
UPCROSSING INEQUALITIES FOR STATIONARY SEQUENCESAND APPLICATIONSMICHAEL HOCHMANAbstrat. For arrays (Si,j)1≤i≤j of random variables that are stationary inan appropriate sense we show that the �utuations of the proess (S1,n)∞n=1an be bounded in terms of a measure of the �mean subadditivity� of the pro-ess (Si,j)1≤i≤j . We derive universal uprossing inequalities with exponentialdeay for Kingman's subadditive ergodi theorem, the Shannon-MaMillan-Breiman Theorem and for the onvergene of the Kolmogorov omplexity of astationary sample. 1. IntrodutionLet us say that a sequene (Xn)∞n=1 of real numbers has k rossings (or upross-ings) of an interval [s, t] if there are indies
1 ≤ i1 < j1 < i2 < j2 < . . . < ik < jksuh Xim

< s and Xjm
> t. Allowing Xn to be random, it follows easily that

limXn exists a.s. if and only if, for every interval of positive length, the probabilityof in�nitely many rossings of the interval is 0.There are a number of lassial limit theorems in probability that an be for-mulated and proved in this way, the best known of whih is Doob's uprossinginequality for L1 martingales [6℄: if (Sn)∞n=1 is an L1 martingale then for s < t,
P( (Sn)∞n=1 has k uprossings of [s, t]) ≤ supn ‖Sn‖1

k(t − s)(see also Dubins [7℄). A similar inequality was proved by Bishop for the timeaverages Sn = 1
n

∑n
i=1 Xn of an L1 stationary proess (Xn)∞n=1 [1, 2℄. Assumingnon-negativity of the proess instead of integrability, Ivanov [8℄ proved the followingbeautiful result: for every s < t,(1.1) P( (Sn)∞n=1 has k uprossings of [s, t]) ≤ (

s

t
)k(See [4℄. For related results see Jones, Kaufman, Rosenblatt and Wierdl [9℄, andKalikow and Weiss [10℄). A remarkable aspet of these inequalities is that they hold2000 Mathematis Subjet Classi�ation. 37A30, 37A35, 60G10, 60G17, 94A17, 68Q30.Key words and phrases. Uprossing inequality; entropy; omplexity; ergodi theorem; pointwiseonvergene. 1



2 englishMihael Hohmanuniversally: exept for trivial normalization they do not depend on the proessin question. Neither martingales nor ergodi averages admit universal rates ofonvergene, and it is all the more surprising that suh general bounds for the�utuations exist.In this paper we establish a general uprossing inequality for ertain sequenesassoiated with stationary proesses, in terms a ertain measure of �mean subaddi-tivity� of the proess. We onsider arrays (Si,j)1≤i≤j of random variables, thoughwe shall usually identify the ordered pair (i, j) that is the index of Si,j with theinteger interval [i; j] = [i, j] ∩ N, and if U = [i; j] is suh an interval we write SUfor Si,j . We assume the proess to be stationary with respet to translation of theindexing intervals, i.e. that for every m ∈ N one has
(S[i;j])1≤i≤j = (S[i+m,j+m])1≤i≤j in distribution.One very general way to get suh arrays is by applying a funtion to samples ofstationary proesses: if (Xn)∞n=1 is stationary and g is any funtion de�ned on �nitesequenes, then Si,j = g(Xi, Xi+1 . . . , Xj) satis�es these assumptions.Let I ⊆ N be an interval and δ > 0. We say that a olletion I1, . . . , Ir ofintervals δ-�lls I if all the intervals are ontained in I and |I \∪Ii| < δ|I|, where |·|denotes ardinality.Theorem 1.1. Suppose that (Si,j)1≤i≤j is stationary in the above sense. Let s < tand 0 < δ < 1

4 . Then for every k,(1.2)
P

(
(S1,n)∞n=1 has kuprossing of [s, t]

)
≤ c ·ρk +P




there exists n > k suh that S1,n > tand [1; n] an be δ-�lled by disjointintervals V1, . . . , Vr satisfying SVj
< s


 .The onstants c and 0 < ρ < 1 depend only on δ (but not on the proess or on s, t).In appliations one optimizes over δ to get a bound for the left hand side whihis often independent of the proess. Theorem 1.1 is e�etive, and the onstantsmay be omputed expliitly, though they are surely not optimal. This inequalityannot be reversed, and in setion 2 we give a simple example in whih the lefthand side deays exponentially and uniformly for a ertain lass of proesses butthe right hand side an deay arbitrarily slowly.Theorem 1.1 an be generalized in several ways. It remains valid when onestarts with a �two-sided� stationary array (Si,j)−∞<i≤j<∞ and sets Sn = S−n,n,and there is a version for Sn = SVn

where Vi is an arbitrary inreasing sequenewith 0 ∈ V1. It an also be extended to the multi-dimensional setting, where theproess is indexed by ubes instead of segments. These versions require minormodi�ations of the proof we give.



englishUprossing inequalities and appliations 3Our �rst appliation is to Kingman's subadditive ergodi theorem. Let (Xm,n)1≤m≤nbe stationary in the sense above and subadditive, i.e. Xk,n ≤ Xk,m +Xm+1,n when-ever k ≤ m < n. Kingman's Theorem states that under some integrability ondi-tions, if Xm,n is stationary and subadditive then 1
nX1,n onverges almost surely.As examples of this situation onsider Xm,n =

∑n
i=m Yi when Yi is a stationaryproess, or Xm,n = ‖Zm . . . Zn‖ where Zi is a stationary sequene of operators.Polynomial deay for uprossings in Kingman's Theorem for integrable proesseswas proved by Krawzak [11℄. We establish an exponential version of this, withintegrability replaed by a boundedness ondition:Theorem 1.2. Let (Xm,n)1≤m≤n be stationary and subadditive. Suppose that

X1,1 ≤ M a.e. for a onstant M . Then for every s < t,
P((Sn)∞n=1 has k uprossings of [s, t]) < c · ρkfor onstants 0 < ρ < 1 and c that depend only on s, t and M .We next turn to the onvergene of Shannon information of samples. Givena �nite-valued proess (Xi)

∞
i=1, the information of the sample X1, . . . , Xn is therandom variable

I(X1, . . . , Xn) = − log P(X1, . . . , Xn).Here, for a �xed sequene ξ = ξ1 . . . ξn we write P(ξ) for the probability of observingthis sample, so P(X1 . . .Xn) is the probability of observing the sample that was infat observed.The Shannon-MaMillan-Breiman Theorem [14℄ is one of the fundamental the-orems in information theory, asserting that 1
nI(X1 . . . Xn) onverges almost surely.See for instane [12℄.Theorem 1.3. Suppose (Xn)∞n=1 is 0, 1-valued stationary proess. Let Sn = 1

nI(X1, . . . , Xn).Then for every s < t,
P((Sn)∞n=1 has k uprossings of [s, t]) < c · ρkand the onstants 0 < ρ < 1 and c depend on s, t.The same result holds for proesses with a �nite number r of symbols, but theonstants will then depend also on r. We note that there is no universal rate ofonvergene for this limit, and Theorem 1.3 seems to be the �rst e�etive versionof it. It is interesting that the lassial proofs of the onvergene of 1

nI(X1 . . . Xn)rely on the ergodi theorem and the Martingale Theorem, but though uprossinginequalities are known for both of these it is unlear how to ombine them to dedueTheorem 1.3.One of the motivations for Bishop's uprossing proof of the ergodi theorem wasto obtain an ergodi theorem that would be valid in the onstrutive framework



4 englishMihael Hohmanof mathematis. As Theorem 1.1 is e�etive, it an probably be adapted to thissetting, leading to onstrutive proofs of the Kingman and SMB Theorems.Another losely related result involves algorithmi omplexity rather than Shan-non information. For a �nite string x of 0's and 1′s, let κ(x) denote the Kolmogorovomplexity of x, sometimes referred to as the minimal desription length of x (seeSetion 4). Although κ(·) is not formally omputable it has been extensively stud-ied as a non-statistial measure of omplexity and there is a lose relation betweenit and Shannon's theory of information; see for example [5℄. The following result istherefore an analog of Theorem 1.3; the existene of the limit was shown by Brudno[3℄.Theorem 1.4. Suppose (Xn)∞n=1 is a stationary 0, 1-valued proess. Then, writing
Sn = − 1

nκ(X1 . . . Xn), for every s < t we have
P((Sn)∞n=1 has k uprossings of [s, t]) < c · ρkfor onstants c and 0 < ρ < 1 that depend only on s, t.The rest of this paper is organized as follows. We �rst use Theorem 1.1 toderive the appliations. In setion 2 we derive the result on Kingman's Theorem,and show that the inequality in Theorem 1.1 annot be reversed. In setion 3 weprove the uprossing inequality for the Shannon-MMillan-Breiman Theorem, andin setion 4 we derive the inequality for Kolmogorov omplexity. In setion 5 weredue Theorem 1.1 to a ombinatorial lemma, whose proof is given in setion 6.Aknowledgement. This work was done as part of the author's Ph.D. studies underthe guidane of Benjamin Weiss, whom I would like to thank for all his support andadvie. I also thank the anonymous referee for a areful reading and for suggestingmany simpli�ations in the proofs.2. The sub-additive ergodi theorem and an exampleIn this setion we disuss the relation between Theorem 1.1 and ergodi theorems.Proof. (of Theorem 1.2). Suppose V1, . . . , Vr are disjoint subintervals of [1; n] suhthat 1

|Vi|XVi
< s. Let U = [0, 1] \⋃r

i=1 Vi. By subadditivity,
1

n
X1,n ≤

∑ |Vi|
n

1

|Vi|
XVi

+
∑

j∈U

Xj,j ≤
∑ |Vi|

n
s +

|U |
n

M(in the last inequality we used stationarity to get Xj,j ≤ M). Thus if [1; n] is δ-�lledby the Vi then |U | ≤ δn so
1

n
X1,n ≤ (1 − δ)s + δM



englishUprossing inequalities and appliations 5and if δ = t−s
M−s then it impossible that 1

nX1,n > t. Hene, for this δ, when weapply Theorem 1.1 with the sequene Si,j = 1
j−i+1Xi,j , the event on the right handside of inequality (1.2) is empty. The theorem follows. �Next, we show that deay of the right hand side in Theorem 1.1 is not neessaryin order to get fast deay on the left. Let (Xn)∞n=1 be a stationary proess withvalues in [−1, 1] and let

Si,j =
1⌊√

j − i
⌋

i+⌊√j−i⌋−1∑

k=i

Xkso S1,n is obtained by repeating elements from the sequene of ergodi averages
( 1

n (X1 + . . . + Xn))∞n=1. The latter sequene obeys an uprossing inequality whihdoes not depend on Xn; thus the former sequene does as well. However, thefollowing proposition shows that one annot obtain this from Theorem 1.1.Proposition 2.1. Let
pk = P




there exists n > k suh that S1,n > 1
2and [1, n] an be δ-�lled by disjointintervals V1, . . . , Vr satisfying SVj

< − 1
2


 .Then for arbitrarily large k there are proesses for whih pk ≥ 1/6, and in partiularthe onvergene pk → 0 is not uniform as the proess (Xn) is varied.Proof. Fix δ > 0. Let n > 1/δ and let (Xi)

∞
i=1 be the proess whose unique samplepath, up to translation, is the sequene with period 2n in whih bloks of 1's and

−1's of length n alternate. Set k = n2. It is easily veri�ed that (a) the probabilitythat the �rst 2n/3 symbols of a sample are 1's is 1/6, and S1,k in this ase is
≥ 1/2; and (b) If X1 = 1 then, taking j to be the �rst index with Xj = −1, wehave Sj,k < −1/2 and [1; k] is δ-overed by [j; k]. Thus for eah square k there areproesses for whih pk ≥ 1/6. �3. The Shannon-MMillan-Breiman TheoremIn this setion we prove Theorem 1.3. Fix s < t and a parameter δ > 0. Set

Si,j =
1

j − i + 1
I(Xi . . .Xj).In order to apply Theorem 1.1, for eah n ∈ N we wish to bound the probability ofthe event

Bn =

{
S1,n > t and [1, n] an be δ-�lled by disjointintervals V1, . . . , Vr satisfying SVj

< s

}
.



6 englishMihael HohmanSine
Si,j > t ⇐⇒ P(Xi . . . Xj) < 2−t(j−i+1)

Si,j < s ⇐⇒ P(Xi . . . Xj) > 2−s(j−i+1)we have the trivial bound(3.1) P(Bn) ≤ 2−tn#

( words w ∈ {0, 1}n whih an be δ-�lled withdisjoint words v satisfying P(v) > 2−sℓ(v)

)
.where ℓ(v) denotes the length of v.To estimate the right hand side of (3.1) we note that eah word w that is ountedon the right an be onstruted as follows:(1) Choose a subset I ⊆ [1; n] of size ≤ δn.(2) Choose the symbol w(i) for eah i ∈ I.(3) For eah maximal interval J ⊆ [1; n] \ I hoose a word v = w|J with

P(v) > 2−sℓ(v).To bound the number of words produed in (1)�(3) we bound the number of hoiesat eah step. In step (1) we have ≤ 2nh(δ)+o(log n) hoies, where h(x) = −x log x−
(1 − x) log(1 − x) (this is a standard onsequene of Stirling's formula). In step(2) we have at most 2δn hoies. Finally, in step (3) let J1, . . . , Jr be the maximalintervals in [1; n] \ I. The number of distint words v of length |Ji| and satisfying
P(v) > 2−s|Ji| is learly bounded by 2s|Ji|, so the number ways to hoose suh wordswith lengths |J1|, . . . , |Jr| is at most

r∏

i=1

2s|Ji| = 2
P

r
i=1

s|Ji| ≤ 2sn.It follows that the number of words ounted on the right hand side of equation (3.1)is
≤ 2(s+h(δ)+δ)n+o(log n),so

P(Bn) ≤ 2−(t−s−h(δ)−δ+o(1))n.Hene if δ is small enough in a manner depending on s, t, this bound is summableand gives
P(∪n>kBn) < c · ρkfor onstants c and 0 < ρ < 1 depending only on s, t. Sine ∪n>kBn is the event onthe right hand side of the inequality 1.1 in Theorem 1.1, this ompletes the proofof Theorem 1.3.



englishUprossing inequalities and appliations 74. Kolmogorov omplexityThe Kolmogorov omplexity κ(x) of a 0, 1-valued string x is de�ned as follows.Fix a universal Turing mahine U , and let x∗ be a string of minimal length suhthat, when U is run on input x∗, the output is x. Then κ(x) is the length of x∗.Although κ(·) depends on the universal mahine U , hanging U only hanges κ(·)by an additive onstant.In this setion we prove Theorem 1.4. Note that Sm,n = 1
nκ(xm . . . xn) is notstritly sub-additive, so Kingman's Theorem does not apply, but we an nonethelessexploit the fat that it is �almost sub-additive�.Proposition 4.1. Let (Xn)∞n=1 be a 0, 1-valued stationary proess and set Sn =

1
nκ(X1 . . .Xn). Then for every s < t there is a δ > 0 and an N so that the event

Bk =





there exists n > k suh that S1,n > tand [1, n] an be δ-�lled by disjointintervals V1, . . . , Vr satisfying SVj
< s



is empty for all k ≥ N .Proof. We reason as in the previous setion. Suppose that x ∈ {0, 1}n and [1; n] anbe δ-�lled by a disjoint olletion of intervals {V1, . . . , Vm} with 1

|Vk|κ(x|Vk
) < s.We an enode x by desribing the hoies of the three-step proess outlined inthe previous setion. In step 3, we enode the pattern x|Vm

be writing down theomputer program that produes it. Thus the estimate from the previous setionshows that the number of bits required is
h(δ)n + n +

∑
κ(x|Vi

) ≤ (s + h(δ) + δ)n + o(log n).We only require a onstant-length program to extrat the string x from this enod-ing. We also require an overhead of O((h(δ) + δ)n) to enode this information in aself-puntuating way. Thus
κ(x) ≤ o(log n) + (s + C′(h(δ) + δ))nand if δ is small enough (in a manner depending on s, t) this implies κ(x) < t one

n is large enough (how large n must be depends on C, C′, whih in turn depend onthe Turing mahine we are using but is independent of s, t, δ and the proess). Theproposition follows. �Theorem 1.4 now follows from Theorem 1.1.5. Redution of Theorem 1.1 to a overing lemmaThe purpose of this setion is to redue the proof of Theorem 1.1 to a ombina-torial statement about intervals, related to the e�etive Vitali overing lemma of



8 englishMihael HohmanKalikow and Weiss [10℄. This lemma is stated below in Lemma 5.1 but its proof israther tehnial and we defer it to Setion 6.Let (Si,j)1≤i≤j be a stationary in the sense disussed in the introdution. Fix
s < t, a parameter δ > 0, and an integer k. For i ∈ N we de�ne the events

Ai = {(Si,i+n)∞n=1 has k uprossings of [s, t]}

Bi =

{ There is an n > k suh that Si,i+n > t, and [i, i + n] an be
δ-�lled by disjoint intervals V1, . . . , Vr satisfying SVj

< s

}
.By stationarity P(Ai) = P(Aj) and P(Bi) = P(Bj) for all i, j. We abbreviate

A = A1, B = B1. Theorem 1.1 is then equivalent to
P(A) ≤ cρk + P(B)for onstants 0 < ρ < 1 and c that depend only on s, t.The proof proeeds as follows. Fix a large N and let

AN
i = {(Si,i+n)N

n=1 has k uprossings of (s, t)}sine A = ∪AN
1 it su�es to show that, for eah N ,

P(AN
1 ) ≤ cρk + P(B)with c, ρ independent of N . Fix an integerR muh bigger than N (we will eventuallytake R → ∞), and let I ⊆ {1, . . . , R} be the random set of indies de�ned by

I = {i ∈ [1; R] : AN
i ours}.By stationarity of Si,j we have

P(AN
1 ) =

1

R

R∑

i=1

P(AN
i ) =

1

R
E(

R∑

i=1

χAN
i

) =
1

R
E|I|.We proeed to estimate the expeted size of I. We divide I into two parts:

I0 = {i ∈ I : Bi ours} and I1 = I \ I0.Sine 1
RE(|I0|) = P(B), it su�es to show that 1

R |I1| ≤ cρk.By de�nition, for eah i ∈ I1 there is a (random) sequene of k pairs of non-empty intervals Ui(1) ⊆ Vi(1) ⊆ . . . Ui(k) ⊆ Vi(k) whose left endpoint is i andlength ≤ N , and suh that SUi(m) < s and SVi(m) > t for 1 ≤ m ≤ k.We now pass to a subsequene of the Ui's and Vi's by performing two re�ne-ments of the sequene. First, learly |Ui(m + 1)| > |Vi(m)| > |Ui(m)| beause
SUi+1(m), SUi(m) 6= SVi(m) and beause of the given inlusions. Thus |Ui(m)| >

2(m − 1). If we delete the �rst k0 = ⌈k/2⌉ + 1 pairs, then we are left with a se-quene Ui(k0 + 1) ⊆ Vi(k0 + 1) ⊆ . . . ⊆ Ui(k) ⊆ Vi(k) of at least k′ = ⌊k/2⌋ − 1pairs of intervals, all of whih are of length greater than k.



englishUprossing inequalities and appliations 9Seond, notie that if |Vi(m)|/|Ui(m)| ≤ 1 + δ then i ∈ I0, sine Ui(m) would
δ-�ll Vi(m). Thus for i ∈ I1 we also have |Vi(m)|/|Ui(m)| > 1+ δ. Choose q so that

(1 + δ)q−1 ≥ 72/δ2i.e. q =
⌈
log(72/δ2)/ log(1 + δ)

⌉
+1. By deleting the intervals Ui(j), Vi(j +1) when

j 6= 0 (mod q) and renumbering the remaining ones, we are left with a sequeneof k′′ ≥ ⌊(k′ − 1)/q⌋ pairs of intervals Ũi(1) ⊆ Ṽi(1) ⊆ . . . ⊆ Ũi(k
′′) ⊆ Ṽi(k

′′), allhaving length > k and satisfying SeUi(m) < s, SeVi(m) > t, and whih additionallysatisfy the growth ondition |Vi(m)| ≥ 72
δ2 |Ui(m)| for every 1 ≤ m ≤ k′′.We now apply a ombinatorial result whose proof we defer to setion 6.Lemma 5.1. Let ε < 1/4. Suppose J ⊆ N is �nite and for eah j ∈ J we are givena sequene of intervals Ũj(1) ⊆ Ṽj(1) ⊆ . . . ⊆ Ũj(L) ⊆ Ṽj(L) with left endpoint jand satisfying |Ṽj(n)| ≥ 2

ε2 |Ũj(n)|. Suppose that none of the Ṽj(n)'s an be 6ε-�lledby a disjoint olletion of Ũi(m)'s. Then
|J | ≤ (1 +

ε

6
)−(L−1)/(log 1/ε) · |

⋃

j∈J

Ṽj(L)|.We apply the lemma to our situation with J = I1, L = k′′ and ε = δ/6. Thehypothesis is satis�ed by de�nition of I1. It follows that there are onstants c > 0and 0 < ρ < 1 depending only on δ (hene on s, t), suh that
|I1| ≤ c · ρ−k · |

⋃

i∈I1

Vi(k
′′)|

≤ c · ρ−k(N + R)and the last inequality is beause ⋃i∈I1
Vi(k

′′) ⊆ [1; N + R]. We thus have
P(A) =

1

R
E|I| =

1

R
E|I0| +

1

R
E|I1| ≤ P(B) + c · ρ−k(1 +

N

R
)the proof is ompleted by taking R → ∞.6. Proof of Lemma 5.1The remainder of this paper is devoted to the proof of Lemma 5.1. Some of thestatements below are standard; we supply proofs for ompleteness. Others partsof the argument are related to the E�etive Vitali Covering Lemma from [10℄. See[13, 15℄ for other examples of overing lemmas in probability and ergodi theory.We say that a olletion of segments is disjoint if its members are pairwisedisjoint. The following is a version of the lassial Vitali overing lemma:Lemma 6.1. If V is a olletion of intervals then there is a disjoint sub-olletion

V ′ ⊆ V with | ∪ V ′| ≥ | ∪ V|/2.



10 englishMihael HohmanProof. Let V ′ ⊆ V be a minimal olletion satisfying ∪V ′ = ∪V . Order the intervalsin V ′ by their left endpoint, say V ′ = {V1, V2, . . . , Vm}. Then the subsequeneonsisting of intervals with even indies is disjoint, and similarly for the subsequenewith odd indies; and one of them must over at least half of V . �For ε > 0 and an interval U = [a; b] the ε-blowup of U is
Uε = [a − ε|U |, b + ε|U |] ∩ Z.Note that U ⊆ Uε and |Uε| ≤ (1 + 2ε)|U |. For a olletion U of intervals we write

Uε = {Uε : U ∈ U}.Lemma 6.2. If U is a olletion of intervals then | ∪ Uε| ≤ (1 + 2ε)| ∪ U|Proof. Let A = ∪U and deompose A into disjoint maximal intervals V1, . . . , Vk, so
| ∪ U| =

∑ |Vi|. For eah Vi one learly has
⋃

U∈U : U⊆Vi

Uε ⊆ V ε
ithus

| ∪ Uε| ≤
k∑

i=1

|
⋃

U∈U : U⊆Vi

Uε| ≤
k∑

i=1

(1 + 2ε)|Vi| = (1 + 2ε)| ∪ U|. �A tower of height M over a �nite set I ⊆ N is a olletion U = {Ui(k) :

i ∈ I , 1 ≤ k ≤ M} of intervals suh that i is the left endpoint of Ui(k) (weshall atually only use the fat that i ∈ Ui(k)), and for eah i ∈ I the sequene
Ui(1) ⊆ Ui(2) ⊆ . . . ⊆ Ui(M) is stritly inreasing. The k-th level of U is theolletion

U(k) = {Ui(k) : i ∈ I}.Note that the intervals in U(k) are not neessarily of the same size, and although
|Ui(k)| < |Ui(k + 1)| it need not be true that |Ui(k)| ≤ |Uj(k + 1)| if i 6= j.Let U = {Ui(k)} be a tower of height M over a set I. The ε-rust of U is theset of V ∈ U whose ε-blowup is stritly maximal with respet to inlusion, i.e.

V = {V ∈ U(M) : if V ε ( W ε for some W ∈ U then V = W}.It is lear that ∪U ⊆ ∪Vε.Lemma 6.3. Let 0 < ε < 1. Suppose U = {Ui(k)} is a tower over I of height 2satisfying
|Ui(2)| ≥ 2

ε2
|Ui(1)| for all i ∈ Iand V ⊆ U(2) is the ε-rust of U . Then(1) For eah U ∈ U(1) and V ∈ V, if U ∩ V 6= ∅ then U ⊆ V ε.



englishUprossing inequalities and appliations 11(2) There exists Û ⊆ U(1) and a disjoint V̂ ⊆ V suh that | ∪ Û | ≤ 1
2 | ∪ U|,

(∪Û) ∩ (∪V̂) = ∅ and ∪U ⊆ (∪V̂ε) ∪ (∪Û).Proof. Let U ∈ U(1) and V ∈ V with U ∩ V 6= ∅. In order to show that U ⊆ V εit su�es to show that ε|V | ≥ |U |. Let i ∈ I suh that U = Ui(1) and write
W = Ui(2), the interval �above� U in U . Sine V is in the ε-rust we annot have
V ε ( W ε. Sine V ∩ W 6= ∅, this implies that

(1 + ε)|V | ≥ |W | ≥ 2

ε2
|U |whih gives the desired onlusion.To establish (2), apply the Vitali Lemma to V to obtain a disjoint family V̂ ⊆ Vwith | ∪ V̂| ≥ 1

2 | ∪ V|. Let̂
U = {U ∈ U(1) : U ∩ (∪V̂) = ∅}.The onlusion now follows from (1). �We want to replae the onstant 1/2 in the Vitali Lemma with a onstant loseto 1. This an be ahieved using the standard trik of applying the Vitali Lemmato several layers of overs and iteratively disjointifying eah level in turn.Heneforth all logarithms are taken to base 2.Lemma 6.4. Let 0 < ε < 1. Suppose U = {Uj(k)} is a tower of height M ≥

1 + log(1/ε) over a set J and
|Uj(k + 1)| >

2

ε2
|Uj(k)|.Then there is a disjoint sub-olletion V ⊆ U suh that | ∪ V| ≥ (1 − 3ε)| ∪ U|.Proof. Set U0 = U and V0 = ∅. For 1 ≤ n < M we indutively de�ne subolletions

Vn,Un ⊆ U(M − n) satisfying(1) Vn,Un ⊆ Un−1,(2) ∪Un−1 ⊆ (∪Un) ∪ (∪Vε
n).(3) (∪Vn) ∩ (∪Un) = ∅,(4) | ∪ Un| ≤ 1

2 | ∪ Un−1|.To produe Un,Vn we apply Lemma 6.3(2) to the top two layers of Un−1. Clearlythe olletion V = ∪1≤k<MVk is disjoint, and ∪U ⊆ (∪Vε)∪ (∪UM−1). By property(4) we have
| ∪ UM−1| ≤ (

1

2
)M−1| ∪ U| ≤ ε| ∪ U|so

| ∪ Vε| ≥ | ∪ U| − | ∪ UM−1| ≥ (1 − ε)| ∪ U|.



12 englishMihael HohmanUsing the inequality | ∪ V| ≥ 1
1+2ε | ∪ Vε| from Lemma 6.2 we have

| ∪ V| ≥ 1 − ε

1 + 2ε
| ∪ U| ≥ (1 − 3ε)| ∪ U|as desired. �Until the end of the setion we adopt the following notation. Fix an integer Land 0 < ε < 1, a �nite set I ⊆ Z and two towers U = {Ui(k)} and V = {Vi(k)} ofheight L + 1 over I satisfying

Ui(0) ⊆ Vi(0) ⊆ Ui(1) ⊆ Vi(1) ⊆ . . . ⊆ Ui(L) ⊆ Vi(L)(for onveniene we start from level 0), and
|Vi(k)| ≥ 2

ε2
|Ui(k)|.Note that this ensures a similar growth rate for the substak U .Lemma 6.5. Let L ≥ 1 + log(1/ε). Then either there is a V ∈ V(L) whih an be

6ε-�lled by a disjoint subolletion of U , or else | ∪ V(L)| ≥ (1 + ε
6 )| ∪ U(0)|.Proof. Selet a maximal disjoint subsetW of the ε-rust of V . By the Vitali Lemmaand LEmma 6.3 we have

∑

W∈W
|W | = | ∪ W| ≥ 1

2(1 + 2ε)
| ∪ V(L)| ≥ 1

2(1 + 2ε)
| ∪ U(0)|.We distinguish two ases. First, if every W ∈ W satis�es |W \ ∪U(L − 1)| > ε|W |then, sine W is disjoint, we would have

| ∪ V| ≥ | ∪ U(0)| + | ∪ W \ ∪U(L − 1)|
= | ∪ U(0)| +

∑

W∈W
|W \ ∪U(L − 1)|

≥ | ∪ U(0)| +
∑

W∈W
ε|W |

≥ (1 +
ε

2(1 + 2ε)
)| ∪ U(0)|whih gives the desired bound.Otherwise let W ∈ W be suh that |W \ ∪U(L − 1)| < ε|W |. Let

Y = {Ui(k) : 0 ≤ k ≤ L − 1 and Ui(L − 1) ∩ W 6= ∅}
Z = {Ui(k) : 0 ≤ k ≤ L − 1 and Ui(L − 1) ⊆ W}.By assumption we know that(6.1) |W ∩ (∪Y)| ≥ (1 − ε)|W |.



englishUprossing inequalities and appliations 13We laim that then(6.2) |W ∩ (∪Z)| ≥ (1 − 3ε)|W |.Suppose that this were not the ase. Then there is a subset A ⊆ W of size > ε|W |not overed by Z, and all of whose points are at distane at least ε|W | from Z\W .By inequality (6.1) there is some Ui(L − 1) ∈ Y \ Z that intersets A at a point r.Sine Ui(L− 1) /∈ Z it must interset Z \W at a point r′. Sine Ui(L− 1) ontainsthe interval with endpoints r, r′, we have
|Ui(L − 1)| ≥ |r − r′| ≥ ε|W |so

|Vi(L − 1)| ≥ 2

ε2
|Ui(L − 1)| > 2|W |.On the other hand, Ui(L−1)∩W 6= ∅ (beause Ui(L−1) ∈ Y) and sine Ui(L−1) ⊆

Vi(L − 1), we also have Vi(L − 1) ∩ W 6= ∅. Sine W is in the ε-rust of V Lemma6.3 implies Vi(L − 1) ⊆ W ε, ontraditing the size bound we got for Vi(L − 1).To omplete the proof, we apply Lemma 6.4 to the tower Z. We obtain a disjointsubolletion of Z (and hene of U) whose members are ontained in W and havetotal size at least (1 − 3ε)| ∪ Z|, whih by inequality (6.2) is at least (1 − 6ε)|W |,as required. �We an now prove Lemma 5.1, whih we rephrase as follows (notie that ourtower is now numbered starting at 0 and we have removed the tildes from thenotation).Lemma 6.6. With the notation above, suppose that no interval V ∈ V an be
6ε-�lled by disjoint elements of U . Then

| ∪ U(0)| ≤ (1 +
ε

6
)−⌊L/ log(1/ε)⌋| ∪ V(L)|.Proof. Set M = log(1/ε). It su�es to prove

| ∪ U| ≥ (1 +
ε

6
)−⌊L/M⌋| ∪ U(0)|and it is enough to prove this when L is an integer multiple of M ; write L = kM .We proeed by indution on k. The base of the indution is the previous lemma.Now, given that it is true for k and given L = (k+1)M , we an apply the indutionhypothesis to the restritions of U ,V to levels 0, 1, . . . , kM . This tells us that

| ∪ U(kM)| ≥ (1 +
ε

6
)k| ∪ U(0)|.Consider now the restrition of the towers to levels kM, kM + 1, . . . (k + 1)M .Applying the base ase we get

| ∪ U((k + 1)M)| ≥ (1 +
ε

6
)| ∪ U(kM)|



14 englishMihael Hohmanputting these together ompletes the proof. �As mentioned in the introdution everything above an be arried out for sym-metri intervals and for ubes in Zd; the proofs generalize easily to that ase, thoughthe onstants hange. We note that the Vitali Lemma (Lemma 6.1) requires a dif-ferent proof in higher dimensions, but this is lassial.For ompleteness we provide the proof of the higher-dimensional analogue ofLemma 6.2. Consider the ase of squares in Z2. The ε-blowup of a square U × Vis Uε × V ε, whih an be written as a disjoint union
Uε × V ε = (U × U) ∪ B1 ∪ B2 ∪ B3 ∪ B4where B1 = Uε ×V \U ×V are two vertial strips of width ε, B2 = U ×V ε \U ×Vare two horizontal strips of height ε, B3 is the union of two ε × ε squares outsidethe upper-left and lower-right orners of U × V and B4 is the union of two ε × εsquares outside the upper-right and lower-left orners of U × V . To obtain ananalogue of Lemma 6.2 we must show that if {Ui × Vi} is a olletion of squaresand Uε

i × V ε
i = (Ui × Vi) ∪

⋃
t=1,2,3,4 Bi,t as above, then for eah t = 1, 2, 3, 4,

|
⋃

i

Bi,t| ≤ 2ε|
⋃

i

Ui × Vi|.This follows from the one-dimensional ase by deomposing ∪i(Ui × Vi ∪ Bi,t) intothe union of the intersetion of this set with parallel translates of lines. For instanefor t = 1, the intersetion of ∪i(Ui × Vi ∪ Bi,t) with eah horizontal line is the ε-blowup (in the one-dimensional sense) of the intersetion of ∪iUi × Vi with thatline, and therefore the one-dimensional lemma an be applied. Now sum over alllines.The proof for ubes in Zd is proved by indution on the dimension using a similarstrategy. Referenes[1℄ Errett Bishop. An uprossing inequality with appliations. Mihigan Math. J., 13:1�13, 1966.[2℄ Errett Bishop. Foundations of onstrutive analysis. MGraw-Hill Book Co., New York, 1967.[3℄ A. A. Brudno. Entropy and the omplexity of the trajetories of a dynami system. TrudyMoskov. Mat. Obshh., 44:124�149, 1982.[4℄ Pierre Collet and Jean-Pierre Ekmann. Osillations of observables in 1-dimensional lattiesystems. Math. Phys. Eletron. J., 3:Paper 3, 19 pp. (eletroni), 1997.[5℄ Thomas M. Cover, Péter Gás, and Robert M. Gray. Kolmogorov's ontributions to informa-tion theory and algorithmi omplexity. Ann. Probab., 17(3):840�865, 1989.[6℄ J. L. Doob. Stohasti proesses. John Wiley & Sons In., New York, 1953.[7℄ Lester E. Dubins. Some uprossing inequalities for uniformly bounded martingales. In Sym-posia Mathematia, Vol. IX (Convegno di Calolo delle Probabilità, INDAM, Rome, 1971),pages 169�177. Aademi Press, London, 1972.
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