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Abstract. We consider the family of two-sided initial conditions for TASEP which, as the left
and right densities (ρ

−
, ρ+) are varied, give rise to shock waves and rarefaction fans – the two

phenomena which are typical to TASEP. We provide a proof of Conjecture 7.1 of [23] which
characterizes the order of and scaling functions for the fluctuations of the height function of
two-sided TASEP in terms of the two densities ρ

−
, ρ+ and the speed y around which the height

is observed.
In proving this theorem for TASEP we also prove a fluctuation theorem for a class of corner

growth processes with external sources, or equivalently for the last passage time in a directed
last passage percolation model with two-sided boundary conditions: ρ

−
and 1− ρ+. We provide

a complete characterization of the order of and the scaling functions for the fluctuations of this
model’s last passage time L(N, M) as a function of three parameters: the two boundary/source
rates ρ

−
and 1 − ρ+, and the scaling ratio γ2 = M/N . The proof of this theorem draws on

the results of [15] and extensively on the work of [2] on finite rank perturbations of Wishart
ensembles in random matrix theory.

1. Introduction and Results

We study the fluctuations of the height function for the Totally Asymmetric Simple Exclusion
Process (TASEP) – a stochastic process of great interest due to its wide applicability and mathe-
matical accessibility. Under hydrodynamic scaling this height function is the integrated solution
to the deterministic Burgers equation [18]. This hydrodynamic limit is sensitive to the initial
conditions of TASEP. It is of great interest to determine how the initial conditions of TASEP
affect the random fluctuations of the height function. Ultimately one would like to have a dic-
tionary between initial conditions of TASEP and the resulting orders of the fluctuations of the
height function, along with the scaling functions and correlation structures. This paper serves
to lay some groundwork for understanding the phenomena which figure into this dictionary. The
two phenomena which must be considered in TASEP are shocks and rarefaction fans. We study
the simplest family of initial conditions which give rise to both of these phenomena. These ini-
tial conditions are simply Bernoulli independent at each site x, with density ρ− for x ≤ 0 and
ρ+ for x > 0. We study the fluctuations of the height function or equivalently the current for
these two-sided initial conditions. We solve an important conjecture of Prähofer-Spohn [23] (see
also [15]). Understanding the fluctuation theory for two-sided TASEP provides the logical link
between the well developed theory for equilibrium initial conditions (ρ− = ρ+) [11, 15] and step
initial conditions (ρ− = 1, ρ+ = 0) [17]. Two-sided TASEP interpolates between systems which
are in equilibrium and systems which are entirely out of equilibrium. Our analysis shows how
this interpolation occurs. The main result, Theorem 1.1, was first conjectured in [23] based on
a scaling theory and analogous results for the PNG model and discrete TASEP [3]. Figure 1
illustrates the main result of this paper – it shows how the order of and scaling functions for the
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fluctuations of the height function for TASEP depend on the observation location with respect
to shocks and rarefaction fans.

The proof of our main results makes use of the aforementioned result of [15] for the critical
point (equilibrium ρ− = ρ+ = ρ and y = 1 − 2ρ). For every other set of initial conditions
the proof relies on the main result of [2], a paper about the largest eigenvalue of finite rank
perturbations of Wishart (sample covariance) random matrix ensembles. The connection between
these two, seemingly disparate mathematical construction (TASEP and Wishart ensembles) is
due to [17] and is facilitated through an intermediate random process known as directed last
passage percolation (LPP). Our results about fluctuations of currents (or height functions) for
TASEP follow from equivalent results for fluctuations of the last passage time for a directed last
passage percolation model with two-sided boundary conditions (given in Theorem 1.3).

Returning to the model, TASEP is a Markov process ηt with state space ηt ∈ {0, 1}Z. For a
given t ∈ R+ (time) and x ∈ Z (site location), we say that site x is occupied at time t if ηt(x) = 1
and it is empty if ηt(x) = 0. Given an initial configuration η0 of particles, the TASEP evolves
in continuous time as follows: Each particle waits independent exponentially distributed times
and then attempts to jump one site to its right; if there already exists another particle in the
destination site, the particle does not move and its waiting time resets (see [18, 19] for a rigorous
construction of this process). In equilibrium (or stationary) initial conditions (parametrized by a
number ρ ∈ [0, 1]) the η0(x) are independent Bernoulli random variables with P (η0(x) = 1) = ρ.
In step initial conditions η0(x) = 1 for all x ≤ 0 and zero otherwise. Finally, in two-sided initial
conditions (parametrized by a left density ρ− and a right density ρ+) η0(x) are independent
Bernoulli random variables with P (η0(x) = 1) = ρ− for x ≤ 0 and P (η0(x) = 1) = ρ+ for x > 0.

A natural and important quantity to study in TASEP is the current of particles past an
observer moving with speed y. It is defined as Jyt,t = number of particles to the left of the origin
at time zero and to the right of yt at time t minus number of particles to the right of the origin
at time zero and to the left of yt at time t. The current encodes the same information as the
height function ht(j) (which we will define in equation (6)):

Jj,t =
ht(j) − j

2
. (1)

For equilibrium TASEP with density ρ, the law of large numbers and central limit theorem
[11] states that

lim
t→∞

Jyt,t

t
= (ρ(1 − ρ) − yρ) , almost surely , (2)

lim
t→∞

Jyt,t − E(Jyt,t)√
t

= N(0,DJ ), (3)

where N(0,DJ ) is a normal with variance

DJ = ρ(1 − ρ)|(1 − 2ρ) − y|. (4)

For every velocity aside from y = 1−2ρ, current (and height function) fluctuations are Gaussian
of order t1/2. However for a single critical velocity the central limit theorem of [11] is degenerate
as the fluctuations are of a lower order than t1/2. In terms of the hydrodynamic limit, this
velocity corresponds to the slope of the characteristic line for Burgers equation. Heuristically
this is the speed at which the initial condition fluctuations travel. Therefore, at any other speed,
the current will depend on more initial conditions than just that localized to the origin – it is
this that ensures the t1/2 fluctuations and Gaussian scaling function for other velocities. At the
critical speed, the initial environment’s fluctuations are of lesser order, and only the dynamic
fluctuations (those due to the actual TASEP process) are felt. These dynamic fluctuations are
of central importance to understanding KPZ universality. At the critical speed y = 1 − 2ρ the
fluctuations are of order t1/3 and converge, under suitable centering and scaling to a distribution
function related to the Tracy Widom GUE distribution [23, 15]. Rewriting expression (1.14) of
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Figure 1. Depiction of three types of TASEP (particles move right) time evolu-
tion and identification of different regions of fluctuations for corresponding height
functions. The top diagram depicts the phenomena of a rarefaction fan. The
height function fluctuations seen by an observer moving at a speed so as to be:
outside of the fan (outside the dashed lines) will be of order t1/2 and Gaussian
(denoted G1); inside of the fan (inside the dashed lines) will be of order t1/3 and
Tracy-Widom GUE, (denoted F0); on the edge of the fan (on the dashed lines) will
be of order t1/3 and Tracy-Widom GOE2, (denoted F1). Likewise, the middle dia-
gram depicts the phenomena of a moving shock. The height function fluctuations
seen by an observer moving at a speed so as to be: on the shock (on the dashed
line) will be of order t1/2 and “Gaussian squared”, (denoted (G1)2); away from
the shock (off the dashed line) will be of order t1/2 and Gaussian, (denoted G1).
The bottom diagram depicts equilibrium initial conditions. The height function
fluctuations seen by an observer moving: at the critical speed yc = 1 − 2ρ (on
the dashed line) will be of order t1/3, (denoted F1,1 and corresponding to what
[15] call F0); at all other speeds (off the dashed line) will be of order t1/2 and
Gaussian, (denoted G1).

[15] in terms of the current Jyt,t, with y = 1− 2ρ, their w = 0, and χ = ρ(1− ρ), the result shows
that

lim
t→∞

P

(

Jyt,t − ρ2t

χ2/3t1/3
≤ x

)

= F1,1(x; 0; 0), (5)

where F1,1(x; 0; 0) = ∂
∂x(F0(s)g(x, 0)). The g(x, 0) is a scaling function given in their equation

(1.18). See Section 1.2 for an overview of how our notation translates into the notation used in
[23, 15].



CURRENT FLUCTUATIONS FOR TASEP: A PROOF OF THE PRÄHOFER-SPOHN CONJECTURE 4

In TASEP started with step initial conditions there are no fluctuations in the initial envi-
ronment and consequently for every velocity y ∈ (−1, 1) the current has fluctuations from the
dynamics of order t1/3 and with scaling function which corresponds to the Tracy Widom GUE
distribution [17] (which we write as F0 so as to be in line with the notation of [2]). In terms of
the hydrodynamic limit, the range of speeds y ∈ (−1, 1) corresponds to the entire rarefaction fan,
and the fluctuations are entirely due to the dynamics of TASEP. Ranges of speed bounded away
from the fan correspond to regions which are, in the allotted time, unchanged by the dynamics
of TASEP.

Drawing on the heuristics about the fluctuations along flat and fanned regions in the hydro-
dynamic limit, as well as based on a scaling theory and previous work of [3] for the PNG model,
Prähofer and Spohn [23] conjectured that these two fluctuation theorems (for equilibrium and
step initial conditions) arise as cases of a complete fluctuation theory for two-sided TASEP (see
Figure 1). In their Conjecture 7.1, Prähofer and Spohn claimed that the critical point in [11]
of t1/3 fluctuations for equilibrium TASEP becomes a critical window (representing the region
of the rarefaction fan) as ρ− is increased and ρ+ decreased. Ultimately, as ρ− = 1 and ρ+ = 0
the critical window of velocities equals the interval (−1, 1) as showed in [17]. Likewise they
conjectured Gaussian behavior outside of this window, as well as in the case where ρ− < ρ+.

Previous to this paper, part of the Prähofer-Spohn conjecture had been proved via random
matrix techniques in both the papers of Nagao and Sasamoto [21] and Baik, Ben Arous and Péché
[2]. Both papers essentially dealt with the case of ρ+ = 0 and any ρ− ∈ [0, 1]. Our results are
dependent on coupling arguments which allow us to bootstrap these boundary cases into every
type of two-sided initial condition except for the critical equilibrium case (which is dealt with via
the result of [15]). The methods of [30, 26] prove the part of the conjecture corresponding to the
shock (ρ− < ρ+) by means of a microscopic Hopf-Lax-Oleinik formula. In these papers, the entire
one time fluctuation process is characterized in the case of the shock. The scaling conjectured for
the rarefaction fan was proved in [4] (in terms of the corresponding corner growth / LPP model
discussed below), though the scaling functions were not addressed therein.

Beyond giving a complete proof of the Prähofer-Spohn conjecture, we believe that our coupling
methods are very natural and provide a highly intuitive explanation for the transition between
Gaussian and Tracy-Widom scalings. These methods are also useful in studying last passage
percolation models with more general weights and more general boundary conditions. These
generalizations will be explored in a future paper [8]. In proving the Prähofer-Spohn conjecture
one may alternatively follow the approach of [15] which is necessary in the critical case ρ− =
ρ+ = ρ and y = 1 − 2ρ. That argument is very strong and widely applicable. It is based on the
idea of the Schur measure and involves a shift argument and a necessary analytic continuation
argument. Coupling completely avoids these techinical issues and replaces the complex analysis
and asymptotic analysis with simple and intuitive probability. It also seems to be applicable in
certain cases where the Schur measure argument can not be applied.

Much effort has been devoted to understanding the analogous picture for ASEP, where particles
may move to either the left of the right but are still subject to the exclusion rule. Progress in
this direction was made in [14, 10, 11, 12, 13] in the early 1990s. The work of Baik and Rains
[3], Prähofer and Spohn [24], and Imamura and Sasamoto [16] in the context of the closely
related PNG model and last passage percolation with geometric weights was very important in
formulating and understanding the theory of fluctuations. Very recently, due to the efforts of
Tracy and Widom [34, 33, 31, 32, 35]), Derrida and Gerschenfeld [9], Balázs and Seppäläinen
[6, 5], Quastel and Valkó [25], Mountford and Guiol [20] significant progress has been made in
answering this question in the general ASEP. In particular, in [35], Tracy and Widom extend
their step initial condition integrable system approach to ASEP with one-sided Bernoulli initial
conditions. In that case they observe the exact same fluctuation regimes as for TASEP. At
present the Prähofer-Spohn conjecture has not been proved for ASEP. It is tempting to try to
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use coupling methods to extend the one-sided picture for ASEP to the two-sided initial condition
case. It is not clear if this is possible, as ASEP is not related to a last passage percolation model
and the coupling occurs at the level of such a model.

1.1. Results. The main result of this paper is a complete proof of [23] Conjecture 7.1 – our
Theorem 1.1.

Following [23], assign to a TASEP configuration ηt(j) the height function

ht(j) =











2J0,t +
∑j

i=1(1 − 2ηt(i)), j ≥ 1,

2J0,t, j = 0,

2J0,t −
∑0

i=j+1(1 − 2ηt(i)), j ≤ −1,

. (6)

Recall that J0,t is defined as the number of particles which have crossed the bond (0, 1) up to
time t. For |y| < 1 denote

lim
t→∞

1

t
ht([yt]) = h̄(y), (7)

which exists almost surely due to the law of large numbers established via the hydrodynamic
theory [27, 29]. This limit h̄ depends not just on y, but also on ρ− and ρ+ as follows:

If ρ− < ρ+, then

h̄(y) =

{

(1 − 2ρ−)y + 2ρ−(1 − ρ−) for y ≤ yc,

(1 − 2ρ+)y + 2ρ+(1 − ρ+) for y > yc,
(8)

with yc = (ρ+(1 − ρ+) − ρ−(1 − ρ−))/(ρ+ − ρ−) = 1 − (ρ− + ρ+).
If ρ− > ρ+, then

h̄(y) =











(1 − 2ρ−)y + 2ρ−(1 − ρ−) for y ≤ 1 − 2ρ−,
1
2 (y2 + 1) for 1 − 2ρ− < y ≤ 1 − 2ρ+,

(1 − 2ρ+)y + 2ρ+(1 − ρ+) for 1 − 2ρ+ < y.

(9)

We prove the following (note that in parenthesis we record the distribution names as used in
[23]). For an illustration of the results below see Figure 1.

Theorem 1.1 ([23] Conjecture 7.1). (FG) Let either ρ− < ρ+, y > yc, and y < 1 − ρ+, or
ρ− > ρ+, y > 1 − 2ρ+, and y < 1 − ρ+. Then

lim
t→∞

Pρ
−

,ρ+

(

th̄(y) − ht([yt]) ≤ (4ρ+(1 − ρ+)(y − 1 + 2ρ+)t)1/2x
)

= G1(x). (10)

Let either ρ− < ρ+, y < yc, and −ρ− < y, or ρ− > ρ+, y < 1 − 2ρ−, and −ρ− < y. Then

lim
t→∞

Pρ
−

,ρ+

(

th̄(y) − ht([yt]) ≤ (4ρ−(1 − ρ−)(−y + 1 − 2ρ−)t)1/2x
)

= G1(x). (11)

(F 2
G) Let ρ− < ρ+ and y = yc, then

lim
t→∞

Pρ
−

,ρ+

(

th̄(y) − ht([yt]) ≤ ((ρ+ − ρ−)t)1/2x
)

= G1((4ρ+(1−ρ+))−1/2x)G1((4ρ−(1−ρ−))−1/2x).

(12)
(FGUE) Let ρ− > ρ+ and 1 − 2ρ− < y < 1 − 2ρ+. Then

lim
t→∞

Pρ
−

,ρ+

(

th̄(y) − ht([yt]) ≤ 2−1/3(1 − y2)2/3t1/3x
)

= F0(x). (13)

(F 2
GOE) Let ρ− > ρ+ and either y = 1 − 2ρ− or y = 1 − 2ρ+. Then

lim
t→∞

Pρ
−

,ρ+

(

th̄(y) − ht([yt]) ≤ 2−1/3(1 − y2)2/3t1/3x
)

= F1(x; 0). (14)

(F0) Let ρ− = ρ = ρ+ and y = 1 − 2ρ. Then

lim
t→∞

Pρ
−

,ρ+

(

th̄(y) − ht([yt]) ≤ 2−1/3(1 − y2)2/3t1/3x
)

= F1,1(x; 0; 0). (15)
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Remark 1.2. There is one difference between what we prove in Theorem 1.1 and what is stated
in Conjecture 7.1 of [23] which is that for the case of the Gaussian scaling limit, by virtue of the
fact that our proof goes by way of a mapping with directed last passage percolation, there are
certain parts of the Gaussian region (with respect to y, ρ−, ρ+) for which our methods do not
apply.

In this model random weights wi,j are associated to each site (i, j) in the upper-right corner of
Z2 (with i ≥ 0 and j ≥ 0). The weights are usually independent, and often exponential random
variables, or geometric random variables. Every directed (up/right only) path π from (0, 0) to
(N,M) then has weight T (π) =

∑

(i,j)∈π wi,j , the sum of all weights along the path. The last
passage time from (0, 0) to (N,M) is the maximum path weight over all directed paths:

L(N,M) = max
π:(0,0)→(N,M)

T (π), (16)

The statistics of L(N,M) are dependent on the choice of distribution for the random weights,
and in certain cases related to eigenvalue statistics for random matrices.

The current fluctuations for TASEP with step initial conditions were determined by identifying
the height function with a corner growth model whose growth times correspond with the last
passage times for a specific LPP model with independent rate one exponential random weights
wi,j for i, j > 0 and boundary weights wi,j = 0, for i = 0 or j = 0 [17]. Theorem 1.6 of [17] shows
that as M,N → ∞ such that M/N is in a compact subset of (0,∞), L(N,M) (as defined by the
above weights) is approximated in distribution by

(
√

M +
√

N)2 +
(
√

M +
√

N)4/3

(MN)1/6
χ0, (17)

where χ0 is distributed as a Tracy Widom GUE distribution. The first term gives the asymptotic
average for L(N,M) and the second term shows that the fluctuations scale like M1/3 and have a
well understood scaling function. Via the height functions mapping, these results translate back
into the current fluctuations for TASEP with step initial conditions. The corner growth model
height function is exactly the random interface bounding the growth region.

This theorem was proved by using the tools of generalized permutations, the RSK correspon-
dence and Young Tableaux, to relate the distribution of the last passage time to the distribution
of the largest eigenvalue of a Wishart ensemble, whose statistics are known to follow the Tracy
Widom GUE distribution [17].

By analogy our method of proof is to first relate two-sided TASEP to a LPP model, which we
appropriately call LPP with two-sided boundary conditions (see equation (18) for a definition),
and then to relate the statistics of the last passage time for that model to the statistics of
eigenvalues of already studied random matrices. The first mapping is already found in [23] and
relies on Burke’s Theorem (we review this mapping in Section 3). LPP with two-sided boundary
conditions is not directly connected to a random matrix ensemble, however we can realize its
last passage time as the maximum of last passage time for a pair of coupled LPP with one-sided
boundary conditions (see (26) for a definition). The last passage time in such one-sided LPP
models is related (see Section 6 of [2]) to the largest eigenvalue of Wishart matrices with finite
rank perturbations. In fact, the phase transitions, with respect to the magnitude of the finite
perturbation, which are discussed in [2] correspond exactly to the transitions between different
orders of and scaling functions for the height function of two-sided TASEP. By a set of coupling
arguments, and using the results of [2] and [15] we provide a proof of Theorem 1.1. In proving
Theorem 1.1 we reprove the fluctuation results for step initial conditions as well as for equilibrium
initial conditions (except at the critical point). We also show that these two results arise from a
much more complete picture (see Figure 1 for an illustration of this).
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As noted above, the proof of this theorem relies on understanding the fluctuations of the last
passage time in a LPP model with two-sided boundary conditions. The specific LPP with two-
sided boundary conditions which we will devote much of this paper to studying has three different
types of independent exponential weights wi,j:

wi,j =



















exponential of rate π if i > 0, j = 0;

exponential of rate η if i = 0, j > 0;

exponential of rate 1 if i > 0, j > 0;

zero if i = 0, j = 0.

(18)

In the later part of Section 2 we will allow for more general boundary condition where a finite
number of columns and rows can have different (though uniform within the column or row) rates.
The LPP with one-sided boundary conditions is defined similarly using the weights in equation
(26). At this point it is worth remarking that changing the distribution of a finite number of
weights does not have any affect on the asymptotic fluctuations of the last passage time (see
Lemma 3.1).

The statistics considered in this paper are the last passage times L2(N,M) (we use a subscript
2 to denote two-sided), from (0, 0) to (N,M), as N and M go to infinity together such that
M/N = γ2. Note that N denotes the number of columns and M the number of rows. Such
statistics can be parametrized in terms of the two boundary condition rates π and η, as well as
the scaling parameter γ. It is worth keeping in mind that the boundary rates π and η correspond
with the TASEP densities ρ− and 1− ρ+, and the scaling parameter γ corresponds (in a slightly
more complicated way) with the TASEP velocity y.

With this connection in mind, we completely characterize both the order and the scaling
functions for the fluctuations of the last passage time of LPP with two-sided boundary conditions
in terms of the three parameters π, η, and γ. As noted before the main result we appeal to in
this paper is from [2] (extended to the case γ < 1 in [22]) which classifies the fluctuations of the
largest eigenvalue of complex Wishart ensembles with finite rank perturbations. There is a single
critical point which does not yield to our method of argument, but this corresponds exactly with
the critical point considered in [15]. Using these two results and coupling arguments we prove
our LPP with two-sided boundary conditions classification theorem:

Theorem 1.3.

(1) For γ ∈ (0,∞), and M/N → γ2, then for π, η such that π > 1
1+γ and η > γ

1+γ (the GUE

region)

P (L2(N,M) ≤ (1 + γ−1)2M +
(1 + γ)4/3

γ
M1/3x) → F0(x), (19)

where F0(x) is the Tracy Widom GUE distribution function.
(2) For γ ∈ (0,∞), and M/N → γ2, then for π, η such that π > 1

1+γ and η = γ
1+γ or π = 1

1+γ

and η > γ
1+γ (the GOE2 region),

P (L2(N,M) ≤ (1 + γ−1)2M +
(1 + γ)4/3

γ
M1/3x) → F1(x), (20)

where F1(x) is the square of the Tracy Widom GOE distribution function.
(3) For γ ∈ (0,∞), and M/N → γ2, then for π = 1/(1 + γ) and η = γ/(1 + γ),

P (L2(N,M) ≤ (1 + γ−1)2M +
(1 + γ)4/3

γ
M1/3x) → F1,1(x; 0; 0), (21)

where F1,1(x; 0; 0) is the same distribution as what [15] refer to as F0(x).
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Figure 2. Fluctuation diagram for γ = 1. Note that all G1 and (G1)2 regions
have M1/2 order fluctuations while all other regions have M1/3 order fluctuations.

(4) For γ ∈ (0,∞), and M/N → γ2, then for π, η such that π < 1/(1 + γ) and η >
π

π(1−γ−2)+γ−2 (the G (π controlled) region),

P

(

L2(N,M) ≤
(

π−1 +
π−1γ2

π−1 − 1

)

N +

(

π−2 −
π−2γ2

(π−1 − 1)2

)1/2

N1/2x

)

→ G1(x), (22)

where G1(x) = erf(x).
Likewise for π, η such that η < γ/(1 + γ) and η < π

π(1−γ−2)+γ−2 (the G (η controlled)

region),

P

(

L2(N,M) ≤
(

η−1 +
η−1γ−2

η−1 − 1

)

M +

(

η−2 −
η−2γ−2

(η−1 − 1)2

)1/2

M1/2x

)

→ G1(x), (23)

where G1(x) = erf(x)
(5) For γ ∈ (0,∞), and M/N → γ2, then for π, η such that π + η < 1 and η = π

π(1−γ−2)+γ−2

(the G2 line),

P

(

L2(N,M) ≤
(

π−1 +
π−1γ2

π−1 − 1

)

N +

(

(1 − π + πγ2)((1 − π)2 − π2γ2)

γ2π2(1 − π)2

)1/2

N1/2x

)

(24)

→ G1(x
γ

√

1 − π + γ2π
)G1(x

√

1 − π + γ2π

γ
). (25)

It is worth noting that there are many ways to write the expressions above, and our choices
are to facilitate the greatest ease in our proofs.
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Figure 3. Fluctuation diagram for γ = 2. Compared with Figure 1.1, the effect
of changing γ is that the region of M1/3 fluctuations has shifted up and to the left
along the anti-diagonal.

This type of fluctuation classification picture has been previously discussed in [28] and [3]. In
fact, in [3] Baik and Rains provide a proof of an analogous fluctuation classification result for two
closely related particle system models: LPP with geometric weights, and the polynuclear growth
model. Recently [7] studied two-speed (different though related to two-sided initial conditions,
half flat and half Bernoulli) TASEP and proved a fluctuation classification theorem for that
model. As noted before, [4] previously provided the order of fluctuations for LPP models with
two-sided boundary condition corresponding to the rarefaction fan. With an even more general
type of boundary condition, the paper establishes t1/3 scaling for the fluctuations of the last
passage time.

1.2. Notation. In a paper such as this which connects two different lines of thought, it is easy
to become lost in the disparity between notations. We will adopt notation in the style of [2]
throughout, and when making connections with distributions as found in papers such as [23],
[15], [3], we will take care to make note of the alternative notation used in those contexts. In this
Section we define all of the distributions which we will encounter herein and provide references
for their previous use and definition.

(1) Gk(x) is a family of distributions defined in [2] Definition 1.2 and Lemma 1.1. It represents
the distribution of the largest eigenvalue of a k × k GUE. From this representation it is
clear that G1(x) = erf(x), the standard Gaussian distribution function.

(2) FJ (x;x1, . . . , xJ ) is a family of distributions defined in [2] Definition 1.3. In the case
when the xj = 0 for all j, these distributions coincide with those from [2] Definition 1.1.
Of note is F0(x) which is often written as FGUE, the GUE Tracy Widom distribution
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Figure 4. Fluctuation diagram for γ = .5. Compared with Figure 1.1, the effect
of changing γ is that the region of M1/3 fluctuations has shifted down and to the
right along the anti-diagonal.

function, and F1(x; 0) which is often written as FGOE(x)2, where FGOE is the GOE Tracy
Widom distribution function.

(3) FJ,I(x;x1, . . . , xJ ; y1, . . . , yI) is a family of distributions which we conjecture come up
in LPP with thick two-sided boundary conditions. The only member of this family for
which we know the correct definition is F1,1(x; 0; 0) which corresponds to the distribution
denoted by F0 in [15]. As of yet, we do not know how the other distributions should be
defined.

1.3. Outline. The main theorems (Theorem 1.1 and Theorem 1.3) have already been recorded
above in this section. Section 2 provides an intuitive sketch of the proof for Theorem 1.3. Section
3 explains the connection between the LPP with two-sided boundary conditions and the TASEP
with two-sided initial conditions as well as briefly sketches how to translate the result of Theorem
1.3 into a proof of Theorem 1.1. Section 4 gives the full proof of the two main theorems, complete
with the necessary technical lemmas for the coupling arguments.

1.4. Acknowledgments. This paper came out of discussions at the Courant ASEP seminar.
The authors would like to thank Percy Deift for jointly organizing this seminar with them, as well
as thank all of the participants. The authors appreciate helpful discussion of this material with
Antonio Auffinger. The authors are grateful to Tomohiro Sasamoto for catching an important
calculation error in an early reading of this paper, and to Timo Seppäläinen for orienting them
to what has been previously proved. G. Ben Arous was partially supported by NSF grant
DMS-0806180 and I. Corwin was partially supported by the NSF Graduate Research Fellowship
Program.
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2. Fluctuations in Last Passage Percolation with Boundary Conditions

We start this section by reviewing the result of [2] which relates directed last passage percola-
tion with boundary conditions to finite rank perturbations of Wishart ensembles. We then apply
these results to prove Theorem 1.3 which fully characterizes the fluctuations of last passage times
in terms of boundary conditions and the ratio M/N = γ2. Using coupling arguments, supple-
mented in one case by the result of [15] we provide both the order and the scaling function for
these fluctuations. Using the exact same arguments but fully taking advantage of the scope of
the results of [2], we prove almost all of the cases in Partial Theorem 2.1. In this section we will
only sketch our proofs, which can be found in entirety in Section 4.

2.1. LPP with one-sided boundary conditions. Consider a directed last passage percolation
model with one-sided boundary conditions defined as follows:

wi,j =











exponential of rate η if i = 0, j > 0

exponential of rate 1 if i > 0, j > 0

zero if i ≥ 0, j = 0.

(26)

Let L1(N,M) denote the last passage time from (0, 0) to (N,M) (for this LPP model with
one-sided boundary conditions, but also for any LPP model with thick one-sided boundary con-
ditions). Then the distribution of L1(N,M) is related to the distribution of the largest eigenvalue
of the normalized covariance matrix 1

M XX ′ where X is N ×M and each column is drawn (inde-
pendent of other columns) from a complex N -dimensional Gaussian distribution with covariance
matrix Σ. The matrix Σ has eigenvalues all equal to one aside from a single one, which is l1 = η−1.
Depending on the value of η−1, L1(N,M) behaves differently.

The following theorem is adapted from Theorem 1.1 of [2] and the extension to all γ ∈ (0,∞)
given in [22], as applied to the one-sided boundary condition LPP. The connection between the
largest eigenvalue and the LPP with one-sided boundary conditions given above is explained in
Section 6 of [2] and is briefly rehashed in Remark 2.2.

Proposition 2.1. With L1(N,M) defined as above, as M,N → ∞ while M/N = γ2 is in a
compact subset of (0,∞), the following hold for any real x in a compact set.

(1) When η > γ
1+γ ,

P

(

L1(N,M) ≤ (1 + γ−1)2M +
(1 + γ)4/3

γ
M1/3x

)

→ F0(x); (27)

(2) When η = γ
1+γ ,

P

(

L1(N,M) ≤ (1 + γ−1)2M +
(1 + γ)4/3

γ
M1/3x

)

→ F1(x); (28)

(3) When η < γ
1+γ ,

P

(

L1(N,M) ≤
(

η−1 +
η−1γ−2

η−1 − 1

)

M +

(

η−2 −
η−2γ−2

(η−1 − 1)2

)1/2

M1/2x

)

→ G1(x). (29)

Remark 2.2. The connection between last passage time in LPP with one-sided boundary con-
ditions and the largest eigenvalue of the spiked Wishart ensemble was observed in [2]. The
connection is not via an exact map but rather an equality of distributions. Proposition 6.1 of [2]
records this fact and explains how a modification of the argument in [17] can be used to prove
this.
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An intuitive explanation for the cutoff of η−1 = 1 + γ−1 in terms of a simple calculus problem
of maximizing the law of large numbers for LPP paths forced to travel a specific fraction of the
way along the left column can be found in Section 6 of [2].

2.2. LPP with two-sided boundary conditions. Presently we turn our attention to the LPP
with two-sided boundary conditions as defined in equation (18): On the left-most column there
are exponential weights of rate η, on the bottom-most row there are exponential weights of rate
π at the origin there is a weight of zero, and for all strictly positive lattice points the weight is of
rate one. Define respectively X(N,M) and Y (N,M) as the coupled last passage times of paths
which have taken the first step to the right and the first step up (respectively). One should be
careful to note that we are not conditioning on the location of the optimal path, but rather, for
each configuration of weights, defining X to be the length of the optimal path which first goes
right, and Y the length of the optimal path which first goes up. It is clear then that X and Y
are coupled, dependent and that

L2(N,M) = max (X(N,M), Y (N,M)) . (30)

Consider now the marginals of X and Y and observe that each of these marginals is of the type
of the last passage time for a LPP model with one-sided boundary conditions. The boundary
conditions for Y are exactly as above (η weights and an N by M region). However, for X, the
boundary conditions are π weights and an M by N region (note that the region has been flipped
in order to conform with the setup for Proposition 2.1). From this observation we can apply
Proposition 2.1 to completely characterize the marginals of the joint distribution for the pair
(X,Y ). Note that while X and Y are not exactly of the form of a last passage time for a LPP
with one-sided boundary conditions, they only differ by a finite number of weights and therefore
have the exact same asymptotic statistics via Lemma 3.1.

Proposition 2.3. With X(N,M) defined as above, as M,N → ∞ while M/N = γ2 is in a
compact subset of (0,∞), the following hold for any real x in a compact set.

(1) When π > 1
1+γ ,

P

(

X(N,M) ≤ (1 + γ)2N +
(1 + γ−1)4/3

γ−1
N1/3x

)

→ F0(x); (31)

(2) When π = 1
1+γ ,

P

(

X(N,M) ≤ (1 + γ)2N +
(1 + γ−1)4/3

γ−1
N1/3x

)

→ F1(x); (32)

(3) When π < 1
1+γ ,

P

(

X(N,M) ≤
(

π−1 +
π−1γ2

π−1 − 1

)

N +

(

π−2 −
π−2γ2

(π−1 − 1)2

)1/2

N1/2x

)

→ G1(x). (33)

Proposition 2.4. With Y (N,M) defined as above, as M,N → ∞ while M/N = γ2 is in a
compact subset of (0,∞), the following hold for any real x in a compact set.

(1) When η > γ
1+γ ,

P

(

Y (N,M) ≤ (1 + γ−1)2M +
(1 + γ)4/3

γ
M1/3x

)

→ F0(x); (34)
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(2) When η = γ
1+γ ,

P

(

Y (N,M) ≤ (1 + γ−1)2M +
(1 + γ)4/3

γ
M1/3x

)

→ F1(x); (35)

(3) When η < γ
1+γ ,

P

(

Y (N,M) ≤
(

η−1 +
η−1γ−2

η−1 − 1

)

M +

(

η−2 −
η−2γ−2

(η−1 − 1)2

)1/2

M1/2x

)

→ G1(x); (36)

We assume that both η and π are between zero and one. In fact, it is clear from our proofs
that the order and fluctuation of our two-sided last passage time L2(N,M) for parameters η and
π is that same as that for parameters η ∧ 1, π ∧ 1. Thus it suffices to consider only η, π ∈ [0, 1]2.

For each of X and Y there are two regions of different fluctuation orders, and one critical
point which has 1/3 order fluctuations. We call the point (π, η) = (1/(1 + γ), γ/(1 + γ)) the
critical point for the pair π, η. If π < 1

1+γ then the X fluctuations are of order 1/2, and likewise

if η < γ
1+γ then the Y fluctuations are of order 1/2, whereas in the complementary cases, the

fluctuations are of order 1/3. By comparing leading (law of large number) terms in Propositions
2.3 and 2.4 we see that if either of these two inequalities hold, then the fluctuations must be of
order 1/2. In this case, either the leading term for X or Y clearly wins, in which case L2(N,M)
has the leading order behavior and Gaussian fluctuations of the winner random variable, or the
two random variables have the same leading terms. The second case, or equal leading terms,
occurs when

(

π−1 +
π−1γ2

π−1 − 1

)

N =

(

η−1 +
η−1γ−2

η−1 − 1

)

M. (37)

In this case the fluctuations will remain of order 1/2, but will behave as the fluctuations of two
independent normal random variables (what we call G2).

If γ = 1 there are two solutions to equation (37). One is η = π and the other is η = 1 − π.
Since we are only considering the Gaussian region, the anti-diagonal solution is of no interest,
and we find that we have G2 density for our fluctuations if η = π and η < 1/2.

For γ *= 1, the solution set is a little harder. Recall M = γ2N and using this we can factor
out N from both sides giving

(

π−1 +
π−1γ2

π−1 − 1

)

=

(

γ2η−1 +
η−1

η−1 − 1

)

. (38)

Applying the change of variable π → 1 − π we find that it suffices to solve

(

γ2π−1 +
π−1

π−1 − 1

)

=

(

γ2η−1 +
η−1

η−1 − 1

)

, (39)

and change the solution back to our original variables.
This again has the solution η = π. Solving for the other solution and then changing variables

back we get

η =
π

π(1 − γ−2) + γ−2
. (40)

By plugging in the critical point (1/(1 + γ), γ/(1 + γ)) it is easy to see that this G2 curve is
continuous between the origin and the critical point, though only linear for γ = 1.

We have, so far, only accounted for the regions where π < 1
1+γ or η < γ

1+γ . There are four other
regions to consider which correspond to replacing the or with an and, and the less than sign with
either equality, or a greater than sign. In each of these cases the leading term is independent
of π and η and equals (1 + γ−1)2M . The fluctuations of X and Y are both or order 1/3, so
those of L2(N,M) are as well. To determine the scaling functions finer coupling arguments are
necessary. For instance when π > 1

1+γ and η > γ
1+γ , the last passage path for X and for Y can
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be compared to the analogous random variables X̃ and Ỹ , for last passage paths for a coupled
LPP model with two-sided boundary conditions all of rate one (i.e. π, η = 1) such that pointwise
X ≥ X̃ and likewise Y ≤ Ỹ . The maximum of X̃ and Ỹ equals L̃(N,M), the last passage time,
and we show that X and X̃, and likewise for Y and Ỹ , under appropriate centering and scaling
converge to the same distribution respectively. This implies, via our Lemma 4.2 that the scaled
and centered random variables in fact converge in probability and hence that their maximums
converge in probability. This means that the maximum of X and Y behaves just like a regular
last passage time which is known to have GUE scaling function. A similar coupling shows that
the scaling when either π = 1

1+γ and η > γ
1+γ , or π > 1

1+γ and η = γ
1+γ the scaling function

behaves like that of a single critical last passage time for a LPP model with one-sided boundary
conditions.

Determining the scaling function at the critical point is a harder problem. One may identify it
as the maximum of two F1 distributions, coupled as X and Y are coupled. This characterization,
a priori, yields a tight family of random variables. However, how to prove that it converges on
more than just a subsequence is not immediately clear, and more over it is not clear to what it
convergences. A posteroi, this characterization is justified since the result of [15] can readily be
translated into a proof that the scaling function at the critical point is F1,1(x; 0; 0) (what they
call F0).

The results from [2] used in the proof of Theorem 1.3 yield, in fact, a much more general result
via essentially the same argument. We now define what we call the LPP model with thick two-
sided boundary conditions in terms of boundary row and column thickness integer parameters
J, I ≥ 0; two vectors of row and column weight rates π = (π1, . . . , πJ), η = (η1, . . . , ηI); two
vectors of row and column convergence rates X = (x1, . . . , xJ), Y = (y1, . . . , yI). With these
parameters our model is defined in terms of the following LPP weights (which implicitly depend
on M and N):

wi,j =



















exponential of rate πj + xj

M1/3 if i > I, j ≤ J ;

exponential of rate ηi + yi

M1/3 if i ≤ I, j > J ;

exponential of rate 1 if i > I, j > J ;

zero if i ≤ I, j ≤ J.

(41)

To see that this model is a broad generalization of our previously considered two-sided bound-
ary condition model, take J, I = 1, π1 = π, η1 = η and x1, y1 = 0. Corresponding to this
model we now provide a complete characterization of its asymptotic fluctuations. A number of
distributions not previously discussed are introduced in this theorem. A full discussion of these
distributions can be found in Section 1.2.

The coupling arguments given to prove Theorem 1.3 can be easily adopted to this new setting.
Given the above parameters define, again, two coupled random variables X(N,M) and Y (N,M)
as follows. X(N,M) is the last passage time from (0, 0) to (N,M) of the set of up/right paths
which cross through at least one vertex from the set {(i, j) : i = I, j ∈ {0, . . . , J − 1}}. Likewise
Y (N,M) is the last passage time from (0, 0) to (N,M) of the set of up/right paths which cross
through at least one vertex from the set {(i, j) : i =∈ {0, . . . , I−1}, j = J}. Clearly any up/right
path from (0, 0) to (N,M) must go through one and only one of these two regions. Furthermore,
by virtue of the definition of the last passage time, the maximizing path for X(N,M) and
Y (N,M) will necessarily go through the points (0, J) and (I, 0) (respectively). Thus we may
refine our definitions of X(N,M) and Y (N,M) to require passing through these two points.
Again we see that L2(N,M) = max(X(N,M), Y (N,M)) and just as before [2] provides an
immediate proof of the following:

Proposition 2.5. For the vector π fix the set K1 ⊂ {1, . . . , J} by

K1 = {j ∈ {1, . . . , J} : πj =
1

1 + γ
}, (42)
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an define XK1
as the elements of X which correspond to indices in K1. Further, define π̃ =

minj∈{1,...,J}(πj) and let k1 be the number of πj which attain the value π̃.
Then with X(N,M) defined as above, as M,N → ∞ while M/N − γ2 is in a compact subset

of (0,∞), the following holds for any real x in a compact set.

(1) When π̃ > 1
1+γ ,

P

(

X(N,M) ≤ (1 + γ)2N +
(1 + γ−1)4/3

γ−1
N1/3x

)

→ F0(x); (43)

(2) When π̃ = 1
1+γ ,

P

(

X(N,M) ≤ (1 + γ)2N +
(1 + γ−1)4/3

γ−1
N1/3x

)

→ F|K1|(x;XK1
); (44)

(3) When π̃ < 1
1+γ ,

P

(

X(N,M) ≤
(

π̃−1 +
π̃−1γ2

π̃−1 − 1

)

N +

(

π̃−2 −
π̃−2γ2

(π̃−1 − 1)2

)1/2

N1/2x

)

→ Gk1
(x). (45)

A similar proposition exists for Y (N,M). Using these two results the same types of coupling
arguments then apply and give both the orders and the scaling functions for L2(N,M). As
before, these coupling arguments break down when both boundary conditions are critical. With
single width boundary conditions, we appealed to [15], however in this case no existing argument
provides a characterization of the behavior in this case. The following partial theorem therefore
contains a single conjectured equation (51) whose study seems very difficult.

Partial Theorem 2.1.

(1) For vectors π, η fix the sets K1 ⊂ {1, . . . , J} and K2 ⊂ {1, . . . , I} by

K1 = {j ∈ {1, . . . , J} : πj =
1

1 + γ
} (46)

K2 = {i ∈ {1, . . . , I} : ηi =
γ

1 + γ
}. (47)

Then define XK1
and YK2

as the elements of X and Y which correspond to indices in K1

and K2 respectively.
For γ ∈ (0,∞), and M/N → γ2, then for vectors π, η such that πj ≥ 1

1+γ for all

i ∈ {1, . . . , J} and ηi ≥ γ
1+γ for all i ∈ {1, . . . , I} then if:

(a) |K1| = 0, |K2| = 0,

P (L2(N,M) ≤ (1 + γ−1)2M +
(1 + γ)4/3

γ
M1/3x) → F0(x); (48)

(b) |K1| > 0, |K2| = 0,

P (L2(N,M) ≤ (1 + γ−1)2M +
(1 + γ)4/3

γ
M1/3x) → F|K1|(x;XK1

); (49)

(c) |K1| = 0, |K2| > 0,

P (L2(N,M) ≤ (1 + γ−1)2M +
(1 + γ)4/3

γ
M1/3x) → F|K2|(x;YK2

); (50)
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(d) |K1| > 0, |K2| > 0,

P (L2(N,M) ≤ (1 + γ−1)2M +
(1 + γ)4/3

γ
M1/3x) → F|K1|,|K2|(x;XK1

, YK1
); (51)

(2) Define π̃ = minj∈{1,...,J}(πj), and η̃ = mini∈{1,...,I}(ηi), and let k1 be the number of πj

which attain the value π̃ and likewise k2 be the number of ηi which attain the value η̃.
For γ ∈ (0,∞), and M/N → γ2, then for π, η such that:

(a) π̃ < 1/(1 + γ) and η̃ > π̃
π̃(1−γ−2)+γ−2 (the G (π controlled) region),

P

(

L2(N,M) ≤
(

π̃−1 +
π̃−1γ2

π̃−1 − 1

)

N +

(

π̃−2 −
π̃−2γ2

(π̃−1 − 1)2

)1/2

N1/2x

)

→ Gk1
(x); (52)

(b) η̃ < γ/(1 + γ) and η̃ < π̃
π̃(1−γ−2)+γ−2 (the G (η̃ controlled) region),

P

(

L2(N,M) ≤
(

η̃−1 +
η̃−1γ−2

η̃−1 − 1

)

M +

(

η̃−2 −
η̃−2γ−2

(η̃−1 − 1)2

)1/2

M1/2x

)

→ Gk2
(x); (53)

(c) π̃ + η̃ < 1 and η̃ = π̃
π̃(1−γ−2)+γ−2 (the G2 line),

P

(

L2(N,M) ≤
(

π̃−1 +
π̃−1γ2

π̃−1 − 1

)

N +

(

(1 − π̃ + π̃γ2)((1 − π̃)2 − π̃2γ2)

γ2π̃2(1 − π̃)2

)1/2

N1/2x

)

(54)

→ Gk1
(x

γ
√

1 − π̃ + γ2π̃
)Gk2

(x

√

1 − π̃ + γ2π̃

γ
). (55)

Finally let us note two applications of LPP with thick one-sided boundary conditions which
can be found in [1]. The first application deals with what Baik called traffic of slow start from
stop in which particles start in the step initial condition of TASEP and have a start-up profile –
that is, every particle moves slower for its first few jumps, and then returns to jumping at rate
one. The second application is dual to the first one and is called traffic with a few slow cars in
which particles always move at a slower rate. In both cases Baik identifies the fluctuation scaling
limits by using the [2] type results which we have made use of herein.

In the next section we will give an important application for the LPP with two-sided bound-
ary conditions model to two-sided TASEP. It is unclear whether the thick two-sided boundary
conditions model has any similar application to TASEP or related models.

3. Mapping TASEP to Last Passage Percolation with Boundary Conditions

In this section we explain the connections between the last passage time in LPP with two-sided
boundary conditions and the fluctuations of the height function for the two-sided TASEP model.
Making use of this mapping we explain how the results of Theorem 1.3 imply the results of [11]
stated in the introduction. Furthermore we briefly explain how this theorem translates into a
proof of Conjecture 7.1 of [23] (full proof is given in Section 4).

We start with a lemma which states that finite perturbations of our LPP model, have no affect
on the asymptotic behavior of the last passage time.

Lemma 3.1. Fix some LPP model with weights wi,j (independent but not necessarily identically
distributed) such that

P

(

L(N,M) − aN

bN
≤ x

)

→ F (x) (56)

for M/N → γ2 ∈ (0,∞), and for F a non-degenerate probability distribution. Randomly,
independent of the values of wi,j , change a set of these weights to a new set of weights w′

i,j
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and let L′(N,M) denote the last passage time with respect to the original weight with the newly
updated weights. Call A the set of changed indices (i, j) and WA =

∑

(i,j)∈A wi,j + w′
i,j. Then if

E[WA] < ∞ and if bN → ∞, we also have

P

(

L′(N,M) − aN

bN
≤ x

)

→ F (x). (57)

Below is an outline of the proof. The full level of details is suppressed since a similar style of
proof is given for Lemma 4.1 in full detail.

Proof. Since the total effect of the change of weights corresponding to A has finite expectations,
the Markov inequality shows that for any ε we can find l large enough so that P (WA ≥ l) ≤ ε. If
we restrict ourselves to this region of our statespace, then since the bN goes to infinity, the effect
of the change of weights is negligible in the limit. Since this is true on all but an ε region of the
state space, we have that the distribution functions are within ε of each other in the limit, but
taking ε to zero gives equality. !

Recall our definition of the two-sided TASEP model given by the initial conditions of Bernoulli
with parameter ρ− on the left of zero and with parameter ρ+ on the right. Corresponding to
the TASEP process started with this random initial condition, we consider the height function
ht(j) defined in equation (6). Theorem 2.1 of [23] relates the joint distributions for this height
function to those of the height function for a particular growth model associated with a variant
on the LPP with two-sided boundary conditions. The weights for this variant LPP are defined
with respect to two independent geometric random variables ζ+ and ζ−. Let ζ+ be geometric
with parameter 1 − ρ+ (i.e. P (ζ+ = n) = ρ+(1 − ρ+)n) and ζ− be geometric with parameter ρ−
(i.e. P (ζ− = n) = (1 − ρ−)ρn

+). The weights are then defined as independent random variables
with:

wi,j =







































exponential of rate 1 if i, j ≥ 1;

zero if i = j = 0;

zero if 0 ≤ i ≤ ζ+ and j = 0

exponential of rate 1 − ρ+ if i > ζ+, and j = 0;

zero if 0 ≤ j ≤ ζ− and i = 0;

exponential of rate ρ− if j > ζ− and i = 0.

(58)

With respect to these random weights define the last passage time L̃(N,M). This family of
random variables is non-decreasing in both N and M . Therefore one can associate to this a
growth process on the upper-corner and likewise a height process over the number line. Let
At = {(N,M)|N,M ≥ 1, L̃(N,M)} be the growth process and let h̃t be defined so as to satisfy
At = {(N,M)|2 ≤ N + M ≤ h̃t(N − M)}. To describe this in words, imagine rotating counter-
clockwise, the upper corner in which LPP occurs by π/4. To each lattice point (labled by j ∈ Z)
now on the horizontal associate a height h̃t(j) equal to two times the number of L̃(N,M) vertically
above j which are less than or equal to t. Then we have the following:

Theorem 3.2 (Theorem 2.1 of [23]). In the sense of joint distributions we have

ht(j) = h̃t(j) for |j| ≤ ht(j). (59)

This theorem essentially says that for the height profile which lies above the boundary of the
rotated upper corner, the two profiles have the same joint distribution. It is worthwhile to recall
that there is a similar map between the TASEP height function for TASEP with step initial
conditions and the height function for standard (no boundary condition) LPP [17]. The proof
of Theorem 3.2 can be found in [23] and essentially amounts to a study of the dynamics of the
right most particle to the left of the origin, as well as the dynamics of the left most hole to the
right of the origin. Tagging this particle and this hole we observe that their initial location is
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geometric and using Burke’s theorem we find that their waiting times between successive moves
is exponential with rate relating to the densities ρ− and ρ+. Between the tagged particle on the
left and the tagged hole on the right, particles move according to normal TASEP rules, and hence
the two height functions evolve with the same dynamics. The dynamics of the boundary of the
part of the TASEP height function lying in the rotated upper corner is matched by the effect of
the LPP boundary conditions, and the theorem follows.

From this theorem we see that the following equality:

Pρ
−

,ρ+
(ht(N − M) ≥ N + M) = P (L̃(N,M) ≤ t). (60)

This equality is not of much use to use however because in order to use the results of theorems
1.3 we must deal with a slightly different LPP model than corresponding to L̃. However, this
model and our LPP with two-sided boundary conditions only differ in expectation by a finite
number of weights (the geometric number of zeros from ζ− and ζ+)). Therefore while it is true
that there is not exact equality then with P (L2(N,M) ≤ t), from Lemma 3.1 we see that for
any sort of central limit fluctuation statement with a non-trivial limiting distribution, we have
equality in the limit. We will abuse notation in the remainder of this section and the next during
the proof of Conjecture 7.1, and write equality between the TASEP height function probability
and the probability for the last passage time in the LPP with two-sided boundary conditions
model. To sum up:

Remark 3.3. While the boundary conditions (18) differ from those (58) used by Prähofer and
Spohn, they are much simpler and also describe the TASEP with two-sided initial conditions, as
described in [4].

It is important to note that Lemma 3.1 only applies if both ρ− < 1 and ρ+ > 0. If either of
these inequalities is violated, then the geometric number of zeros on the boundary will in fact,
almost surely be infinite. However, in any of these cases, the classification of one-sided LPP then
readily applies.

The boundary conditions for L̃ corresponded to having exponentials of rate ρ− on the left
boundary and 1−ρ+ on the right. Therefore in terms of π and η we have π = 1−ρ+ and η = ρ−.
The critical point for π, η is 1

1+γ and γ
1+γ , therefore we see that the critical point for ρ−, ρ+ is

ρ− = ρ+ =
γ

1 + γ
. (61)

This corresponds to an equilibrium measure on TASEP with density γ
1+γ .

In the next section we will show how Theorem 1.3 implies an almost complete (all but a few
regions of the claimed Gaussian region are fully proved) proof of [23] Conjecture 7.1 (our Theorem
1.1). From this result we may easily deduce the results of [11] stated in the introduction.

For simplicity assume r ∈ [0, 1], as the case r ∈ [−1, 0] follows similarly. We wish to prove that

P

(

Jrt,t − ((ρ(1 − ρ) − rρ)t

t1/2
√

ρ(1 − ρ)|(1 − 2ρ) − r|
≥ x

)

→ G1(x), (62)

where as defined before G1(x) is the standard Gaussian distribution function.
In the case of ρ− = ρ+ = ρ and r ≥ 0 we can conclude from equation (10) that

P
(

th̄(r) − ht([ry]) ≤ (4ρ(1 − ρ)(r − 1 + 2ρ)t)1/2x
)

→ G1(x), (63)

where h̄(r) = (1−2ρ)r +2ρ(1−ρ). Substituting the relationship in equation (1) and rearranging
terms we arrive at the exact result of [11] desired.

We now briefly explain the approach to proving Conjecture 7.1 from our Theorem 1.3. The
conjecture deals with height functions. We have provided above the relationship between height
function distributions and LPP distributions. From equation (60) we see that if one is to consider
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P (ht(j) ≥ x) in terms of LPP, you must solve for N = x+j
2 and M = x−j

2 . The variables j and

x both are functions of time t and a speed y. If M/N = x−j
x+j has a limit, we call that γ2. This

allows us to asymptotically write M (or N) just as a function of time (thus the y dependence
goes into γ). In the cases we consider we can invert the expression for M in terms of t and get
an expression for t in terms of M , thus putting us in the form of the limit theorems we proved
in Theorem 1.3.

4. Proof of Fluctuation Theorems

In this section we provide a proof of Theorem 1.3 (which easily generalizes to prove Partial
Theorem 2.1) and a proof of Theorem 1.1.

4.1. Proof of Theorem 1.3 (Fluctuations of LPP with two-sided boundary conditions).
The following two technical lemmas provide the basis for the coupling arguments necessary in
our proof of Theorem 1.3.

Lemma 4.1. If Xn ≥ X̃n and Xn ⇒ D as well as X̃n ⇒ D then Xn − X̃n converges to zero in
probability. Conversely if Xn ≥ X̃n and X̃n ⇒ D and Xn − X̃n converges to zero in probability
then Xn ⇒ D as well.

Lemma 4.2. Assume Xn ≥ X̃n and Xn ⇒ D1 as well as X̃n ⇒ D1; and similarly Yn ≥ Ỹn and
Yn ⇒ D2 as well as Ỹn ⇒ D2. Let Zn = max(Xn, Yn) and Z̃n = max(X̃n, Ỹn). Then if Z̃n ⇒ D3,
we also have Zn ⇒ D3.

Proof. While it is likely that this lemma is known in the literature, we do not know where
and hence produce a proof. We prove the first assertion. Fix ε > 0 and, from the point of
contradiction, assume that P (Xn − X̃n > ε) > δ > 0 for an infinite subsequence of n’s. By
restricting to this subsequence and noting that all of the hypothesis of the lemma hold under this
restriction, we may equivalently assume that P (Xn − X̃n > ε) > δ > 0 for all n large. Since Xn

and X̃n converge weakly, each sequence of random variables is tight. This implies that there exists
an M(ε) and N(ε) such that for all n > N , P (|Xn| > M) < δ/2 and likewise P (|X̃n| > M) < δ/2.
Thus P (|X̃n| > M ∩ {Xn − X̃n > ε}) < δ/2, therefore

P (|X̃n| < M ∩ {Xn − X̃n > ε}) > δ/2. (64)

Call this event A = |X̃n| < M ∩ {Xn − X̃n > ε}, then conditioned on A, Xn > X̃n + ε. For large
enough n,

P (Xn ≤ t|A) ≤ P (X̃n ≤ t|A) − P (X̃n ∈ [t − ε, t]|A). (65)

We now partition the interval [−M,M ] into ε size blocks and define deterministic numbers
aj(n) for j ∈ {1, . . . , .2M

ε /} by

aj(n) = P (X̃n ∈ [−M + ε(j − 1),−M + εj]|A). (66)

Observe that
∑

j aj(n) = 1 since having conditioned on A, we know X̃n ∈ [−M,M ]. Therefore,

for each n, there exists at least one j = j(n) for which aj(n) ≥ 1
2M/ε+1 = ε

2M+ε (if there is more

than one j for which aj(n) is as desired, pick the smallest value of j). Since j is restricted to a
finite set of values, there must be some infinite subsequence of n’s which have the same value of
j(n). Restricting to that subsequence so every j(n) equals a fixed j, if we set t = −M + εj we
have

P (X̃n ∈ [t − ε, t]|A) ≥
ε

2M + ε
. (67)

Therefore

P (Xn ≤ t|A) ≤ P (X̃n ≤ t|A) −
ε

2M + ε
. (68)
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Multiplying both sides by P (A) and re-writting without conditioning gives

P (Xn ≤ t ∩ A) ≤ P (X̃n ≤ t ∩ A) −
P (A)ε

2M + ε
. (69)

That Xn ≥ X̃n also implies that

P (Xn ≤ t ∩ Ac) ≤ P (X̃n ≤ t ∩ Ac). (70)

Adding these two inequalities and using the fact that P (A) > δ/2 gives, for all n large enough

P (Xn ≤ t) ≤ P (X̃n ≤ t) −
δε

2(2M + ε)
. (71)

This inequality implies, however, that Xn and X̃n can not converge in distribution to the same
object. This is a contradiction to our hypothesis, so our assumption must be false. That is,
P (Xn − X̃n > ε) must go to zero as n goes to infinity.

The second assertion is easier. For all ε we can find N such that for n > N , P (Xn−X̃n > ε) ≤ ε.
Set inclusion and partitioning implies that

P (X̃n ≤ t − ε) = P (X̃n ≤ t − ε ∩ Xn − X̃n < ε) + P (X̃n ≤ t − ε ∩ Xn − X̃n ≥ ε) (72)

≤ P (Xn ≤ t) + P (Xn − X̃n ≥ ε)

≤ P (Xn ≤ t) + ε.

Since P (Xn ≤ t) ≤ P (X̃n ≤ t) we find that

P (X̃n ≤ t − ε) − ε ≤ P (Xn ≤ t) ≤ P (X̃n ≤ t). (73)

If t is any continuity point for D, then we can take ε to zero and we find that

D(t) ≥ P (Xn ≤ t) ≥ D(t), (74)

and hence Xn weakly converges to D. !

Proof of Lemma 4.2. Applying Lemma 4.1 to both XN and X̃N , as well as YN and ỸN we find
that for any ε, large enough N , P (AX) < ε and likewise P (AY ) < ε where AX = {XN − X̃N > ε}
and AY = {YN − ỸN > ε}. From this it follows that

P (Z̃n ≤ t − ε) = P (Z̃n ≤ t − ε ∩ Ac
X ∩ Ac

Y ) + P (Z̃n ≤ t − ε ∩ Ac
X ∩ AY ) (75)

+P (Z̃n ≤ t − ε ∩ AX ∩ Ac
Y ) + P (Z̃n ≤ t − ε ∩ AX ∩ AY ). (76)

The first probability is less than or equal to P (Zn ≤ t) while the last three are each trivially
bounded by ε. Therefore, noting that P (Zn ≤ t) ≤ P (Z̃n ≤ t) we find

P (Z̃n ≤ t − ε) − 3ε ≤ P (Zn ≤ t) ≤ P (Z̃n ≤ t), (77)

Taking t to be a continuity point for the limiting distribution for Z̃n (for D3) and taking ε to
zero we get that limn→∞ P (Zn ≤ t) = FD3

(t), and hence Zn converges in distribution to D3. !

Proof of Theorem 1.3, (F0) . This result follows from a coupling argument between the X(N,M),
Y (N,M) variables as well as a second set of last passage times X̃(N,M), Ỹ (N,M). X(N,M)
and Y (N,M) are coupled as previously described (they are the last passage times if forced to
go right (or up) on the first move). Now to define the tilde versions of X(N,M) and Y (N,M),
for a given realization of weights, divide the boundary weights by their means. This creates a
new set of weights coupled and pointwise dominated by the original set of weights. For this
new set of weights define X̃(N,M) and Ỹ (N,M) as the last passage time if forced right (or up)
initially. From this pointwise domination of the new weights by the original weights, we see that
X(N,M) ≥ X̃(N,M) and Y (N,M) ≥ Ỹ (N,M) pointwise. The advantage of the tilde variables
is that Z̃(N,M) = max(X̃(N,M), Ỹ (N,M)) is the standard (without boundary conditions) last
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passage time. We also know that, asymptotically X(N,M) and X̃(N,M), as well as Y (N,M)
and Ỹ (N,M) have the same distribution. We wish to use this information to conclude that
Z(N,M) and Z̃(N,M) have the same distribution as well.

Let us redefine our variables by properly shifting and scaling them, so that they have a limiting
distribution. Our new X(N,M) is

X(N,M) − (1 + γ2)N

γ(1 + γ−1)4/3N1/3
, (78)

and similarly we define X̃(N,M), Y (N,M), Ỹ (N,M), and Z̃(N,M) and Z(N,M) is redefined in
terms of the newly defined variables. Now we have the following setup: X(N,M) ≥ X̃(N,M) and
X(N,M) ⇒ F0 as well as X̃(N,M) ⇒ F0; similarly Y (N,M) ≥ Ỹ (N,M) and Y (N,M) ⇒ F0

as well as Ỹ (N,M) ⇒ F0. Applying Lemma 4.2 we get that Z(N,M) converges in distribution
to F0. !

Proof of Theorem 1.3, (F1). There are two cases which yield to the same argument. Thus we
prove the case of π > 1/(1 + γ) and η = γ/(1 + γ) only. As in the last proof, let X(N,M),
X̃(N,M), Y (N,M) denote the suitably centered and scaled random variables. for the sake of
applying Lemma 4.2 we define Ỹ (N,M) = Y (N,M). Again we know that X(N,M) ≥ X̃(N,M)
and X(N,M) ⇒ F0 as well as X̃(N,M) ⇒ F0 and clearly the same holds for the Y (N,M) and
Ỹ (N,M). So by Lemma 4.2 since we know that max(X̃(N,M), Ỹ (N,M)) converges weakly to
F1, it follows that max(X(N,M), Y (N,M)) ⇒ F1. !

Proof of Theorem 1.3, (F1,1). This follows immediately from the main result of [15]. !

Proof of Theorem 1.3, (G). We prove the first case, when π < 1/(1+γ) and η > π
π(1−γ−2)+γ−2 , as

the other case has the same proof. In this region of π, η, the leading order term on the expression
for X(N,M) is larger than that of the expression for Y (N,M). If we renormalize both X(N,M)
and Y (N,M) by the leading order term for X(N,M) and divide by its fluctuation term, we find
that X(N,M) converges to a standard normal. On the other hand, since the leading order term
for X(N,M) exceeds that for Y (N,M), the renormalized Y (N,M) converges to negative infinity.
This implies that max(X(N,M), Y (N,M)) converges in distribution to a standard normal, just
like X(N,M). !

Proof of Theorem 1.3, (G2). We couple X(N,M) with a random variable X̃(N,M) where X̃(N,M)
is the last passage time when forced to stay along the bottom edge for at least a specific, deter-
ministic fraction of the path (we likewise define Ỹ (N,M)). Specifically we define X̃(N,M) to be
the last passage time when the path is pinned to the bottom edge until the point

(

1 −
γ2

(π−1 − 1)2

)

N, (79)

after which point is forced into the bulk and allowed to follow a last passage path therein. The
weights accrued along the bottom edge respect a simple central limit (as they are the sums of a
deterministic number of iid random variables) and the weights accrued after the path is forced into
the bulk follows the fluctuations theorem for standard exponential last passage times. As these
two random variables are independent by construction, their means add since their fluctuations
are of different order (N1/2 for the bottom and N1/3 for the bulk) the bottom fluctuations win

out. Following this idea we find that the mean of X̃(N,M) is (π−1+ π−1γ2

π−1−1 )N and the fluctuations
are normal with variance

π−2

(

1 −
γ2

(π−1 − 1)2

)

N. (80)

To see this, observe that if we center X̃ by the mean and divide by the square root of the
above variance, we are left with a random variable of the form X̃1(N,M) + N−1/6X̃2(N,M),



CURRENT FLUCTUATIONS FOR TASEP: A PROOF OF THE PRÄHOFER-SPOHN CONJECTURE 22

where X̃1(N,M) converges to a normal, and X̃2(N,M) converges to a GUE. Since the second
term has a prefactor which goes to zero, we see that P (X̃1(N,M) + N−1/6X̃2(N,M) ≤ l) can
be partitioned into a region of size ε where |X̃2(N,M)| ≥ R and a region of size 1 − ε where
|X̃2(N,M)| < R. On the second region, we can replace X̃2(N,M) by R and find asymptotically
that the probability differs from P (X̃(N,M) ≤ l) by only ε. Taking ε to zero gives the desired
convergence in distribution.

Therefore if we center X(N,M) and X̃(N,M) by the same amount and renormalize by the
same amount we get two random variables which converge to the same distribution, despite the
first one being almost always larger than the second one. This is one of the pieces we will need
to apply Lemma 4.2.

We can likewise define Ỹ (N,M) as the last passage time when the path is pinned to the left
edge until the point

(

1 −
γ−2

(η−1 − 1)2

)

M, (81)

after which point is forced into the bulk and allowed to follow a last passage path therein. As in
the prior we see that centered and renormalizing Y (N,M) and Ỹ (N,M) by the same amounts,
gives to random variables which converge to the same distribution, despite the first one being
almost always larger than the second one.

From the relationship between π and η we know that the leading order terms for both X̃(N,M)
and Ỹ (N,M) coincide. Therefore we can write

X̃(N,M) = AN + BπN1/2X̃1(N,M) + CπN1/3X̃2(N,M) (82)

Ỹ (N,M) = AN + BηN1/2Ỹ1(N,M) + CηN
1/3Ỹ2(N,M), (83)

where

A = (π−1 +
π−1γ2

π−1 − 1
) (84)

Bπ =

(

π−2 −
π−2γ2

(π−1 − 1)2

)1/2

(85)

Bη =

(

η−2 −
η−2γ−2

(η−1 − 1)2

)1/2

, (86)

and Cπ and Cη are constants (which will play no role here). If we consider now Z̃(N,M) =
max(X̃(N,M), Ỹ (N,M)) we find that

P

(

Z̃(N,M) − AN

N1/2
√

BπBη
≤ x

)

= P (E1 and E2).

where E1 and E2 are respectively the events
√

Bπ

Bη
X̃1(N,M) + C ′

πN−1/6X̃2(N,M) ≤ x, (87)

√

Bη

Bπ
Ỹ1(N,M) + C ′

ηN
−1/6Ỹ2(N,M) ≤ x. (88)

As before, because of the N−1/6 prefactor to the X̃2(N,M) and Ỹ2(N,M) terms, we can
condition on these terms being bounded by some large number R, and only cost ourselves ε of
the sample space. Once we have conditioned on these random variables being bounded by R, we
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Figure 5. The event that the last passage time L(N,M) ≤ t corresponds to the
event that the height function ht(N − M) ≥ N + M .

can conclude that their joint probability is bounded between the product

P

(

X̃1(N,M) ≤
√

Bη

Bπ
x − C ′

πN−1/6R

)

P

(

Ỹ1(N,M) ≤

√

Bπ

Bη
x − C ′

ηN
−1/6R

)

(89)

and

P

(

X̃1(N,M) ≤
√

Bη

Bπ
x + C ′

πN−1/6R

)

P

(

Ỹ1(N,M) ≤

√

Bπ

Bη
x + C ′

ηN
−1/6R

)

. (90)

Taking N to infinity gives P (X̃1(N,M) ≤ x)P (Ỹ1(N,M) ≤ x) and taking ε to zero, and using
the central limit theorem to show that X̃1(N,M) is standard normal, we find that

P

(

Z̃(N,M) − AN

N1/2
√

BπBη
≤ x

)

= G1

(

x

√

Bη

Bπ

)

G1

(

x

√

Bπ

Bη

)

. (91)

Therefore, using the observations made at the beginning of the proof, we can apply Lemma 4.2
to conclude that the probability distribution of Z(N,M) centered and normalized as above, con-
verges to the same G2 distribution (i.e. equation (91) holds with Z(N,M) in place of Z̃(N,M)).
Working out the coefficients Bπ and Bη using the relationship between π and η we have our
desired result. !

4.2. Proof of Theorem 1.1 (Conjecture 7.1 from [23]). The following elementary lemma
will find repeated use in what follows.

Lemma 4.3. If M = at + bt1/2 then for large t,

t = a−1M − a−3/2bM1/2 + o(M1/2). (92)

Likewise if M = at + bt1/3 then for large t,

t = a−1M − a−4/3bM1/3 + o(M1/3). (93)
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Proof of Theorem 1.1. We provide proofs of only the G2 and F0 cases of this theorem as the
G case is analogous to G2 and the F1 case is analogous to F0. The F1,1 case of the theorem
already is proved in [15]. The proofs are based on the fact that if the height at a given time value
exceeds a point (N,M), then the last passage time of that point is less than the above time value.
Then Theorem 1.3 applies and gives asymptotic height distribution results. As noted before, the
mapping between the TASEP height function and the last passage time for our model of LPP
with two-sided boundary conditions is not exact (as the exact LPP model has geometric numbers
of boundary zeros) however Lemma 3.1 ensures that asymptotically all results in our LPP model
correspond to results for the two-sided TASEP height function.

G2 case: Recall that in LPP with two-sided boundary conditions π = 1− ρ+ and η = ρ−. We
presently assume that η+π < 1 (ρ− < ρ+) and y = yc. Recalling that h̄(y) = (1−2η)y+2η(1−η),
we wish to determine the asymptotic (large t) value of

P (ht(yt) ≥ ((1 − 2η)y + 2η(1 − η))t −
√

(1 − π − η)t1/2x). (94)

We will reduce this probability to a probability in the related LPP with two-sided boundary
conditions, and then use Theorem 1.3 to conclude that this probability is the correct product of
Gaussian probability functions.

The first step in translating to a LPP problem is to relate the speed to γ. We may solve for the
asymptotic value of γ as a function of the speed y. As shown in Figure 4.2 the height function
event corresponds to the LPP event where N −M = yt and N + M = ((1− 2η)y + 2η(1− η))t−
√

(1 − π − η)t1/2x). From that we find that

M = η(1 − y − η)t −
1

2

√

(1 − π − η)t1/2x, (95)

N = (y − ηy + η(1 − η))t −
1

2

√

(1 − π − η)t1/2x. (96)

Therefore

γ2 = lim
t→∞

M/N =
η(1 − y − η)

y − ηy + η(1 − η)
. (97)

From this equation we can solve for y as a function of γ:

y =
(γ2 − 1)η(1 − η)

γ2(η − 1) − η
. (98)

Since we have assume that y = yc, we may use these two expressions for y to relate η, π and γ
to find that

η =
π

π(1 − γ−2) + γ−2
. (99)

This is exactly the curve along which the G2 part of Theorem 1.3 applies.
Finally, we may use Lemma 4.3 to invert our expression for N in terms of t. Asymptotically

t =
1 + π(γ2 − 1)

π(1π)
N +

(1 − π − η)1/2(1 + π(γ2 − 1))3/2

2(π(1 − π))3/2
xN1/2. (100)

This allows us then to express

P (ht(yt) ≥ ((1 − 2η)y + 2η(1 − η))t −
√

(1 − π − η)t1/2x) = P (L2(N,M) ≤ t), (101)

where t is as above. It then follows after a little algebra that Theorem 1.3 applies and gives that
these probabilities asymptotically equal

FG

(

x

2
√

π(1 − π)

)

FG

(

x

2
√

η(1 − η)

)

, (102)

as desired to prove this part of Theorem 1.1.
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F0 case: Similarly to the previous case, we rehash the height function event in terms of the LPP
with two-sided boundary conditions event and show that the desired asymptotic probabilities arise
from Theorem 1.3. The region of ρ−, ρ+ for which we wish to prove F0 fluctuations corresponds
to π + η > 1. We wish to prove F0 fluctuations for all y such that 1 − 2ρ− < y < 1 − 2ρ+.
Translating this region into η, π, γ variables exactly corresponds to the region in which Theorem
1.3 implies F0 fluctuations.

We wish to compute the asymptotic formula for

P

(

ht(yt) ≥
1

2
(y2 + 1)t − 2−1/3(1 − y2)2/3t1/3x

)

, (103)

where we have used the fact that h̄(y) = (y2 + 1)/2 in the region of y, ρ−, ρ+ which we are
considering. Without loss of generality let us assume that y ≥ 0 (the other case follows similarly).
As before, set

N − M = yt, (104)

N + M =
1

2
(y2 + 1)t − 2−1/3(1 − y2)2/3t1/3x. (105)

The height function event we are considering has the same probability as

P (L2(N,M) ≤ t). (106)

Using the equations for N − M and N + M we can solve for

N =
1

4
(1 + y)2t − 2−4/3(1 − y2)2/3t1/3x, (107)

M =
1

4
(1 − y)2t − 2−4/3(1 − y2)2/3t1/3x. (108)

These expressions allow us to express γ asymptotically as

γ2 =

(

1 − y

1 + y

)2 [

1 + 22/3xt−2/3(1 − y2)2/3

(

1

(1 + y)2
−

1

(1 − y)2

)]

+ o(t−2/3) (109)

We may use Lemma 4.3 to invert our expression for M in terms of t. Asymptotically

t =
4M

(1 − y)2
+ 24/3 (1 + y)2/3

(1 − y)2
xM1/3 + o(M1/3). (110)

This implies that t−2/3 = 4−2/3

(1−y)−4/3 M−2/3 +o(M−2/3). This can be plugged into our expression

for γ2 and gives a new expression for γ2 in term of M now:

γ2 =

(

1 − y

1 + y

)2 [

1 − 24/3xM−2/3 y

(1 + y)4/3

]

+ o(M−2/3.) (111)

From this we may find that

y =
1 − γ

1 + γ
−

(1 − γ)γ

(1 + γ)5/3
xM−2/3 + o(M−2/3). (112)

This can then be substituted into equation (110) which gives

t = (1 + γ−1)2M +
(1 + γ)4/3

γ
M1/3x + o(M1/3). (113)

Plugging this into P (L2(N,M) ≤ t) we find that our height function probability is asymptot-
ically equal to

P

(

L2(N,M) ≤ (1 + γ−1)M +
(1 + γ)4/3

γ
M1/3x + o(M1/3)

)

. (114)
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As it was already noted the y, ρ−, ρ+ which we are considered maps exactly onto the range of
η, π, γ which the LPP probability above is asymptotically equal to F0(x) and hence the same
holds for the the height function probability. !
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[1] J. Baik. Painlevé formulas of the limiting distributions for nonnull complex sample covariance matrices.
Duke Math. Journal, 33:205–235, 2006.
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