
UPCROSSING INEQUALITIES FOR STATIONARY SEQUENCESAND APPLICATIONSMICHAEL HOCHMANAbstra
t. For arrays (Si,j)1≤i≤j of random variables that are stationary inan appropriate sense we show that the �u
tuations of the pro
ess (S1,n)∞n=1
an be bounded in terms of a measure of the �mean subadditivity� of the pro-
ess (Si,j)1≤i≤j . We derive universal up
rossing inequalities with exponentialde
ay for Kingman's subadditive ergodi
 theorem, the Shannon-Ma
Millan-Breiman Theorem and for the 
onvergen
e of the Kolmogorov 
omplexity of astationary sample. 1. Introdu
tionLet us say that a sequen
e (Xn)∞n=1 of real numbers has k 
rossings (or up
ross-ings) of an interval [s, t] if there are indi
es
1 ≤ i1 < j1 < i2 < j2 < . . . < ik < jksu
h Xim

< s and Xjm
> t. Allowing Xn to be random, it follows easily that

limXn exists a.s. if and only if, for every interval of positive length, the probabilityof in�nitely many 
rossings of the interval is 0.There are a number of 
lassi
al limit theorems in probability that 
an be for-mulated and proved in this way, the best known of whi
h is Doob's up
rossinginequality for L1 martingales [6℄: if (Sn)∞n=1 is an L1 martingale then for s < t,
P( (Sn)∞n=1 has k up
rossings of [s, t]) ≤ supn ‖Sn‖1

k(t − s)(see also Dubins [7℄). A similar inequality was proved by Bishop for the timeaverages Sn = 1
n

∑n
i=1 Xn of an L1 stationary pro
ess (Xn)∞n=1 [1, 2℄. Assumingnon-negativity of the pro
ess instead of integrability, Ivanov [8℄ proved the followingbeautiful result: for every s < t,(1.1) P( (Sn)∞n=1 has k up
rossings of [s, t]) ≤ (

s

t
)k(See [4℄. For related results see Jones, Kaufman, Rosenblatt and Wierdl [9℄, andKalikow and Weiss [10℄). A remarkable aspe
t of these inequalities is that they hold2000 Mathemati
s Subje
t Classi�
ation. 37A30, 37A35, 60G10, 60G17, 94A17, 68Q30.Key words and phrases. Up
rossing inequality; entropy; 
omplexity; ergodi
 theorem; pointwise
onvergen
e. 1



2 englishMi
hael Ho
hmanuniversally: ex
ept for trivial normalization they do not depend on the pro
essin question. Neither martingales nor ergodi
 averages admit universal rates of
onvergen
e, and it is all the more surprising that su
h general bounds for the�u
tuations exist.In this paper we establish a general up
rossing inequality for 
ertain sequen
esasso
iated with stationary pro
esses, in terms a 
ertain measure of �mean subaddi-tivity� of the pro
ess. We 
onsider arrays (Si,j)1≤i≤j of random variables, thoughwe shall usually identify the ordered pair (i, j) that is the index of Si,j with theinteger interval [i; j] = [i, j] ∩ N, and if U = [i; j] is su
h an interval we write SUfor Si,j . We assume the pro
ess to be stationary with respe
t to translation of theindexing intervals, i.e. that for every m ∈ N one has
(S[i;j])1≤i≤j = (S[i+m,j+m])1≤i≤j in distribution.One very general way to get su
h arrays is by applying a fun
tion to samples ofstationary pro
esses: if (Xn)∞n=1 is stationary and g is any fun
tion de�ned on �nitesequen
es, then Si,j = g(Xi, Xi+1 . . . , Xj) satis�es these assumptions.Let I ⊆ N be an interval and δ > 0. We say that a 
olle
tion I1, . . . , Ir ofintervals δ-�lls I if all the intervals are 
ontained in I and |I \∪Ii| < δ|I|, where |·|denotes 
ardinality.Theorem 1.1. Suppose that (Si,j)1≤i≤j is stationary in the above sense. Let s < tand 0 < δ < 1

4 . Then for every k,(1.2)
P

(
(S1,n)∞n=1 has kup
rossing of [s, t]

)
≤ c ·ρk +P




there exists n > k su
h that S1,n > tand [1; n] 
an be δ-�lled by disjointintervals V1, . . . , Vr satisfying SVj
< s


 .The 
onstants c and 0 < ρ < 1 depend only on δ (but not on the pro
ess or on s, t).In appli
ations one optimizes over δ to get a bound for the left hand side whi
his often independent of the pro
ess. Theorem 1.1 is e�e
tive, and the 
onstantsmay be 
omputed expli
itly, though they are surely not optimal. This inequality
annot be reversed, and in se
tion 2 we give a simple example in whi
h the lefthand side de
ays exponentially and uniformly for a 
ertain 
lass of pro
esses butthe right hand side 
an de
ay arbitrarily slowly.Theorem 1.1 
an be generalized in several ways. It remains valid when onestarts with a �two-sided� stationary array (Si,j)−∞<i≤j<∞ and sets Sn = S−n,n,and there is a version for Sn = SVn

where Vi is an arbitrary in
reasing sequen
ewith 0 ∈ V1. It 
an also be extended to the multi-dimensional setting, where thepro
ess is indexed by 
ubes instead of segments. These versions require minormodi�
ations of the proof we give.



englishUp
rossing inequalities and appli
ations 3Our �rst appli
ation is to Kingman's subadditive ergodi
 theorem. Let (Xm,n)1≤m≤nbe stationary in the sense above and subadditive, i.e. Xk,n ≤ Xk,m +Xm+1,n when-ever k ≤ m < n. Kingman's Theorem states that under some integrability 
ondi-tions, if Xm,n is stationary and subadditive then 1
nX1,n 
onverges almost surely.As examples of this situation 
onsider Xm,n =

∑n
i=m Yi when Yi is a stationarypro
ess, or Xm,n = ‖Zm . . . Zn‖ where Zi is a stationary sequen
e of operators.Polynomial de
ay for up
rossings in Kingman's Theorem for integrable pro
esseswas proved by Kraw
zak [11℄. We establish an exponential version of this, withintegrability repla
ed by a boundedness 
ondition:Theorem 1.2. Let (Xm,n)1≤m≤n be stationary and subadditive. Suppose that

X1,1 ≤ M a.e. for a 
onstant M . Then for every s < t,
P((Sn)∞n=1 has k up
rossings of [s, t]) < c · ρkfor 
onstants 0 < ρ < 1 and c that depend only on s, t and M .We next turn to the 
onvergen
e of Shannon information of samples. Givena �nite-valued pro
ess (Xi)

∞
i=1, the information of the sample X1, . . . , Xn is therandom variable

I(X1, . . . , Xn) = − log P(X1, . . . , Xn).Here, for a �xed sequen
e ξ = ξ1 . . . ξn we write P(ξ) for the probability of observingthis sample, so P(X1 . . .Xn) is the probability of observing the sample that was infa
t observed.The Shannon-Ma
Millan-Breiman Theorem [14℄ is one of the fundamental the-orems in information theory, asserting that 1
nI(X1 . . . Xn) 
onverges almost surely.See for instan
e [12℄.Theorem 1.3. Suppose (Xn)∞n=1 is 0, 1-valued stationary pro
ess. Let Sn = 1

nI(X1, . . . , Xn).Then for every s < t,
P((Sn)∞n=1 has k up
rossings of [s, t]) < c · ρkand the 
onstants 0 < ρ < 1 and c depend on s, t.The same result holds for pro
esses with a �nite number r of symbols, but the
onstants will then depend also on r. We note that there is no universal rate of
onvergen
e for this limit, and Theorem 1.3 seems to be the �rst e�e
tive versionof it. It is interesting that the 
lassi
al proofs of the 
onvergen
e of 1

nI(X1 . . . Xn)rely on the ergodi
 theorem and the Martingale Theorem, but though up
rossinginequalities are known for both of these it is un
lear how to 
ombine them to dedu
eTheorem 1.3.One of the motivations for Bishop's up
rossing proof of the ergodi
 theorem wasto obtain an ergodi
 theorem that would be valid in the 
onstru
tive framework



4 englishMi
hael Ho
hmanof mathemati
s. As Theorem 1.1 is e�e
tive, it 
an probably be adapted to thissetting, leading to 
onstru
tive proofs of the Kingman and SMB Theorems.Another 
losely related result involves algorithmi
 
omplexity rather than Shan-non information. For a �nite string x of 0's and 1′s, let κ(x) denote the Kolmogorov
omplexity of x, sometimes referred to as the minimal des
ription length of x (seeSe
tion 4). Although κ(·) is not formally 
omputable it has been extensively stud-ied as a non-statisti
al measure of 
omplexity and there is a 
lose relation betweenit and Shannon's theory of information; see for example [5℄. The following result istherefore an analog of Theorem 1.3; the existen
e of the limit was shown by Brudno[3℄.Theorem 1.4. Suppose (Xn)∞n=1 is a stationary 0, 1-valued pro
ess. Then, writing
Sn = − 1

nκ(X1 . . . Xn), for every s < t we have
P((Sn)∞n=1 has k up
rossings of [s, t]) < c · ρkfor 
onstants c and 0 < ρ < 1 that depend only on s, t.The rest of this paper is organized as follows. We �rst use Theorem 1.1 toderive the appli
ations. In se
tion 2 we derive the result on Kingman's Theorem,and show that the inequality in Theorem 1.1 
annot be reversed. In se
tion 3 weprove the up
rossing inequality for the Shannon-M
Millan-Breiman Theorem, andin se
tion 4 we derive the inequality for Kolmogorov 
omplexity. In se
tion 5 weredu
e Theorem 1.1 to a 
ombinatorial lemma, whose proof is given in se
tion 6.A
knowledgement. This work was done as part of the author's Ph.D. studies underthe guidan
e of Benjamin Weiss, whom I would like to thank for all his support andadvi
e. I also thank the anonymous referee for a 
areful reading and for suggestingmany simpli�
ations in the proofs.2. The sub-additive ergodi
 theorem and an exampleIn this se
tion we dis
uss the relation between Theorem 1.1 and ergodi
 theorems.Proof. (of Theorem 1.2). Suppose V1, . . . , Vr are disjoint subintervals of [1; n] su
hthat 1

|Vi|XVi
< s. Let U = [0, 1] \⋃r

i=1 Vi. By subadditivity,
1

n
X1,n ≤

∑ |Vi|
n

1

|Vi|
XVi

+
∑

j∈U

Xj,j ≤
∑ |Vi|

n
s +

|U |
n

M(in the last inequality we used stationarity to get Xj,j ≤ M). Thus if [1; n] is δ-�lledby the Vi then |U | ≤ δn so
1

n
X1,n ≤ (1 − δ)s + δM



englishUp
rossing inequalities and appli
ations 5and if δ = t−s
M−s then it impossible that 1

nX1,n > t. Hen
e, for this δ, when weapply Theorem 1.1 with the sequen
e Si,j = 1
j−i+1Xi,j , the event on the right handside of inequality (1.2) is empty. The theorem follows. �Next, we show that de
ay of the right hand side in Theorem 1.1 is not ne
essaryin order to get fast de
ay on the left. Let (Xn)∞n=1 be a stationary pro
ess withvalues in [−1, 1] and let

Si,j =
1⌊√

j − i
⌋

i+⌊√j−i⌋−1∑

k=i

Xkso S1,n is obtained by repeating elements from the sequen
e of ergodi
 averages
( 1

n (X1 + . . . + Xn))∞n=1. The latter sequen
e obeys an up
rossing inequality whi
hdoes not depend on Xn; thus the former sequen
e does as well. However, thefollowing proposition shows that one 
annot obtain this from Theorem 1.1.Proposition 2.1. Let
pk = P




there exists n > k su
h that S1,n > 1
2and [1, n] 
an be δ-�lled by disjointintervals V1, . . . , Vr satisfying SVj

< − 1
2


 .Then for arbitrarily large k there are pro
esses for whi
h pk ≥ 1/6, and in parti
ularthe 
onvergen
e pk → 0 is not uniform as the pro
ess (Xn) is varied.Proof. Fix δ > 0. Let n > 1/δ and let (Xi)

∞
i=1 be the pro
ess whose unique samplepath, up to translation, is the sequen
e with period 2n in whi
h blo
ks of 1's and

−1's of length n alternate. Set k = n2. It is easily veri�ed that (a) the probabilitythat the �rst 2n/3 symbols of a sample are 1's is 1/6, and S1,k in this 
ase is
≥ 1/2; and (b) If X1 = 1 then, taking j to be the �rst index with Xj = −1, wehave Sj,k < −1/2 and [1; k] is δ-
overed by [j; k]. Thus for ea
h square k there arepro
esses for whi
h pk ≥ 1/6. �3. The Shannon-M
Millan-Breiman TheoremIn this se
tion we prove Theorem 1.3. Fix s < t and a parameter δ > 0. Set

Si,j =
1

j − i + 1
I(Xi . . .Xj).In order to apply Theorem 1.1, for ea
h n ∈ N we wish to bound the probability ofthe event

Bn =

{
S1,n > t and [1, n] 
an be δ-�lled by disjointintervals V1, . . . , Vr satisfying SVj

< s

}
.
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hael Ho
hmanSin
e
Si,j > t ⇐⇒ P(Xi . . . Xj) < 2−t(j−i+1)

Si,j < s ⇐⇒ P(Xi . . . Xj) > 2−s(j−i+1)we have the trivial bound(3.1) P(Bn) ≤ 2−tn#

( words w ∈ {0, 1}n whi
h 
an be δ-�lled withdisjoint words v satisfying P(v) > 2−sℓ(v)

)
.where ℓ(v) denotes the length of v.To estimate the right hand side of (3.1) we note that ea
h word w that is 
ountedon the right 
an be 
onstru
ted as follows:(1) Choose a subset I ⊆ [1; n] of size ≤ δn.(2) Choose the symbol w(i) for ea
h i ∈ I.(3) For ea
h maximal interval J ⊆ [1; n] \ I 
hoose a word v = w|J with

P(v) > 2−sℓ(v).To bound the number of words produ
ed in (1)�(3) we bound the number of 
hoi
esat ea
h step. In step (1) we have ≤ 2nh(δ)+o(log n) 
hoi
es, where h(x) = −x log x−
(1 − x) log(1 − x) (this is a standard 
onsequen
e of Stirling's formula). In step(2) we have at most 2δn 
hoi
es. Finally, in step (3) let J1, . . . , Jr be the maximalintervals in [1; n] \ I. The number of distin
t words v of length |Ji| and satisfying
P(v) > 2−s|Ji| is 
learly bounded by 2s|Ji|, so the number ways to 
hoose su
h wordswith lengths |J1|, . . . , |Jr| is at most

r∏

i=1

2s|Ji| = 2
P

r
i=1

s|Ji| ≤ 2sn.It follows that the number of words 
ounted on the right hand side of equation (3.1)is
≤ 2(s+h(δ)+δ)n+o(log n),so

P(Bn) ≤ 2−(t−s−h(δ)−δ+o(1))n.Hen
e if δ is small enough in a manner depending on s, t, this bound is summableand gives
P(∪n>kBn) < c · ρkfor 
onstants c and 0 < ρ < 1 depending only on s, t. Sin
e ∪n>kBn is the event onthe right hand side of the inequality 1.1 in Theorem 1.1, this 
ompletes the proofof Theorem 1.3.
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rossing inequalities and appli
ations 74. Kolmogorov 
omplexityThe Kolmogorov 
omplexity κ(x) of a 0, 1-valued string x is de�ned as follows.Fix a universal Turing ma
hine U , and let x∗ be a string of minimal length su
hthat, when U is run on input x∗, the output is x. Then κ(x) is the length of x∗.Although κ(·) depends on the universal ma
hine U , 
hanging U only 
hanges κ(·)by an additive 
onstant.In this se
tion we prove Theorem 1.4. Note that Sm,n = 1
nκ(xm . . . xn) is notstri
tly sub-additive, so Kingman's Theorem does not apply, but we 
an nonethelessexploit the fa
t that it is �almost sub-additive�.Proposition 4.1. Let (Xn)∞n=1 be a 0, 1-valued stationary pro
ess and set Sn =

1
nκ(X1 . . .Xn). Then for every s < t there is a δ > 0 and an N so that the event

Bk =





there exists n > k su
h that S1,n > tand [1, n] 
an be δ-�lled by disjointintervals V1, . . . , Vr satisfying SVj
< s



is empty for all k ≥ N .Proof. We reason as in the previous se
tion. Suppose that x ∈ {0, 1}n and [1; n] 
anbe δ-�lled by a disjoint 
olle
tion of intervals {V1, . . . , Vm} with 1

|Vk|κ(x|Vk
) < s.We 
an en
ode x by des
ribing the 
hoi
es of the three-step pro
ess outlined inthe previous se
tion. In step 3, we en
ode the pattern x|Vm

be writing down the
omputer program that produ
es it. Thus the estimate from the previous se
tionshows that the number of bits required is
h(δ)n + n +

∑
κ(x|Vi

) ≤ (s + h(δ) + δ)n + o(log n).We only require a 
onstant-length program to extra
t the string x from this en
od-ing. We also require an overhead of O((h(δ) + δ)n) to en
ode this information in aself-pun
tuating way. Thus
κ(x) ≤ o(log n) + (s + C′(h(δ) + δ))nand if δ is small enough (in a manner depending on s, t) this implies κ(x) < t on
e

n is large enough (how large n must be depends on C, C′, whi
h in turn depend onthe Turing ma
hine we are using but is independent of s, t, δ and the pro
ess). Theproposition follows. �Theorem 1.4 now follows from Theorem 1.1.5. Redu
tion of Theorem 1.1 to a 
overing lemmaThe purpose of this se
tion is to redu
e the proof of Theorem 1.1 to a 
ombina-torial statement about intervals, related to the e�e
tive Vitali 
overing lemma of



8 englishMi
hael Ho
hmanKalikow and Weiss [10℄. This lemma is stated below in Lemma 5.1 but its proof israther te
hni
al and we defer it to Se
tion 6.Let (Si,j)1≤i≤j be a stationary in the sense dis
ussed in the introdu
tion. Fix
s < t, a parameter δ > 0, and an integer k. For i ∈ N we de�ne the events

Ai = {(Si,i+n)∞n=1 has k up
rossings of [s, t]}

Bi =

{ There is an n > k su
h that Si,i+n > t, and [i, i + n] 
an be
δ-�lled by disjoint intervals V1, . . . , Vr satisfying SVj

< s

}
.By stationarity P(Ai) = P(Aj) and P(Bi) = P(Bj) for all i, j. We abbreviate

A = A1, B = B1. Theorem 1.1 is then equivalent to
P(A) ≤ cρk + P(B)for 
onstants 0 < ρ < 1 and c that depend only on s, t.The proof pro
eeds as follows. Fix a large N and let

AN
i = {(Si,i+n)N

n=1 has k up
rossings of (s, t)}sin
e A = ∪AN
1 it su�
es to show that, for ea
h N ,

P(AN
1 ) ≤ cρk + P(B)with c, ρ independent of N . Fix an integerR mu
h bigger than N (we will eventuallytake R → ∞), and let I ⊆ {1, . . . , R} be the random set of indi
es de�ned by

I = {i ∈ [1; R] : AN
i o

urs}.By stationarity of Si,j we have

P(AN
1 ) =

1

R

R∑

i=1

P(AN
i ) =

1

R
E(

R∑

i=1

χAN
i

) =
1

R
E|I|.We pro
eed to estimate the expe
ted size of I. We divide I into two parts:

I0 = {i ∈ I : Bi o

urs} and I1 = I \ I0.Sin
e 1
RE(|I0|) = P(B), it su�
es to show that 1

R |I1| ≤ cρk.By de�nition, for ea
h i ∈ I1 there is a (random) sequen
e of k pairs of non-empty intervals Ui(1) ⊆ Vi(1) ⊆ . . . Ui(k) ⊆ Vi(k) whose left endpoint is i andlength ≤ N , and su
h that SUi(m) < s and SVi(m) > t for 1 ≤ m ≤ k.We now pass to a subsequen
e of the Ui's and Vi's by performing two re�ne-ments of the sequen
e. First, 
learly |Ui(m + 1)| > |Vi(m)| > |Ui(m)| be
ause
SUi+1(m), SUi(m) 6= SVi(m) and be
ause of the given in
lusions. Thus |Ui(m)| >

2(m − 1). If we delete the �rst k0 = ⌈k/2⌉ + 1 pairs, then we are left with a se-quen
e Ui(k0 + 1) ⊆ Vi(k0 + 1) ⊆ . . . ⊆ Ui(k) ⊆ Vi(k) of at least k′ = ⌊k/2⌋ − 1pairs of intervals, all of whi
h are of length greater than k.



englishUp
rossing inequalities and appli
ations 9Se
ond, noti
e that if |Vi(m)|/|Ui(m)| ≤ 1 + δ then i ∈ I0, sin
e Ui(m) would
δ-�ll Vi(m). Thus for i ∈ I1 we also have |Vi(m)|/|Ui(m)| > 1+ δ. Choose q so that

(1 + δ)q−1 ≥ 72/δ2i.e. q =
⌈
log(72/δ2)/ log(1 + δ)

⌉
+1. By deleting the intervals Ui(j), Vi(j +1) when

j 6= 0 (mod q) and renumbering the remaining ones, we are left with a sequen
eof k′′ ≥ ⌊(k′ − 1)/q⌋ pairs of intervals Ũi(1) ⊆ Ṽi(1) ⊆ . . . ⊆ Ũi(k
′′) ⊆ Ṽi(k

′′), allhaving length > k and satisfying SeUi(m) < s, SeVi(m) > t, and whi
h additionallysatisfy the growth 
ondition |Vi(m)| ≥ 72
δ2 |Ui(m)| for every 1 ≤ m ≤ k′′.We now apply a 
ombinatorial result whose proof we defer to se
tion 6.Lemma 5.1. Let ε < 1/4. Suppose J ⊆ N is �nite and for ea
h j ∈ J we are givena sequen
e of intervals Ũj(1) ⊆ Ṽj(1) ⊆ . . . ⊆ Ũj(L) ⊆ Ṽj(L) with left endpoint jand satisfying |Ṽj(n)| ≥ 2

ε2 |Ũj(n)|. Suppose that none of the Ṽj(n)'s 
an be 6ε-�lledby a disjoint 
olle
tion of Ũi(m)'s. Then
|J | ≤ (1 +

ε

6
)−(L−1)/(log 1/ε) · |

⋃

j∈J

Ṽj(L)|.We apply the lemma to our situation with J = I1, L = k′′ and ε = δ/6. Thehypothesis is satis�ed by de�nition of I1. It follows that there are 
onstants c > 0and 0 < ρ < 1 depending only on δ (hen
e on s, t), su
h that
|I1| ≤ c · ρ−k · |

⋃

i∈I1

Vi(k
′′)|

≤ c · ρ−k(N + R)and the last inequality is be
ause ⋃i∈I1
Vi(k

′′) ⊆ [1; N + R]. We thus have
P(A) =

1

R
E|I| =

1

R
E|I0| +

1

R
E|I1| ≤ P(B) + c · ρ−k(1 +

N

R
)the proof is 
ompleted by taking R → ∞.6. Proof of Lemma 5.1The remainder of this paper is devoted to the proof of Lemma 5.1. Some of thestatements below are standard; we supply proofs for 
ompleteness. Others partsof the argument are related to the E�e
tive Vitali Covering Lemma from [10℄. See[13, 15℄ for other examples of 
overing lemmas in probability and ergodi
 theory.We say that a 
olle
tion of segments is disjoint if its members are pairwisedisjoint. The following is a version of the 
lassi
al Vitali 
overing lemma:Lemma 6.1. If V is a 
olle
tion of intervals then there is a disjoint sub-
olle
tion

V ′ ⊆ V with | ∪ V ′| ≥ | ∪ V|/2.



10 englishMi
hael Ho
hmanProof. Let V ′ ⊆ V be a minimal 
olle
tion satisfying ∪V ′ = ∪V . Order the intervalsin V ′ by their left endpoint, say V ′ = {V1, V2, . . . , Vm}. Then the subsequen
e
onsisting of intervals with even indi
es is disjoint, and similarly for the subsequen
ewith odd indi
es; and one of them must 
over at least half of V . �For ε > 0 and an interval U = [a; b] the ε-blowup of U is
Uε = [a − ε|U |, b + ε|U |] ∩ Z.Note that U ⊆ Uε and |Uε| ≤ (1 + 2ε)|U |. For a 
olle
tion U of intervals we write

Uε = {Uε : U ∈ U}.Lemma 6.2. If U is a 
olle
tion of intervals then | ∪ Uε| ≤ (1 + 2ε)| ∪ U|Proof. Let A = ∪U and de
ompose A into disjoint maximal intervals V1, . . . , Vk, so
| ∪ U| =

∑ |Vi|. For ea
h Vi one 
learly has
⋃

U∈U : U⊆Vi

Uε ⊆ V ε
ithus

| ∪ Uε| ≤
k∑

i=1

|
⋃

U∈U : U⊆Vi

Uε| ≤
k∑

i=1

(1 + 2ε)|Vi| = (1 + 2ε)| ∪ U|. �A tower of height M over a �nite set I ⊆ N is a 
olle
tion U = {Ui(k) :

i ∈ I , 1 ≤ k ≤ M} of intervals su
h that i is the left endpoint of Ui(k) (weshall a
tually only use the fa
t that i ∈ Ui(k)), and for ea
h i ∈ I the sequen
e
Ui(1) ⊆ Ui(2) ⊆ . . . ⊆ Ui(M) is stri
tly in
reasing. The k-th level of U is the
olle
tion

U(k) = {Ui(k) : i ∈ I}.Note that the intervals in U(k) are not ne
essarily of the same size, and although
|Ui(k)| < |Ui(k + 1)| it need not be true that |Ui(k)| ≤ |Uj(k + 1)| if i 6= j.Let U = {Ui(k)} be a tower of height M over a set I. The ε-
rust of U is theset of V ∈ U whose ε-blowup is stri
tly maximal with respe
t to in
lusion, i.e.

V = {V ∈ U(M) : if V ε ( W ε for some W ∈ U then V = W}.It is 
lear that ∪U ⊆ ∪Vε.Lemma 6.3. Let 0 < ε < 1. Suppose U = {Ui(k)} is a tower over I of height 2satisfying
|Ui(2)| ≥ 2

ε2
|Ui(1)| for all i ∈ Iand V ⊆ U(2) is the ε-
rust of U . Then(1) For ea
h U ∈ U(1) and V ∈ V, if U ∩ V 6= ∅ then U ⊆ V ε.



englishUp
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ations 11(2) There exists Û ⊆ U(1) and a disjoint V̂ ⊆ V su
h that | ∪ Û | ≤ 1
2 | ∪ U|,

(∪Û) ∩ (∪V̂) = ∅ and ∪U ⊆ (∪V̂ε) ∪ (∪Û).Proof. Let U ∈ U(1) and V ∈ V with U ∩ V 6= ∅. In order to show that U ⊆ V εit su�
es to show that ε|V | ≥ |U |. Let i ∈ I su
h that U = Ui(1) and write
W = Ui(2), the interval �above� U in U . Sin
e V is in the ε-
rust we 
annot have
V ε ( W ε. Sin
e V ∩ W 6= ∅, this implies that

(1 + ε)|V | ≥ |W | ≥ 2

ε2
|U |whi
h gives the desired 
on
lusion.To establish (2), apply the Vitali Lemma to V to obtain a disjoint family V̂ ⊆ Vwith | ∪ V̂| ≥ 1

2 | ∪ V|. Let̂
U = {U ∈ U(1) : U ∩ (∪V̂) = ∅}.The 
on
lusion now follows from (1). �We want to repla
e the 
onstant 1/2 in the Vitali Lemma with a 
onstant 
loseto 1. This 
an be a
hieved using the standard tri
k of applying the Vitali Lemmato several layers of 
overs and iteratively disjointifying ea
h level in turn.Hen
eforth all logarithms are taken to base 2.Lemma 6.4. Let 0 < ε < 1. Suppose U = {Uj(k)} is a tower of height M ≥

1 + log(1/ε) over a set J and
|Uj(k + 1)| >

2

ε2
|Uj(k)|.Then there is a disjoint sub-
olle
tion V ⊆ U su
h that | ∪ V| ≥ (1 − 3ε)| ∪ U|.Proof. Set U0 = U and V0 = ∅. For 1 ≤ n < M we indu
tively de�ne sub
olle
tions

Vn,Un ⊆ U(M − n) satisfying(1) Vn,Un ⊆ Un−1,(2) ∪Un−1 ⊆ (∪Un) ∪ (∪Vε
n).(3) (∪Vn) ∩ (∪Un) = ∅,(4) | ∪ Un| ≤ 1

2 | ∪ Un−1|.To produ
e Un,Vn we apply Lemma 6.3(2) to the top two layers of Un−1. Clearlythe 
olle
tion V = ∪1≤k<MVk is disjoint, and ∪U ⊆ (∪Vε)∪ (∪UM−1). By property(4) we have
| ∪ UM−1| ≤ (

1

2
)M−1| ∪ U| ≤ ε| ∪ U|so

| ∪ Vε| ≥ | ∪ U| − | ∪ UM−1| ≥ (1 − ε)| ∪ U|.
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hael Ho
hmanUsing the inequality | ∪ V| ≥ 1
1+2ε | ∪ Vε| from Lemma 6.2 we have

| ∪ V| ≥ 1 − ε

1 + 2ε
| ∪ U| ≥ (1 − 3ε)| ∪ U|as desired. �Until the end of the se
tion we adopt the following notation. Fix an integer Land 0 < ε < 1, a �nite set I ⊆ Z and two towers U = {Ui(k)} and V = {Vi(k)} ofheight L + 1 over I satisfying

Ui(0) ⊆ Vi(0) ⊆ Ui(1) ⊆ Vi(1) ⊆ . . . ⊆ Ui(L) ⊆ Vi(L)(for 
onvenien
e we start from level 0), and
|Vi(k)| ≥ 2

ε2
|Ui(k)|.Note that this ensures a similar growth rate for the substa
k U .Lemma 6.5. Let L ≥ 1 + log(1/ε). Then either there is a V ∈ V(L) whi
h 
an be

6ε-�lled by a disjoint sub
olle
tion of U , or else | ∪ V(L)| ≥ (1 + ε
6 )| ∪ U(0)|.Proof. Sele
t a maximal disjoint subsetW of the ε-
rust of V . By the Vitali Lemmaand LEmma 6.3 we have

∑

W∈W
|W | = | ∪ W| ≥ 1

2(1 + 2ε)
| ∪ V(L)| ≥ 1

2(1 + 2ε)
| ∪ U(0)|.We distinguish two 
ases. First, if every W ∈ W satis�es |W \ ∪U(L − 1)| > ε|W |then, sin
e W is disjoint, we would have

| ∪ V| ≥ | ∪ U(0)| + | ∪ W \ ∪U(L − 1)|
= | ∪ U(0)| +

∑

W∈W
|W \ ∪U(L − 1)|

≥ | ∪ U(0)| +
∑

W∈W
ε|W |

≥ (1 +
ε

2(1 + 2ε)
)| ∪ U(0)|whi
h gives the desired bound.Otherwise let W ∈ W be su
h that |W \ ∪U(L − 1)| < ε|W |. Let

Y = {Ui(k) : 0 ≤ k ≤ L − 1 and Ui(L − 1) ∩ W 6= ∅}
Z = {Ui(k) : 0 ≤ k ≤ L − 1 and Ui(L − 1) ⊆ W}.By assumption we know that(6.1) |W ∩ (∪Y)| ≥ (1 − ε)|W |.
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laim that then(6.2) |W ∩ (∪Z)| ≥ (1 − 3ε)|W |.Suppose that this were not the 
ase. Then there is a subset A ⊆ W of size > ε|W |not 
overed by Z, and all of whose points are at distan
e at least ε|W | from Z\W .By inequality (6.1) there is some Ui(L − 1) ∈ Y \ Z that interse
ts A at a point r.Sin
e Ui(L− 1) /∈ Z it must interse
t Z \W at a point r′. Sin
e Ui(L− 1) 
ontainsthe interval with endpoints r, r′, we have
|Ui(L − 1)| ≥ |r − r′| ≥ ε|W |so

|Vi(L − 1)| ≥ 2

ε2
|Ui(L − 1)| > 2|W |.On the other hand, Ui(L−1)∩W 6= ∅ (be
ause Ui(L−1) ∈ Y) and sin
e Ui(L−1) ⊆

Vi(L − 1), we also have Vi(L − 1) ∩ W 6= ∅. Sin
e W is in the ε-
rust of V Lemma6.3 implies Vi(L − 1) ⊆ W ε, 
ontradi
ting the size bound we got for Vi(L − 1).To 
omplete the proof, we apply Lemma 6.4 to the tower Z. We obtain a disjointsub
olle
tion of Z (and hen
e of U) whose members are 
ontained in W and havetotal size at least (1 − 3ε)| ∪ Z|, whi
h by inequality (6.2) is at least (1 − 6ε)|W |,as required. �We 
an now prove Lemma 5.1, whi
h we rephrase as follows (noti
e that ourtower is now numbered starting at 0 and we have removed the tildes from thenotation).Lemma 6.6. With the notation above, suppose that no interval V ∈ V 
an be
6ε-�lled by disjoint elements of U . Then

| ∪ U(0)| ≤ (1 +
ε

6
)−⌊L/ log(1/ε)⌋| ∪ V(L)|.Proof. Set M = log(1/ε). It su�
es to prove

| ∪ U| ≥ (1 +
ε

6
)−⌊L/M⌋| ∪ U(0)|and it is enough to prove this when L is an integer multiple of M ; write L = kM .We pro
eed by indu
tion on k. The base of the indu
tion is the previous lemma.Now, given that it is true for k and given L = (k+1)M , we 
an apply the indu
tionhypothesis to the restri
tions of U ,V to levels 0, 1, . . . , kM . This tells us that

| ∪ U(kM)| ≥ (1 +
ε

6
)k| ∪ U(0)|.Consider now the restri
tion of the towers to levels kM, kM + 1, . . . (k + 1)M .Applying the base 
ase we get

| ∪ U((k + 1)M)| ≥ (1 +
ε

6
)| ∪ U(kM)|



14 englishMi
hael Ho
hmanputting these together 
ompletes the proof. �As mentioned in the introdu
tion everything above 
an be 
arried out for sym-metri
 intervals and for 
ubes in Zd; the proofs generalize easily to that 
ase, thoughthe 
onstants 
hange. We note that the Vitali Lemma (Lemma 6.1) requires a dif-ferent proof in higher dimensions, but this is 
lassi
al.For 
ompleteness we provide the proof of the higher-dimensional analogue ofLemma 6.2. Consider the 
ase of squares in Z2. The ε-blowup of a square U × Vis Uε × V ε, whi
h 
an be written as a disjoint union
Uε × V ε = (U × U) ∪ B1 ∪ B2 ∪ B3 ∪ B4where B1 = Uε ×V \U ×V are two verti
al strips of width ε, B2 = U ×V ε \U ×Vare two horizontal strips of height ε, B3 is the union of two ε × ε squares outsidethe upper-left and lower-right 
orners of U × V and B4 is the union of two ε × εsquares outside the upper-right and lower-left 
orners of U × V . To obtain ananalogue of Lemma 6.2 we must show that if {Ui × Vi} is a 
olle
tion of squaresand Uε

i × V ε
i = (Ui × Vi) ∪

⋃
t=1,2,3,4 Bi,t as above, then for ea
h t = 1, 2, 3, 4,

|
⋃

i

Bi,t| ≤ 2ε|
⋃

i

Ui × Vi|.This follows from the one-dimensional 
ase by de
omposing ∪i(Ui × Vi ∪ Bi,t) intothe union of the interse
tion of this set with parallel translates of lines. For instan
efor t = 1, the interse
tion of ∪i(Ui × Vi ∪ Bi,t) with ea
h horizontal line is the ε-blowup (in the one-dimensional sense) of the interse
tion of ∪iUi × Vi with thatline, and therefore the one-dimensional lemma 
an be applied. Now sum over alllines.The proof for 
ubes in Zd is proved by indu
tion on the dimension using a similarstrategy. Referen
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