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Let X1, X2 be independent random walks on Zdn, d ≥ 3, each
starting from the uniform distribution. Initially, each site of Zdn is
unmarked and, whenever Xi visits such a site, it is set irreversibly to
i. The mean of |Ai|, the cardinality of the set Ai of sites painted by
i once all of Zdn has been visited, is 1

2
nd by symmetry. We prove the

following conjecture due to Pemantle and Peres: for each d ≥ 3 there
exists a constant αd such that limn→∞Var(|Ai|)/hd(n) = 1

4
αd where

h3(n) = n4, h4(n) = n4(logn), and hd(n) = nd for d ≥ 5. We will
also identify αd explicitly and show that αd → 1 as d→∞. This is a
special case of a more general theorem which gives the asymptotics
of Var(|Ai|) for a large class of transient, vertex transitive graphs;
other examples include the hypercube and the Caley graph of the
symmetric group generated by transpositions.

1. Introduction. Suppose that X1, X2 are independent random walks
on a graph G = (V,E) starting from stationarity. Initially, each vertex of G
is unmarked and, whenever Xi visits such a site, it is marked i irreversibly.
If both X1 and X2 visit a site for the first time simultaneously, then the
mark is chosen by the flip of an independent fair coin. Let Ai be the set
of sites marked i once every vertex of G has been visited. By symmetry, it
is obvious that E|Ai| = 1

2 |V |. The purpose of this manuscript is to derive
precise asymptotics for Var(|Ai|) for many families of graphs.

The process by which a single random walk covers a graph has been
studied extensively. Examples of interesting statistics include the expected
amount of time it takes for the random walk to visit every site [4, 14],
the growth exponent of the set of sites visited most frequently [3], and the
clustering and correlation structure of the last visited points [2, 5, 15]. The
motivation for this work is to understand better how multiple random walks
cover a graph.
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The investigation of the statistical properties of Ai was first proposed in
the work of S.R. Gomes Junior et. al. [9]. Their motivation was to study the
technical challenges associated with physical problems involving interacting
random walks. They estimate the growth of E|B| where B is the interface
separating A1 from A2 in the special case of the one-cycle Z1

n. As with E|Ai|,
computing E|B| for Zdn becomes trivial for d ≥ 3 since it is easy to see that,
with probability strictly between 0 and 1, for any pair of adjacent vertices
x, y, X2 will hit y before X1 conditional on the event that X1 hits x first. On
the other hand, estimating Var(|Ai|) in this setting is challenging since its
expansion in terms of correlation functions exhibits significant cancellation
which, when ignored, leads to bounds that are quite imprecise. We will
develop this point further at the end of the introduction.

The problem we consider here was formulated by Hilhorst, though in a
slightly different setting. Rather than considering the sets of sitesA1,A2 first
painted by X1, X2, respectively, it is also natural to study the sets Ã1, Ã2

of sites most recently painted by X1, X2, respectively. In other words, in the
latter formulation the constraint that the marks are irreversible is removed.
It turns out that these two classes of problems are equivalent, which is to

say (A1,A2)
d
= (Ã1, Ã2). This helpful observation, which follows from the

time-reversibility of random walk, was made and communicated to us by
Comets.

We restrict our attention to lazy walks X1, X2 to avoid issues of peri-
odicity, in particular to ensure that random walk has a unique stationary
distribution. That is, the one-step transition kernel is given by

p(x, y;G) =


1
2 if x = y,

1
2 deg(x) if x ∼ y,
0 otherwise,

where x ∼ y means that x is adjacent to y in G. The particular choice of
holding probability 1

2 is not important for the proof; indeed, any λ ∈ (0, 1)
would suffice. Our proofs also work in the setting of continuous time walks.
Let pt(·, ·;G) be the t-step transition kernel of lazy random walk on G and
π(·;G) its unique stationary distribution.

Our main result is the precise asymptotics for Var(|Ai|) on tori of dimen-
sion at least three, thus verifying a conjecture due to Pemantle and Peres
[8, Page 35].

Theorem 1.1. Suppose that Gn = Zdn, d ≥ 3. There exists a finite
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constant αd > 0 such that

lim
n→∞

Var(|Ai|)
hd(n)

=
1

4
αd

where

hd(n) =


n4 if d = 3,

n4(log n) if d = 4, and

nd if d ≥ 5.

Our proof allows us to identify αd explicitly and is given as follows. Let

(1.1) G(x;Zd) = E0

∞∑
t=0

1{X(t)=x}

be the Green’s function for lazy random walk on Zd. This is the amount
of time random walk initialized at 0 spends at x before escaping to ∞. For
d ≥ 5,

(1.2) αd =
1

G2(0;Zd)

∑
y∈Zd

G2(y;Zd).

It is not difficult to see that αd → 1 as d→∞, so that Var(|A1|) ≈ 1
4n

d for
d and n large is close to the variance of an iid marking. For d = 4,

(1.3) α4 = lim
n→∞

1

G2(0;Z4) log n

∑
y∈Z4:|y|≤n

G2(y;Z4);

we will explain why this limit exists and is positive and finite in Proposition
2.1. The definition of α3 is slightly more involved. Let T3 denote the three-
dimensional continuum torus, pt(·, ·;T3) the kernel for Brownian motion on
T3, and

gT (x, y;T3) =

∫ T

0
pt(x, y;T3)dt.

Now set

(1.4) αT3 =
1

G2(0;Z3)

∫
T3

∫
T3

(gT/2(x, y;T3)− 1
2T )2dxdy, α3 = lim

T→∞
αT3 .

The reason that the limit exists and is positive and finite is that pt(x, y;T3)
converges to the uniform density exponentially fast in t (see Proposition 3.1
for a discrete version of this statement).
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Throughout the rest of the article, for functions f, g, we say that f = O(g)
if there exists constants c1, c2 such that |f | ≤ c1+c2|g|. We say that f = Ω(g)
if there exists constants c1, c2 so that |f | ≥ c1 + c2|g|. We say that f = Θ(g)
if f = O(g) and f = Ω(g). Finally, we say f = o(g) if limn→∞ f(n)/g(n) = 0.

We note that the problem for d = 1 is trivial: Var(|A1|) = Θ(n2). Indeed,
observe that with positive probability, the distance between X1 and X2 at
time 0 is at least 1

4n. In cn2 steps (for c large enough), X1 has positive
probability of covering the entire cycle while X2 has positive probability of
not leaving an interval of length 1

8n containing its starting point. On this
event, |A1| ≥ 3

4n. This proves our claim as the upper bound is trivial. For
d = 2, the asymptotics of Var(|A1|) remains open.

One interesting remark is that the variance for d = 3, 4 is significantly
higher than that of an iid marking. The results of Theorem 1.1 should also
be contrasted with the behavior of the variance of the range R of random
walk on Zd run up to the cover time Tcov(Zdn) of Zdn, which is the expected
amount of time it takes for a single random walk to visit every site. When
d ≥ 3, Tcov(Zdn) ∼ cdn

d(log n) (see [13]). For d ≥ 5, it follows from work of
Jain and Orey [10] that Var(|R|) = Θ(nd(log n)). For d = 3, 4, it follows from
work on Jain and Pruitt [11] that Var(|R|) is Θ(n3(log n)2) and Θ(n4(log n)),
respectively.

This work opens the doors to many other problems involving two random
walks. Natural next steps include CLTs for the fluctuations of |Ai| and for
the number of sites painted by i at time t, as well as the development of
an understanding of the geometrical properties of the clusters of Ai. The
latter seem to be connected to the theory of random interlacements. This is
a model developed by Sznitman in [17] to describe the microscopic structure
of the points visited by a random walk on Zdn, d ≥ 3, at times und for u > 0
—that is, when a constant order of vertices have been visited. Roughly
speaking, the model is a Poisson process on W ∗ × (0,∞), where W ∗ is the
space of doubly-infinite paths on Zd modulo time-shifts. For a point (X,U)
realized in this process, one should think of X as describing a random walk
trajectory (an “interlacement”) and U a time parameter. The model was
first developed to study the process of disconnection of a discrete cylinder
by random walk [6] and has been subsequently applied to understand the fine
geometrical structure of random walk in many different settings [18], [19].
Sznitman’s theory generalizes to the setting of k random walks by labeling
each interlacement with an element of {1, . . . , k} iid at random. Studying the
structure of the clusters in the Ai using this general theory is an interesting
research direction.

Theorem 1.1 is a special case of a much more general result, which gives
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the asymptotics of Var(|Ai|) for many other graphs, such as the hypercube
and the Caley graph of the symmetric group generated by transpositions.
We will now review some additional terminology which is necessary to give
a precise statement of the result. Recall that the uniform mixing time of
random walk on G is

Tmix(G) = min

{
t ≥ 0 : max

x,y

∣∣∣∣pt(x, y;G)

π(y;G)
− 1

∣∣∣∣ ≤ 1

4

}
and the Green’s function for G is

g(x, y;G) =

Tmix(G)∑
t=0

pt(x, y;G),

i.e. the expected amount of time Xi spends at y up until Tmix(G) when
started from x. Let τi(x) = min{t ≥ 0 : Xi(t) = x} be the first time Xi

hits x; we will omit i if there is only one random walk under consideration.
Throughout the rest of the article, a ∧ b = min(a, b) for a, b ∈ R.

Assumption 1.2. (Gn) is a sequence of vertex transitive graphs with
|Vn| → ∞ such that

1. Tmix(Gn) = o(|Vn|/(log |Vn|)2) and limn→∞ Tmix(Gn) =∞,
2.
∑

y 6=x0 g
2(x0, y;Gn) = o(Tmix(Gn)/ log |Vn|) for each x0 ∈ Vn fixed,

and
3. there exists ρ0 < 1 so that Px[τ(y)∧ τ(z) ≤ Tmix(Gn)] ≤ ρ0 uniformly

in n and x, y, z ∈ Vn distinct.

The purpose of (1) is that in many cases we will perform union bounds
over time-scales whose length is proportional to Tmix(Gn) and the hypoth-
esis gives us explicit control on how the number of terms in these bounds
relates to the size of Vn. Part (2) gives us control on the tail behavior of g
and, finally, part (3) says that with uniformly positive probability the walks
we consider do not hit adjacent points within the mixing time. Note that
vertex transitivity implies g is constant along the diagonal. Part (3) implies
that the number of times random walk started at x returns to x before
the mixing time is stochastically dominated by a geometric random variable
whose parameter depends only on ρ0. Consequently, we see that there exists
g0 > 0 such that g(x, x;Gn) ≤ g0 uniformly in x and n.

Assume that (Gn) is a sequence of vertex transitive graphs and let

fn,c(x, y) = Px[τ(y) ≤ cTmix(Gn)],(1.5)

fn,c =
∑
y

fn,c(x, y)π(y;Gn).(1.6)
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Note that fn,c does not depend on the choice of x since if we replaced x with
x′, by vertex transitivity we may precompose fn,c with an automorphism of
Gn which sends x to x′.

The general theorem is:

Theorem 1.3. Suppose that (Gn) satisfies Assumption 1.2. Let

Fn,c =
∑
x,y

(fn,c(x, y)− fn,c)2.

There exists γ > 0 so that for every c ≥ 2 we have

Var (|Ai|) =

(
1

4
+O(∆n)

)
Fn,c +O(e−γc(Tmix(Gn))2)(1.7)

as n→∞ where

∆n =
Tmix(Gn) log |Vn|

|Vn|
.

Applying this to the special cases of the hypercube and the Caley graph
of Sn generated by transpositions leads to the following corollary.

Corollary 1.4. Suppose that Gn = (Vn, En) is either the hypercube Zn2
or the Caley graph of Sn generated by transpositions. Then

Var(|Ai|) = 1
4(1 + o(1))|Vn|.

In particular, the first-order asymptotics of the variance are exactly the
same as for an iid marking.

Throughout the remainder of the article, all graphs under consideration
shall satisfy Assumption 1.2. In most examples, it will be that T 2

mix(Gn) =
o(Fn,c) so that the second term in (1.7) is negligible. In this case, taking c = 2
in (1.7) provides a means to compute not only the magnitude but also the
constant in the first order asymptotics of the variance. In some cases, such as
Gn = Z3

n, the constant can even be computed when Fn,c = Θ((Tmix(Gn))2).
The challenge in obtaining Theorems 1.1 and 1.3 is that the cancellation

in the expansion of the variance is quite significant which, when ignored,
yields only an upper bound that can be off by as much as a multiple of
Tmix(Gn). We will now illustrate this point in the case of Zdn for d ≥ 3. It
will turn out that the contribution to the variance from the sites visited by
both X1, X2 simultaneously is negligible, hence we will ignore this possibility
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in the present discussion. Observe

Var

(∑
x

1{τ1(x)<τ2(x)}

)
=
∑
x,y

(
P[τ1(x) < τ2(x), τ1(y) < τ2(y)]−P[τ1(x) < τ2(x)]P[τ1(y) < τ2(y)]

)
.

Note that P[τ1(x) < τ2(x)] is approximately 1
2 . Let H(x, y) = {τ1(x) <

τ1(y)∧τ2(x)∧τ2(y)}. Consequently, by symmetry, the above is approximately
equal to∑

x,y

(
2P[τ1(x) < τ2(x), τ1(y) < τ2(y)|H(x, y)]P[H(x, y)]− 1

4

)
+O(nd).

The reason for the O(nd) term is that P[H(x, x)] = 0, so all of the diagonal
terms are ignored in the summation. Let π̃(·;x, y) be the law of X2(τ1(x))
conditional on H(x, y). As P[H(x, y)] is approximately 1

4 , using the Markov
property of (X1, X2) applied for the stopping time τ1(x) we can rewrite the
summation as

2
∑
x,y,z

(
Px,z[τ1(y) < τ2(y)]− 1

2

)
π̃(z;x, y)P[H(x, y)].

Here, Px,z denotes the joint law of X1, X2 with X1(0) = x and X2(0) = z.
Thus we need to estimate

1

2

∑
x,y,z

(
Px,z[τ1(y) < τ2(y)]− 1

2

)
π̃(z;x, y).(1.8)

At this point, one is tempted to insert absolute values and then work on
each of the summands separately. Since X1 and X2 are independent, note
that X2(τ1(x)) ∼ π(·;Zdn). Thus by Baye’s rule, we have

π̃(z;x, y) =
P[X2(τ1(x)) = z|H(x, y)]

P[H(x, y)]
π(z;Zdn) ≤ C0π(z;Zdn);

see Theorem 4.1 for a much finer estimate. Hence the expression in (1.8) is
bounded from above by

(1.9) C1

∑
x,y

∣∣∣∣Px,π[τ1(y) < τ2(y)]− 1

2

∣∣∣∣ ,
where Px,π denotes the law of X1, X2 with X1(0) = x and X2(0) ∼ π(·;Zdn).
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It is a basic fact that Tmix(Zdn) = Θ(n2); one way to see this is to invoke the
local central limit theorem [12, Theorem 1.2.1]. We can analyze Px,π[τ1(y) <
τ2(y)] as follows. We consider two different cases: either y is hit before time
tc ≡ cTmix(Zdn) = c′n2 or afterwards. The probability that X2 hits y before
tc is of order n2−d by a union bound since X2(t) ∼ π(·;Zdn) = n−d for all
t. Second, by the local transience of random walk on Zdn for d ≥ 3, the
probability that X1 hits y before tc is, up to a multiplicative constant, well-
approximated by g(x, y;Zdn). We now consider the second case. By time tc
for c > 0 large enough, X1 will have mixed. This means that if neither X1

nor X2 has hit y by this time, the probability that either one hits first is close
to 1/2. The careful reader who wishes to see precise, quantitative versions
of these statements will find such in the lemmas we use to prove Theorem
1.3. Thus it is not difficult to see that there exists C2 > 0 so that

|Px,π[τ1(y) < τ2(y)]− 1/2| ≤ C2g(x, y;Zdn),

This leads to an upper bound of

C3

∑
x,y

g(x, y;Zdn) ≤ C4n
d+2.

A slightly more refined analysis leads to a lower bound of (1.9) with the
same growth rate. As we will show in the next section, in every dimension
this estimate is typically quite far from being sharp. The reason for the
inaccuracy is that by moving the absolute value into the sum in (1.9) we
are unable to take advantage of the cancellation that arises as Px,π[τ1(y) <
τ2(y)] > 1/2 when x is close to y and Px,π[τ1(y) < τ2(y)] < 1/2 when x is
far from y.

Outline. The remainder of this article is structured as follows. In the
next section, we will deduce Theorem 1.1 and Corollary 1.4 from Theorem
1.3. In Section 3, we introduce some notation that will be used throughout in
addition to collecting several basic random walk estimates. Next, in Section
4, we give a precise estimate of the Radon-Nikodym derivative of π̃(·;x, y)
with respect to π. In Section 5, we prove Theorem 1.3 and end in Section 6
with a list of related problems and discussion.

2. Proof of of Theorem 1.1 and Corollary 1.4. The following
proposition will be important for the proof of Theorem 1.1.

Proposition 2.1. Assume that Gn = Zdn for d ≥ 3. For each c > 1, the
limit

(2.1) lim
n→∞

1

hd(n)

∑
x,y

(fn,c(x, y)− fn,c)2
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exists. When d ≥ 4, it is αd as in (1.2), (1.3). When d = 3, it is given by
αc3 where αT3 is as in (1.4).

The first step in the proof of the proposition is to reduce the existence
of the limit to a computation involving Green’s functions. Recall from (1.1)
that G(y;Zd) is the Green’s function for lazy random walk on Zd. In order
to keep the notation from becoming too heavy, throughout the rest of this
section we will write Tmix for Tmix(Gn) where Gn will be clear from the
context. Let

gc(x, y;Gn) = Ex

cTmix∑
t=0

1{X(t)=y}.

Lemma 2.2. Assume that Gn = Zdn for d ≥ 3. For each c > 1, we have
that

lim
n→∞

1

hd(n)

∑
x,y

(fn,c(x, y)−G−1(0;Zd)gc(x, y;Zdn))2 = 0.

Proof. Observe

gc(x, y;Zdn) ≤ Px[τ(y) ≤ cTmix]gc(y, y;Zdn).

We shall now prove a matching lower bound. Fix 0 < c̃ < c. Then we have
that

gc(x, y;Zdn) ≥ Ex

 cTmix∑
t=τ(y)

1{X(t)=y}

1{τ(y)≤(c−c̃)Tmix}


≥ fn,c−c̃(x, y)gc̃(y, y;Zdn).(2.2)

Assuming c− c̃ > 1, by mixing considerations as well as a union bound (see
Proposition 3.1) we have that

fn,c−c̃(x, y) = fn,c(x, y)−Px[(c− c̃)Tmix < τ(y) ≤ cTmix]

= fn,c(x, y) +O(c̃n2−d).(2.3)

Since c̃ > 0, we have

gc̃(y, y;Zdn) = gc(y, y;Zdn)−
∑
z

pc̃Tmix(y, z;Zdn)gc−c̃(z, y;Zdn)(2.4)

= gc(y, y;Zdn) +O((c− c̃)c̃−d/2n2−d),

where we used in the last line that pt(z, y;Zdn) ≤ c1t
−d/2 for some c1 > 0

(see [12, Theorem 1.2.1]) as well as the observation
∑

z gc−c̃(z, y;Zdn) =
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(c− c̃)Tmix. Combining (2.2), (2.3), and (2.4), we have thus proved the lower
bound

gc(x, y;Zdn) ≥ fn,c(x, y)gc(y, y;Zdn) +O((c− c̃)c̃−d/2(c̃+ gc(x, y;Zdn))n2−d).

Here, we used the bound fn,c(x, y) ≤ gc(x, y;Zdn). Theorem 1.5.4 of [12]
implies gc(x, y;Zdn) = Θ(c|x − y|2−d) (it is actually stated for walks on Zd

which are not lazy, but the generalization is straightforward). Consequently,

∑
y

g2c (x, y;Zdn) =


Θ(n) if d = 3,

Θ(log n) if d = 4, and

Θ(1) if d ≥ 5.

Hence, ∑
x,y

(fn,c(x, y)gc(y, y;Zdn)− gc(x, y;Zdn))2

=
∑
x,y

[
O((c− c̃)c̃−d/2(c̃+ g(x, y;Zdn))n2−d)

]2
=O((c− c̃)2c̃−d(c̃2 + o(1))n4).

Dividing both sides by hd(n), taking a limsup as n → ∞, then as c̃ → 0
yields

lim
n→∞

1

hd(n)

∑
x,y

(fn,c(x, y)gc(y, y;Zdn)− gc(x, y;Zdn))2 = 0.

By (2.4) we know that |gc(y, y;Zdn)− g1(y, y;Zdn)| = o(1) and, by local tran-
sience, it is not hard to see that limn→∞ g1(y, y;Zdn) = G(0;Zd).

Proof of Proposition 2.1. Lemma 2.2 implies that we may replace
fn,c(x, y) by G−1(0;Zd)gc(x, y;Zdn) in (2.1). Letting gn,c = cTmixn

−d, we can

likewise replace fn,c in (2.1) by G−1(0;Zd)gn,c. Consequently, to prove the
proposition, it suffices to prove the existence of the limit

(2.5) lim
n→∞

1

hd(n)

∑
x,y

(gc(x, y;Zdn)− gn,c)2.

We will divide the proof into the cases d ≥ 4 and d = 3.
Case 1: d ≥ 4. As gn,c = O(cn2−d), we have

1

hd(n)

∑
x,y

(g2n,c + 2gn,cgc(x, y;Zdn)) = o(1).
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Thus it suffices to show in this case that

lim
n→∞

1

h̃d(n)

∑
y

g2c (0, y;Zdn)

exists, where h̃4(n) = log n and h̃d(n) = 1 for d ≥ 5. This will be a conse-
quence of two observations. First, note that∑

|y|≥`

g2c (0, y;Zdn) =
∑
|y|≥`

O(c|y|4−2d) =
n∑

m=`

O(cm4−2d ·md−1)

=

{
O(c`−1) if d ≥ 5,

O(c log(n/`)) if d = 4.

Thus it suffices to show that, for each ε > 0 and for ` = `(n, ε) = n1−ε, the
limit

lim
ε→0

lim
n→∞

1

h̃d(n)

∑
|y|≤`

g2c (0, y;Zdn)

exists (we can even restrict to finite ` if d ≥ 5). Our second observation is
that

gc(0, y;Zdn)−G(y;Zd) = O(cn2−d) for |y| ≤ `.
This follows since we can couple the walks on Zdn and Zd starting at 0 such
that they are the same until the first time τ0 they have reached distance
n/2 from 0, then move independently thereafter. The expected number of
visits each walk makes to y after time τ0 is easily seen to be O(cn2−d), which
proves our claim. Thus,∑

|y|≤`

(gc(0, y;Zdn)−G(y;Zd))2 = o(1).

Therefore if d ≥ 5, we have

lim
n→∞

1

hd(n)

∑
x,y

g2c (x, y;Zdn) =
∑
y∈Zd

G2(y;Zd).

For d = 4,

lim
n→∞

1

h4(n)

∑
x,y

g2c (x, y;Z4
n) = lim

n→∞

1

log n

∑
y∈Z4,|y|≤n

G2(y;Z4).

Note that the limit on the right side exists since by Theorem 1.5.4 of [12]
(generalized to lazy walks),

G(y;Zd) = ad|y|2−d + o(|y|−α)
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if α ∈ (0, d) is fixed.

Case 2: d = 3. The thrust of the previous argument was that random walk
on Zdn for d ≥ 4 is sufficiently transient so that pairs of points of distance
Ω(n1−ε) make a negligible contribution to the variance, which in turn allowed
us to make an accurate comparison between the Green’s function for random
walk on Zdn with that on Zd. The situation for d = 3 is more delicate since
the opposite is true: pairs of distance O(n1−ε) do not measurably affect the
variance.

Theorem 1.2.1 of [12] (extended to the case of lazy random walk, see also
Corollary 22.3 of [1]) implies the existence of constants β3, γ3 > 0 such that

with pt(x, y;Z3) = β3
t3/2

exp
(
−γ3|x−y|2

t

)
, we have the estimate

|pt(x, y;Z3)− pt(x, y;Z3)| = |x− y|−2O(t−3/2).

Hence letting pt(x, y;Z3
n) =

∑
k∈Z3 pt(x, y + kn;Z3), one can easily show

that with

∆(x, y) ≡
cTmix∑
t=0

|pt(x, y;Z3
n)− pt(x, y;Z3

n)|

we have that

(2.6)
1

h3(n)

∑
x,y

∆2(x, y) = o(1).

By differentiating p in t, we see that for 1 ≤ t ≤ s ≤ t+ 1, we have

|ps(0, y;Z3
n)− pt(0, y;Z3

n)| = O

(
1

t
+
|y|2

t2

)
pt(0, y;Z3

n).

We are now going to prove that

∑
y∈Z3

n

(∫ cTmix

1
pt(0, y;Z3

n)− pbtc(0, y;Z3
n)dt

)2

= O(1).(2.7)

It suffices to bound

A ≡
∑
y∈Z3

n

(∫ cTmix

1

1

t
pt(0, y;Z3

n)dt

)2

,

B ≡
∑
y∈Z3

n

(∫ cTmix

1

|y|2

t2
pt(0, y;Z3

n)dt

)2

.
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For A, we apply Cauchy-Schwarz to the integral and invoke the integrability
of 1/t2 over [1,∞) to arrive at

A ≤ C2

∑
y∈Z3

n

∫ cTmix

1
[pt(0, y;Z3

n)]2dt = O(1).

For B, we insert the formula for p into the integral, make the substitution
u = t/|y|2, and then compute to see

B ≤ C3

∑
y∈Z3

n

1

|y|6 + 1
= O(1).

This proves (2.7). Recall that T3 is the three-dimensional continuum torus.
For x, y ∈ T3, let

gc(x, y;T3) =

∫ cTmix

0
pt(nx, ny;Z3

n)dt =
1

n

∫ cT

0
pu(x, y;T3)du,(2.8)

where T = Tmix/n
2. By (2.6), (2.7), we have that

1

h3(n)

∑
x,y∈Z3

n

(gc(x, y;Z3
n)− gc(x/n, y/n;T3))2 = o(1).

Therefore we may replace gc(x, y;Z3
n) in (2.5) with gc(x/n, y/n;T3). Note

that gc(·, ·;T3) is the product of n−1 and the Green’s function for Bt/2,
where Bt is a Brownian motion on T3; roughly, the reason that the Brownian
motion moves at 1/2-speed is that lazy random walk moves at 1/2 the speed
of simple random walk. It is left to bound

n2
∫
T3

∫
T3

(gc(bnxc/n, bnyc/n;T3)− gc(x, y;T3))2dxdy;

the reason for the pre-factor n2 is that we need to multiply by (n3)2 in
order to make the double integral comparable to the double summation
and we also divide by the normalization h3(n). From (2.8), we see that
gc(x, y;T3) is O(n−1)-Lipschitz away from the diagonal Dε = {(x, y) ∈
T3 × T3 : |x − y| ≤ ε}. Thus since |(x, y) − (bnxc/n, bnyc/n)| = O(n−1),
the integrand is O(n−4) on Dc

ε , hence the integral over Dc
ε is O(n−2). Since

both ngc(bnxc/n, bnyc/n;T3) and ngc(x, y;T3) are uniformly L2-integrable
over T3×T3, it follows that the contribution coming from Dε can be made
uniformly small in n by first fixing ε > 0 small enough.

We now deduce Theorem 1.1 from Theorem 1.3.
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Proof of Theorem 1.1. Suppose Gn = Zdn for d ≥ 3. Recall that
Tmix(Zdn) = Θ(n2) (see [13]) and there exists cd > 0 so that g(x, y;Zdn) ≤
cd|x− y|2−d ∧ 1 (see [12]). Consequently, the hypotheses of Theorem 1.3 are
obviously satisfied, except for possibly (3). This is easy to see if x is suffi-
ciently far from y, z so that g(x, y;Zdn)+g(x, z;Zdn) ≤ 1/2. Now suppose that
|x−y|∧|x−z| = r is small enough so that g(x, y;Zdn)+g(x, z;Zdn) > 1/2. We
have the trivial bound that X starting at x will get do distance r+s without
hitting y, z in s steps with probability at least (4d)−s since in each step, X
has probability at least (4d)−1 of increasing its distance from y, z by 1. If s is
large enough, then after such steps we will have g(Xs, y;Zdn)+g(Xs, z;Z

d
n) ≤

1/2, which gives the desired result.
Proposition 2.1 implies that Fn,c ∼ 1

4αd,chd(n) as n→∞. This is enough
to dominate T 2

mix(Zdn) = Θ(n4) except if d = 3. We shall now argue that,
nevertheless, Fn,c is still the dominant term in this case. Note that

fn,c ≤
1

n3

∑
y

gc(x, y;Z3
n) ≤ A0cn

−1

for some A0 > 0 and c ≥ 2 fixed. Also, the transience of random walk on Z3
n

implies that there exists A1 > 0 so that fn,c(x, y) ≥ A1|x − y|−1 ∧ 1. Thus
for

|x− y| ≤
(

A1

2A0c

)
n ≡ A2n

we have that fn,c(x, y)− fn,c ≥ A1
2 |x− y|

−1 ∧ 1. Consequently,

Fn,c ≥
A2

1

4

∑
|x−y|≤A2n

|x− y|−2 ∧ 1 = c−1Θ(n4).

A matching upper bound, up to a multiplicative factor, is also not difficult
to see.

Our lower bound for Fn,c depends on c by a multiplicative factor of 1/c
while the second term in (1.7) decays exponentially in c. Thus by taking
c ≥ 2 large enough we see that Fn,c is still dominant for d = 3.

We now turn to the proof of Corollary 1.4.

Proof of Corollary 1.4 for the Hypercube. For Zn2 , it is easier
to work with the continuous time random walk (CTRW) since the types of
estimates we require easily translate over to the corresponding lazy walk.
The transition kernel of the CTRW is

pt(x, y;Zn2 ) =
1

2n
(1 + e−2t/n)n−|x−y|(1− e−2t/n)|x−y|,
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where |x−y| is the number of coordinates in which x and y differ. The spec-
tral gap is 1/n (see Example 12.15 of [13]) which implies Ω(n) = Tmix(Zn2 ) =
O(n2) (see Theorem 12.3 of [13]). Consequently, the first hypothesis of The-
orem 1.3 holds. If |x − y| = r, then it is easy to see there exists Cε, ρε > 0
so that

pt(x, y;Zn2 ) ≤

{
(Cε

t
n)r exp

(
− t
Cεn

(n− r)
)

if t ≤ εn,
e−ρεn if t > εn,

provided ε > 0 is sufficiently small. Thus it is not difficult to see that
g(x, y;Zn2 ) ≤ C ′εn−r. Trivially,

|{y ∈ Zn2 : |x− y| = r}| =
(
n
r

)
≤ nr.

Thus for x0 fixed we have

∑
y 6=x0

g2(x0, y;Zn2 ) ≤ O

(
n∑
r=1

n−2r · nr
)

= O

(
1

n

)
,

so the second hypothesis of Theorem 1.3 is satisfied. The final hypoth-
esis is obviously also satisfied. Now, a union bound implies that fn,c =

O(2−nTmix(Zn2 )), which implies (fn,c(x, x)− fn,c)2 = 1 + o(1). On the other
hand,

∑
|x−y|≥1

f2n,c(x, y) = O

(
2n

n∑
r=1

n−2r · nr
)

= o(2n).

Putting everything together, Theorem 1.3 implies

Var (|Ai|) =
1

4
(1 + o(1))2n.

Proof of Corollary 1.4 for the Caley graph of Sn. Let Gn be
the Caley graph of Sn generated by transpositions. By work of Diaconis
and Shashahani [7], the total variation mixing time of Sn is Θ(n log n),
which by Theorem 12.3 of [13] implies Tmix(Gn) = O(n(log n)(log n!)) =
O(n2(log n)2). We are now going to give a crude estimate of pt(σ, τ ;Sn).
By applying an automorphism, we may assume without loss of generality
that σ = id. Suppose that d(id, τ) = r and that τ1, . . . , τr are transpositions
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such that τr · · · τ1 = τ . Then τ1, . . . , τr move at most 2r of the n elements of
{1, . . . , n}, say, k1, . . . , k2r. Suppose k′1, . . . , k

′
2r are distinct from k1, . . . , k2r

and α ∈ Sn is such that α(ki) = k′i for 1 ≤ i ≤ r. Then the automorphism of
Gn induced by conjugation by α satisfies ατα−1 6= τ . Therefore the size of
the set of elements τ ′ in Sn such that there exists a graph automorphism ϕ of

Gn satisfying ϕ(τ) = τ ′ and ϕ(id) = id is at least

(
n
2r

)
≥ 2−2rn2r((2r)!)−1

assuming n ≥ 4r. Therefore

(2.9) pt(e, τ ;Gn) ≤ 22r(2r)!

n2r
and g(e, τ ;Gn) ≤ C(22r(2r)!)(log n)2n2−2r.

This bound is good enough for r ≥ 2 but does not quite suffice when r = 1.
This case is not difficult to handle, however, since it is easy to see that the
random walk has distance 3 from e with probability 1 − O(1/n) after its
first three moves, hence with distance at least 2 from any permutation with
distance 1 from e. Combining this with (2.9) gives the desired bound. From
this is it clear that (Gn) satisfies the hypotheses of Theorem 1.3 and, arguing
as in the case of the hypercube, that

Var (|Ai|) =
1

4
(1 + o(1))n!.

3. Preliminaries.

3.1. Notation. Suppose that G = (V,E) is a graph and let X1, X2 be
independent random walks on G. Recall that a ∧ b = min(a, b) for a, b ∈ R.
For x, y ∈ V , let

τi(x, y) = τi(x) ∧ τi(y) and τ(x, y) = τ1(x, y) ∧ τ2(x, y),

where τi(x) = min{t ≥ 0 : Xi(t) = x}. Let

H(x, y) = {τ1(x) < τ1(y) ∧ τ2(x, y)}.

This is the event that x is hit by X1 before X2 as well as before both X1, X2

hit y. Let
π̃(z;x, y) = P[X2(τ1(x, y)) = z|H(x, y)],

and let π be the uniform measure on V . Throughout, Pz[·] denotes the law
of random walk initialized at z (and the initial distribution is stationary
whenever z is omitted). The proofs in this article will involve probabilities
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of complicated events. To keep the formulas succinct, it will be helpful for
us to introduce the following notation: let

Gij(x) = {τi(x) < τj(x)},
Gij(x, y) = {τi(x, y) < τj(x, y)}, and

Gi(x, y) = {τi(x) < τi(y)}.

Throughout we will fix a sequence of graphs (Gn) satisfying Assumption 1.2.
We let

Γn = c0Tmix(Gn) log |Vn|, Υn =
Tmix(Gn)

|Vn|
,

∆n = Υn log |Vn|, Sn =
∑
y 6=x0

g2(x0, y;Gn)

where c0 will be determined later and x0 is fixed. Note that Sn does not de-
pend on x0 by vertex transitivity. We will typically write Tmix for Tmix(Gn),
pt(·, ·) for pt(·, ·;Gn), and g(·, ·) for g(·, ·;Gn) in order to keep the notation
light and, in general, suppress dependencies on n.

3.2. Elementary Estimates. Recall that the total variation distance of
probability measures µ, ν on V is

‖µ− ν‖TV = max
A⊆V

|µ(A)− ν(A)| = 1

2

∑
x∈V
|µ({x})− ν({x})|.

The following provides a bound on the rate of decay of the distance of pt(x, ·)
to stationarity.

Proposition 3.1. For every s, t ∈ N,

max
x
‖pt+s(x, ·)− π‖TV ≤ 4 max

x,y
‖pt(x, ·)− π‖TV ‖ps(y, ·)− π‖TV(3.1)

max
x,y

∣∣∣∣pt+s(x, y)

π(y)
− 1

∣∣∣∣ ≤ max
x,y

ps(x, y)

π(y)
max
x
‖pt(x, ·)− π‖TV .(3.2)

Proof. The first part is a standard result; see, for example, Lemmas
4.11 and 4.12 of [13]. The second part is a consequence of the semigroup
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property:

1

π(z)
pt+s(x, z) =

1

π(z)

∑
y

pt(x, y)ps(y, z)

=
1

π(z)

∑
y

[pt(x, y)− π(y) + π(y)]ps(y, z)

≤
(

max
y,z

ps(y, z)

π(z)

)
‖pt(x, ·)− π‖TV + 1.

Trivially,

max
x
‖pt(x, ·)− π‖TV ≤ max

x,y

∣∣∣∣pt(x, y)

π(y)
− 1

∣∣∣∣ .
Consequently, (3.1) and (3.2) give

max
x,y

∣∣∣∣pt(x, y)

π(y)
− 1

∣∣∣∣ ≤ γe−γα for t ≥ αTmix and α > 0.(3.3)

where γ > 0 is a universal constant. We will often use (3.3) without reference.
Throughout the article, it will be important for us to have precise esti-

mates of the Radon-Nikodym derivative of the law of random walk condi-
tioned on various events with respect to the uniform measure. In the follow-
ing, we are interested in the case of a random walk conditioned not to have
hit a particular point. Let Tk = kTmix.

Lemma 3.2. There exists γ, p0 > 0 so that for all k ≥ 1 satisfying
kΥn ≤ p0 and c ≥ 2 we have

Px[X(cTk) = z|τ(y) > cTk] = [1 +O(e−γck + ckΥn + g(y, z))]π(z).

Note that by part (1) of Assumption 1.2, this lemma applies if k =
O((log |Vn|)2).

Proof. Using that Px[X(cTk) = z] = (1+O(e−γck))π(z), an application
of Bayes’ formula yields

Px[X(cTk) = z|τ(y) > cTk]

=
Px[τ(y) > cTk|X(cTk) = z]

Px[τ(y) > cTk]
(1 +O(e−γck))π(z).
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The idea of the rest of the proof is to show it is unlikely that X hits y
close to time cTk, in which case we can use a mixing argument to show that
conditioning on X(cTk) = z has little effect. For 1 ≤ c̃ ≤ c̃+ 1 ≤ c, we have

Px[τ(y) > cTk|X(cTk) = z]

=Px[τ(y) > c̃Tk|X(cTk) = z]−Px[cTk ≥ τ(y) > c̃Tk|X(cTk) = z].

By a time-reversal, we have that

Px[cTk ≥ τ(y) > c̃Tk|X(cTk) = z] ≤ Pz[τ(y) < (c− c̃)Tk|X(cTk) = x].

By mixing considerations and a union bound, we have

Pz[τ(y) ≤ (c− c̃)Tk|X(cTk) = x] = O(g(y, z) + (c− c̃)kΥn).

Applying Bayes’ formula, observe

Px[τ(y) > c̃Tk|X(cTk) = z] =
Px[X(cTk) = z|τ(y) > c̃Tk]

Px[X(cTk) = z]
Px[τ(y) > c̃Tk]

= (1 +O(e−kγ(c−c̃)))Px[τ(y) > c̃Tk].

Similarly,

Px[τ(y) > cTk] = Px[τ(y) > c̃Tk]−Px[cTk ≥ τ(y) > c̃Tk].

By a union bound and mixing considerations, the second term on the right
hand side is of order O((c− c̃)kΥn). We now take c̃ = c/2 and γ = γ/2. By
part (3) of Assumption 1.2, we have that

Px[τ(y) > cTk] ≥ 1− ρ0 −O(ckΥn)

uniformly in n. In particular, there exists p0 > 0 so that if ckΥn ≤ p0 then
Px[τ(y) > cTk] is uniformly positive in n. Putting everything together, for
such k we thus have

Px[X(cTk) = z|τ(y) > cTk]

=
(1 +O(e−γck))Px[τ(y) > c̃Tk] +O(g(y, z) + ckΥn)

Px[τ(y) > c̃Tk] +O(ckΥn)
(1 +O(e−γck))π(z)

=(1 +O(e−γck + g(y, z) + ckΥn))π(z),

as desired.
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In the following lemma, we will show that the difference in the proba-
bility that a random walk hits points y, z when started from x before time
Γn = c0(log |Vn|)Tmix is essentially determined by the corresponding differ-
ence except up to time cTmix. The reason for the cancellation is that the
previous lemma implies that conditional on not hitting a given point up to
time cTmix, the walk is well mixed and has long forgotten its starting point.
Recall that fc(x, y) = Px[τ(y) ≤ cTmix] (we have suppressed n).

Lemma 3.3. There exists γ > 0 such that for all c ≥ 2,

Px[τ(y) ≤ Γn]−Px[τ(z) ≤ Γn] = fc(x, y)− fc(x, z)+
O(e−γcΥn + ∆n[g(x, y) + g(x, z)]).

Proof. We observe,

Px[τ(y) ≤ Γn] = fc(x, y)+∑
k

Px[cTk < τ(y) ≤ cTk+1|τ(y) > cTk](1−Px[τ(y) ≤ cTk]),

where here and throughout the rest of this proof the summation over k is
from 1 to c0

c log |Vn|. We note that

Px[cTk < τ(y) ≤ cTk+1|τ(y) > cTk]

=
∑
w

Px[cTk < τ(y) ≤ cTk+1|τ(y) > cTk, X(cTk) = w]Px[X(cTk) = w|τ(y) > cTk]

=
∑
w

Pw[τ(y) ≤ cT1]Px[X(cTk) = w|τ(y) > cTk].

As the previous lemma is applicable for such choices of k and using Pw[τ(y) ≤
cT1] ≤ O(g(y, w) + cΥn), we can rewrite the expression above as

Pπ[τ(y) ≤ cT1] +O

∑
w 6=y

g(y, w)(e−γck + ckΥn + g(y, w))π(w)

 .

Performing the summation over w, we see that the latter term is of order

(3.4) O(Υne
−γck + ckΥ2

n + Sn|Vn|−1).

Recall from part (2) of Assumption 1.2 that Sn = o(Tmix/ log |Vn|), hence
(log |Vn|)Sn|Vn|−1 = o(Υn). Consequently, summing (3.4) over k from 1 to
c0
c log |Vn| gives an error of

O(Υne
−γc + ∆2

n).
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By part (1) of Assumption 1.2 it is clear that ∆2
n = o(Υn), hence the former

is of order O(Υne
−γc). This leaves∑

k

Px[cTk < τ(y) ≤ cTk+1|τ(y) > cTk]Px[τ(y) ≤ cTk]

=O

(∑
k

∑
z

Pz[τ(y) ≤ cT1]π(z)(g(x, y) + ckΥn)

)
.

Here, we used the previous lemma to get the crude estimate Px[X(cTk) =
z|τ(y) > cTk] ≤ Cπ(z) for some C > 0. Summing everything up gives us
an error of order O(∆ng(x, y) + ∆2

n). We also have another contribution of
O(∆ng(x, z) + ∆2

n) coming from the corresponding estimate of Px[τ(z) ≤
Γn]. Therefore our total error is O(Υne

−γc + ∆n[g(x, y) + g(x, z)]), which
proves the lemma.

4. The Radon-Nikodym Derivative. Recall

π̃(z;x, y) = P[X2(τ1(x, y)) = z|H(x, y)].

The purpose of this section is to prove the following estimate of the Radon-
Nikodym derivative of π̃(z;x, y) with respect to π(z). Recall again fc(x, y) =
Px[τ(y) ≤ cTmix] and f c =

∑
y fc(x, y)π(y) (we are omitting the dependence

on n).

Theorem 4.1. There exists a constant γ > 0 so that for all c ≥ 2 and
x 6= y we have

π̃(z;x, y)

π(z)
= 1 + (1 +O(∆n))

(
2f c − fc(x, z)− fc(y, z)

)
+O(e−γcΥn) +O([g(x, z) + g(y, z) + ∆n][g(x, y) + ∆n]).

In particular,

(4.1)
π̃(z;x, y)

π(z)
= 1 +O(g(x, y) + g(y, z) + g(x, z)).

Let Y2 = X2(τ1(x, y)). The idea of the proof is to observe that

π̃(z;x, y) = P[Y2 = z|H(x, y)] =
P[H(x, y)|Y2 = z]π(z)

P[H(x, y)]
,

where we used P[Y2 = z] = π(z) as X1, X2 are independent and the initial
distribution of X2 is stationary, then estimate the effect of conditioning on
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Fig 1. In Theorem 4.1, we give a precise estimate of the Radon-Nikodym derivative of the
law of Y2 = X2(τ1(x, y)) with respect to the uniform measure on Vn conditional on the
event that H(x, y) = {τ1(x) < τ1(y) ∧ τ2(x, y)}, i.e. that the first point in {x, y} hit by
X1, X2 is x by X1. The open circles indicate the starting points of X1, X2 and the shaded
circle is Y2.

{Y2 = z} on the probability of H(x, y). We will divide the proof into three
lemmas. The first step in the proof is to express π̃(·;x, y)/π in terms of the
event:

A(x, y) = {τ2(x, y) > τ1(x, y)− Γn, G1(x, y)} \H(x, y)

= {τ1(x, y) ≥ τ2(x, y) > τ1(x, y)− Γn, G1(x, y)}.

Note that it is a slight abuse of notation to insert G1(x, y) into the braces
defining A(x, y) since G1(x, y) is itself an event. We will do this a number
of times in the following lemma in order to lighten the notation.

Lemma 4.2. Uniformly in x, y, z, n,

π̃(z;x, y)

π(z)
=1 +

P[A(x, y)]−P[A(x, y)|Y2 = z]

P[H(x, y)]
+O(|Vn|−100).(4.2)

Proof. Letting R(x, y) = {τ2(x, y) > τ1(x, y)− Γn, G1(x, y)}, observe

P[H(x, y)|Y2 = z] = P[R(x, y)|Y2 = z]−P[A(x, y)|Y2 = z].

We will now manipulate the first term on the right hand side. Let R̃(x, y) =
G1(x, y) \R(x, y). We have,

P[R(x, y)|Y2 = z] = P[G1(x, y)|Y2 = z]−P[R̃(x, y)|Y2 = z](4.3)
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Fig 2. Illustration of the event A(x, y). The solid lines are used to indicates the parts
of X1, X2 up to the time τ2(x, y), while the dashed line is used for the part of X1 after
τ2(x, y). We have not indicated the part of X2 after τ2(x, y). Note that we have X2 hitting
y first, but A(x, y) allows for X2 to hit x first as well. On the other hand, A(x, y) requires
that X1 does in fact hit x before y.

and, since Y2 ∼ π, Bayes’ rule implies

P[R̃(x, y)|Y2 = z] =
1

π(z)
P[Y2 = z|R̃(x, y)]P[R̃(x, y)].

Since the conditional probability on the right hand side involves conditioning
on the behavior of X2 before τ1(x, y)−Γn, mixing considerations imply that
this is equal to

[1 +O(|Vn|−γc0)]P[R̃(x, y)] = P[R̃(x, y)] +O(|Vn|−γc0).(4.4)

As P[G1(x, y)|Y2 = z] = P[G1(x, y)], combining (4.3) with (4.4) we thus
have

P[H(x, y)|Y2 = z] =P[R(x, y)]−P[A(x, y)|Y2 = z] +O(|Vn|−γc0)

=P[H(x, y)] + P[A(x, y)]−P[A(x, y)|Y2 = z] +O(|Vn|−γc0).

Assume that γc0 > 100. Putting everything together, we see that

π̃(z;x, y)

π(z)
=

P[H(x, y)] + P[A(x, y)]−P[A(x, y)|Y2 = z]

P[H(x, y)]
+O(|Vn|−100),

uniformly in x, y, z, n.

Note that if Vn = Zdn for d ≥ 3 then P[G1(x, y), G12(x, y)] = P[H(x, y)]
does not change when x is swapped with y nor when 1 is swapped with
2 hence is equal to 1

4 up to negligible error (it is not exactly 1
4 since it
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could be that X1 hits x at the same time X2 hits either x or y, though this
is a rare event). This holds more generally if for every x, y ∈ Vn distinct
there exists an automorphism ϕ of Gn such that ϕ(x) = y and ϕ(y) = x.
The weaker hypothesis of vertex transitivity implies that we can always find
an automorphism ϕ of Gn such that ϕ(x) = y but not necessarily so that
ϕ(y) = x as well. Nevertheless, it is still true in this case that P[H(x, y)] ≈ 1

4 .

Lemma 4.3. If x 6= y, we have that

P[H(x, y)] =
1

4
+ o

(
Υn

log |Vn|

)
+O

(
1

|Vn|

)
.

Proof. Let Ã(x, y) = {τ1(x, y) ≥ τ2(x, y) > τ1(x, y)−Γn} and µ(z;x, y) =
P[Y2 = z|τ1(x, y) ≤ τ2(x, y)]. Using exactly the same proof as the previous
lemma, we have

µ(z;x, y)

π(z)
= 1 +O(P[Ã(x, y)] + P[Ã(x, y)|Y2 = z] + |Vn|−100).

Using a time-reversal in the first step and a union bound in the second, we
have that

P[Ã(x, y)|Y2 = z] ≤ Pz[τ2(x, y) ≤ Γn] = O(∆n + g(x, z) + g(y, z))

(and similarly for P[Ã(x, y)]). Consequently,∑
z

g(x, z)µ(z;x, y) = Υn +
1

|Vn|
∑
z

g(x, z)O (∆n + g(x, z) + g(y, z))

= Υn +
1

|Vn|
∑
z

O
(
g(x, z)∆n + g2(x, z) + g2(y, z)

)
= Υn +

1

|Vn|
O(1 + Sn + ∆nTmix).

By parts (1) and (2) of Assumption 1.2, we have that Sn + ∆nTmix =
o(Tmix/(log |Vn|)). Consequently, the above is equal to

Υn + o

(
Υn

log |Vn|

)
.(4.5)

Let px = P[G1(x, y), G12(x, y)] and py = P[G1(y, x), G12(x, y)]. Note that

(4.6) px + py = P[G12(x, y)] =
1

2
+O

(
1

|Vn|

)
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since P[τ1(z) = τ2(w)] ≤ P[X2(τ1(z)) = w] = |Vn|−1 for any z, w ∈ Vn.
Define stopping times as follows. Let

τ1 = min{t ≥ 0 : X1(t) ∈ {x, y} or X2(t) ∈ {x, y}} = τ(x, y).

For j ≥ 1, inductively set

τj+1 = min{t ≥ τj + Tmix + 1 : X1(t) ∈ {x, y} or X2(t) ∈ {x, y}}.

Let Tj,z =
∑τj+Tmix

t=τj
1{X(t)=z} and, for E ⊆ Vn, set Aij(E) = {Xi(τj) ∈ E}.

Note that the average amount of time spent at x byX1 through time τk+Tmix

is given by the expression

1

τk + Tmix

k∑
j=1

(
1A1j(x)1Ac2j(x,y)Tj,x + 1A1j(y)1Ac2j(x,y)Tj,x + 1A2j(x,y)Tj,x

)
.

It is not difficult to see that the above quantity converges to π(x) as k →∞.
We can also define a similar quantity but replacing Tj,x with Tj,y; this will
converge to π(y) as k → ∞. Taking the ratio of these two quantities, we
arrive at

1 = lim
k→∞

1
k

∑k
j=1

(
1A1j(x)1Ac2j(x,y)Tj,x + 1A1j(y)1Ac2j(x,y)Tj,x + 1A2j(x,y)Tj,x

)
1
k

∑k
j=1

(
1A1j(x)1Ac2j(x,y)Tj,y + 1A1j(y)1Ac2j(x,y)Tj,y + 1A2j(x,y)Tj,y

)
since π(x) = π(y). It is not difficult to see that, almost surely,

lim
k→∞

1

k

k∑
j=1

1A1j(x)1Ac2j(x,y)Tj,x = pxg(x, x),

lim
k→∞

1

k

k∑
j=1

1A1j(y)1Ac2j(x,y)Tj,x = pyg(y, x),

lim
k→∞

1

k

k∑
j=1

1A2j(x,y)Tj,x = qxy
∑
z

g(z, x)µ(z;x, y),

where qxy = 1 − px − py. Analogous formulae hold for the terms in the
denominator. Combining this with (4.5), we thus have

1 =
pxg(x, x) + pyg(y, x) + qxy

∑
z g(z, x)µ(z;x, y)

pyg(y, y) + pxg(x, y) + qxy
∑

z g(z, y)µ(z;x, y)

=
pxg(x, x) + pyg(y, x) + qxyΥn

pyg(y, y) + pxg(x, y) + qxyΥn
+ o

(
Υn

log |Vn|

)
.
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Rearranging and using that g(x, y) = g(y, x) and g(x, x) = g(y, y), this
implies that

px = py + o

(
Υn

log |Vn|

)
.

Combining this with (4.6) proves the first part of the lemma.

In order to complete the proof of Theorem 4.1 we need to estimate
P[A(x, y)|Y2 = z], which is the purpose of the following lemma. Though
the proof will be computationally intensive, the basic idea is fairly simple.
The main goal is to eliminate the conditioning on Y2 = z. The first step
is to perform a time reversal, which converts the terminal condition to an
initial condition at the cost of making the event whose probability we are
to compute a bit more complicated. The latter is easily mitigated, however,
since the event can be greatly simplified at the cost of negligible error.

Lemma 4.4. There exists γ > 0 so that for all c ≥ 2 we have

P[A(x, y)|Y2 = z] =

(
1

4
+O(∆n)

)[
fc(x, z) + fc(y, z)

]
+ Ec(x, y)+

O
(
e−γcΥn + [g(x, z) + g(y, z) + ∆n][g(x, y) + ∆n]

)
,

where Ec(x, y) is some constant which does not depend on z.

Note that the lemma implies

P[A(x, y)]−P[A(x, y)|Y2 = z] = O(g(x, y) + g(y, z) + g(x, z) + e−γcΥn).

Proof. Let

B(x, y) = {X2(t) /∈ {x, y} for all t ∈ (Γn, τ1(x, y)], G1(x, y)}

and let Pπ,z be the law of (X1, X2) where X1(0) ∼ π and X2(0) = z. We
compute,

P[A(x, y)|Y2 = z] =
1

π(z)
P[A(x, y), Y2 = z]

=
∑
w

Pπ,w[τ1(x, y) ≥ τ2(x, y) > τ1(x, y)− Γn, G1(x, y), Y2 = z]

By reversing the time of X2 (but not X1), we see that this is equal to∑
w

Pπ,z[τ2(x, y) ≤ Γn ∧ τ1(x, y), B(x, y), Y2 = w]

=Pπ,z[τ2(x, y) ≤ Γn ∧ τ1(x, y), B(x, y)].(4.7)
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We will now work towards approximating this event with a simpler event.
We begin by eliminating the “minimum” operation using the observation
that it is unlikely for both X1, X2 to hit {x, y} quickly. Indeed, as

Pπ,z[τ1(x, y) ≤ Γn, τ2(x, y) ≤ Γn] = O([g(x, z) + g(y, z) + ∆n]∆n)

we see by setting B̃(x, y) = B(x, y) ∩ {τ1(x, y) > Γn} that (4.7) is equal to

Pπ,z[τ2(x, y) ≤ Γn, B̃(x, y)] +O([g(x, z) + g(y, z) + ∆n]∆n).

We would now like to eliminate the dependence of the probability on z, the
starting point of X2. We accomplish this by considering two possible cases.
Either X2 hits x or y within some multiple of the mixing time or it does
not. Conditional on the latter, the walk will have mixed, so the relevant
probability does not depend on z. We implement this strategy as follows:

Pπ,z[τ2(x, y) ≤ Γn, B̃(x, y)] = Pπ,z[τ2(x, y) < cTmix, B̃(x, y)]+

Pπ,z[τ2(x, y) ≤ Γn, B̃(x, y)|τ2(x, y) ≥ cTmix](1−Pz[τ2(x, y) < cTmix]).

Using the same proof as Lemma 3.2 except in the case that the random
walk is conditioned not to hit two points rather than just one implies
µ(w;x, y, z) = Pz[X2(cTmix) = w|τ2(x, y) ≥ cTmix] ≤ Cπ(w) for some con-
stant C > 0. Consequently,

Pπ,z[τ2(x, y) ≤ Γn, B̃(x, y)|τ2(x, y) ≥ cTmix]Pz[τ2(x, y) < cTmix]

≤CPπ[τ2(x, y) ≤ Γn]Pz[τ2(x, y) < cTmix] = O([g(x, z) + g(y, z) + cΥn]∆n).

We are left with two terms to estimate:

Pπ,z[τ2(x, y) < cTmix, B̃(x, y)],(4.8)

Pπ,z[τ2(x, y) ≤ Γn, B̃(x, y)|τ2(x, y) ≥ cTmix].(4.9)

We will first deal with (4.8) which, using the independence of τ1(x, y) and
τ2(x, y), we can rewrite as

Pπ,z[B(x, y)|τ1(x, y) > Γn, τ2(x, y) < cTmix]Pz[τ2(x, y) < cTmix]P[τ1(x, y) > Γn]

Since B(x, y) depends on X2(t) only for t ≥ Γn, from mixing considerations
it is easy to see that

Pπ,z[B(x, y)|τ1(x, y) > Γn, τ2(x, y) < cTmix]

=P[B(x, y)|τ1(x, y) > Γn] +O(|Vn|−100).
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Consequently, (4.8) is equal to

Pz[τ2(x, y) < cTmix]P[B̃(x, y)] +O(|Vn|−100).

Note that

B̃(x, y) = (H(x, y) ∩ {τ(x, y) > Γn}) ∪ (B̃(x, y) ∩ {τ(x, y) ≤ Γn}).

Using P[τ(x, y) ≤ Γn] = O(∆n), the previous lemma thus implies

P[B̃(x, y)] = P[H(x, y)] +O(∆n) =
1

4
+O(∆n).

Observe

Pz[τ2(x) < cTmix, τ2(y) < cTmix]

=Pz[τ2(x) < τ2(y) < cTmix] + Pz[τ2(y) < τ2(x) < cTmix]

=O([g(x, z) + g(y, z) + cΥn][g(x, y) + cΥn]).

Consequently,

Pz[τ2(x, y) < cTmix] = fc(x, z) + fc(y, z)−Pz[τ2(x) < cTmix, τ2(y) < cTmix]

=fc(x, z) + fc(y, z) +O([g(x, z) + g(y, z) + cΥn][g(x, y) + cΥn]).

The final part of the lemma follows since, arguing as in the proof of Lemma
3.3, we can estimate (4.9) as follows:

Pπ,z[τ2(x, y) ≤ Γn, B̃(x, y)|τ2(x, y) ≥ cTmix]

=P[τ2(x, y) ≤ Γn, B̃(x, y)|τ2(x, y) ≥ cTmix]

+O(e−γcΥn + (g(x, z) + g(y, z))∆n).

Taking Ec(x, y) = P[τ2(x, y) ≤ Γn, B̃(x, y)|τ2(x, y) ≥ cTmix] and noting that
cΥn = O(∆n) finishes the proof of the lemma.

By combining the three lemmas, we can now complete the proof of The-
orem 4.1.

Proof of Theorem 4.1. Recalling that P[Y2 = z] = π(z), observe

P[A(x, y)] =
∑
z

P[A(x, y)|Y2 = z]P[Y2 = z] =
∑
z

P[A(x, y)|Y2 = z]π(z).
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Hence by Lemma 4.4, we have

P[A(x, y)] =

(
1

4
+O(∆n)

)
(2f c) + Ec(x, y) +O

(
e−γcΥn + ∆n[g(x, y) + ∆n]

)
.

Here, we used that∑
z

(g(x, z) + g(y, z))π(z) = O(Υn) = O(∆n).

In particular,

P[A(x, y)]−P[A(x, y)|Y2 = z] =

(
1

4
+O(∆n)

)[
2f c − fc(x, z)− fc(y, z)

]
+

O
(
e−γcΥn + [g(x, z) + g(y, z) + ∆n][g(x, y) + ∆n]

)
.

Inserting this expression along with the estimate of P[H(x, y)] from Lemma
4.3 into into the equation for π̃(z;x, y)/π(z) from Lemma 4.2 gives the the-
orem.

5. The Variance. We will complete the proof of Theorem 1.3 in this
section. The general theme is to eliminate asymmetry wherever possible. We
first apply this idea by considering

B =
∑
x

1G12(x) −
∑
x

1G21(x)

in place of |A1|. In addition to being symmetric in X1, X2, note that B
also differs from |A1| in that we have eliminated those sites whose mark
is determined by the flip of a fair coin. These, however, do not make a
significant contribution to the variance since it is a rare event that both
walks hit a particular point for the first time simultaneously. In particular,
we will show in Lemma 5.1 that Var(B) ≈ 4Var(|A1|), up to negligible error.
Consequently, to prove Theorem 1.3 it suffices to show

Var(B) =
∑
x,y

(fc(x, y)− f c)2 +O(e−γc(Tmix)2).

It is convenient to work with B as the expansion of its variance takes on the
following form:

Var(B) =2
∑
x,y

(
P[G12(x), G12(y)]−P[G12(x), G21(y)]

)
=4

∑
x 6=y 6=z

(
Px,z[G12(y)]−Px,z[G21(y)]

)
π̃(z;x, y)P[H(x, y)]+(5.1)

2
∑
x

P[G12(x)].(5.2)
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The reason the summation in (5.1) is over x 6= y 6= z is P[H(x, x)] = 0 and
π̃(z;x, y) = 0 if z ∈ {x, y}; the summation in (5.2) contains the diagonal
terms. We will now focus on (5.1) and handle (5.2) at the end of the section.
Applying Lemma 4.3, we can rewrite (5.1) as

∑
x 6=y 6=z

(
Px,z[G12(y)]−Px,z[G21(y)]

)
π̃(z;x, y)+

(5.3)

∑
x 6=y 6=z

|Px,z[G12(y)]−Px,z[G21(y)]|
[
o

(
Tmix

|Vn|2 log |Vn|

)
+O

(
1

|Vn|2

)]
.

(5.4)

We will show at the end of this section that (5.4) is negligible. Note that

Px,z[Gij(y)] =Px,z[τi(y) < τj(y) ≤ Γn] + Px,z[τi(y) ≤ Γn, τj(y) > Γn]

+ Px,z[Γn < τi(y) < τj(y)] ≡ A+B + C.(5.5)

In Section 5.2, we break the sum in (5.3) into three different cases based on
the time decomposition in (5.5) and bound each in a given lemma. It will
turn out that the contributions to the variance coming from the terms corre-
sponding to A and C are negligible (Lemma 5.3 and Lemma 5.4). The reason
for the former is that it is unlikely for both X1 and X2 to hit y quickly and
the latter follows as, conditional on having not hit y by time Γn, both walks
have long forgotten their initial conditions and are well mixed. This leaves
B, which, along with the diagonal, dominates the variance. Its asymptotics
will be computed (Lemma 5.2) by reducing the estimate to a computation
involving π̃(z;x, y), whose Radon-Nikodym derivative with respect to the
uniform measure has already been estimated precisely in Theorem 4.1.

5.1. Symmetrization.

Lemma 5.1. We have

Var(B) = 4Var(|A1|) +O

(√
TmixVar(|A1|) + Tmix

)
as n→∞.

Proof. Let (ξn(x) : x ∈ Vn) be iid random variables independent of
X1, X2 with P[ξn(x) = 1] = P[ξn(x) = 2] = 1

2 and let A(x, i) = {τ1(x) =
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τ2(x), ξn(x) = i}. By definition,

Var(B) = Var

(
|A1| −

(
|Vn| − |A1|

)
−
∑
x

(
1A(x,1) − 1A(x,2)

))

= Var

(
2|A1|+

∑
x

(
1A(x,2) − 1A(x,1)

))
.

Observe,

E

(∑
x

1A(x,1)

)2

≤
∑
x,y

P[τ1(x) = τ2(x), τ1(y) = τ2(y)].

By the strong Markov property and independence of X1, X2, the above is
bounded by twice ∑

x,y

Px,x[τ1(y) = τ2(y)]P[τ1(x) = τ2(x)]

≤
∑
x,y

∑
t

(
Px[τ(y) = t]

)2
P[X2(τ1(x)) = x].

Using that Px[τ(y) = t] ≤ Px[X(t) = y] and X2(τ1(x)) ∼ π when X(0) ∼ π,
we have the further bound

1

|Vn|
∑
x,y

4Tmix∑
t=0

Px[X(t) = y] +
∑

t>4Tmix

(Px[τ(y) = t])2

 .(5.6)

Summing the first term over x, y, t plainly yields 4Tmix. For the second term,
note there exists C > 0 so that for t > 4Tmix we have

Px[τ(y) = t] ≤ Px[X(t) = y] ≤ C

|Vn|

hence ∑
t>4Tmix

(Px[τ(y) = t])2 ≤ C

|Vn|
∑

t>4Tmix

Px[τ(y) = t] ≤ C

|Vn|
.

Therefore the second term in the summation in (5.6) is O(1). The lemma
now follows from Cauchy-Schwarz.
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5.2. Time Decomposition. We begin by estimating the part of (5.3) cor-
responding to “B” from (5.5).

Lemma 5.2. We have∑
x 6=y 6=z

(
Px,z[τ1(y) ≤ Γn, τ2(y) > Γn]−Px,z[τ2(y) ≤ Γn, τ1(y) > Γn]

)
π̃(z;x, y)

= (1 +O(∆n))
∑
x 6=y

(fc(x, y)− f c)2 +O(e−γc(Tmix)2).

Proof. Note that

Px,z[τ1(y) ≤ Γn, τ2(y) > Γn]−Px,z[τ2(y) ≤ Γn, τ1(y) > Γn]

=Px[τ1(y) ≤ Γn]−Pz[τ2(y) ≤ Γn].

Let δ1(x, y, z) = O(e−γcΥn + (g(x, z) + g(y, z) + ∆n)(g(x, y) + ∆n)) be the
error term from Theorem 4.1 and δ2(x, y, z) = O(e−γcΥn + ∆n(g(x, y) +
g(x, z))) be the error term from Lemma 3.3. Then we can rewrite the sum-
mation in the statement of the lemma as∑

x 6=y 6=z

(
Px[τ1(y) ≤ Γn]−Pz[τ2(y) ≤ Γn]

)
π̃(z;x, y)

=
1

|Vn|
∑
x 6=y 6=z

(
Px[τ1(y) ≤ Γn]−Pz[τ2(y) ≤ Γn](1 + ε(x, y, z))

)
+

1

|Vn|
∑
x 6=y 6=z

(
|fc(x, y)− fc(y, z)|+ δ2(x, y, z)

)
δ1(x, y, z) ≡ B1 +B2

where, by Theorem 4.1,

ε(x, y, z) = (1 +O(∆n)) (2f c − fc(x, z)− fc(y, z)).

Applying Assumption 1.2 repeatedly, it is tedious but not difficult to see
that B2 = O(e−γcT 2

mix). By Lemma 3.3,

B1 = (1 +O(∆n))
1

|Vn|
∑
x 6=y 6=z

(
fc(x, y)− fc(y, z) + δ2(x, y, z)

)
(2f c − fc(x, z)− fc(y, z)).

Multiplying through, using the symmetry of f in its arguments, and cancel-
ing many terms, this becomes

(1 +O(∆n))
∑
x 6=y

(fc(x, y)− f c)2 +O(e−γc(Tmix)2).
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We will now show that the part of (5.3) coming from “A” of (5.5) is
negligible. Roughly, the reason for this is that it is unlikely for both walks
to hit y quickly, though in order to get a sufficiently good bound we will need
to take advantage of some more cancellation. This will in turn require us to
invoke (4.1), which is a rough estimate of the Radon-Nikodym derivative of
π̃ with respect to π.

Lemma 5.3. Uniformly in n, we have∑
x 6=y 6=z

(
Px,z[τ1(y) < τ2(y) ≤ Γn]−Px,z[τ2(y) < τ1(y) ≤ Γn]

)
π̃(z;x, y)

= o(T 2
mix)

Proof. By (4.1), the summation in the statement of the lemma is equal
to

1

|Vn|
∑
x6=y 6=z

(
Px,z[τ1(y) < τ2(y) ≤ Γn]−Px,z[τ2(y) < τ1(y) ≤ Γn]

)
(1 +O(g(x, y) + g(y, z) + g(x, z))).

By symmetry, we see that this is equal to

1

|Vn|
∑
x6=y 6=z

(
Px,z[τ1(y) < τ2(y) ≤ Γn]−Px,z[τ2(y) < τ1(y) ≤ Γn]

)
(O(g(x, y) + g(y, z) + g(x, z))).

Using

Px,z[τ1(y) < τ2(y) ≤ Γn] ≤ Px,z[τ1(y) ≤ Γn, τ2(y) ≤ Γn]

and the independence of X1, X2, we have the further bound

1

|Vn|
∑
x 6=y 6=z

O([g(x, y) + ∆n)(g(y, z) + ∆n))O(g(x, y) + g(y, z) + g(x, z)).

By the symmetry of g in its arguments, we can rewrite this as

1

|Vn|
∑
x 6=y 6=z

O(g(x, y)g2(y, z) + g2(x, y)∆n + g(x, y)∆2
n + g(x, y)g(x, z)∆n+

g(x, y)g(x, z)g(y, z)).
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The terms in the summation are of order

SnTmix, SnTmix log |Vn|,
T 3
mix(log |Vn|)2

|Vn|
,

T 3
mix log |Vn|
|Vn|

,
T 3
mix

|Vn|
,

respectively. Assumption 1.2 implies that all of these are o(T 2
mix), which gives

the lemma.

We complete this subsection by proving that “C” from (5.5) is also negli-
gible in comparison to the bound we seek to prove. The intuition for this is
that by time Γn, both walks are very well mixed hence given that both have
not hit y, the difference in the probability that one hits before the other
is of smaller order than any negative power of |Vn| (though we choose to
write −100). The proof will be in a slightly different spirit than the previous
lemmas.

Lemma 5.4. For any fixed x, z, we have

Px,z[Γn < τ1(y) < τ2(y)]−Px,z[Γn < τ2(y) < τ1(y)] = O(|Vn|−100).

Proof. We may assume without loss of generality that x, z 6= y. The
idea of the proof is to use a standard coupling argument to show that,
conditional on {τ1(y) ∧ τ2(y) ≥ Γn}, the laws of X1(Γn) and X2(Γn) have
total variation distance O(|Vn|−100) independent of x, z. To this end, we set
µ(z;x, y) = Px[X(Γn) = z|τ(y) ≥ Γn]. Let Y (t) be the process given by
X(t) conditioned on the event {τ(y) ≥ Γn}. Then Y (t) is Markov (though
time-inhomogeneous) as

P[Y (t) = z|Y (0) = z0, . . . , Y (t− 1) = zt−1]

=P[X(t) = z|X(0) = z0, . . . , X(t− 1) = zt−1, τ(y) ≥ Γn]

=
P[X(t) = z, τ(y) ≥ Γn|X(0) = z0, . . . , X(t− 1) = zt−1]

P[τ(y) ≥ Γn|X(0) = z0, . . . , X(t− 1) = zt−1]

=
Pzt−1 [X(1) = z, τ(y) ≥ Γn − (t− 1)]

Pzt−1 [τ(y) ≥ Γn − (t− 1)]

depends only on z, zt−1. Recall that Tk = kTmix. For t = cTk, note that

ν(z; t, x) ≡ Px[Y (t) = z] =
Px[X(t) = z, τ(y) ≥ Γn|τ(y) ≥ t]

Px[τ(y) ≥ Γn|τ(y) ≥ t]

=
Pz[τ(y) ≥ Γn − t]Px[X(t) = z|τ(y) ≥ t]

Px[τ(y) ≥ Γn|τ(y) ≥ t]
.
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Combining part (3) of Assumption 1.2 with Lemma 3.2, we have that

Pz[τ(y) ≥ Γn − t]
Px[τ(y) ≥ Γn|τ(y) ≥ t]

= Θ(1) for z 6= y.

Also, since
∑

z g(y, z) = Tmix and Tmix = o(|Vn|), it follows that for each
ε > 0 fixed, with A = {z : g(y, z) ≤ ε} we have |A|/|Vn| = 1− o(1). Lemma
3.2 also implies that Px[X(t) = z|τ(y) ≥ t] = Θ(1)π(z) on A uniformly in n
large provided that provided k is large enough and ε > 0 is sufficiently small.
This implies that we can couple together the laws Yu(cTk), Yv(cTk) starting
at u, v distinct so that with probability ρ > 0 we have Yu(cTk) = Yv(cTk).
If we iterate this procedure c1 = c0

η log |Vn| times, η = η(c, k, ρ), we get that

with probability 1−O(|Vn|−c1) we have Yu(Γn) = Yv(Γn). Consequently, we
may assume that c0 is sufficiently large so that

max
u,v
‖ν(·; Γn, u)− ν(·, ; Γn, v)‖TV = O(|Vn|−500).

Let ν be a measure so that maxu ‖ν(·; Γn, u) − ν‖TV = O(|Vn|−500). Let
D = {τ1(y) ∧ τ2(y) ≥ Γn}. Then we have that

Px,z[Γn < τ1(y) < τ2(y)]−Px,z[Γn < τ2(y) < τ1(y)]

=

(
Px,z[G12(y)|D]−Px,z[G21(y)|D]

)
Px,z[D]

=
∑
u,v

(
Pu,v[G12(y)]−Pu,vP[G21(y)]

)
ν(u; Γn, x)ν(v; Γn, z)Px,z[D] +O(|Vn|−200)

=O(|Vn|−200).

Proof of Theorem 1.3. To finish the proof of Theorem 1.3, we need
to estimate the diagonal (5.2) and take care of the term in (5.4). Observe
that (5.2) is equal to

(5.7) 2
∑
x

P[G12(x)] = |Vn|+O

(∑
x

P[τ1(x) = τ2(x)]

)
.

We can estimate the sum on the right hand side using∑
x

P[τ1(x) = τ2(x)] =
∑
x

∑
t

P[τ1(x) = t]P[τ2(x) = t]

≤
∑
x

∑
t

P[τ1(x) = t]P[X2(t) = x] = 1.
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On the other hand, note

(5.8)
∑
x

(fc(x, x)− f c)2 =
∑
x

(1− 2f c + f
2
c).

By a union bound, we have f c = O(cΥn). Thus the diagonal term in (5.7)
and (5.8) differ by O(cTmix) = o(e−γcT 2

mix) (recall from Assumption 1.2 that
Tmix →∞ as n→∞). This takes care of (5.2).

We now turn to (5.4). The previous lemma implies∑
x 6=y 6=z

|Px,z[G12(y)]−Px,z[G21(y)]|

=
∑
x 6=y 6=z

|Px,z[G12(y), τ1(y) ≤ Γn]−Px,z[G21(y), τ2(y) ≤ Γn]|+O(|Vn|−50).

Observe {Gij(y), τi(y) ≤ Γn} ⊆ {τi(y)∧ τj(y) ≤ Γn} ∪ {τi(y) ≤ Γn < τj(y)}.
Thus we can bound from above the previous expression by∑

x 6=y 6=z

(
2Px,z[τ1(y) ∧ τ2(y) ≤ Γn] + |Px[τ1(y) ≤ Γn]−Pz[τ2(y) ≤ Γn]|

)
≡E1 + E2.

The term corresponding to E1 can be bounded in a similar manner as “A”
in the proof of Lemma 5.3. Indeed, by the independence of X1, X2, we have
that

Px,z[τ1(y) ∧ τ2(y) ≤ Γn] ≤ (g(x, y) + ∆n)(g(y, z) + ∆n)

which, when summed over x, y, z, is of order O((log |Vn|)2|Vn|T 2
mix). We can

estimate E2 using techniques similar to the proof of Lemma 5.2 since by
Lemma 3.3,

|Px[τ1(y) ≤ Γn]−Pz[τ2(y) ≤ Γn]| = O(g(x, y) + g(y, z) + δ2(x, y, z)),

where, as in the proof of Lemma 5.2, δ2(x, y, z) corresponds to the error
from Lemma 3.3. When summed over x, y, z, this is of order O(|Vn|2Tmix).
Therefore

(E1 + E2)

(
o

(
Tmix

|Vn|2 log |Vn|

)
+O

(
1

|Vn|2

))
= o(T 2

mix),

as desired.



PAINTING A GRAPH WITH COMPETING RANDOM WALKS 37

(a) Z3
100 (b) Z4

32 (c) Z20
2

Fig 3. Q-Q plots based on 20,000 simulations of the number of sites visited by X1 before X2

against an appropriately fitted normal distribution, supporting the conjecture of asymptotic
normality.

6. Further Questions.

1. The first step in proving a sequence of random variables (Xn) has a
Gaussian limit after appropriate normalization is the determination
of the asymptotic mean and variance. We remarked in the beginning
that, in our case, the expected number of sites colored blue is |Vn|/2
and Theorem 1.3 gives the limiting variance. Figure 3 shows Q-Q plots
of the empirical distribution of the number of sites painted 1 in the
final coloring against an appropriately fitted normal for three different
base graphs. Based on these plots, we conjecture that

|Ai| −E|Ai|√
Var(|Ai|)

has a normal limit for all graphs satisfying Assumption 1.2.
2. Our derivation of the variance ignores the time aspect of the problem

in the sense that it gives no indication of at what point in the process
of coverage the variance is “created.” Does it come in bursts or con-
tinuously? Does it come sooner than any multiple of the cover time
or perhaps in [εTcov, Tcov]? More generally, when normalized appro-
priately, does the the process t 7→

∑
x 1{τ1(x)<τ2(x)≤t} have a scaling

limit?
3. We make repeated used of the symmetry afforded by the fact that

we consider two random walks moving at the same speed on vertex
transitive graph. It would be interesting to see if a similar result holds
when the various degrees of symmetry are broken. Starting points
for exploring this problem include considering continuous time walks
moving at various speeds, multiple walks, and graphs which are not
vertex transitive.
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4. Theorem 1.1 only holds for tori of dimension d ≥ 3 as the case d = 2
falls just outside of the scope of Theorem 1.3. It would be interesting
to see a more refined analysis carried out to handle this case.

5. That the variance computed in Theorem 1.1 for d = 3, 4 is significantly
larger than in the iid case suggests that the clusters which have an
unusually large number of sites painted a given color are either larger
or more dense than in an iid marking. How large and frequent are such
clusters? What is their geometric structure?

6. Another interesting quantity is the size B of the boundary separating
the sites painted 1 and 2, as studied in [9]. It is not difficult to see that
there exists a constant βd > 0 such that E|B| ∼ βdn

d when d ≥ 3 as
n→∞. Indeed, this follows since the probability that {τ1(y) < τ2(y)}
for y ∼ x given {τ1(x) < τ2(x)} converges to a limit pd ∈ (0, 1). Note
that this is of the same order of magnitude as E|A1|. Is it also true that
Var(|B|) = Θ(Var(|A1|)) or do these quantities differ significantly?
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