UPCROSSING INEQUALITIES FOR STATIONARY SEQUENCES
AND APPLICATIONS
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AnsTracT. For arrays (S; j)1<i<; of random variables that are stationary in

oo

an appropriate sense we show that the fluctuations of the process (S1,n)5%

can be bounded in terms of a measure of the “mean subadditivity” of the pro-
cess (S3,j)1<i<j. We derive universal upcrossing inequalities with exponential
decay for Kingman’s subadditive ergodic theorem, the Shannon-MacMillan-
Breiman Theorem and for the convergence of the Kolmogorov complexity of a

stationary sample.

1. INTRODUCTION

Let us say that a sequence (X,,)52; of real numbers has & crossings (or upcross-

ings) of an interval [s, t] if there are indices
1< <1 <ia<ja<...<ip<Jg

such X; < s and X;,, > t. Allowing X,, to be random, it follows easily that
lim X, exists a.s. if and only if, for every interval of positive length, the probability
of infinitely many crossings of the interval is 0.

There are a number of classical limit theorems in probability that can be for-

mulated and proved in this way, the best known of which is Doob’s upcrossing

oo

inequality for L! martingales [6]: if (S,,)%, is an L! martingale then for s < ¢,

P((Sn);2 has k upcrossings of [s,t]) < %

(see also Dubins [7]). A similar inequality was proved by Bishop for the time
averages S, = = > " | X,, of an L' stationary process (X,)3; |1, 2|. Assuming
non-negativity of the process instead of integrability, Ivanov [8] proved the following

beautiful result: for every s < t,
(1.1) P((S,)52, has k upcrossings of [s,t]) < (g)]’C

(See [4]. For related results see Jones, Kaufman, Rosenblatt and Wierdl [9], and
Kalikow and Weiss [10]). A remarkable aspect of these inequalities is that they hold
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universally: except for trivial normalization they do not depend on the process
in question. Neither martingales nor ergodic averages admit universal rates of
convergence, and it is all the more surprising that such general bounds for the
fluctuations exist.

In this paper we establish a general upcrossing inequality for certain sequences
associated with stationary processes, in terms a certain measure of “mean subaddi-
tivity” of the process. We consider arrays (5; ;j)1<i<; of random variables, though
we shall usually identify the ordered pair (¢,7) that is the index of S; ; with the
integer interval [i;j] = [i,4] NN, and if U = [¢; ] is such an interval we write Sy
for S; ;. We assume the process to be stationary with respect to translation of the

indexing intervals, i.e. that for every m € N one has
(St 1<i<i = (Spi4m.j+m))1<i<j in distribution.

One very general way to get such arrays is by applying a function to samples of
stationary processes: if (X,,)%2 , is stationary and g is any function defined on finite
sequences, then S, ; = g(X;, X41...,X;) satisfies these assumptions.

Let I C N be an interval and § > 0. We say that a collection Iy,...,I. of
intervals §-fills T if all the intervals are contained in I and |I \ UI;| < §|I|, where ||

denotes cardinality.

Theorem 1.1. Suppose that (S; j)1<i<; is stationary in the above sense. Let s < t
and 0 < 6 < %. Then for every k,
(1.2)

P (S1,0)5% has k
upcrossing of [s, t]

there exists n > k such that Sy, >t
) <c-pF4+P and [1;n] can be 6-filled by disjoint
intervals Vi, ..., V, satisfying Sy, < s

The constants ¢ and 0 < p < 1 depend only on 6 (but not on the process or on s,t).

In applications one optimizes over § to get a bound for the left hand side which
is often independent of the process. Theorem 1.1 is effective, and the constants
may be computed explicitly, though they are surely not optimal. This inequality
cannot be reversed, and in section 2 we give a simple example in which the left
hand side decays exponentially and uniformly for a certain class of processes but
the right hand side can decay arbitrarily slowly.

Theorem 1.1 can be generalized in several ways. It remains valid when one
starts with a “two-sided” stationary array (S;;)—co<i<j<co and sets S, = S_, »,
and there is a version for S,, = Sy, where V; is an arbitrary increasing sequence
with 0 € V4. Tt can also be extended to the multi-dimensional setting, where the
process is indexed by cubes instead of segments. These versions require minor

modifications of the proof we give.
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Our first application is to Kingman’s subadditive ergodic theorem. Let (Xp,.n)1<m<n

be stationary in the sense above and subadditive, i.e. X}, , < Xy, p, + X401, When-
ever K < m < n. Kingman’s Theorem states that under some integrability condi-
tions, if X,, , is stationary and subadditive then %Xlﬁn converges almost surely.
As examples of this situation consider X, , = Z?:in when Y; is a stationary
process, O Xy, n = [|Zpm ... Zy|| where Z; is a stationary sequence of operators.
Polynomial decay for upcrossings in Kingman’s Theorem for integrable processes
was proved by Krawczak [11]. We establish an exponential version of this, with

integrability replaced by a boundedness condition:

Theorem 1.2. Let (X,,.n)1<m<n be stationary and subadditive. Suppose that
Xi11 <M a.e. for a constant M. Then for every s <t,

P((Sn)2, has k upcrossings of [s,t]) < c- p*
for constants 0 < p < 1 and c that depend only on s,t and M.

We next turn to the convergence of Shannon information of samples. Given
a finite-valued process (X;)$2,, the information of the sample Xi,..., X, is the
random variable

I(X1,...,X,) = —logP(X1,..., Xy).

Here, for a fixed sequence £ = &; ... &, we write P(§) for the probability of observing
this sample, so P(X; ... X,,) is the probability of observing the sample that was in
fact observed.

The Shannon-MacMillan-Breiman Theorem [14] is one of the fundamental the-
orems in information theory, asserting that %I(Xl ... X,) converges almost surely.
See for instance [12].

1

Theorem 1.3. Suppose (X,,)$2, is 0, 1-valued stationary process. Let S, = ~1(Xq,...

n

Then for every s < t,
P((Sn)22, has k upcrossings of [s,t]) < c- p*
and the constants 0 < p <1 and c depend on s,t.

The same result holds for processes with a finite number r of symbols, but the
constants will then depend also on r. We note that there is no universal rate of
convergence for this limit, and Theorem 1.3 seems to be the first effective version
of it. It is interesting that the classical proofs of the convergence of 1I(X;...X,,)
rely on the ergodic theorem and the Martingale Theorem, but though upcrossing
inequalities are known for both of these it is unclear how to combine them to deduce
Theorem 1.3.

One of the motivations for Bishop’s upcrossing proof of the ergodic theorem was

to obtain an ergodic theorem that would be valid in the constructive framework
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of mathematics. As Theorem 1.1 is effective, it can probably be adapted to this
setting, leading to constructive proofs of the Kingman and SMB Theorem:s.
Another closely related result involves algorithmic complexity rather than Shan-
non information. For a finite string = of 0’s and 1’s, let x(z) denote the Kolmogorov
complexity of x, sometimes referred to as the minimal description length of x (see
Section 4). Although k() is not formally computable it has been extensively stud-
ied as a non-statistical measure of complexity and there is a close relation between
it and Shannon’s theory of information; see for example [5]. The following result is

therefore an analog of Theorem 1.3; the existence of the limit was shown by Brudno

[3).

Theorem 1.4. Suppose (X,,)22, is a stationary 0, 1-valued process. Then, writing
Sn = —%/@(Xl ... Xn), for every s < t we have

P((Sn)2%, has k upcrossings of [s,t]) < c- p*
for constants ¢ and 0 < p < 1 that depend only on s,t.

The rest of this paper is organized as follows. We first use Theorem 1.1 to
derive the applications. In section 2 we derive the result on Kingman’s Theorem,
and show that the inequality in Theorem 1.1 cannot be reversed. In section 3 we
prove the upcrossing inequality for the Shannon-McMillan-Breiman Theorem, and
in section 4 we derive the inequality for Kolmogorov complexity. In section 5 we

reduce Theorem 1.1 to a combinatorial lemma, whose proof is given in section 6.

Acknowledgement. This work was done as part of the author’s Ph.D. studies under
the guidance of Benjamin Weiss, whom I would like to thank for all his support and
advice. I also thank the anonymous referee for a careful reading and for suggesting

many simplifications in the proofs.

2. THE SUB-ADDITIVE ERGODIC THEOREM AND AN EXAMPLE

In this section we discuss the relation between Theorem 1.1 and ergodic theorems.

Proof. (of Theorem 1.2). Suppose Vi,...,V, are disjoint subintervals of [1;n| such
that - Xy, <s. Let U = [0,1]\ U;_, Vi. By subadditivity,

[Vil
X Z“ il 1 Z E” | |L|
Lin = |V| vi = - n

(in the last inequality we used stationarity to get X, ; < M). Thus if [1;n] is d-filled
by the V; then |U| < dn so

%Xl,n < (1-0)s+ oM
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and if 0 = ]\t/l__ss then it impossible that %Xl,n > t. Hence, for this §, when we
apply Theorem 1.1 with the sequence S; ; = j_ﬁXm, the event on the right hand
side of inequality (1.2) is empty. The theorem follows. O

Next, we show that decay of the right hand side in Theorem 1.1 is not necessary
in order to get fast decay on the left. Let (X,)%2; be a stationary process with

values in [—1,1] and let

Sij =T

V=] kZ::
so S1,n is obtained by repeating elements from the sequence of ergodic averages
(1(X1+...4+ X,,))52,. The latter sequence obeys an upcrossing inequality which
does not depend on X,,; thus the former sequence does as well. However, the

following proposition shows that one cannot obtain this from Theorem 1.1.

Proposition 2.1. Let

there exists n > k such that Sy, > %

pp =P and [1,n] can be 0-filled by disjoint
intervals Vi, ..., V, satisfying Sy, < —%

Then for arbitrarily large k there are processes for which py > 1/6, and in particular

the convergence pi — 0 is not uniform as the process (X,,) is varied.

Proof. Fix 6 > 0. Let n > 1/§ and let (X;)$2, be the process whose unique sample
path, up to translation, is the sequence with period 2n in which blocks of 1’s and
—1’s of length n alternate. Set k = n?. It is easily verified that (a) the probability
that the first 2n/3 symbols of a sample are 1’s is 1/6, and Sy in this case is
> 1/2; and (b) If X; = 1 then, taking j to be the first index with X; = —1, we
have S, < —1/2 and [1; k] is -covered by [j; k]. Thus for each square k there are
processes for which py > 1/6. O

3. THE SHANNON-MCMILLAN-BREIMAN THEOREM

In this section we prove Theorem 1.3. Fix s < t and a parameter § > 0. Set

1
j—i1+1
In order to apply Theorem 1.1, for each n € N we wish to bound the probability of

S@jz I(XZX])

the event

B - { S1.n >t and [1,n] can be d-filled by disjoint }

intervals Vi,...,V, satisfying Sy, <s
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Since
Sij>t <= PX;...X;) <2710
Sij<s = PX;...X;)>2 07D

we have the trivial bound
(3.1) P(B,) < 2714 ( words w € {0,1}" which can be J-filled with >

disjoint words v satisfying P(v) > 9—st(v)

where £(v) denotes the length of v.
To estimate the right hand side of (3.1) we note that each word w that is counted

on the right can be constructed as follows:

(1) Choose a subset I C [1;n] of size < dn.

(2) Choose the symbol w(i) for each i € I.

(3) For each maximal interval J C [1;n] \ I choose a word v = w|; with
P(v) > 2754,

To bound the number of words produced in (1)—(3) we bound the number of choices
at each step. In step (1) we have < 27(9)+e(ogn) chojices, where h(z) = —zlogx —
(1 — z)log(l — ) (this is a standard consequence of Stirling’s formula). In step
(2) we have at most 2°" choices. Finally, in step (3) let Jy,...,J, be the maximal
intervals in [1;n] \ I. The number of distinct words v of length |J;| and satisfying
P(v) > 27517l is clearly bounded by 25!7i| so the number ways to choose such words

with lengths |J1],...,|J;| is at most

HgSIJz'I = 22 i slil < gsn,

i=1
It follows that the number of words counted on the right hand side of equation (3.1)
is

< 2(s+h(5)+6)n+o(log n) ,

S0
P(B,) < 2~ (t=s=h(®)=d+o()n,
Hence if § is small enough in a manner depending on s, ¢, this bound is summable
and gives
P(UpskBr) < c- ok

for constants ¢ and 0 < p < 1 depending only on s, t. Since U,~ B, is the event on
the right hand side of the inequality 1.1 in Theorem 1.1, this completes the proof
of Theorem 1.3.
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4. KOLMOGOROV COMPLEXITY

The Kolmogorov complexity «(x) of a 0, 1-valued string « is defined as follows.
Fix a universal Turing machine U, and let z* be a string of minimal length such
that, when U is run on input z*, the output is z. Then x(x) is the length of z*.
Although k(-) depends on the universal machine U, changing U only changes «(+)
by an additive constant.

In this section we prove Theorem 1.4. Note that Sy, , = %Ii(,’tm ...xy) is not
strictly sub-additive, so Kingman’s Theorem does not apply, but we can nonetheless

exploit the fact that it is “almost sub-additive”.

Proposition 4.1. Let (X,,)22, be a 0,1-valued stationary process and set S, =
Li(X1...Xy). Then for every s <t there is a § > 0 and an N so that the event

there exists n > k such that Sy, >t
By = and [1,n] can be §-filled by disjoint
intervals Vi, ..., V, satisfying Sy, < s

is empty for all kK > N.

Proof. We reason as in the previous section. Suppose that z € {0,1}" and [1;n] can
be §-filled by a disjoint collection of intervals {Vi,...,V,,} with ﬁ/@(xh/k) < s.
We can encode z by describing the choices of the three-step process outlined in
the previous section. In step 3, we encode the pattern x|y, be writing down the
computer program that produces it. Thus the estimate from the previous section

shows that the number of bits required is
h(d)n+n+ Z k(z|v,) < (s 4 h(d) + d)n + o(logn).

We only require a constant-length program to extract the string x from this encod-
ing. We also require an overhead of O((h(d) 4+ d)n) to encode this information in a

self-punctuating way. Thus
k(z) < o(logn) + (s + C'(h(d) + 0))n

and if ¢ is small enough (in a manner depending on s, ) this implies k() < t once
n is large enough (how large n must be depends on C, C’, which in turn depend on
the Turing machine we are using but is independent of s, ¢, § and the process). The

proposition follows. O

Theorem 1.4 now follows from Theorem 1.1.

5. REDUCTION OF THEOREM 1.1 TO A COVERING LEMMA

The purpose of this section is to reduce the proof of Theorem 1.1 to a combina-

torial statement about intervals, related to the effective Vitali covering lemma of
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Kalikow and Weiss [10]. This lemma is stated below in Lemma 5.1 but its proof is
rather technical and we defer it to Section 6.
Let (S;;)1<i<j be a stationary in the sense discussed in the introduction. Fix

s < t, a parameter § > 0, and an integer k. For i € N we define the events

A; = {(Siitn)pey has k upcrossings of [s, t]}
B - There is an n > k such that S; ;+, > ¢, and [i,7 + n] can be
’ d-filled by disjoint intervals Vi,. ..,V satisfying Sy, <'s '

By stationarity P(A4;) = P(A;) and P(B;) = P(B,) for all i,j. We abbreviate
A= Ay, B= B;. Theorem 1.1 is then equivalent to
P(A) < cp* + P(B)

for constants 0 < p < 1 and ¢ that depend only on s, t.
The proof proceeds as follows. Fix a large N and let
AN = {(Si.isn)N_, has k upcrossings of (s,t)}
since A = UAY it suffices to show that, for each NV,
P(AY) < cp + P(B)

with ¢, p independent of N. Fix an integer R much bigger than N (we will eventually
take R — o0), and let I C {1,..., R} be the random set of indices defined by

I={ie[;R] : AY occurs}.

By stationarity of S; ; we have

R R
1 1 1
P(AY) = =) P(AY)=—E = —E|I|.
(4Y) = 3 L PAY) = B xar) = I
We proceed to estimate the expected size of I. We divide [ into two parts:
Ip={i eI : B; occurs} and L =T1\1I.

Since £E(|o|) = P(B), it suffices to show that £|I1] < cp*.

By definition, for each ¢ € I; there is a (random) sequence of k pairs of non-
empty intervals U;(1) C V;(1) C ...U;(k) C V;(k) whose left endpoint is i and
length < N, and such that Sy, ;) < s and Sy,(,) >t for 1 <m < k.

We now pass to a subsequence of the U;’s and V;’s by performing two refine-
ments of the sequence. First, clearly |U;(m 4+ 1)| > |Vi(m)| > |U;(m)| because
SUrs1(m)> SUi(m) 7# Sv,(m) and because of the given inclusions. Thus [U;(m)| >
2(m —1). If we delete the first kg = [k/2] + 1 pairs, then we are left with a se-
quence U;(kg +1) C Vi(ko +1) C ... C U;(k) C Vi(k) of at least k' = |k/2] — 1

pairs of intervals, all of which are of length greater than k.



englishUpcrossing inequalities and applications 9

Second, notice that if |V;(m)|/|U;(m)| < 1+ 6 then i € Iy, since U;(m) would
§-fill V;(m). Thus for ¢ € I; we also have |V;(m)|/|U;(m)| > 1+4§. Choose ¢ so that

(1+6)2! > 172/68°

i.e. ¢ = [log(72/6%)/log(1 + &)| +1. By deleting the intervals U;(j), V;(j +1) when
j # 0(modq) and renumbering the remaining ones, we are left with a sequence
of k" > | (K —1)/q| pairs of intervals U;(1) C V;(1) C ... C Us(K") C Vi(k"), all
having length > k and satisfying Sﬁi(m) < s, Sf/i(m) > t, and which additionally
satisfy the growth condition |V;(m)| > Z2|U;(m)| for every 1 < m < k”.

We now apply a combinatorial result whose proof we defer to section 6.

Lemma 5.1. Let ¢ < 1/4. Suppose J C N is finite and for each j € J we are given
a sequence of intervals ﬁj(l) C ‘N/J(l) c...C ﬁj(L) C ‘N/J(L) with left endpoint j
and satisfying |‘7j(n)| > €%|ﬁj(n)| Suppose that none of the ‘N/J(n) s can be 6¢-filled
by a disjoint collection of ﬁl(m) ’s. Then
E ~
2y~ (L—=1)/(log1/e) .
1< (4 7 En/es T (1),
JjeJ
We apply the lemma to our situation with J = I, L = k” and ¢ = §/6. The
hypothesis is satisfied by definition of I. It follows that there are constants ¢ > 0
and 0 < p < 1 depending only on § (hence on s,t), such that
L] < ceop* [ | Vi)
el
< ¢ pM(N+R)

and the last inequality is because |J,.; Vi(k”) C [1; N + R]. We thus have

i€l
1 1 1 N
P(A) = —E|I| = =E|lo| + =E|L| <P(B) +c-p "1+ =
(4) = ZElI| = £Ello| + £EIL| < P(B)+ e p "1+ )
the proof is completed by taking R — oc.

6. PROOF OF LEMMA 5.1

The remainder of this paper is devoted to the proof of Lemma 5.1. Some of the
statements below are standard; we supply proofs for completeness. Others parts
of the argument are related to the Effective Vitali Covering Lemma from [10]. See
[13, 15] for other examples of covering lemmas in probability and ergodic theory.

We say that a collection of segments is disjoint if its members are pairwise

disjoint. The following is a version of the classical Vitali covering lemma:

Lemma 6.1. IfV is a collection of intervals then there is a disjoint sub-collection

V' CV with |UV'| >|UV|/2.
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Proof. Let V' C V be a minimal collection satisfying UV’ = UV. Order the intervals
in V' by their left endpoint, say V' = {V;,Va,...,V;,}. Then the subsequence
consisting of intervals with even indices is disjoint, and similarly for the subsequence
with odd indices; and one of them must cover at least half of V. (I
For £ > 0 and an interval U = [a; b] the e-blowup of U is
U =[a—e|U|,b+e|U||NZ.

Note that U C U® and |U¢| < (1 + 2¢)|U]|. For a collection U of intervals we write
Us = {U° : Uell.

Lemma 6.2. IfU is a collection of intervals then | UU®| < (1 + 2¢)| UU|

Proof. Let A = UU and decompose A into disjoint maximal intervals V7,..., Vi, so
|UU| =" |Vi|. For each V; one clearly has

U Ue C V'ia
Uveu:UCv;
thus
k k
luue <> 1 U UL (1420l = (1+20)| U] O
i=1 UeU:UCV; i=1

A tower of height M over a finite set I C N is a collection Y = {U;(k)
i€ I,1 <k < M} of intervals such that ¢ is the left endpoint of U;(k) (we
shall actually only use the fact that ¢ € U;(k)), and for each i € I the sequence
Ui(1) C U;(2) C ... C U;(M) is strictly increasing. The k-th level of U is the
collection

Uk) ={Ui(k) : i e I}.
Note that the intervals in U(k) are not necessarily of the same size, and although
|Ui(k)| < |U;(k + 1)| it need not be true that |U;(k)| < |U;(k + 1)| if @ # j.
Let U = {U;(k)} be a tower of height M over a set I. The e-crust of U is the

set of V € U whose e-blowup is strictly maximal with respect to inclusion, i.e.
V={Vel(M):if Ve C W for some W € U then V = W}.
It is clear that Ul C UVE.
Lemma 6.3. Let 0 < ¢ < 1. Suppose U = {U;(k)} is a tower over I of height 2
satisfying
2
|U:(2)| > €—2|Ui(1)| foralliel
and V CU(2) is the e-crust of U. Then
(1) For each U eU(1) and V €V, if UNV # 0 then U C V©.
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(2) There exists U C U(1) and a disjoint V C V such that | UU| < 1o,
() N (UY) = 0 and U C (UV) U (UU).

Proof. Let U € U(1) and V € V with U NV # (. In order to show that U C V*©
it suffices to show that ¢|V| > |U|. Let ¢ € I such that U = U;(1) and write
W = U;(2), the interval “above” U in U. Since V is in the e-crust we cannot have
Ve C We. Since VN W # (), this implies that

2
(+olV = W]z S|

which gives the desired conclusion.
To establish (2), apply the Vitali Lemma to V to obtain a disjoint family ycvy
with [UV] > 1| UV]. Let

U={Ueclul): UnUY) =0}

The conclusion now follows from (1). O

We want to replace the constant 1/2 in the Vitali Lemma with a constant close
to 1. This can be achieved using the standard trick of applying the Vitali Lemma
to several layers of covers and iteratively disjointifying each level in turn.

Henceforth all logarithms are taken to base 2.

Lemma 6.4. Let 0 < ¢ < 1. Suppose U = {U,;(k)} is a tower of height M >
1+ log(1/e) over a set J and

2
|Uj(k+ 1) > §|Uj(/€)|-

Then there is a disjoint sub-collection ¥V C U such that | UV| > (1 — 3e)| UU|.

Proof. Set Uy =U and Vy = ). For 1 < n < M we inductively define subcollections
Vi, Un, CU(M — n) satistying

(1) Vn,Un C U1,
(2) Wlp—1 C (Uly) U (UVE).
(3) (UVn) n (Uun) =0,
(4) |UUn| < 3] UUn-1].
To produce U, V,, we apply Lemma 6.3(2) to the top two layers of U, ;. Clearly
the collection V = Uy<p<nr Vg is disjoint, and U C (UVE)U (UUp—1). By property
(4) we have
|Uth ] < ()M 0] < <l vl

$0

[UVE| > |UlU| — | UUp-1] > (1 =) ulU|.
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Using the inequality | U V| > | UVe| from Lemma 6.2 we have

1
142¢

1_
luy| > +2i_|uz/f|z(l—:ssfnum

1
as desired. O

Until the end of the section we adopt the following notation. Fix an integer L
and 0 < € < 1, a finite set I C Z and two towers U = {U;(k)} and V = {V;(k)} of
height L + 1 over I satisfying

Ui(0) C Vi(0) CUi(1) € Vi(1) € ... CU(L) C V(L)
(for convenience we start from level 0), and
2
Vi) > 210k,

Note that this ensures a similar growth rate for the substack .

Lemma 6.5. Let L > 1+log(1/¢). Then either there is a V € V(L) which can be
6e-filled by a disjoint subcollection of U, or else |[UV(L)| > (1 + §)| UU(0)].

Proof. Select a maximal disjoint subset W of the e-crust of V. By the Vitali Lemma

and LEmma 6.3 we have

1 1
Yo IWI=UW] 2 s [UV(L)] 2 s
e 2(1+ 2¢) 2(1+ 2¢)

We distinguish two cases. First, if every W € W satisfies |W \ UU(L — 1)| > e|W|

then, since W is disjoint, we would have

| UU(0)].

UV

Y

[UU0)| + [UW\ UU(L —1)]
= [UUO)+ Y IW\NWUL-1)

wew

[uUO)+ > W]

wew

g
mﬂ uU(0)|

Y

(1+

which gives the desired bound.
Otherwise let W € W be such that |W \ UU(L — 1)| < |W]|. Let

Y = {Uik) : 0<k<L—-Tand Uy(L -1)NW # (}
Z = {Uik) :0<k<L-land U;(L—-1) CW}.
By assumption we know that

(6.1) W (W)= (1 -e)W].
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We claim that then
(6.2) [W N (UZ)| > (1-3e)|W].

Suppose that this were not the case. Then there is a subset A C W of size > ¢|W]|
not covered by Z, and all of whose points are at distance at least £|W| from Z\ W.
By inequality (6.1) there is some U;(L — 1) € Y\ Z that intersects A at a point 7.
Since U;(L — 1) ¢ Z it must intersect Z\ W at a point /. Since U;(L — 1) contains

the interval with endpoints r, 7', we have
Ui(L = 1) = |r—1'| = e[W|
SO )
VL - 1|2 B - 1)) > 2w

On the other hand, U;(L—1)NW # § (because U;(L—1) € V) and since U;(L—1) C
Vi(L — 1), we also have V;(L — 1) N W # . Since W is in the e-crust of ¥V Lemma
6.3 implies V;(L — 1) C W¢, contradicting the size bound we got for V;(L — 1).

To complete the proof, we apply Lemma 6.4 to the tower Z. We obtain a disjoint
subcollection of Z (and hence of U) whose members are contained in W and have

total size at least (1 — 3¢)| U Z|, which by inequality (6.2) is at least (1 — 6¢)|W],

as required. O

We can now prove Lemma 5.1, which we rephrase as follows (notice that our
tower is now numbered starting at 0 and we have removed the tildes from the

notation).

Lemma 6.6. With the notation above, suppose that no interval V. € V can be
6e-filled by disjoint elements of U. Then

[UUO)] < (1+ )7 up(L)]
Proof. Set M =log(1/¢). It suffices to prove
€,_
juU| = (1+ )~ o))

and it is enough to prove this when L is an integer multiple of M; write L = kM.
We proceed by induction on k. The base of the induction is the previous lemma.
Now, given that it is true for k and given L = (k+1)M, we can apply the induction
hypothesis to the restrictions of U,V to levels 0,1,..., kM. This tells us that

[ DUEM)| > (1+ 2)FUUO)].

Consider now the restriction of the towers to levels kM, kM + 1,...(k + 1)M.
Applying the base case we get

DU+ DM)| = (14 2) | VUKM)|
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putting these together completes the proof. (I

As mentioned in the introduction everything above can be carried out for sym-
metric intervals and for cubes in Z¢; the proofs generalize easily to that case, though
the constants change. We note that the Vitali Lemma (Lemma 6.1) requires a dif-
ferent proof in higher dimensions, but this is classical.

For completeness we provide the proof of the higher-dimensional analogue of
Lemma 6.2. Consider the case of squares in Z2. The e-blowup of a square U x V

is U¢ x V¢, which can be written as a disjoint union
Ut x Ve = (U X U)UBl U By U B3 UBy

where By = U¢ x V\ U x V are two vertical strips of width e, By = U x VE\U xV
are two horizontal strips of height €, Bs is the union of two € X € squares outside
the upper-left and lower-right corners of U x V and B, is the union of two ¢ X ¢
squares outside the upper-right and lower-left corners of U x V. To obtain an
analogue of Lemma 6.2 we must show that if {U; x V;} is a collection of squares
and U7 x V7 = (U; x Vi) UU;—; 5 3.4 Bi,+ as above, then for each t = 1,2,3,4,

| Bisl < 2e[| Ui x Vil.

This follows from the one-dimensional case by decomposing U;(U; x V; U B; ;) into
the union of the intersection of this set with parallel translates of lines. For instance
for t = 1, the intersection of U;(U; x V; U B; ;) with each horizontal line is the e-
blowup (in the one-dimensional sense) of the intersection of U;U; x V; with that
line, and therefore the one-dimensional lemma can be applied. Now sum over all
lines.

The proof for cubes in Z? is proved by induction on the dimension using a similar

strategy.
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