

ρ0(y,∞) = ypµ(y,∞) + p

∫ y

0

sp−1µ(s,∞)ds ∼ p
∫ y

0

sp−1µ(s,∞)ds,

which is again slowly varying, where we use Theorem 0.6(a) of Resnick (1987).
Thus, in either case, ρ0(y,∞) is slowly varying and converges to zero as y → ∞.
Now, from (4.6) and Proposition 2.2, we also have

<rG(iy) = −
∫ ∞

0

t2

t2 + y2
dρ0(t) ∼ −ρ0(y,∞)

as y →∞. Since ρ0(y,∞) is slowly varying, for any ε > 0, we have |yε<rG(iy)| → ∞
as y →∞. Also, for p = 0, we have <rG(iy) ∼ −ρ0(y,∞) = −µ(y,∞).

Next consider the case, where µ ∈Mp has regularly varying tail of index−(p+1).
Define again dρ1(t) = tp+1dµ(t). Then,

ρ1[0, y] = (p+ 1)
∫ y

0

spµ(s,∞)ds− yp+1µ(y,∞) ∼ (p+ 1)
∫ y

0

spµ(s,∞)ds

is slowly varying, again by Theorem 0.6(a) of Resnick (1987). Then, by (4.6) and
Proposition 2.1, we have

=rG(iy) = y

∫ ∞
0

dρ1(t)
t2 + y2

∼ 1
y
ρ1[0, y]

is regularly varying of index −1. Further, ρ1[0, y]→
∫∞
0
tp+1dµ(t) =∞ as y →∞.

Then the asymptotic upper and lower bounds follow immediately. �
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5. Relationship between Cauchy and Voiculescu transform

The results of the previous section relate the tail of a regularly varying probability
measure and the behavior of the remainder term in Laurent series expansion of its
Cauchy transform. In this section, we shall relate the remainder terms in Laurent
series expansion of Cauchy and Voiculescu transforms. Finally, we collect the results
from Sections 4 and 5 to prove Theorems 2.1–2.4.

To study the relation between the remainder terms in Laurent series expansion
of Cauchy and Voiculescu transforms, we consider a class of functions, which in-
clude the functions Hµ for the probability measures µ with regularly varying tails.
We then show that the class is closed under appropriate operations. See Proposi-
tions 5.1 and 5.2.

Let H denote the set of analytic functions A having a domain DA such that for
all positive η, there exists δ > 0 with ∆η,δ ⊂ DA.

For a nonnegative integer p and β ∈ [0, 1/2), let Rp,β denote the set of all
functions A ∈ H which satisfy the following conditions:

(R1) A has Taylor series expansion with real coefficients of the form

A(z) = z +
p∑
j=1

ajz
j+1 + zp+1rA(z),

where a1, . . . , ap are real numbers. For p = 0, we interpret the sum in the
middle term as absent.

(R2) z � rA(z)� zβ as z → 0 n.t.
(R3) <rA(−iy)� y1+β/2 and =rA(−iy)� y as y → 0+.

For p = 0 = β, we further require that

(R4′) <rA(−iy) ≈ =rA(−iy) as y → 0+.

For β ∈ (0, 1/2), we further require that,

(R4′′) <rA(−iy)� y1−β/2 and =rA(−iy)� y1−β/2 as y → 0+.

Note that the functions in Rp,β satisfy (R1)–(R3) for p ≥ 1. For p = 0 = β,
the functions in Rp,β satisfy (R1)–(R3) as well as (R4′). Finally, for nonnegative
integers p and β ∈ (0, 1/2), the functions in Rp,β satify (R1)–(R3) and (R4′′).

The classes Rp,β as p varies over the set of nonnegative integers and β varies over
[0, 1/2], include the functions Hµ where µ ∈Mp,α with p varying over nonnegative
integers and α varying over [p, p+ 1]:

Case I: p positive integer and α ∈ [p, p + 1): By Proposition 4.1 and 4.3, we
have Hµ ∈ Rp,0.

Case II: p = 0, α ∈ [0, 1): By Proposition 4.1, 4.3 and 4.4, Hµ ∈ R0,0.
Proposition 4.4 is required to prove (R4′) for p = α = 0 only.
Case III: p nonnegative integer, α = p+ 1: By Proposition 4.2 and 4.4, Hµ will

be in Rp,β for any β ∈ (0, 1/2).
We do not impose the condition <rA(−iy) ≈ =rA(−iy) for p > 0, as it may fail

for some measures in Mp,p.
The first result deals with the reciprocals. Note that U(z) and zU(z) have the

same remainder functions and if one belongs to the class H, so does the other.
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Proposition 5.1. Suppose zU(z) ∈ H be a function belonging to Rp,β for some
nonnegative integer p and 0 ≤ β < 1/2, such that U does not vanish in a neighbor-
hood of zero. Then the reciprocal V = 1/U is defined and zV (z) is also in Rp,β.
Furthermore, we have,

(F1) rV (z) ∼ −rU (z), as z → 0 n.t.,
(F2) <rV (−iy) ∼ −<rU (−iy), as y → 0+, and
(F3) =rV (−iy) ∼ −=rU (−iy), as y → 0+.

The second result shows that for each of the above classes, when we consider a
bijective function from the class, its inverse is also in the same class.

Proposition 5.2. Suppose U ∈ H be a bijective function with the inverse in H
as well and U ∈ Rp,β for some nonnegative integer p and 0 ≤ β < 1/2. Then the
inverse V is defined and is also in Rp,β. Furthermore, we have,

(I1) rV (z) ∼ −rU (z), as z → 0 n.t.,
(I2) <rV (−iy) ∼ −<rU (−iy), as y → 0+, and
(I3) =rV (−iy) ∼ −=rU (−iy), as y → 0+.

Next we prove Propositions 5.1 and 5.2. In both the proofs, all the limits will be
taken as z → 0 n.t. or y → 0+, unless otherwise mentioned and these conventions
will not be stated repeatedly. We shall also use that, for any nonnegative integer p
and β ∈ [0, 1/2), with U ∈ Rp,β , we have

|<rU (−iy)| ≤ |rU (−iy)| � 1 and |=rU (−iy)| ≤ |rU (−iy)| � 1. (5.1)

The proofs of Propositions 5.1 and 5.2 will be broken down into cases p = 0 and
p ≥ 1. Each of these cases will be further split into subcases β = 0 and β ∈ (0, 1/2).
The p ≥ 1 is more involved compared to the case p = 0. However, the proofs,
specially that of Proposition 5.2, have substantial parts in common for different
cases.

We first prove the result regarding the reciprocal.

Proof of Proposition 5.1. Note that since zU(z) belongs to H, given η > 0, there
exists δ > 0, such that ∆η,δ is contained in the domain of zU(z) and U does not
vanish on ∆η,δ. Thus, V (z) and hence zV (z) will also be defined on ∆η,δ. So zV (z)
also belongs to H.

Observe that if we verify (F1)–(F3), then zV (z) is automatically in Rp,β as well,
since V (z) and zV (z) have same remainder functions. We shall prove (F1)–(F3)
using the fact that V (z) = 1/U(z) and the properties of zU(z) as an element of
Rp,β .

Case I: p = 0. Let zU(z) = z + zrU (z) be a function in this class. Then
V (z) = 1−rU (z)+O(|rU (z)|2). By uniqueness of Taylor expansion from Lemma A.1
of Benaych-Georges (2006), we have

rV (z) = −rU (z) + O(|rU (z)|2). (5.2)

Since, by (R2), rU (z)� 1, we have rV (z) ∼ −rU (z), which checks (F1).
Further, evaluating (5.2) at z = −iy and equating the real and the imaginary

parts, we have

<rV (−iy) = −<rU (−iy) + O(|rU (−iy)|2)
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and

=rV (−iy) = −=rU (−iy) + O(|rU (−iy)|2).

Thus, to obtain the equivalences (F2) and (F3), it is enough to show that |rU (−iy)|2 =
|<rU (−iy)|2 + |=rU (−iy)|2 is negligible with respect to both the real and the imagi-
nary parts of rU (−iy). We prove the negligibility seperately for two subcases β = 0
and β ∈ (0, 1/2).

Subcase Ia: p = 0, β = 0. Using (5.1) and <rU (−iy) ≈ =rU (−iy) from (R4′),
we have the required negligibility condition.

Subcase Ib: p = 0, β ∈ (0, 1/2). Using (R3) and (R4′′), we have

|=rU (−iy)|2

|<rU (−iy)|
=

y1+β/2

|<rU (−iy)|

(
|=rU (−iy)|
y1−β/2

)2

y1−3β/2 → 0

and

|<rU (−iy)|2

|=rU (−iy)|
=

y

|=rU (−iy)|

(
|<rU (−iy)|
y1−β/2

)2

y1−β → 0.

They, together with (5.1), give the required negligibility condition, thus prov-
ing (F2) and (F3).

Case II: p ≥ 1. Let zU(z) = z +
∑p
j=1 ujz

j+1 + zp+1rU (z) be a function in
this class. Note that, as p ≥ 1 and by (R2), as z � rU (z), we have

∑p
j=1 ujz

j +
zprU (z) = u1z + O(zrU (z)). Thus, using (R2), we have,

V (z) = 1+
p∑
j=1

(−1)j
(

p∑
m=1

umz
m + zprU (z)

)j
+(−1)p+1up+1

1 zp+1 +O(zp+1rU (z)).

Now we expand the second term on the right side. As z � rU (z) from (R2), all
powers of z with indices greater than (p+1) can be absorbed in the last term on the
right side. Then collect the (p+ 1)-th powers of z in the second and third terms to
get c1zp+1 for some real number c1. The remaining powers of z form a polynomial
P (z) of degree at most p with real coefficients. Finally we consider the terms
containing some power of rU (z). It will contain terms of the form zl1(zprU (z))l2
for integers l1 ≥ 0 and l2 ≥ 1, with the leading term being −zprU (z). Since p ≥ 1
and from (R2) we have rU (z)� 1, the remaining terms can be absorbed in the last
term on the right side. Thus, we get,

V (z) = 1 + P (z)− zprU (z) + c1z
p+1 + O(zp+1rU (z)).

By uniqueness of Taylor series expansion from Lemma A.1 of Benaych-Georges
(2006), we have

rV (z) = −rU (z) + c1z + O(zrU (z)).

The form of rV immediately gives rV (z) ∼ −rU (z), since z � rU (z), by (R2).
This proves (F1).

Also, using (5.1), =rV (−iy) = −=rU (−iy)+O(y) and as y � =rU (−iy) from (R3),
we have =rV (−iy) ∼ −=rU (−iy). This shows (F3). Further, as c1 is real, <rV (−iy) =
−<rU (−iy) + O(y|rU (−iy)|). Thus, to conclude (F2), it is enough to show that
y|rU (−iy)| � <rU (−iy), for which it is enough to show that y=rU (−iy)� <rU (−iy).
We show this seperately for two subcases.
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Subcase IIa: p ≥ 1, β = 0. We have by (R3),

y=rU (−iy)
<rU (−iy)

=
y

<rU (−iy)
· =rU (−iy).

Subcase IIb: p ≥ 1, β ∈ (0, 1/2). Using the properties (R3) and (R4′′) we get,

y=rU (−iy)
<rU (−iy)

=
y1+β/2

<rU (−iy)
· =rU (−iy)

y1−β/2 · y1−β ,

It is easy to see that the limit is zero in either subcase. �

Before proving the result regarding the inverse, we provide a result connecting a
function in the class H and its derivative.

Lemma 5.1. Let v ∈ H satisfy v(z) = o(zβ) as z → 0 n.t., for some real number
β. Then v′(z) = o(zβ−1) as z → 0 n.t.

Proof. The result for β = 0 follows from the calculations in the proof of Propo-
sition A.1(ii) of Benaych-Georges (2006). For the general case, define w(z) =
z−βv(z). Then w ∈ H and w(z) = o(1). So by the case β = 0, we have w′(z) =
−βz−β−1v(z) + z−βv′(z) = o(z−1). Thus, zw′(z) = −βz−βv(z) + z−(β−1)v′(z),
where the left side and the first term on the right side are o(1) and hence the
second term on the right side is o(1) as well. �

We are now ready to prove the result regarding the inverse.

Proof of Proposition 5.2. We begin with some estimates which work for all values
of p and β before breaking into cases and subcases. Since U is of the form

U(z) = z +
p∑
j=1

ujz
j+1 + zp+1rU (z)

and rU (z)� 1, by Proposition A.3 of Benaych-Georges (2006), the inverse function
V also has the same form with the remainder term rV satisfying

rV (z)� 1. (5.3)

Also note that V (z) ∼ z. Further, Lemma A.1 of Benaych-Georges (2006) shows
that the coefficients are determined by the limits of the derivatives of the function
at 0. Hence, the real coefficients of U guarantee that the coefficients of V are real.
So we only need to check the asymptotic equivalences of the remainder functions
given in (I1)–(I3). We shall achieve this by analyzing I(z) = rU (V (z))− rU (z), the
fact that U(V (z)) = z and the properties of U as an element in Rp,β . For that
purpose, we define

I(z) = rU (V (z))− rU (z) =
∫
γz

r′U (ζ)dζ,

where γz is the closed line segment joining z and V (z). Using the part (a) in the
proof of Proposition A.3 of Benaych-Georges (2006), given any η > 0, we have, for
all small enough δ > 0,

∆2η,2δ ⊂ DU and V (∆η,δ) ⊂ ∆2η,2δ.

Thus, given any η > 0, there exists δ > 0, such that whenever z ∈ ∆η,δ, V (z)
belongs to ∆2η,2δ. Note that ∆2η,2δ is a convex set. Hence, whenever z ∈ ∆η,δ, γz
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is contained in ∆2η,2δ ⊂ DU and r′U is defined on the entire line segment γz. We
shall need the following estimate that

|I(z)| ≤ |γz| sup
ζ∈γz
|r′U (ζ)| = |V (z)− z| sup

ζ∈γz
|r′U (ζ)| = |V (z)− z||r′U (ζ0(z))|,

for some ζ0(z) ∈ γz, since γz is compact. Note that ζ0(z) = z + θ(z)(V (z) − z),
for some θ(z) ∈ [0, 1] and hence ζ0(z) ∼ z. Now, rU (z) = o(zβ) by (R2) and thus,
by Lemma 5.1, we have r′U (ζ0(z)) = o(ζ0(z)β−1) = o(zβ−1). Further estimates for
I(z) depend on the functions of V (z) which are separate for the cases p = 0 and
p ≥ 1. Using V (z) = z+ zrV (z) for p = 0 and V (z) = z+ O(z2) for p ≥ 1, we have,

|I(z)| =

{
o(zβrV (z)), for p = 0,
o(z1+β), for p ≥ 1.

(5.4)

Case I: p = 0. Then U(z) = z+zrU (z) and V (z) = z+zrV (z). Using U(V (z)) =
z and I(z) = rU (V (z)) − rU (z), we get 0 = zrV (z) + (z + zrV (z))(rU (z) + I(z)).
Further canceling z and using (5.3), we have

0 = rU (z) + rV (z) + rU (z)rV (z) + O(I(z)). (5.5)

Using (5.4) for p = 0 and rU (z) � 1 from (R2), we have rV (z) ∼ −rU (z), which
proves (I1). Further, using (R2) and evaluating at z = −iy, we have, for β ∈
[0, 1/2),

|rV (−iy)| � yβ . (5.6)

Evaluating (5.5) at z = iy and equating the real and the imaginary parts, we have

0 = <rU (−iy) + <rV (−iy) + O(|rU (−iy)||rV (−iy)|) + O(|I(−iy)|) (5.7)

and

0 = =rU (−iy) + =rV (−iy) + O(|rU (−iy)||rV (−iy)|) + O(|I(−iy)|). (5.8)

We split the proofs of (I2) and (I3) for the case p = 0 into further subcases β = 0
and β ∈ (0, 1/2).

Subcase Ia: p = 0, β = 0. By (I1) for z = −iy and (R4′), we have,

|I(−iy)| � |rV (−iy)| ∼ |rU (−iy)| ≈ |<rU (−iy)| ≈ |=rU (−iy)|.

Thus, the last term on the right hand side of (5.7) and (5.8) are negligible with
respect to <rU (−iy) and =rU (−iy) respectively. Then, further using rU (−iy)→ 0
from (R2), the third term on the right hand side of (5.7) and (5.8) are negligible
with respect to <rU (−iy) and =rU (−iy) respectively and hence we get <rU (−iy) ∼
−<rV (−iy) and =rU (−iy) ∼ −=rV (−iy), which prove (I2) and (I3).

Subcase Ib: p = 0, β ∈ (0, 1/2). We have, by (R3) and (R4′′),

yβ
|=rU (−iy)|
|<rU (−iy)|

=
|=rU (−iy)|
y1−β/2

y1+β/2

|<rU (−iy)|
→ 0

and

yβ
|<rU (−iy)|
|=rU (−iy)|

=
|<rU (−iy)|
y1−β/2

y

|=rU (−iy)|
yβ/2 → 0.
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They, together with (5.1), give yβ |rU (−iy)| is negligible with respect to both the
real and the imaginary parts of rU (−iy). Further, using (5.4) and (5.6) respectively,
we have

|I(−iy)| � yβ |rV (−iy)| ∼ yβ |rU (−iy)| and |rU (−iy)rV (−iy)| � yβ |rU (−iy)|.
Thus, both |I(−iy)| and |rU (−iy)rV (−iy)| which are the last two terms of (5.7)
and (5.8), are negligible with respect to both the real and the imaginary parts of
rU (−iy). Then, from (5.7) and (5.8), we immediately have <rU (−iy) ∼ −<rV (−iy)
and =rU (−iy) ∼ −=rV (−iy), which prove (I2) and (I3).

Case II: p ≥ 1. In this case U(z) = z +
∑p
j=1 ujz

j+1 + zp+1rU (z) and V (z) =
z +

∑p
j=1 vjz

j+1 + zp+1rV (z) = z(1 + v1z(1 + o(1))). Using z = U(V (z)) and
canceling z on both sides, we have

0 =
p∑
j=1

vjz
j+1 + zp+1rV (z) +

p∑
m=1

um

z +
p∑
j=1

vjz
j+1 + zp+1rV (z)

m+1

+ zp+1
(
rU (z) + I(z)

)(
1 + (p+ 1)v1z(1 + o(1))

)
. (5.9)

Note that all the coefficients on the right side are real. We collect the powers
of z up to degree p + 1 on the right side in the polynomial Q(z). Let c′ ∈ R
be the coefficient of zp+2 on the right side. The remaining powers of z on the
right side will be O(zp+3). We next consider the terms with rV (z) as a factor
and observe that zp+1rV (z) is the leading term and the remaining terms con-
tribute O(zp+2rV (z)). Finally, the last term on the right side gives zp+1rU (z) +
O(zp+2rU (z)) + O(zp+1I(z)). Since z � rU (z) by (R2), the term O(zp+3) can be
absorbed in O(zp+2rU (z)). Combining the above facts and dividing (5.9) by zp+1,
we get,

0 = z−(p+1)Q(z)+
(
rU (z)+c′z+O(I(z))+O(zrU (z))

)
+
(
rV (z)+O(zrV (z))

)
. (5.10)

As I(z)� z1+β � z � rU (z) by (5.4) and (R2), we have rU (z)+c′z+O(I(z))+
O(zrU (z)) = rU (z)(1 + o(1)). Also rV (z) + O(zrV (z)) = rV (z)(1 + o(1)). Thus,
the last two terms on the right hand side of (5.10) goes to zero. However, the first
term on the right hand side of (5.10), Q being a polynomial of degree at most p,
becomes unbounded unless Q ≡ 0. So we must have Q ≡ 0. Thus, (5.10) simplifies
to

rU (z) + c′z + O(I(z)) + O(zrU (z)) = −rV (z) + O(zrV (z)). (5.11)
As observed earlier, the left side is rU (z)(1 + o(1)) and the right side is −rV (z)(1 +
o(1)) giving rU (z) ∼ −rV (z), which proves (I1).

Further, as in the case p = 0, we have (5.6) from rU (z) ∼ −rV (z). Also, (5.11)
becomes

− rV (z) = rU (z) + c′z + O(I(z)) + O(zrU (z)). (5.12)
Evaluating (5.12) at z = −iy and equating the imaginary parts, we have, us-
ing (5.4),

−=rV (−iy) = =rU (−iy) + O(y).
This gives (I3), that is, −=rV (−iy) ∼ =rU (−iy), since y � =rU (−iy) by (R3).

Evaluating (5.11) at z = −iy again and now equating the real parts, we have, as
c′ is real,

−<rV (−iy) = <rU (−iy) + O(|I(−iy)|) + O(y|rU (−iy)|).
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From (5.4) and (R3), we have |I(−iy)| � y1+β � <rU (−iy). Thus, to ob-
tain (I2), that is, −<rV (−iy) ∼ <rU (−iy), we only need to show that y|rU (−iy)| �
<rU (−iy), which follows using rU (−iy) ∼ −rV (−iy), (5.6) and (R3), since

y|rU (−iy)|
|<rU (−iy)|

=
y1+β/2

|<rU (−iy)|
|rU (−iy)|

yβ
yβ/2.

�

We wrap up the article by collecting the results from Sections 4 and 5 and proving
Theorems 2.1–2.4.

Proofs of Theorems 2.1–2.4. We shall prove all the theorems together, as the proofs
are very similar.

The statements involving the tail of the probability measure µ and the remain-
der term in Laurent expansion of Cauchy transform, rGµ can be obtained from
the results in Section 4 as follows: For all the theorems, the equivalence of the
statements (i) and (ii) about the tail of the probability measure and Cauchy trans-
form (the imaginary part in Theorems 2.1–2.3 and the real part in Theorem 2.4)
are given in Proposition 4.3. The asymptotic equivalences between the tail of the
measure and (the real and the imaginary parts of) the remainder term in Laurent
series expansion of Cauchy transform, given in (2.8), (2.9), (2.11), (2.14) and (2.17)
are also given in Proposition 4.3. The similar asymptotic equivalence in (2.15) fol-
lows from Propositions 4.3 and 4.4 for the cases α ∈ (0, 1) and α = 1 respectively.
We consider the asymptotic upper and lower bounds next. The asymptotic lower
bounds in (2.7), (2.10), (2.13) and (2.16) follow from Proposition 4.1. The asymp-
totic upper bound in (2.16) follows from Proposition 4.2. The asymptotic lower
bounds in (2.8), (2.9), (2.11), (2.14) and (2.17) follow from Proposition 4.3. The
asymptotic upper bound in (2.17) follows from the fact that ypµ(y,∞) is a regu-
larly varying function of index −1. The asymptotic lower bound in (2.12) follows
from Proposition 4.4, while the asymptotic lower bound in (2.15) follows as the tail
of the measure is regularly varying of index −α with α ∈ [0, 1). Finally both the
asymptotic bounds in (2.18) follow from Proposition 4.4.

To complete the proofs of Theorems 2.1– 2.4, we need to check the equivalence of
the statements (ii) and (iii) involving the remainder terms in Laurent expansion of
Cauchy and Voiculescu transforms for all the theorems and the asymptotic equiv-
alences between the remainder terms in Laurent series expansion of Cauchy and
Voiculescu transforms and their real and imaginary parts given in (2.7)–(2.18). Note
that all these claims about Cauchy and Voiculescu transforms of µ have analogues
about Hµ and Rµ due to the facts that rG(z) = rH(1/z) and rφ(z) = rR(1/z). We
shall actually deal with the functions Hµ and Rµ.

For any probability measure µ ∈Mp, the function H ≡ Hµ is invertible, belongs
to the class H and the leading term of its Taylor expansion is z. Further, by Propo-
sition A.3 of Benaych-Georges (2006), the above statement about H is equivalent
to the same statement about its inverse, denoted by L ≡ Lµ. Since the leading term
of Taylor expansion of L has leading term z, the leading term of Taylor expansion
of L(z)/z is 1 and it is also in H. Define K(z) = z/L(z). Then K is also in H
and its Taylor expansion has leading term 1. We shall also use the following facts
obtained from (2.1):

zRµ(z) = (K(z)− 1) and zK(z) = z(1 + zRµ(z)). (5.13)
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Hence Taylor expansion of K will also lead to a Taylor expansion of R of degree
one less than that of K. However, due to the definition of the remainder term of
Taylor expansion given in (2.2), the corresponding remainder terms will be related
by rK ≡ rR. Thus, we can move from the function rH to rK(≡ rR) through inverse
and reciprocal and vice versa as follows:

H(z)
L(z)=H−1(z)←−−−−−−−−→
Proposition 5.2

L(z) = z · L(z)
z

K(z)= z
L(z)←−−−−−−−−→

Proposition 5.1
zK(z)

R(z)=
K(z)−1

z←−−−−−−−−→
rK=rR

R(z).

(5.14)
These observations set up the stage for Propositions 5.1 and 5.2. We shall use
the class Rp,0 for Theorems 2.1–2.3 and the class Rp,β with any β ∈ (0, 1/2) for
Theorem 2.4.

Suppose µ ∈Mp with α ∈ [p, p+ 1). This condition holds for Theorems 2.1–2.3
and we prove these three theorems first. In these cases, Hµ(z) and zK(z) = z(1 +
zRµ(z)) necessarily have Taylor expansions of the form given in the hypothesis (R1)
for the class Rp,0 with rH(z)� 1 and rR(z)� 1 as z →∞.

For all three theorems, first assume the statement (ii) that =rG(iy) is regularly
varying of index −(α − p). Then, from the already proven lower bounds in (2.7)–
(2.15), we have the asymptotic lower bounds for rG(z), <rG(iy) and =rG(iy) under
the setup of each of the three theorems. They translate to the asymptotic lower
bounds for the function Hµ, as required by the hypotheses (R2) and (R3). The
asymptotic upper bound in (R2) holds, as the remainder term in Taylor series
expansion of H satisfies rH � 1. For Theorem 2.3, we have p = 0 and we need to
check the extra condition (R4′), which follows from the already proven asymptotic
equivalences (2.14) and (2.15). Thus, for each of Theorems 2.1–2.3, Hµ belongs to
Rp,0.

We now refer to the schematic diagram given in (5.14). As Hµ is also invertible
with L = H−1 ∈ H, by Proposition 5.2, we also have L ∈ Rp,0 and rH(z) ∼
−rL(z), <rH(−iy) ∼ −<rL(−iy) and =rH(−iy) ∼ −=rL(−iy). Clearly, then
Proposition 5.1 applies to the function L(z)/z, which has reciprocal K ∈ H. Thus,
rK and rL satisfy the relevant asymptotic equivalences. Furthermore, since, rR ≡
rK , combining, we have rH(z) ∼ rR(z), <rH(−iy) ∼ <rR(−iy) and =rH(−iy) ∼
=rR(−iy). Further, for Theorem 2.3, we have p = 0 and H ∈ Rp,0 satisfies (R4′).
Hence, we also have <rR(−iy) ≈ =rR(−iy). Then Rµ inherits the appropriate
properties from Hµ and passes them on to φµ, which gives us the statement (iii)
about the remainder term in Laurent expansion of Voiculescu transform in each of
Theorems 2.1–2.3.

Conversely, assume the statement (iii). Then the assumptions on rφ imply the
analogous properties for rR ≡ rK . Further, as µ is in Mp, zK(z) = z(1 + zRµ(z))
satisfies the hypothesis (R1) for the class Rp,0. Also, the remainder term of Taylor
series expansion of zK(z) is also given by rR ≡ rK � 1. The lower bound for the
imaginary part of the remainder term in the hypothesis (R3) follows from its regular
variation and the fact that α ∈ [p, p+1). The lower bound in the hypothesis (R2) is
part of the statement (iii). The lower bound for the real part of the remainder term
in the hypothesis (R3) is also a part of the statement (iii) for Theorems 2.1 and 2.2,
while it follows from the statement (iii) for Theorem 2.3, as both the real and
imaginary parts become asymptotically equivalent and regularly varying of index
α with α ∈ [0, 1). Finally, the asymptotic equivalence in (R4′) for Theorem 2.3
is a part of the statement (iii). Thus, again for each of Theorems 2.1–2.3, zK(z)
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belongs to Rp,0. Then apply Proposition 5.1 on K and then Proposition 5.2 on
z/K(z) = L(z) to obtain Hµ(z). Arguing, by checking the asymptotic equivalences
as in the direct case, we obtain the required conclusions about rH and hence rG
given in the statement (ii) for each of Theorems 2.1–2.3.

The argument is same in the case α = p+ 1, which applies to Theorem 2.4, with
the observation that the stronger bounds required in the hypotheses (R2), (R3)
and (R4′′) with β > 0 are assumed for rφ and hence for rR and is proved for rG
and hence for rH in Proposition 4.2 and 4.4. �
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