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Abstract. We estimate convergence rates for curves generated by the
Loewner equation under the basic assumption that a convergence rate
for the driving terms is known. An important tool is the “tip struc-
ture modulus”, a geometric measure of regularity for Loewner curves
parameterized by capacity. It is analogous to Warschawski’s boundary
structure modulus and closely related to annuli crossings. The main
application we have in mind is that of a random discrete-model curve
approaching a Schramm-Loewner evolution (SLE) curve in the lattice
size scaling limit. We carry out the approach in the case of loop-erased
random walk (LERW) in a simply connected domain. Under mild as-
sumptions of boundary regularity we obtain an explicit power-law rate
for the convergence of the LERW path towards the radial SLE2 path in
the supremum norm, the curves being parameterized by capacity. On
the deterministic side we show that the tip structure modulus gives a
sufficient geometric condition for a Loewner curve to be Hölder con-
tinuous in the capacity parameterization, assuming its driving term is
Hölder continuous. We also briefly discuss the case when the curves are
a priori known to be Hölder continuous in the capacity parameteriza-
tion and we obtain a power-law convergence rate depending only on the
regularity of the curves.

1. Introduction, Motivation, and Results

1.1. Introduction. The Loewner equation is a partial differential equation
that produces a Loewner chain, a family of conformal mappings from a ref-
erence domain onto a continuously decreasing sequence of simply connected
domains. The evolution is controlled by a real valued function called driving
term which acts as a parameter. Under smoothness assumptions on the driv-
ing term the Loewner equation can be used to generate a growing continuous
curve, by which we mean a continuous function from some interval into the
reference domain. Conversely, starting from a suitable curve one can reverse
the procedure to recover the driving term and so there is a correspondence
between Loewner curves and their driving terms. Following Schramm [22],
Loewner’s equation has in recent years been successfully applied to study
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conformally invariant scaling limits of certain lattice models from statisti-
cal physics. By taking a scaled Brownian motion as the driving term one
obtains the one-parameter family of random fractal Schramm-Loewner evo-
lution (SLE) curves which are, essentially, the only possible conformally
invariant scaling limits of cluster interfaces with a certain Markovian prop-
erty; see [22]. Convergence to SLE has been proved in several cases; see, e.g.,
[23] and the references therein. The use of the Loewner equation and SLE
techniques in this context has made it possible to give precise meaning to the
(passage to the) scaling limit itself, but also to prove conformal invariance,
and to give rigorous proofs of various predictions made by physicists. The
latter is to large extent due to the fact that the SLE processes are amenable
to computation via stochastic calculus.

In this paper we will be interested in quantifying the relationship between
(random) rough Loewner curves with driving terms that are close in the
supremum norm. To explain our interest let us first consider a non-random
setting. One can view the Loewner equation as a highly non-linear function
from a space of driving terms to a suitable metric space of (parameterized)
curves and it is natural to ask about continuity properties, if any. This
point of view is closely related to work by Lind, Marshall, and Rohde; see
[16] and [11]. For example, Theorem 4.1 of [11] proves that curves driven
by Hölder-1/2 driving terms with small semi-norm converge as curves if
their driving terms converge. So the “Loewner function” is continuous when
restricted to this collection of driving terms and our results can be used to
show that it is Hölder continuous with an explicit exponent depending only
on the semi-norm assuming it is sufficiently small. One can also ask similar
questions, restricting attention to driving terms generating curves with some
given regularity.

Our principal motivation, however, comes from the observation that al-
though several discrete-model curves are known to converge (as curves up
to reparameterization) to SLE curves, next to nothing appears to be known
about the rates of their convergence. (See the paper [4] by Beneš, Kozdron,
and the author for a quantitative result of convergence of loop-erased ran-
dom walk at a fixed time with respect to Hausdorff distance when the curves
are viewed as compact sets.)

Good control over convergence rates would allow SLE techniques to be
used on mesoscopic scales, that is, scales of order εp with p ∈ (0, 1) where
ε is the lattice spacing. It is reasonable to believe that such results will
be helpful for obtaining fine properties of corresponding discrete models;
this question was raised by Schramm in connection with sharp estimation
of critical exponents [23]. We may compare with a related model. So-
called strong approximation results such as the KMT approximation or the
Skorokhod embedding [13] yield couplings in which the simple random walk
and Brownian motion paths are close with high probability, with error terms
expressed explicitly in terms of the lattice spacing. This gives a natural way
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to use techniques for Brownian motion to deduce fine properties of simple
random walk, that can depend on behavior on mesoscopic scales. This
approach has been used by, e.g., Lawler, Lawler and Puckette, and Beneš;
see [14] and [3] and the references therein. It thus seems that approximation
results with explicit error terms for discrete models converging to SLE could
be quite useful. Presently, all known proofs of convergence to SLE goes via
convergence of the driving terms in one way or another, so it seems natural to
take a convergence rate for the driving terms as a starting point. We remark
that the work in [4] essentially reduces the derivation of a convergence rate
for the driving terms to the derivation of a convergence rate for the so-
called martingale observable in rough domains. We will show that a power-
law convergence rate to an SLE curve can be derived from a power-law
convergence rate for the driving terms provided some additional quantitative
geometric information, related to crossing events, is available for the discrete
curves, along with an estimate on the growth of the derivative of the SLE
map. The approach is quite general and we believe it can be applied to
several models (even with non-simple scaling limit curves) as soon as the
aforementioned information is available, though we carry out the specific
probabilistic estimates only in the case of loop-erased random walk.

1.2. Overview, Results, and Related Work. Let us briefly sketch the
setup and main ideas in the (chordal) half plane setting, though we will
later work mostly in the disk. See Section 2 for precise definitions. Let
W,Wn : [0, T ]→ R be continuous functions such that

sup
t∈[0,T ]

|W (t)−Wn(t)| 6 ε,

where ε > 0 is small but for the moment fixed. Let f(t, z) : H → H(t)
and fn(t, z) : H → Hn(t) be the solutions to the chordal Loewner equation
(Loewner chains)

∂tf(t, z) = −∂zf(t, z) 2
z − U(t) , f(0, z) = z, z ∈ H,

with U(t) replaced by W (t) and Wn(t), respectively. Assume that the
Loewner chains are generated by the curves γ and γn parameterized by
capacity so that for each t, H(t) and Hn(t) are the unbounded components
of H\γ[0, t] and H\γn[0, t], respectively. (We can think of γn as the confor-
mal image of a discrete-model curve on a lattice approximation of a smooth
domain D, where the mesh of the lattice is n−1, and the driving term of γn
is coupled with a scaled Brownian motion W driving the chordal SLE curve
γ so that the driving terms are at distance at most ε = n−q for some q < 1.)
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Let y > 0; we will later choose y = y(ε). Let t ∈ [0, T ]. We can write
|γ(t)− γn(t)| 6 |γ(t)− f(t,W (t) + iy)|

+ |f(t,W (t) + iy)− f(t,Wn(t) + iy)|
+ |f(t,Wn(t) + iy)− fn(t,Wn(t) + iy)|
+ |fn(t,Wn(t) + iy)− γn(t)|

=:A1 +A2 +A3 +A4.

We wish to estimate the Aj in terms of ε. Suppose that there are β < 1 and
c <∞ such that

|f ′(t,W (t) + id)| 6 cd−β for all d 6 y. (1.1)
If this estimate holds, then by integrating, A1 6 c y1−β. (Constants may
change from line to line, and are assumed to depend only on the parameters
and not on ε, y, etc.) By the distortion theorem the same bound holds for A2
if y > ε. The third term, A3, represents the distance between two solutions
to the Loewner equation having driving terms at supremum distance at most
ε, and evaluated at the same point. In Section 2.3 we will use the reverse-
time Loewner flow to estimate quantities like this. In particular, we will see
that if Im z = y, then

|f(t, z)− fn(t, z)| 6 c εy−1,

with c depending only on T . Hence A3 6 c εy−1 and Cauchy’s integral
formula implies that ∣∣y|f ′(t, z)| − y|f ′n(t, z)|

∣∣ 6 c εy−1.

From this it follows, using Koebe’s estimate and (1.1), that if
∆n(t, y) := dist [fn(t,Wn(t) + iy), ∂Hn(t)] ,

then
∆n(t, y) 6 c y|f ′n(t,Wn(t) + iy)| 6 c y1−β + c εy−1; (1.2)

see Proposition 2.4. (Note that we have made no explicit assumption on the
behavior of |f ′n|.) Now choose y(ε) = εp, for some p ∈ (0, 1). Then,

A1 +A2 +A3 6 c ε
p(1−β) + c ε1−p

and it remains to bound A4. Clearly, A4 > ∆n(t, εp) but we would like an
upper bound in terms of ∆n(t, εp). To proceed, some additional information
about the boundary behavior of fn is necessary.

For this, we will use what we call the tip structure modulus, a geometric
gauge of the regularity of a Loewner curve in the capacity parameterization
that is, for our problem, the analog of Warschawski’s [26] measure with a
similar name. Let δ > 0 and consider St,δ, the set of all crosscuts of Hn(t)
of diameter at most δ that separate the tip, γn(t), from ∞ in Hn(t). Each
crosscut C ∈ St,δ separates from ∞ in Hn(t) a piece γC of γn[0, t] obtained
by tracing γn backwards from γn(t) until C is first hit. (If γn and C do not
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intersect we set γC = γ.) We then define the tip structure modulus, ηtip(δ),
of γn(t), t ∈ [0, T ], to be the maximum of δ and

sup
t∈[0,T ]

sup
C∈St,δ

diam γC .

(See Section 3 for a precise definition.) Roughly speaking, ηtip(δ) is the
maximal distance the curve travels into a “bottle” with “bottleneck” opening
smaller than δ viewed from the point towards which the curve is growing.
(Similar conditions have been used before; see below.) In Proposition 3.2
we show that

|fn(t,Wn(t) + iy)− γn(t)| 6 c1ηtip (c2 ∆n(t, y)) , (1.3)

where ηtip is the tip structure modulus for γn. Consequently, if we have a
power-law bound on the tip structure modulus evaluated at c∆n(t, εp), that
is, if

ηtip(c∆n(t, εp)) 6 c′ (∆n(t, εp))r,
for some r ∈ (0, 1), then by (1.2)

A4 6 c ε
p(1−β)r + c ε(1−p)r.

We stress that the estimate on ηtip is only required to hold on the scale
of ∆n(t, εp) and note that the failure of the existence of such a bound on
ηtip implies certain crossing events for the curve. If the estimates hold uni-
formly in t ∈ [0, T ], then we have obtained a power-law bound in terms of
ε on supt∈[0,T ] |γ(t) − γn(t)| and we can then conclude by optimizing over
exponents.

To implement these ideas in a particular setting we need to show that the
assumptions we used are satisfied uniformly in t ∈ [0, T ], with high probabil-
ity in terms of ε. If a convergence rate for the driving terms (or martingale
observable in rough domains) is known, then we believe it is possible to
derive the remaining required information from existing results in the lit-
erature without too much effort, and we derive the needed SLE derivative
estimates, from estimates in [6], in this paper. Indeed, as already mentioned,
the event that the geometric condition fails implies annuli crossing events
that are fairly well-understood for the models known to converge to SLE.

The organization of the paper is as follows. In Section 2.3 we discuss some
preliminaries and prove the quantitative comparison estimates for solutions
to the Loewner equation. These estimates might be of some independent
interest; see for example [8]. We also consider a natural case when the curves
are a priori known to be Hölder continuous in the capacity parameterization
and derive a power-law convergence rate depending only on the regularity
of the curves. See Corollaries 2.6 and 2.7.

In Section 3 we define the tip structure modulus and prove the estimates
implying (1.3). Then in Theorem 3.5 we show that if a Loewner curve γ
has the property that there is M <∞ such that ηtip(δ) 6 Mδ, δ < δ0, and
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the driving term is Hölder continuous, then γ is also Hölder continuous in
the capacity parameterization with exponent depending only on M and the
exponent for the driving term. A linear bound on the structure modulus is
a natural analog of the John condition for simply connected domains, see,
e.g., Chapter 5 of [20]. Theorem 3.5 can thus be viewed as the analog for
Loewner curves of the well-known fact that a John domain is also a Hölder
domain [20].

In Section 4 we apply the above ideas to obtain a power-law estimate
on the convergence rate to radial SLE2 for the loop-erased random walk
(LERW) path. Here is one informal version of the result; see Theorem 4.3
for a precise statement. Let Dn be an n−1Z2 grid domain approximation
of a fixed simply connected Jordan domain D 3 0 with C1+α boundary and
inner radius from 0 equal to 1. (The proof works for the larger class of
quasidisks [20], but we then get a slower convergence rate which depends
on the constant in the Ahlfors three-point condition for D.) Let γn be the
time-reversal of LERW on Dn from 0 to ∂Dn and let γ̃n be its image in D
under the conformal map ψn : Dn → D with the usual normalization. Let γ̃
be the radial SLE2 path in D started uniformly on ∂D.

Theorem. For each n sufficiently large there is a coupling of γ̃n with γ̃ such
that

P
{

sup
t∈[0,σ]

|γ̃n(t)− γ̃(t)| > ε1/41
n

}
< ε1/41

n ,

where both curves are parameterized by capacity, εn = n−1/24 is the conver-
gence rate of the driving terms from [4], and σ is a stopping time. The same
estimate holds for the pre-images of the curves in Dn.

(The stopping time σ = σ(ε, T ), which is needed for technical reasons,
can be taken as the minimum of some fixed T <∞ and the first time such
that the forward SLE2 flow of −γ̃(0) is smaller than some given ε > 0. We
have limε→0 σ(ε, T ) = T almost surely, see Appendix A.) This quantifies the
convergence result [15, Theorem 3.9] of Lawler, Schramm, and Werner. As
indicated, the proof considers the couplings of [4] in which if s < 1/24, then
with probability at least 1−n−s the estimate supt∈[0,T ] |Wn(t)−W (t)| < n−s

holds. Here Wn is of the LERW in Dn and W is a Brownian motion with
speed 2 on ∂D. Using the Brownian motion as driving term in the Loewner
equation we have a coupling of the LERW image and SLE2 for each n, with
their driving terms close. To prove Theorem 4.3 we then show that the above
reasoning can be carried out on an event with large probability in terms of
n. Some work is required to establish the needed geometric condition for
the LERW path; see Proposition 4.5.

In Appendix A we derive an estimate on the probability (in terms of y)
that a bound of the type (1.1) holds for radial SLE from a corresponding
estimate for chordal SLE from [6].
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Finally, in Appendix B we discuss a convergence rate result for a sequence
of grid-domain approximations of a quasidisk which allows us to directly
“transfer” the required geometric condition to D.

Besides classical articles by Ahlfors, Warschawski, Becker, Pommerenke,
and others, which develop (Euclidean) geometric conditions for regularity
estimates on Riemann maps; see, e.g., [26, 2, 17, 18, 25] and the references
therein, there are close connections between the results and methods of this
paper and more recent work. Let us highlight some. We mentioned the work
by Lind, Marshall, and Rohde [11] and by Marshall and Rohde [16]; see also
Wong’s paper [27]. The paper by Aizenman and Burchard [1] characterizes
tightness for probability measures on a space of (discrete model) curves
modulo reparameterization in terms of estimates on probabilities of annuli
crossing events. The event that the geometric condition fails is contained in
a union of crossing events of this type and this is what allows for estimation
of probabilities. Kemppainen and Smirnov consider related questions and
use similar conditions in [9] and a quantity somewhat similar to the tip
structure modulus has been used by Lind and Rohde in [10].

1.3. Acknowledgements. Support from the Simons Foundation, Institut
Mittag-Leffler, and the AXA Research Fund is gratefully acknowledged. I
wish to thank Dmitry Belyaev, Don Marshall, and Steffen Rohde for inspir-
ing and helpful conversations on the topics of this paper, and Julien Dubédat
and Alan Sola for their useful comments on the manuscript. I also wish to
thank the referee for his/her careful reading and valuable comments.

2. Preliminaries and the Deterministic Loewner Equation

2.1. Preliminaries. We start by setting some notation. We will write D =
{z ∈ C : |z| < 1} for the unit disk in the complex plane. This is the basic
reference domain, although we will occasionally also consider the upper-
half plane H = {z ∈ C : Im z > 0}. Let D 3 0 be a simply connected
domain. By the Riemann mapping theorem there exists a unique conformal
map ψ : D → D with ψ(0) = 0 and ψ′(0) > 0. If we do not state otherwise we
will always assume that uniformizing conformal maps like ψ are normalized
in this way.

A crosscut C of a simply connected domain D is an open Jordan arc in
D such that C = C ∪ {ζ, η} with ζ, η ∈ ∂D. A crosscut partitions D into
exactly two disjoint components; see Chapter 2 of [20].

A (parameterized) curve γ is a continuous function γ(t) : I → C defined
on some interval I which we will usually assume to be [0, T ] for some fixed
T > 0. Given two curves γ1, γ2 defined on the same interval, we measure
their distance by the supremum norm

sup
t∈[0,T ]

|γ1(t)− γ2(t)|.
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Let γ : [0, T ]→ D be a curve with γ(0) ∈ ∂D, 0 /∈ γ[0, T ], and for t ∈ [0, T ],
let Dt be the connected component of 0 of D \ γ[0, t]. We say that γ is
parameterized by capacity if the normalized conformal maps gt : Dt →
D satisfy g′t(0) = et for t ∈ [0, T ]. (Clearly not all curves in D can be
parameterized in this way.) A reparameterization of a curve γ is a new
curve γ̃ obtained by γ̃(t) = γ ◦ α(t), where α(t) : [0, T̃ ]→ [0, T ] is a strictly
increasing and continuous function. We will often, when no confusion is
possible, treat a curve and its reparameterizations as the same. A (D-)
Loewner curve is a curve γ in D as above, parameterized by capacity,
for which the following continuity condition holds: for every ε > 0 there
exists δ > 0 such that for all s, t ∈ [0, T ] with 0 < t − s < δ there is a
crosscut C with diam C < ε that separates Kt \ Ks from 0 in Dt, where
Kt = D \Dt. Intuitively, a D-Loewner curve γ is a continuous curve such
that: the conformal radius from 0 of the complement of the curve is strictly
and continuously decreasing, it has no transversal self-crossings, and the tip
γ(t) is always “visible” from 0. For example, if γ is piecewise smooth with no
double points and is contained in D for t ∈ (0, T ], then it is a Loewner curve.
By Theorem 1 of [19], the D-Loewner curves are exactly the curves that
can be described using the radial Loewner equation driven by a continuous
driving term, as discussed in the next section. We will also consider (chordal)
Loewner curves in H which are defined in a similar manner; we refer to
Chapter 4 of [12] for more information. We just note that in this case it is
convenient to parameterize γ by the so-called half-plane capacity, that is, so
that the conformal maps gt : Ht → H, where Ht is the unbounded connected
component of H \ γ[0, t], satisfy gt(z) = z + 2t/z + o(1/|z|) at ∞. (In this
case the normalization is at a boundary point, and the tip of the curve is to
be “visible” from this point at all times.)

We will often write “constants” depending on parameters as c = c(a, b),
etc. It is then to be understood that c depends only on these parameters.

2.2. Loewner Equations. We will be interested in two versions of Loewner’s
differential equation. We define radial and chordal Loewner vector fields by

ΦD(z, ζ) = −z ζ + z

ζ − z
, ΦH(z, ξ) = − 2

z − ξ
.

The radial and chordal Loewner equations are then given by

∂tf(t, z) = ∂zf(t, z) ΦX(z,W (t)), f0(z) = z, z ∈ X, (2.1)

X = D and X = H, respectively. (We will sometimes refer to these equa-
tions the D- and H-Loewner PDEs and their solutions as D- and H-Loewner
chains, etc.) Here, W : [0,∞) → ∂X is a (continuous) function called the
driving term. In the radial case, we will sometimes write the driving term
as W (t) = eiξ(t) for a real valued function ξ which, when no confusion is
possible, for brevity is also referred to as the driving term.
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Let us discuss a few properties in the radial setting. (Similar results
hold for the chordal version.) For each t0 > 0 the solution f(t0, ·) : D →
Dt0 is a conformal map onto a simply connected domain Dt0 ⊂ D. The
family (f(t, z))t>0 of conformal mappings is called a Loewner chain. A
Loewner pair (f,W ) consists of a function f(t, z) and a (continuous) func-
tion W (t), t > 0, such that f is the solution to the Loewner equation with
W as driving term. Under some rather mild regularity assumptions on W
(e.g., that W is Hölder-(1/2+ε) for some ε > 0) there exists a curve γ(t)
such that Dt is the component of the origin of D \ γ[0, t] and in this case
we say that the Loewner chain is generated by the Loewner curve γ. Con-
versely, given a Loewner curve, one can associate via the Loewner equation
a unique driving term such that the Loewner chain (ft) in the Loewner pair
(f,W ) is generated by γ. In fact, the driving term is the preimage in ∂D of
the tip of the growing curve. In terms of the inverse relationship we have

γ(t) = lim
d→0+

f(t, (1− d)W (t)). (2.2)

A sufficient condition for (f,W ) to be generated by a curve γ is that the
limit (2.2) exists for all t > 0 and that t 7→ γ(t) is continuous; see Theo-
rem 4.1 of [21]. The parameterization of γ given by (2.2) is the capacity
parameterization.

We will use the notation ft(z) = f(t, z), f ′ = ∂zf , and ḟ = ∂tf .
Lemma 2.1. There exists a constant c0 <∞ such that the following holds.
Let X ∈ {D,H}. Suppose that ft satisfies the X-Loewner PDE and that
dist(z, ∂X) = d. Then for s > 0

e−c0s/d2 |f ′t(z)| 6 |f ′t+s(z)| 6 ec0s/d2 |f ′t(z)| (2.3)
and

|ft+s(z)− ft(z)| 6 c0d|f ′t(z)|(ec0s/d2 − 1). (2.4)

Proof. See Lemma 3.5 of [6] for the proof in the chordal case. The radial
case is proved in the same way. �

For Hölder continuous driving terms the existence of the curve and its
regularity in the capacity parameterization is completely determined by the
local behavior at the tip, that is, the growth of the derivative of the conformal
map close to the pre-image of the tip. The following result is a version of
Proposition 3.9 of [6], but allows for a less regular driving term.
Proposition 2.2. Let (f,W ) be a D-Loewner pair and assume that W (t) =
eiξ(t) where ξ(t) is Hölder-α on [0, T ] for some α 6 1/2. Then the following
holds. Suppose there are c <∞, d0 > 0, and 0 6 β < 1 such that

sup
t∈[0,T ]

d|f ′t((1− d)W (t))| 6 c d1−β, ∀d 6 d0. (2.5)

Then (f,W ) is generated by a curve that is Hölder-α(1− β) continuous on
[0, T ]. The analogous statement holds for H-Loewner pairs.
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Remark. At t = 0 we have f ′0(z) = 1 so we can never do better than β = 0
in (2.5). However, for t > ε we can have −1 6 β < 0 and in this case the
curve will be Hölder-α(1−β) (which is then larger than α) for t ∈ [ε, T ] but
only Hölder-α on [0, T ].

Proof of Proposition 2.2. The bound on the derivative implies that the limit
γ(t) = lim

d→0+
ft((1− d)W (t))

exists for every t ∈ [0, T ] and since the convergence is uniform γ(t) is a
continuous function. Let s > 0 and set d = sα. If t, t+ s ∈ [0, T ], we have

|γ(t+ s)− γ(t)| 6 |γ(t+ s)− ft+s((1− d)W (t+ s))|
+ |ft+s((1− d)W (t+ s))− ft+s((1− d)W (t))|
+ |ft+s((1− d)W (t))− ft((1− d)W (t))|
+ |γ(t)− ft((1− d)W (t))|.

If t > 0, then the estimate (2.5) implies that the first and last terms are
bounded by a constant times d1−β = sα(1−β). By assumption |ξ(t + s) −
ξ(t)| 6 csα = cd, so the distortion theorem implies that

|ft+s((1− d)W (t+ s))− ft+s((1− d)W (t))| 6 cd1−β.

Finally, since s = d1/α and α 6 1/2, (2.4) implies

|ft+s((1− d)W (t))− ft((1− d)W (t))| 6 cd1−β.

Since d|f ′0((1 − d)W (0))| = d and so cannot decay faster than linearly, we
get the stated exponent on [0, T ]. �

2.3. An Estimate for the Reverse-Time Loewner Equation. We want
to compare solutions to the Loewner equation corresponding to driving
terms which are close in the supremum norm. We will use the reverse-
time Loewner equation: Let T <∞ and let (fj ,Wj), j = 1, 2, be Loewner
pairs. Let t0 ∈ (0, T ] be fixed. Consider solutions hj(t, z; t0) = hj(t, z) to
the reverse-time Loewner equation

∂thj(t, z) = ΦX(hj , Uj(t)), hj(0, z) = z, (2.6)
where X equals D and H in the radial and chordal case, respectively. We
say that Uj is the driving term for (2.6). If we take Uj(t) = Wj(t0 − t) we
have the well-known identity

hj(t0, z; t0) = fj(t0, z), z ∈ X, j = 1, 2,
where fj(t, z) solves the Loewner PDE (2.1) with Wj(t) as driving term.
These equalities only hold at the special time t = t0; the families of conformal
mappings (hj(·, z)) and (fj(·, z)) are in general different. Solutions t 7→
h(t, z) to (2.6) flow away from ∂X as t increases when z ∈ X and this
implies that if z ∈ X is fixed then the solution t 7→ h(t, z) exists for all
t > 0.
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Let ε and ν be given non-negative numbers. Let z1, z2 ∈ X be given and
suppose that

sup
t∈[0,T ]

|W1(t)−W2(t)| 6 ε, |z1 − z2| 6 νε.

Set
H(t) = h1(t, z1)− h2(t, z2),

where the hj are assumed to solve the reverse-time Loewner equations (2.6)
driven by

W̃j(t) := Wj(t0 − t), j = 1, 2.
Then H(t0) = f1(t0, z1) − f2(t0, z2). We differentiate with respect to t and
use (2.6) to obtain the linear differential equation

Ḣ(t)−H(t)ψX(t) = (W̃2(t)− W̃1(t))ξX(t),
where

ψD(t) =
h1h2 − W̃1W̃2 − 1

2(h1 + h2)(W̃1 + W̃2)
(h1 − W̃1)(h2 − W̃2)

,

ξD(t) = h2
1 + h2

2
2(h1 − W̃1)(h2 − W̃2)

and

ψH(t) = 2
(h1 − W̃1)(h2 − W̃2)

,

ξH(t) = ψH(t).
Here we have suppressed the dependence on t in the right-hand sides. We
can integrate the differential equation and with u(t) = exp{−

∫ t
0 ψX(s) ds}

we find
H(t) = u(t)−1

(
H(0) +

∫ t

0
(W̃2 − W̃1)uξX ds

)
.

Hence, for 0 6 t 6 t0,

|H(t)| 6 |H(0)|e
∫ t

0 ReψX(s) ds +
∫ t

0
|W̃2 − W̃1|e

∫ t
s

ReψX(r) dr|ξX | ds. (2.7)

Consequently, since
sup
t∈[0,t0]

|W̃1(t)− W̃2(t)| 6 ε, |H(0)| = |z1 − z2| 6 νε,

recalling that |f1(t0, z1)− f2(t0, z2)| = |H(t0)|, we get the estimate

|f1(t0, z1)− f2(t0, z2)|

6 ε
(
νe
∫ t0

0 ReψX(s) ds +
∫ t0

0
e
∫ t0
s

ReψX(r) dr|ξX | ds
)
. (2.8)

The right-hand side in (2.8) can be estimated in different ways depending
on what data is available. We would like an estimate that depends only on
ε and d = dist({z1, z2}, ∂X). Estimating naively, using only the fact that
points flow away from ∂X under the reverse flow, gives a bound of order
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εeO(d−2). (This kind of estimate was used in [4].) We shall see that we can
do much better.

2.3.1. The Chordal Case. To give some intuition, let us first briefly discuss
the easier chordal case which will be treated in greater detail in [8]. Assume
ν = 1 for simplicity. Write zj(t) = hj(t, zj) − W̃j(t). We can apply the
Cauchy-Schwarz inequality to get∫ t

0
ReψH(t) dt 6

∫ t

0

2
|z1(t)z2(t)| dt

6
(∫ t

0

2
|z1(t)|2 dt

)1/2 (∫ t

0

2
|z2(t)|2 dt

)1/2
.

Since ∂t log Im zj(t) = 2/|zj(t)|2 this can now be used to show that the right-
hand side of (2.8) is bounded by εd−1 times a constant depending only on
T , if Im zj(0) > d, j = 1, 2. (Note that there is no logarithmic correction.)

Remark. The estimate εd−1 is essentially sharp if no further assumptions are
made. Indeed, consider a driving term W1(t) generating a Loewner chain
such that for some fixed p < 1 very close to 1, t0 > 0, there is a constant
c > 0 such that |f ′1(t0,W1(t0) + id)| > cd−p as d → 0. (As shown in [11]
one can take W1(t) = κ

√
t0 − t with κ very close to but smaller than 4. The

curve traces a kind of logarithmic spiral.) If we let W2(t) = W1(t) + ε, then
f2(t, z) = f1(t, z−ε)+ε. Hence, for ε 6 d/2, by Koebe’s distortion theorem,

|f2(t0,W1(t0) + id)− f1(t0,W1(t0) + id)|
> |f1(t0,W1(t0) + id− ε)− f1(t0,W1(t0) + id)| − ε

> cε|f ′1(t0,W1(t0) + id)| > cεd−p.
A similar example can be constructed for the radial case.

If more information is available one can do better. The reader may check
that ∂t Re log h′j(t, z) = Re(2/zj(t)2). From this one can see that the bound
can be expressed in terms of the derivatives f ′j . In fact, in joint work with
Rohde and Wong, [8], we show that

|f1(t0, z)− f2(t0, z)|

6 ε exp
{

1
2

[
log It0,y |f

′
1(t0, z)|
y

log It0,y |f
′
2(t0, z)|
y

]1/2
+ log log It0,y

y

}
,

where It,y =
√

4t+ y2. If a non-trivial power-law bound on the growth of
the derivative at time t0 holds, that is, if cj < ∞ and βj < 1 are such that
for j = 1, 2,

|f ′j(t0,Wj(t0) + id)| 6 cjd−βj , d 6 d0, (2.9)

then one gets a bound in (2.8) of order at most cεd−
1
2 [(1+β1)(1+β2)]1/2 log d−1,

where c depends only on cj , βj , j = 1, 2.
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2.3.2. The Radial Case. We now consider the radial settingX = D. In order
to bound the right-hand side of (2.8) we need to estimate

∫ t0
s ReψD(s) ds.

The idea is to prove that for a constant q slightly larger than 1,

ReψD(t) 6 q
√

1 + |z1(t)|
|1− z1(t)| ·

√
1 + |z2(t)|
|1− z2(t)| ,

where for t ∈ [0, t0], we define

zj(t) = hj(t, zj)W̃j(t).

Note that |zj(0)| = |zj |. Once we have this estimate we can apply the
Cauchy-Schwarz inequality to the corresponding bound on

∫ t0
s ReψD(s) ds

to decouple the two flows and then compare with

1 + |zj(t)|
|1− zj(t)|2

= ∂t log (1− |zj(t)|) . (2.10)

This last identity follows from the reverse-time Loewner equation (2.6). This
will give a bound in (2.8) of order εd−q, where q can be taken arbitrarily
close to 1. (Arguing as in the chordal case only gives a rough bound of
order εd−4, but we shall actually make use of this bound below.) This is
essentially optimal in this general setting as we saw above.

Proposition 2.3. For j = 1, 2, let (fj ,Wj) be D-Loewner pairs. For any
ρ > 1 there exist ε0 = ε0(ρ) > 0, d0 = d0(ρ) > 0, and c = c(ρ) < ∞ such
that the following holds. Let T <∞ and suppose that

sup
t∈[0,T ]

|W1(t)−W2(t)| 6 ε,

where ε < ε0. Then for any z1, z2 ∈ D with |z1−z2| 6 ε and |z1|, |z2| 6 1−d
with (4ε)1/ρ 6 d 6 d0,

|f1(T, z1)− f2(T, z2)| 6 cεd−ρ. (2.11)

Proof. By factoring out W̃1W̃2 we can write

ReψD(t) = Re
(
z1(t)z2(t)− 1− (z1(t) + z2(t)) +O(ε)

(1− z1(t))(1− z2(t))

)

=
Re
{

(z1(t)z2(t)− 1− (z1(t) + z2(t)) +O(ε)) (1− z1(t))(1− z2(t))
}

|1− z1(t)|2|1− z2(t)|2 .

(2.12)

This uses that W̃1(t)W̃2(t) = 1+O(ε) in the sense that |W̃1(t)W̃2(t)−1| 6 cε
for a universal constant c. For z, w ∈ D we now consider the function

R(z, w) = Re {(zw − 1− (z + w)) (1− z)(1− w)}
|1− z||1− w|

√
(1 + |z|)(1 + |w|)

,
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which is bounded and continuous on the closed bi-disk D × D. We claim
that supz,w∈∂DR(z, w) 6 1. A computation shows that R simplifies when
|z| = |w| = 1 so that

R(z, w) = (1− Re z)(1− Rew) + Im z Imw

2
√

(1− Re z)(1− Rew)
, (|z| = |w| = 1).

By changing coordinates z = eiθ and w = eiµ, with θ, µ ∈ [0, 2π], in the last
expression we find

(
R(eiθ, eiµ)

)2
= cos2

(
θ − µ

2

)
6 1.

Let δ > 0 be such that ρ = 1 + 2δ; we assume that δ is small. By the
last expression and the continuity of R, there exists ε′(δ) > 0 such that if
1− ε′ 6 |z|, |w| 6 1 then R(z, w) 6 1 + δ/2. We will fix ε′ from now on. We
can think of ε′ as small but macroscopic compared to ε. Returning to the
flows, by (2.12) and the bound on R, if ε is sufficiently small compared to
δ, we have the estimate

ReψD(t) = Re
(
z1(t)z2(t)− 1− (z1(t) + z2(t)) +O(ε)

(1− z1(t))(1− z2(t))

)
6 (1 + δ)

√
1 + |z1(t)|
|1− z1(t)| ·

√
1 + |z2(t)|
|1− z2(t)| , 0 6 t 6 τ, (2.13)

where

τ = inf{t > 0 : min{|z1(t)|, |z2(t)|} 6 1− ε′}.

We will assume that τ > 0 as there is nothing to prove otherwise. We split
the integral∫ T

0
ReψD(s) ds =

∫ τ

0
ReψD(s) ds+

∫ T

τ
ReψD(s) ds.

We estimate the first integral using (2.13) and the Cauchy-Schwarz inequal-
ity. We get, for 0 6 s 6 τ :

∫ τ

s
ReψD(s) ds 6 (1 + δ)

(∫ τ

0

1 + |z1(s)|
|1− z1(s)|2 ds

)1/2 (∫ τ

0

1 + |z2(s)|
|1− z2(s)|2 ds

)1/2
.

Using (2.10) we see that for 0 6 s 6 τ ,

∫ τ

s
ReψD(s) ds 6 (1 + δ)

(
log

(
ε′

1− |z1|

))1/2 (
log

(
ε′

1− |z2|

))1/2
. (2.14)
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Thus, with max{|z1|, |z2|} = 1− d we conclude that

|z1(τ)− z2(τ)| 6 ε
(
e
∫ τ

0 ReψD(s) ds +
∫ τ

0
e
∫ τ
s

ReψD(r) dr|ξD| ds
)

6 ε
(
ε′

d

)1+δ (
1 + log ε

′

d

)
6 2ε

(
ε′

d

)1+δ
log 1

d
, (2.15)

if d 6 1/e. Here we also used that

|ξD(s)| 6
√

1 + |z1(s)|
|1− z1(s)| ·

√
1 + |z2(s)|
|1− z2(s)| ,

the integral of which is estimated using the Cauchy-Schwarz inequality as
above. Recall that 1+2δ = ρ. There is a d0(ρ) > 0 such that d 6 d0 implies
that dρ = d1+2δ 6 d1+δ/ log(1/d). Consequently, if ε is sufficiently small we
can choose d such that

4ε(ε′)δ 6 4ε 6 d1+2δ 6 d1+2δ
0

and then use (2.15) to get the estimate
max{|z1(τ)|, |z2(τ)|} 6 1− ε′ + |z1(τ)− z2(τ)|

6 1− ε′ + 2ε(ε′)1+δd−(1+2δ)

6 1− ε′

2 . (2.16)

Note the easy bound

ReψD(t) 6 |ψD(t)| 6 4
√

1 + |z1(t)|
|1− z1(t)| ·

√
1 + |z2(t)|
|1− z2(t)| , 0 6 t 6 T. (2.17)

Combining this with the Cauchy-Schwarz inequality, (2.10), and (2.16) gives∫ T

τ
ReψD(s) ds 6 4 log 2

ε′
.

Putting things together we get

|f1(T, z1)− f2(T, z1)| 6 ε
(
e
∫ T

0 ReψD(s) ds +
∫ T

0
e
∫ T
s

ReψD(r) dr|ξD| ds
)

6 2ε log 1
d

exp
{

(1 + δ) log ε
′

d
+ 4 log 2

ε′

}
6 cεd−(1+2δ),

where c = c(ρ) <∞. �

Remark. We believe that the function R(z, w) used in the last proof is
bounded by 1 on the whole bi-disk, and with some work one should be able
to verify this. (However, this is not true for |R(z, w)|.) This would allow for
taking ρ = 1 in (2.11). This would not improve the resulting convergence
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rate in Theorem 4.3, so we will not pursue this here. However, we do expect
a bound of type εd−

1
2 [(1+β1)(1+β2)]1/2 log d−1 to hold in the radial case, too.

Having this estimate could slightly improve the resulting convergence rate
in Theorem 4.3.

Suppose now that for j = 1, 2, fj satisfies the derivative estimate (2.9)
with β = βj and c = cj . (In the radial case we consider the radial version of
(2.9) and take βj = 1; indeed, it is a general fact about (normalized) con-
formal maps that (2.9) always holds with β = 1 for some constant universal
constant c <∞.) Set

ρ0 = ρ0(β1, β2) =
{ 1 if X = D;

1
2
√

(1 + β1)(1 + β2) if X = H. (2.18)

Suppose ρ > ρ0 and p ∈ (0, 1/ρ). Let ε > 0 and define
d∗ = εp. (2.19)

We have proved that for any z and w with |z − w| 6 ε at distance at least
d∗ from the boundary, if the driving terms satisfy sup |W1(t) −W2(t)| 6 ε,
then there are c = c(ρ, p) <∞ and ε0 = ε0(ρ) > 0 such that if ε < ε0, then

|f1(t0, z)− f2(t0, w)| 6 cε1−ρp.

By estimating using Cauchy’s integral formula, we also get a bound relating
the derivatives: Write fj(z) = fj(z, t0). Then with d = dist(z, ∂X),

|f ′1(z)− f ′2(z)| = 1
2π

∣∣∣∣∣
∮
|ζ−z|=r

f1(ζ)− f2(ζ)
(z − ζ)2 dζ

∣∣∣∣∣ 6 cεd−ρr−1,

where r 6 d/2. Taking d = 2r = εp this estimate combined with the reverse
triangle inequality shows that there is a constant c = c(ρ, p, T ) <∞ (recall
that t0 6 T ) such that

sup
z:dist(z,∂X)>εp

∣∣|f ′1(z)| − |f ′2(z)|
∣∣ 6 c ε1−(1+ρ)p.

We have proved the radial part of the following result. (The chordal case is
joint work with Rohde and Wong; see [8] for its complete proof.)

Proposition 2.4. Let X ∈ {D,H} and T > 0. Let (fj ,Wj), j = 1, 2, be
X-Loewner pairs so that fj solve (2.1) with Wj as driving terms and assume
that the fj satisfiy (2.5) with β = βj and c = cj < ∞. Suppose ρ > ρ0,
where ρ0 is defined by (2.18). Assume that z, w ∈ X and for ε > 0

sup
t∈[0,T ]

|W1(t)−W2(t)| 6 ε, |z − w| 6 ε

and for p ∈ (0, 1/ρ) define
d∗ = εp. (2.20)

There exist c = c(T, ρ, p, c1, c2) < ∞, ε0 = ε0(ρ, p) > 0, d0 = d0(ρ) > 0 such
that if

d∗ 6 dist({z, w}, ∂X) 6 d0
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and ε < ε0, then
sup
t∈[0,T ]

|f1(t, z)− f2(t, w)|+ sup
t∈[0,T ]

| d∗|f ′1(t, z)| − d∗|f ′2(t, z)| |6 cε1−ρp.

One way to interpret the last proposition is that information about the de-
rivative of one of the conformal maps transfers to the other via the Loewner
equation if they are evaluated sufficiently far away from the boundary. The
proper scale (or resolution) is determined by the distance between the driv-
ing terms. Note that we make no assumptions about the regularity of the
driving terms; the above results are consequences of the structure of the
Loewner equation alone.

2.4. Supremum Distance Between Loewner Curves. We will now
consider two Loewner curves, γj : [0, T ] → X, j = 1, 2, generating the
X-Loewner pairs (fj ,Wj) and suppose that

sup
t∈[0,T ]

|W1(t)−W2(t)| 6 ε. (2.21)

We are interested in estimating the supremum distance supt∈[0,T ] |γ1(t) −
γ2(t)| when the curves are parameterizes by capacity, in terms ε. We have
the following estimate.

Proposition 2.5. Let X ∈ {D,H}. For j = 1, 2, let (fj ,Wj) be X-Loewner
pairs generated by the curves γj and suppose that there are d0 > 0 and βj , cj
such that fj satisfy (2.5) with β = βj and c = cj. Let ρ > ρ0, where ρ0 is
given by (2.18). Suppose that ε > 0 is such that

sup
t∈[0,T ]

|W1(t)−W2(t)| 6 ε.

Let p ∈ (1, 1/ρ) and set d = εp. There exist c = c(T, ρ, p) < ∞ and ε0 =
ε0(ρ, p) > 0 such that if ε < ε0, then

sup
t∈[0,T ]

|γ1(t)− γ2(t)|

6 cε1−ρp + c sup
t∈[0,T ]

(|γ1(t)− f1(t, (1− d)W1(t))|

+ |γ2(t)− f2(t, (1− d)W2(t))|), (2.22)

with fj(t, (1− d)Wj(t)) replaced by fj(t,Wj(t) + id) in the chordal case.

Proof. We will do the radial case. Write
|γ1(t)− γ2(t)| 6 |γ1(t)− f1(t, (1− d)W1(t))|

+ |f1(t, (1− d)W1(t))− f1(t, (1− d)W2(t))|
+ |f1(t, (1− d)W2(t))− f2(t, (1− d)W2(t))|
+ |f2(t, (1− d)W2(t))− γ2(t)|.
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Denote by b1, . . . , b4 the four terms on the right-hand side in the last in-
equality in the order in which they appear. By the distortion theorem, since
d > ε we have that

b2 6 cdist(f1(t, (1− d)W1(t)), ∂f1(t,D)) 6 cb1.

Finally, by Proposition 2.4, b3 6 cε1−ρp. �

Corollary 2.6. For j = 1, 2, let (fj ,Wj) be H-Loewner pairs generated by
the curves γj and assume that (2.21) holds. Suppose that there exist d0 > 0,
c <∞, and β < 1 such that the fj satisfy the estimate (2.5). Then for every

r < 21− β
3− β ,

there exist c = c(r, T ) <∞ and ε0 = ε0(r, T ) > 0 such that if ε < ε0, then
sup
t∈[0,T ]

|γ1(t)− γ2(t)| 6 c εr.

Proof. Under our assumptions ρ0 = (1 + β)/2. Let ρ > ρ0 and 0 < p <
1/ρ. We set d = εp, apply Propositon 2.5, and integrate the bound on the
derivatives to see that for ε > 0 sufficiently small,

sup
t∈[0,T ]

|γ1(t)− γ2(t)| 6 c
(
ε1−ρp + εp(1−β)

)
.

We optimize over exponents to find the stated bound for r. �

The proof of the next corollary is an analog for Loewner curves of the
well-known fact that the Riemann map onto a Hölder domain satisfies a
power-law bound on the growth of the derivative.

Corollary 2.7. For j = 1, 2, let (fj ,Wj) be H-Loewner pairs generated by
the curves γj and assume that (2.21) holds. Suppose that both curves are
Hölder-α continuous in the capacity parameterization, where α > 0. Then
for every

r <
2α

1 + α
,

there exist c = c(r, T ) <∞ and ε0 = ε0(r, T ) > 0 such that if ε < ε0, then
sup
t∈[0,T ]

|γ1(t)− γ2(t)| 6 c εr.

Proof. We will prove a bound on the growth of the derivative and then apply
the previous corollary. It is enough to consider f(t, z) := f1(t, z) since we
made the same assumptions on both Loewner chains. Write γ = γ1 and
W = W1 and for t, t+ s ∈ [0, T ], let

γ̃ = f−1(t, γ[t, t+ s]).
Then γ̃ is a curve in H “rooted” at W (t). Set d = diam γ̃. Let z ∈ γ̃ be a
point such that |z −W (t)| = d/2 and let Γ be the hyperbolic geodesic in H
connecting W (t) with z. Then Γ contains a point w with Imw > d/4. Note
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that by the distortion theorem, |f ′(t, w)| � |f ′(t,W (t)+ id)| so that Koebe’s
1/4 theorem implies that there is a universal constant c > 0 such that

B
(
f(t, w), cd|f ′(t,W (t) + id)|

)
⊂ f (t,B(w, d/8)) .

(Here, and in the sequel B(z, r) = {w : |w − z| < r}.) Consequently,

diam f(t,Γ) > c d|f ′(t,W (t) + id)|. (2.23)

On the other hand, by the Gehring-Hayman theorem, see Chapter 4 of
[20], and the assumption on γ, we have that there are constants c, c′ < ∞,
depending only on the constant in the modulus of continuity for γ, such that

diam f(t,Γ) 6 c diam γ[t, t+ s] 6 c′sα.

Hence, using (2.23), there is a constant c <∞ such that

d|f ′(t,W (t) + id)| 6 c sα 6 c′ d2α,

where the last inequality follows since hcap γ̃ = 2s so that there is a universal
constant c <∞ such that s 6 cd2. The diameter d depended on s, but every
d sufficiently small can be written like this since s 7→ d is an increasing
continuous function. �

Remark. If γ(t) is Hölder-α continuous in the capacity parameterization,
then its driving term is at least Hölder-α/2: Using the notion of the proof
of Corollary 2.7, we note that by the Beurling estimate, diam γ̃ 6 c sα/2 and
by Lemma 2.1 of [15], we have |W (t+ s)−W (t)| 6 c diam γ̃ 6 c′ sα/2.

3. Geometric Conditions

This section develops a geometric condition that we will use in place of
a bound on the growth of the derivative of the conformal map in order to
measure the regularity of a Loewner curve locally at the tip. As pointed
out in the introduction, several similar conditions have appeared in the
literature. We will work in the radial setting, but the results hold also in
the chordal setting with minor modifications in their statements and proofs.

Let D 3 0 be a simply connected domain. Let ψ : D → D be the uni-
formizing conformal map. We consider a radial Loewner curve γ : [0, T ] →
D. That is, the conformal image of γ in D using the conformal map ψ is a
D-Loewner curve. In this section we write Dt for the connected component
of D \ γ[0, t] containing the origin.

3.1. Tip Structure Modulus. For s, t ∈ [0, T ] with s 6 t we let γs,t denote
the curve determined by γ(r), r ∈ [s, t]. For a crosscut C of Dt we write JC
for the component of Dt \ C of smaller diameter.

For each 0 6 t 6 T and δ > 0, let St,δ be the collection of crosscuts of
Dt of diameter at most δ that separate γ(t) from 0 in Dt. For a crosscut
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C ∈ St,δ, define

sC = inf{s > 0 : γ[t− s, t] ∩ C 6= ∅}, γC = (γ(r), r ∈ [t− sC , t]).
(We set sC = t if γ never intersects C.) For δ > 0, we define the tip
structure modulus of (γ(t), t ∈ [0, T ]) in D, written ηtip(δ), to be the
maximum of δ and

sup
t∈[0,T ]

sup
C∈St,δ

diam γC . (3.1)

Remark. In the chordal setting we consider instead crosscuts separating γ(t)
from ∞ in Ht in the definition of the structure modulus. The remaining
construction is the same.

It is useful to introduce some more terminology. given 0 < δ 6 η we will
say that the curve γ has a (δ, η)-bottleneck in Dif there exist t ∈ [0, T ]
and ζ ∈ ∂Dt such that γ(t) and ζ can be connected by a crosscut Ct of Dt

and diam JCt > η while diam Ct 6 δ. This definition is similar to the one for
“quasi-loops” given by Schramm in [22]. We say that the bottleneck is at z0
if the points ζ and γ(t) in the previous definition are contained in the disk
B(z0, η/4).

Similarly, given 0 < δ 6 η we will say that the curve γ has a nested
(δ, η)-bottleneck in D if there exist t ∈ [0, T ] and C ∈ St,δ with

diam γC > η.

That γ(t), t ∈ [0, T ] has no nested (δ, η)-bottleneck in D is clearly equivalent
to having the inequality ηtip(δ) 6 η.

Remark. The definition of nested bottleneck is independent of the particular
chosen parameterization of the curve in the sense that any increasing repa-
rameterization would do in the definition. The definition is not, however,
symmetric with respect to reversibility of the curve.

The term “structure modulus” is borrowed from Warschawski [26] who
used it in the following sense: the “structure modulus of the boundary of
D” is defined by the function

ηW (δ) = sup
C

diam JC ,

where the supremum is over all crosscuts (of D) of diameter at most δ and
JC ⊂ ∂D is the subarc of smaller diameter separated from 0 by C. Intuitively,
the decay rate of ηW places a restriction on bottlenecks/outward-pointing
cusps in the boundary and this gives estimates on the regularity of the
Riemann mapping from D. For example, D is a John domain if and only
if ηW (δ) 6 Aδ for some constant A < ∞. One can use this to show (see
[26]) that if h < 2/(A2π2), then the Riemann map from D is Hölder-h on
the closed unit disk. The tip structure modulus is the natural analogue to
ηW for Loewner curves, see Theorem 3.5 below. Moreover, and importantly,
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γ(s)

γ(t)

C

0

∂D∂D

Figure 1. A nested (δ, η)-bottleneck with diam C = δ and
diam γC > η, where γC = γ[s, t]. A 6-crossing event of a
(δ, η)-annulus for the whole curve.

the tip structure modulus is related to annuli crossing events (see Figure 1),
the probabilities of which are often known how to control for discrete-model
curves; the connection between annuli crossings and regularity of curves is
well-known; see, e.g., [1].

3.2. Distance to the Tip. Let (f,W ) be a D-Loewner pair and assume it
is generated by a curve γ. We use the notation

∆t(d) = dist(ft((1− d)Wt), Dt),

where Wt = eiξt is the driving term for (ft). Note that Koebe’s distortion
theorem implies that

∆t(d) � d|f ′t((1− d)Wt)|.

Recall also that for each t, the tip of the curve is given by taking the radial
limit

γ(t) = lim
d→0+

ft((1− d)Wt).
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We saw in Section 2.4 that we need to obtain uniform (in t) bounds on
|γ(t)− ft((1− d)Wt)|.

A lower bound on this quantity is clearly given by ∆t(d) and if we have a
bound for ηtip(δ) in terms of δ, then we can also give an estimate from above
in terms of ∆t(d). We need the following lemma.

Lemma 3.1. Let T < ∞ be given. There exist constants 0 < ρ1, c1 < ∞
with ρ1 universal and c1 = c1(T ) such that the following holds. Let γ be
a curve in D generated by the Loewner pair (f,W ). Let t ∈ [0, T ]. If
∆t(d) < c1 then there is a crosscut C = Ct of Dt that separates ft((1−d)Wt)
and γ(t) from 0 in Dt while

diam C 6 ρ1 ∆t(d).
Moreover, C can be taken to be a subarc of B (ft((1− d)Wt), ρ1 ∆t(d)/2).

Proof. Let t ∈ [0, T ] and set
zd = ft((1− d)Wt).

We will write
∆ = ∆t(d) = dist(zd, ∂Dt).

For ρ > 1, consider (∂B(zd, ρ∆)) ∩ Dt. The components of this set form
crosscuts of Dt and we let C0 be the subset of those crosscuts that separate
zd from 0 in Dt. (Since the inner radius of Dt from 0 is bounded below by
e−T /4, C0 is non-empty whenever ρ∆ is smaller than, say, e−T /16.) Let
Cρ be the unique crosscut in C0 with the property that it separates every
other member in C0 from 0 in Dt. Let Oρ be the component of Dt \ Cρ that
contains zd and let Eρ = ∂Oρ \ Cρ. By Beurling’s projection theorem and
the maximum principle there exists a universal ρ0 <∞ and for each ρ > ρ0
a constant c0 = c0(ρ, T ) > 0 such that if ∆ < c0 then we have the following
lower bound on harmonic measure

ω(zd, Eρ,Oρ) > 1/2. (3.2)
Let O := O2ρ0 , C := C2ρ0 , and E := E2ρ0 . Let c1 = c1(T ) < ∞ be such
that if ∆ < c1, then the diameter of the pre-image of C in D is at most 1/2
and (3.2) holds with ρ replaced by 2ρ0. (Existence of such a c1 follows from
Beurling’s projection theorem.) We shall assume that ∆ < c1 in the sequel.
We claim that the pre-image of E in ∂D is an arc containing the point Wt.
Indeed, it is clear that it is an arc of ∂D. If gt = f−1

t then gt(C) is a crosscut
of D separating gt(E) and (1 − d)Wt from 0. By conformal invariance, the
maximum principle, and (3.2), the harmonic measure of gt(E) from (1−d)Wt

is strictly bigger than 1/2. Write Wt = eiξt . Note that by symmetry, the
harmonic measure from (1 − d)Wt of {ei(ξt+θ) : 0 6 θ 6 π} in D is exactly
1/2. Therefore, if Wt = eiξt /∈ gt(E), then the arc gt(E) must contain the
point ei(ξt+π). Since gt(C) separates (1−d)Wt and ei(ξt+π) from 0, this would
imply that diam gt(C) > 1/2 and this is a contradication. �
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γ(t)

zd = ft((1− d)Wt)

Wt

(1− d)Wt

C

gt(C)

gt

∂D∂D

0 0

Figure 2. Sketch for the proof of Lemma 3.1. The crosscut
gt(C) separates (1− d)Wt and gt(E) ⊂ ∂D from 0 in D. The
harmonic measure of gt(E) from (1 − d)Wt is at least 1/2.
Hence Wt ∈ gt(E).

Proposition 3.2. Let T <∞ be given. There exist constants 0 < c1, c2, c3 <
∞ with c1 depending only on T and c2, c3 universal such that the following
holds. Let γ be a curve in D generating the Loewner pair (f,W ) and let
ηtip(δ) be the tip structure modulus for (γ(t), t ∈ [0, T ]). Then if t ∈ [0, T ]
and ∆t(d) < c1, we have

|γ(t)− ft((1− d)Wt)| 6 c2ηtip (c3 ∆t(d)) . (3.3)

Proof. We use the notation from the proof of Lemma 3.1. Set

δ0 = ρ1∆/2,

where ρ1 is as in Lemma 3.1. Then by Lemma 3.1 (if ∆ < c1, where c1
is the constant of that lemma) there is a crosscut C ⊂ B(zd, δ0) separating
zd and γ(t) from 0 in Dt while diam C 6 2δ0. By the definition of tip
structure modulus, dist(γ(t), C) 6 ηtip (2δ0) and consequently, |zd − γ(t)| 6
ηtip (2δ0) + δ0. �

One can also estimate the distance to the tip directly in terms of d, the
distance to the boundary in D.
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Proposition 3.3. There is a constant c <∞ such that the following holds.
Let T < ∞ be given. Let γ be a curve in D generating the Loewner pair
(f,W ) and let ηtip(δ) be the tip structure modulus for (γ(t), t ∈ [0, T ]). Then
for every t ∈ [0, T ] and d < 1/2,

|γ(t)− ft((1− d)Wt)| 6 c ηtip
(
(2πA/(log 1/d))1/2

)
, (3.4)

where A may be chosen as min{π(diam γ0,T )2, π}.

Proof. The needed estimate is a consequence of a classical result due to
J. Wolff. We will give a short proof using extremal length. Consider
A = A(r,R) ∩ D centered around Wt, the pre-image of γ(t) in ∂D. Let
E and F be the two boundary components of A which are contained in ∂D.
By comparing with a half-annulus and mapping to a rectangle, using also
the comparison principle for extremal length, we see that the extremal dis-
tance between E and F in A is at most π/ log(R/r). Hence, by conformal
invariance and the definition of extremal length,

π

log(R/r) >
L2

A
,

where L is the euclidean length of the curve-family connecting f(E) with
f(F ) in f(A) and A is the euclidean area of f(A). The number A is clearly
bounded above by the minimum of π(diam γ0,T )2 and π. Consequently, by
taking r = d and R =

√
d we see that there exists a crosscut C′ of Dt

separating γ(t) and zd = ft((1 − d)Wt) from 0 and the diameter of C′ is at
most l(d) := (2πA/(log 1/d))1/2. Hence, dist(γ(t), C′) 6 ηtip(l(d)) and an
argument using the Gehring-Hayman theorem (see, e.g., Theorem 4.20 of
[20], and also below) now shows that dist(zd, γ(t)) 6 c(ηtip(l(d)) + l(d)) 6
c′ηtip(l(d)).

�

We end the section with a lemma that combines some of the previous work
in this section and that of Section 2. It is tailored for the situation where a
discrete model Loewner curve approaches an SLE curve in the scaling limit.
We will use it in the proof of Theorem 4.3 in Section 4.

Lemma 3.4. For j = 1, 2, let (fj ,Wj) be D-Loewner pairs generated by the
curves γj. Fix T <∞ and ρ > 1. Assume that there exist β < 1, r ∈ (0, 1),
p ∈ (0, 1

ρ), and ε > 0 such that the following holds with

d∗ = εp.

(i) The driving terms satisfy

sup
t∈[0,T ]

|W1(t)−W2(t)| 6 ε;
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(ii) There exists a constant c <∞ such that the tip structure modulus for
(γ1(t), t ∈ [0, T ]) in D satisfies

ηtip(d∗) 6 c dr∗;

(iii) There exists a constant c′ <∞ such that the derivative estimate

sup
t∈[0,T ]

d|f ′2(t, (1− d)W2(t))| 6 c′ d1−β, ∀d 6 d∗,

holds.

Then there is a constant c′′ = c′′(T, β, r, p, c, c′) <∞ such that

sup
t∈[0,T ]

|γ1(t)− γ2(t)| 6 c′′ max{εp(1−β)r, ε(1−ρp)r}

The analogous statement holds for H-Loewner pairs.

Proof. The proof is immediate from the assumptions using Proposition 2.5
combined with Proposition 3.2. �

3.3. Hölder Regularity. We shall now see that the John-type condition
ηtip(δ) 6 Aδ, δ < δ0, forces a curve driven by a Hölder continuous function
to be Hölder continuous in the capacity parameterization, with exponent
depending only on A and the exponent for the driving term. Note that we
must have A > 1. We will derive a bound on the growth of the derivative
as in (2.5) from the bound on ηtip. Hölder regularity then follows from
Proposition 2.2. The proof uses the length-area principle. The situation is
different from the classical one; see, e.g., [26] or [20], in that our assumptions
do not prevent large bottlenecks to form.

Theorem 3.5. Suppose that the radial Loewner pair (f, eiξ) is generated by
a curve γ. Assume that ξ is Hölder continuous and that there exist A <∞
and δ0 > 0 such that the tip structure modulus for (γ(t), t ∈ [0, T ]) in D
satisfies ηtip(δ) 6 Aδ, δ < δ0. Then γ is Hölder continuous on [0, T ] with
Hölder exponent depending only on A and the Hölder exponent for ξ.

Remark. A bound on the tip structure modulus alone cannot imply Hölder
regularity of the path in the capacity parametrization; it is necessary to have
some regularity of the driving term. Indeed, consider the chordal setting
and take γ to be the graph of e−1/x, x ∈ [0, 1]. For this curve the tip
structure modulus clearly decays linearly, uniformly in t. On the other
hand, parameterize by half-plane capacity and note that there is a universal
constant c such that

2t = hcap γ[0, t] 6 c height γ[0, t] · diam γ[0, t].

(This follows, e.g., from a harmonic measure estimate.) Hence

t 6 ce−1/Re γ(t) Re γ(t),
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which shows that γ is not Hölder continuous at t = 0. (By precomposing
with slit map

√
z2 − 4T a similar example can be constructed with the “sin-

gularity” occurring at an arbitrary T > 0.) Moreover, if W is the driving
term for γ, then

diam γ[0, t] �
√
t+ sup

s∈[0,t]
|W (s)|,

so W is also not Hölder continuous. (In fact, a similar argument shows that
if the driving term is Hölder-α, α 6 1/2, at t = 0, then so is the curve.)

It is possible to take this example as a starting point to formulate a
geometric condition that implies Hölder continuity for the driving term. We
shall not, however, pursue this further here.

Before giving the proof of Theorem 3.5 we need a simple lemma.

Lemma 3.6. Let f : D→ D be a conformal map with f(0) = 0. Define the
Stolz cone

Sr = {1− ρeiθ : 0 6 ρ 6 r, −π/4 6 θ 6 π/4}.
There is a universal constant c <∞ such that

diam f(Sr) 6 cdiam f(σr),
where σr = [1− r, 1) is the line segment connecting 1− r and 1.

Proof. Let u = 1− ρeiθ be an arbitrary point in Sr. By Koebe’s distortion
theorem there is a universal constant c such that

|f(u)− f(1− ρ)| 6 cρ|f ′(1− ρ)|.
Hence by Koebe’s estimate there is a universal constant c′ such that

|f(u)− f(1− ρ)| 6 c′ dist(f(1− ρ), ∂D)
6 c′ diam f(σr),

and this concludes the proof. �

Proof of Theorem 3.5. Let t ∈ [0, T ] and write Wt = eiξt . Without loss of
generality we may assume that t > 0 and that Wt = 1. We suppress the
dependence on t and write f for ft and D for Dt etc. throughout the proof.
Set zr = f(1− r) and ∆r = dist(zr, ∂D). By Proposition 3.3 there is an r0
depending only on A and δ0 such that ∆r 6 δ0 for all r 6 r0. By taking
r0 smaller if necessary, depending only on T , we can guarantee that the
assumptions of Lemma 3.1 are satisfied so that there will exist a universal
ρ0 < ∞ and a crosscut C contained in ∂B(zr, ρ0∆r) that separates zr and
γ(t) from 0 in D. Let σr = [1− r, 1]. We claim that f(σr), which connects
zr with γ(t) in D, satisfies

diam f(σr) 6 cρ0A∆r, (3.5)
where c is a universal constant. To prove this, note that since C separates
γ(t) and zr from 0, the hyperbolic geodesic f(σ1) ⊃ f(σr) which connects
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γ(t) and 0 must intersect C. (Since γ is a Loewner curve, γ(t) is always
on the boundary of the simply connected domain Dt 3 0.) Let Γ′′ be the
curve obtained by tracing f(σ1) from 0 to γ(t) until C is first hit. Let
Γ′ = f(σ1) \ Γ′′. Then Γ′ is a hyperbolic geodesic connecting a point on C
with γ(t) in Dt and f(σr) ⊂ Γ′. By the bound on the structure modulus
there is a curve Γ connecting γ(t) with C in Dt and

diam Γ 6 2A diam C 6 4ρ0A∆r.

The Gehring-Hayman theorem; see, e.g., Chapter 4 of [20], now implies that
there is a universal constant c such that

diam f(σr) 6 diam Γ′ 6 c(diam Γ + diam C)

and this gives (3.5).
Using Lemma 3.6, the remainder of the proof now proceeds by a standard

length-area type argument (see, e.g., Chapter 5 of [20]). Define

ϕ(r) =
∫ r

0
|f ′(1− r)|2 r dr.

Then by Koebe’s distortion theorem there is a universal constant c0 such
that

r2|f ′(1− r)|2 6 c0

∫ r

r/2
r|f ′(1− r)|2dr 6 c0ϕ(r). (3.6)

This theorem also implies that there is a constant c1 depending only on c0
such that

ϕ(r) 6 c1

∫ r

0

∫ π/4

−π/4
|f ′(1− reiθ)|2 r drdθ = c1 area f(Sr),

where Sr is the Stolz cone defined in the statement of Lemma 3.6. Now, by
(3.5) and Lemma 3.6 we have that

area f(Sr) 6
π2

4 (diam f(Sr))2 6 c2∆2
r .

Hence
ϕ(r) 6 c1 area f(Sr) 6 c3r

2|f ′(1− r)|2.
Consequently, since ϕ′(r) = r|f ′(1− r)|2, we have for r0 > r and a constant
c4 depending only on A

log
(
ϕ(r0)
ϕ(r)

)
=
∫ r0

r

ϕ′(r)
ϕ(r) dr > c

−1
4 log

(
r0
r

)
.

Taking exponentials, using (3.6), gives for 0 < r 6 r0

r2|f ′(1− r)|2 6 c5r
1/c4 ,

where c5 depends only on r0. Hence if β = 1− 1/(2c4) < 1 we see that

r|f ′(1− r)| 6 c6r
1−β.
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By Proposition 2.2, since the estimates were uniform in t, this implies Hölder
regularity with an exponent depending only on A and the exponent for
W . �

4. Loop-Erased Random Walk and SLE2

This section proves a convergence rate result for loop-erased random walk
using the setup detailed in the previous sections.

4.1. Definitions. The radial Schramm-Loewner evolution, radial SLEκ,
is defined by taking W (t) = ei

√
κB(t) as driving term for the radial Loewner

equation, where B is standard Brownian motion. It is a fact that this
Loewner chain is almost surely generated by a curve – the SLEκ path. This
is a random fractal curve which is simple when 0 6 κ 6 4, has double points
when 4 < κ and is space filling when κ > 8. See [21] for proofs of these
results. In Appendix A we discuss a derivative estimate for radial SLEκ
that we will state and use in this section when κ = 2. For technical reasons
we need a stopping time σ for the radial SLE path γ̃ further discussed in
Appendix A. Fix a small constant ε > 0. We then define

σ = σ(ε, T ) = inf{t > 0 : |gt(−1)−W (t)| 6 ε} ∧ T, (4.1)
where gt = f−1

t is the forward Loewner SLE2 flow and W (t) is the driving
term for ft.

Proposition 4.1. Let ε > 0 and T < ∞ be fixed and let (fs), 0 6 s 6 σ,
be the stopped radial SLE2 Loewner chain with σ = σ(ε, T ) defined by (4.1).
For every β ∈ (2(

√
10 − 1)/9, 1) and q < q(β) there exists a constant c =

c(β, q, ε, T ) <∞ such for all d∗ 6 1

P
{
∀ d 6 d∗, sup

s∈[0,σ]
d|f ′s((1− d)W (s))| 6 d1−β

}
> 1− cdq∗.

where
q(β) = −1 + 2β + β2

4(1 + β) .

Proof. See Appendix A. �

Let D 3 0 be a simply connected domain and assume that the inner
radius of D with respect to 0 equals 1. We will assume, for simplicity,
that D is a Jordan domain with C1+α boundary, where α > 0. We shall
consider a particular discretization of D. A grid-domain with respect to
n−1Z2 is a simply connected domain whose boundary is a subset of the edge
set of the graph n−1Z2. We define Dn = Dn(D), the n−1Z2 grid-domain
approximation of D, as the component of 0 of C minus those closed n−1Z2

lattice faces that intersect ∂D. Then clearly Dn is a grid-domain contained
in D. Let ψn : Dn → D be the normalized conformal map.
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Suppose S = S(j), j = 0, 1, . . . ,m, is a finite nearest-neighbor walk
on (the vertices of n−1Z2 contained in) Dn. We define the loop-erasure
L{S} ⊂ S in the following way. If S is already self-avoiding, set L{S} = S.
Otherwise, let s0 = max{j : S(j) = S(0)}, and for i > 0, let si = max{j :
S(j) = S(si−1 + 1)}. If we let n = min{i : si = m}, then L{S} =
{S(s0), S(s1), . . . , S(sn)}. Notice that L{S}(0) = S(0) and L{S}(sn) =
S(m), that is, the loop-erased walk has the same end points as the original
walk S. Loop-erased random walk (LERW) from 0 to ∂Dn in Dn is the
random self-avoiding walk γn obtained by taking S to be a simple random
walk on n−1Z2 started from 0 and stopped when reaching ∂Dn, and then
setting γn = L{S}. For a nearest-neighbor walk S, let SR be the time-
reversed walk. It is known that LERW has the following symmetry with
respect to time-reversal: The distribution of (L{S})R is equal to that of
L{SR}. Sometimes it is more convenient to consider L{SR}, and when we
do we will call it the time-reversed LERW (or time-reversal of LERW) and
usually assume that the path is traced from the boundary towards 0; we
always add edges in the obvious way to discrete walks to make them curves.

4.2. Convergence Rate for the LERW Path. Lawler, Schramm, and
Werner proved in [15] that, as n→∞, the image of the time-reversed LERW
path in D, ψn

(
L{SR}

)
, traced from ∂D towards 0, converges weakly with

respect to a natural metric on curves modulo increasing reparameterization
towards the radial SLE2 path started uniformly on ∂D. (See Theorem 3.9 of
[15] for a precise statement.) The goal of this section is to prove Theorem 4.3,
which is can be viewed as a quantitative version of Theorem 3.9 of [15].

Let D be a simply connected C1+α domain with grid domain approxima-
tion Dn = Dn(D). Let γn be the time-reversal of LERW on n−1Z2 from 0
to ∂Dn and let γ̃n = ψn(γn) be its image in D traced from the boundary
and parameterized by capacity. (Since γn is a simple curve that intersects
∂Dn at only one point it follows that γ̃n is a D-Loewner curve for each n.)
Let Wn(t) be the Loewner driving term for γ̃n. Fix s ∈ (0, 1/24), and define

εn = n−s.

Theorem 4.2 ([4]). For every T > 0 there exists n0 = n0(T, s) < ∞ such
that the following holds. For each n > n0 there is a coupling of γn with
Brownian motion B(t), t > 0, where eiB(0) is uniformly distributed on the
unit circle, with the property that

P
{

sup
t∈[0,T ]

|Wn(t)−W (t)| > εn

}
< εn, (4.2)

where W (t) = eiB(2t).

Remark. The coupling(s) of Wn = eiθn and W = eiB in Theorem 4.2 are via
Shorokhod embedding of θn into B.
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We can now state a precise version of the main result of the paper.

Theorem 4.3. There exists n1 = n1(ε, T, s) <∞ such that if n > n1, then
in the coupling of Theorem 4.2, if γ̃ denotes the radial SLE2 path in D driven
by W ,

P
{

sup
t∈[0,σ]

|γ̃n(t)− γ̃(t)| > εmn

}
< εmn , (4.3)

where both curves are parameterized by capacity,
m = 1/41,

and σ = σ(ε, T ) is the stopping time defined by (4.1).

Remark. The proof of Theorem 4.3 (with minor modifications) would also
work under the weaker assumption that D is a quasidisk. (The class of
quasidisks includes, e.g., the von Koch snowflake.) In this case the rate
would depend on the constant in the Ahlfors three-point condition satisfied
by ∂D; see Appendix B. We may also note that the conclusion (and proof)
of Theorem 4.3 holds true in any coupling like the one of Theorem 4.2, with
the proviso that εn decays slower than n−1/2.

Remark. By Lemma 4.7 below the preimages of the curves (parameterized
by capacity) in Dn satisfy a similar estimate as in (4.3), namely,

P
{

sup
t∈[0,σ]

|γn(t)− ψ−1
n (γ̃(t)) | > εmn

}
< εmn , m = 1/41.

In order to apply the work from previous sections we need to verify that
the assumptions of these results hold with large probability. In Section 4.3
we will first estimate the probability of the existence of a certain power-law
bound for the tip structure modulus for the LERW path in Dn. We show in
Appendix B that if ∂D is sufficiently smooth (C1+α), then the image of the
LERW path in D enjoys the same tip structure modulus up to constants.
This uses a convergence rate result for grid domain approximations of qua-
sidisks that we derive from a result of Warshawski’s. In Appendix A we
prove the needed estimate on the derivative of the SLE2 conformal maps.
These results are combined to prove Theorem 4.3 in Section 4.5.

4.3. Tip Structure Modulus for LERW in a Grid Domain. An impor-
tant tool to get quantitative estimates for LERW is the Beurling estimate
for simple random walk; see, e.g., [13]. There are many ways to formulate
this result and we state only one version here.

Lemma 4.4. There exists a constant c < ∞ such that the following holds.
Let A ⊂ Z2 be an infinite connected set. Let S be simple random walk on
Z2 started from z and stopped at the time τA at which S hits A. Then for
r > 1

P {|S(τA)− z| > r dist(z,A)} 6 cr−1/2.
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We can now formulate the main estimate of this section.

Proposition 4.5. Let Dn be a grid domain with respect to n−1Z2 and as-
sume that 1 6 inrad(Dn) 6 2 and that diamDn 6 R <∞, where R is given.
Let γn be the time-reversal of loop-erased random walk from 0 to ∂Dn. Let
η

(n)
tip (δ) be the tip structure modulus for γn (traced from ∂Dn) stopped when
first reaching distance ε > 0 from 0. Let r ∈ (0, 1/11). There exists a uni-
versal constant c0 > 0 and c = c(R, r, ε) < ∞ such that if n is sufficiently
large and δ > c0/n, then

P
{
η

(n)
tip (δ) 6 δr

}
> 1− cδ1/5−11r/5| log δ|. (4.4)

Remark. When we apply Proposition 4.5 we will choose δ = δ(n) ∈ ω(n−1)
(in the sense of Landau notation) so that δ > c0/n is automatically satisfied
for n sufficiently large.

Remark. The Beurling estimate implies that there is a constant c <∞ such
that

P{diam γn > R} 6 cR−1/2

for large R. This means that one can formulate and prove Proposition 4.5
with an estimate independent of the diameter of Dn.

4.4. Proof of Proposition 4.5. The result was formulated for the time-
reversal of LERW but in the proof we shall consider the LERW generated
by erasing the loops of simple random walk from 0 to ∂Dn (without the
time-reversal). By time-reversal symmetry, this is sufficient.

The strategy of the proof is based on that of the proof of Lemma 3.4 in
[22], but see also the related Lemma 3.12 of [15]. Let w be a fixed point in
Dn. Let A = A(w; δ, η) = {z : δ < |z − w| < η} be the (δ, η)-annulus about
w and assume (for now) that δ > 10/n and we think of η as much larger than
δ but still small compared to inradD; eventually we want to choose η = δr

for some r ∈ (0, 1). Let γ be a curve in Dn. We say that γ has a k-crossing
of the annulus A if the number of components of γ ∩ A that connect the
two boundary components of A is at least k. Recall that η(δ) is a bound
for the tip structure modulus for γ in Dn if and only if γ has no nested
(δ, η(δ))-bottleneck in Dn. Now consider γn, the LERW path in Dn traced
from ∂Dn towards 0 and the event that there is a nested (δ, 2η)-bottleneck
in γn stopped when reaching ∂B(0, ε). We claim that this event is contained
in the union of of the following two events:

E5= {There is a w ∈ Dn with |w| > ε such that γn has a 5-crossing of a
(δ, η)-annulus about w.}

EB= {The random walk generating γn travels more than distance η before
hitting ∂Dn, after the first time it has come within distance δ from
∂Dn.}
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∂D

0

0 ∂D

Figure 3. A 6-crossing and crossings close to ∂D.

Indeed, suppose that a nested (δ, 2η)-bottleneck occurs in γn stopped when
reaching ∂B(0, ε). Then if we choose some parameterization of γn traced
from ∂Dn to 0, by definition there exist t0 and a crosscut C of D′ = Dn \
γ[0, t0] such that diam C 6 δ and diam γC > 2η. Consider first the case when
C ∩ ∂Dn 6= ∅. Then since γn connects ∂Dn with 0 and C separates a piece
of γn from 0 we must have that γn intersects C. Consequently, the random
walk that generates γn intersects C, and if C is to separate a piece of γn of
diameter at least 2η the event EB must occur.

Now suppose that C ∩ ∂Dn = ∅. We will show that this implies that E5
must occur. Notice that D′\C consists of two simply connected components,
one of which has no part of its boundary in common with ∂Dn. Call this
component O. There are two cases: First, assume that 0 6∈ O. Then γC ⊂ O
and so diamO > 2η. By considering ∂O\(C∪γC) (giving two crossings) and
γC traced from C to γn(t0) and then continued along γn to 0 (giving three
crossings) we see that γn indeed contains a 5-crossing of (δ, η)-annulus. On
the other hand, if 0 ∈ O we have that B(0, ε) ⊂ O so diamO > 2η if η < ε/2.
In this case γC ⊂ D′ \ O and again considering ∂O \ (C ∪ γC) and γC traced
from C to γn(t0) and then continued along γn to 0 we see that γn contains
a 5-crossing of a (δ, η)-annulus.

We will estimate the probabilities of the two events E5 and EB, starting
with the last. In this case the Beurling estimate immediately implies that
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there is a constant c <∞ such that

P (EB) 6 c
(
δ

η

)1/2
. (4.5)

We proceed to bound P (E5). Fix a point w ∈ Dn with |w| > ε. Set

d0 = dist(w, ∂Dn) > 0

and define
B1 = B(w, η/4), B2 = B(w, η/2).

For a curve γ ⊂ Dn, we let Q3(γ;w, δ, η) denote the event that γ has a 3-
crossing of a (δ, η)-annulus whose smaller boundary component is contained
in B1. Similarly, let Q5(γ;w, δ, η) denote the event that γ has a 5-crossing
of a (δ, η)-annulus whose smaller boundary component is contained in B1.
Clearly, the latter event is contained in the former. We will first estimate
the probability of

Q5 := Q5(γn;w, δ, η).
Let S(t) = Sn(t), t = 0, 1, . . . , τ be the simple random walk generating γn;
it is started from 0 and stopped at

τ = min{t > 0 : S(t) ∈ ∂Dn}

when ∂Dn is hit. Define

s1 = min{t > 0 : S(t) ∈ B1}, t1 = min{t > s1 : S(t) 6∈ B2},

and recursively for j = 2, 3, . . . ,

sj = min{t > tj−1 : S(t) ∈ B1}, tj = min{t > sj : S(t) 6∈ B2}.

Note that we have s1 = 0 if |w| 6 η/4 and s1 > 0 otherwise. We will write

Q5
j := Q5(L{S[0, tj ]};w, δ, η), Q3

j := Q3(L{S[0, tj ]};w, δ, η).

Clearly, Q5
j ⊂ Q3

j , but it does not necessarily hold that Q5
j+1 ⊂ Q5

j or
Q3
j+1 ⊂ Q3

j because part of the curve forming a crossing may be erased.
Note that for m > 1

P
(
Q5
)
6 P{τ > tm+1}+ P

(
∪mj=1Q5

j

)
.

We estimate P{τ > tm+1} in Lemma 4.6 below.
We have

P
(
∪mj=1Q5

j

)
6

m∑
j=1

P
(
Q5
j , ¬Q5

j−1

)
.

To get the last estimate we split the event on the left-hand side according to
the first time a 5-crossing have occured; here and in the sequel, for an event
A the symbol “¬A” means the complement of A. To bound P(Q5

j , ¬Q5
j−1)

let us first discuss the analogous quantity for a 3-crossing. In the proof of
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Lemma 3.4 of [22] (on p.241, after Equation 3.4) it was essentially shown
that there is a (non-random) constant c <∞ such that

P
(
Q3
j | ¬Q3

j−1, S[0, tj−1]
)
6 c(j − 1)

(
δ

η

)1/2
. (4.6)

The exponent in the right-hand side of (4.6) was not specified in [22] so let us
sketch the proof and explain how one gets the exponent 1/2. Let {Ck}k be
the components of L{S[0, sj ]}∩B2 intersecting B1 but not containing S(sj).
By construction there are at most j − 1 such components. Conditionally
on S[0, tj−1], if L{S[0, tj ]} is to contain a 3-crossing which was not there
in L{S[0, tj−1]}, then S[sj , tj ] has to come within distance δ of Ck ∩ B1
for some k and then exit B2 without hitting that same Ck. (It may hit
other components.) For each component Ck, we can use the strong Markov
property and the Beurling estimate to see that this conditional probability
of exiting B2 without hitting Ck is bounded above by c(δ/η)1/2. Summing
over the j − 1 components gives (4.6).

From (4.6),

P
(
Q3
j | ¬Q3

j−1

)
6 c(j − 1)

(
δ

η

)1/2
. (4.7)

An this implies that

P
(
Q3
j

)
6

j∑
k=1

P
(
Q3
k, ¬Q3

k−1

)
6 cj2

(
δ

η

)1/2
. (4.8)

We now turn to P
(
Q5
j , ¬Q5

j−1

)
. Since (Q5

j ∩ ¬Q5
j−1) ⊂ Q3

j−1, (4.8) implies

P
(
Q5
j , ¬Q5

j−1

)
= P

(
Q5
j , ¬Q5

j−1 | Q3
j−1

)
P
(
Q3
j−1

)
6 cP

(
Q5
j , ¬Q5

j−1 | Q3
j−1

)
j2
(
δ

η

)1/2

We continue to write

P
(
Q5
j , ¬Q5

j−1 | Q3
j−1

)
6 P

(
Q5
j | ¬Q5

j−1, Q3
j−1

)
.

We can estimate the last expression by observing that

P
(
Q5
j | ¬Q5

j−1, Q3
j−1, S[0, tj−1]

)
6 c(j − 1)

(
δ

η

)1/2
.

Indeed, this estimate is proved in exactly the same way as (4.7) using the
Beurling estimate.

Combining our bounds we get

P
(
∪mj=1Q5

j

)
6 cm4 δ

η
. (4.9)
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We now take ν > 0 and let m = bδ−νc. We then use Lemma 4.6 (here we
write the estimate for d0 > η/4; in the case d0 6 η/4 we use the second
bound of Lemma 4.6) to get

P(Q5) 6
(

1− c3
| log(16d0/η)|

)bδ−νc
+ c

δ1−4ν

η

6 cδν | log(16d0/η)|+ c
δ1−4ν

η
. (4.10)

This bound is for a fixed w. To conclude, note that there is a universal
c <∞ such that we can (deterministically) cover Dn using at most cR2η−2

overlapping disks B(wk, η/4) in such a way for every w such that γn has
a 5-crossing of A(w; δ, η), the smaller boundary component of A(w; δ, η) is
contained in B(wk, η/4) for some k. Consequently, for c = c(R) <∞,

P (E5) 6 cη−2δν | log(16d0/η)|+ cη−3δ1−4ν . (4.11)

For any r ∈ (0, 1/11), if η = δr, we can take ν = (1 − r)/5 in (4.11)
which makes both terms in the bound of the same (“polynomial”) order so
that the right-hand side of (4.11) decays like δ1/5−11r/5 with a logarithmic
correction. Since this term is always larger than the one coming from EB,
this concludes the proof of Proposition 4.5, assuming Lemma 4.6. �

Lemma 4.6. There exist constants 0 < c1, c2 < 1 such that

P{τ > tm+1} 6
{ (

1− c1
| log(16d0η−1)|

)m
if d0 > η/4;

(1− c2)m if d0 6 η/4.

Proof. We first assume that d0 > η/4. Using, e.g., Proposition 6.4.1 of [13]
we see that the probability that a simple random walk started just outside
of B2 exits B(z0, 8d0) before hitting B1 is bounded below by

| log 2| −O((ηn)−1)
| log(16d0η−1)| >

| log 2|
2| log(16d0η−1)|

if ηn > c1, where c1 < ∞ is a universal constant. (This uses also that
d0 > η/4.) This estimate is a discrete version of the expression for the har-
monic measure of one of the boundary components in an annulus. Moreover,
there is a universal constant c > 0 such that the probability that simple ran-
dom walk from (a vertex adjacent to) ∂B(z0, 8d0) separates B(z0, d0) from
∞ before hitting B(z0, d0) is bounded below by c. (Recall that our as-
sumptions imply that d0 > c′/n, where we can assume that c′ is large.)
Consequently, by the strong Markov property the probability that simple
random walk started from ∂B2 exits Dn before hitting B1 is bounded below
by c1/| log(16d0η

−1)|. By iterating this argument using the strong Markov
property,

P{τ > tm+1} 6
(

1− c1
| log(16d0η−1)|

)m
. (4.12)
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When d0 6 η/4 the Beurling estimate and the Markov property directly
show that the right-hand side of (4.12) can be replaced by (1− c2)m, where
c2 > 0 is a universal constant. �

If the boundary of the domain D that is being approximated is sufficiently
regular, then the structure modulus on a sufficiently large mesoscopic scale
for the image curve in D is essentially the same as the one in Dn. The next
lemma, proved in Appendix B, makes this precise.
Lemma 4.7. Suppose D 3 0 is a simply connected domain Jordan domain
with C1+α boundary, where α > 0. Let Dn be the n−1Z2 grid domain ap-
proximation of D and let γn be a Loewner curve in Dn connecting ∂Dn with
0. There is a constant c depending only on α and the diameter of D such
that the following holds. Set 0 < r < 1/2 and dn = n−r and let η(n)

tip (δ;Dn)
be the tip structure modulus for γn in Dn. Then for all n sufficiently large
(independently of γn) the tip structure modulus η(n)

tip (δ;D) for ψn(γn) in D
satisfies

η
(n)
tip (c−1dn;D) 6 cη(n)

tip (dn;Dn).

4.5. Proof of Theorem 4.3. We write γ for the radial SLE2 path in D
corresponding to the Brownian motion in (4.2). We thus have a coupling of
the radial SLE2 path and the image of the LERW path γ̃n and we will esti-
mate the distance between these curves in this coupling. Take s ∈ (0, 1/24)
and n > n0 where n0 is as in Theorem 4.2; fix ρ > 1 and for p ∈ (0, 1/ρ), let

εn = n−s, dn = (εn)p.
For each n > n0, we shall define three events each of which occurs with
large probability in our coupling. On the intersection of these events we can
apply our estimates from Sections 2 and 3.

(a) Let An = An(s) be the event that the estimate
sup
t∈[0,T ]

|Wn(t)−W (t)| 6 εn

holds. By Theorem 4.2 we know that there exists n0 <∞ such that
if n > n0 then

P(An) > 1− εn.
(b) For β ∈ (2(

√
10− 1)/9, 1), let Bn = Bn(s, r, β, ε, T, cB) be the event

the radial SLE2 Loewner chain (ft) driven by W (t) satisfies the es-
timate

sup
t∈[0,σ]

d|f ′(t, (1− d)W (t))| 6 cB d1−β, ∀ d 6 dn.

(Recall that ε, T were used in the definition of the stopping-time
σ 6 T .) Then by Proposition 4.1 there exist c′B < ∞, independent
of n, and n1 <∞ such that if n > n1 then

P (Bn) > 1− c′Bdqn,
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where

q < q2(β) = −1 + 2β + β2

4(1 + β) .

(c) For r ∈ (0, 1/11), let Cn = Cn(s, r, p, cC , α, diamD) be the event that
the tip structure modulus for γ̃n(t), t ∈ [0, T ], in D, η(n)

tip , satisfies

η
(n)
tip (dn) 6 cC drn.

We know from Proposition 4.5 and Lemma 4.7 that there exist
cC , c

′
C < ∞, independent of n, and n2 < ∞ such that if n > n2

then
P(Cn) > 1− c′C d1/5−11r/5

n | log dn|.

Consequently, there exist cB, cC <∞ and c <∞, all independent of n (but
depending on s, r, p, ε, T, β, α,diamD), such that for all n sufficiently large,

P (An ∩ Bn ∩ Cn) > 1− c (εn + dqn + d1/5−11r/5
n | log dn|), (4.13)

and on the event An ∩ Bn ∩ Cn we can apply Lemma 3.4 with constants
c = cC , c

′ = cB independent of n to see that there exists c′′ independent of
n (but depending on the above parameters) such that for all n sufficiently
large,

sup
t∈[0,σ]

|γ̃n(t)− γ̃(t)| 6 c′′ (dr(1−β)
n + ε(1−ρp)r

n ). (4.14)

We now wish to optimize over the parameters in the exponents. Since dn =
εpn we see that dr(1−β)

n dominates in (4.14) when p ∈ (0, 1/(1 + ρ − β)] and
ε
r(1−ρp)
n whenever p ∈ [1/(1 + ρ− β), 1]. Suppose p ∈ (0, 1/(1 + ρ− β)].
Set

µ(β, r) = min
{
r(1− β),−1 + 2β + β2

4(1 + β) ,
1
5 −

11r
5

}
.

The optimal rate is given by optimizing µ over β, r and then choosing p
very close to 1/(1 + ρ − β). (No improvement is obtained by considering
p ∈ [1/(1 + ρ− β), 1].) Let β∗ ∈ (2(

√
10− 1)/9, 1) be a solution to

45β3 − 128β2 − 84β + 68 = 0.

(One can check that β∗ = 0.497 . . . .) Then if r∗ = 1/(16− β∗) ∈ (0, 1/11)

µ(r∗, β∗) = max
{
µ(β, r) : 2(

√
10− 1)
9 < β < 1, 0 < r <

1
11

}
= 0.037 . . .

Consequently, for every

m < m∗ = µ(r∗, β∗)
2− β∗

,

we obtain bounds in (4.13) and (4.14) of order εmn for all n sufficiently large.
Since 1/41 < m∗ = 0.024 . . ., this concludes the proof. �
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Appendix A. Derivative Estimate for Radial SLE

This section proves a derivative estimate for both chordal and radial SLE.
The radial case was needed in Section 4 in the case κ = 2. The chordal case
is a direct consequence of an estimate from [6], but the radial case requires
a little bit of work. In this case, our goal will be to estimate explicitly
in terms of d∗ and β the probability of the event that when (f(t, z)) is the
radial SLEκ Loewner chain, the estimate d|f ′(t, (1−d)W (t))| 6 c d1−β for all
d 6 d∗ holds uniformly in t ∈ [0, T ]. This will follow from a moment estimate
for the chordal reverse flow in [6] after changing “coordinates” from radial
to chordal SLE. See also Section 7 of [4] where a similar but non-equivalent
situation is dealt with. We will use ideas from [24].

A.1. Change of Coordinates. Let (fs,Ws) be a radial Loewner pair gen-
erated by the curve γ(s) with Ws continuous. Recall that fs : D→ D\Ks =
Ds and that Ks is the hull generated by γ[0, s]. Let gs = f−1

s and set
zs = gs(−1)Ws. We will need to keep track of the “disconnection time” σ′
when Ks first disconnects −1 from 0 in D, in other words, the first time that
zs hits 1. Fix ε > 0 small and T <∞, and define

σ = σ(ε, T ) = inf {s > 0 : |1− zs| 6 ε} ∧ T.

Clearly, σ < σ′.

Lemma A.1. There exists a constant c = c(ε, T ) > 0 such that

inf
s∈[0,T ]

|g′s∧σ(−1)| > c.

Proof. The Loewner equation implies that with zs as above,

|g′s(−1)| = exp
{∫ s

0
Re 2

(1− zs)2 − 1 ds
}
.

This shows that |g′s(−1)| is strictly decreasing in s and that |g′T∧σ(−1)| >
c = c(ε, T ) > 0. �

Remark. Note that if gs is the radial SLEκ forward flow, and if

θs := −i log zs = −i log gs(−1)−
√
κBs, θ0 = π,

then by Itô’s formula,

dθs = cot(θs/2) ds−
√
κdBs.

If κ < 4, then it follows from [12, Lemma 1.27] that almost surely θs does
not hit {0, 2π} in finite time. Hence for each T <∞, if κ < 4, then almost
surely,

lim
ε→0

σ(ε, T ) = T.
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Consider now the Mobius transformation

ϕ : H→ D, ϕ(z) = i− z
i+ z

.

Then ϕ−1 ◦γ is a curve in H (for sufficiently small s) and for s > 0 we define

t(s) := hcap(ϕ−1(γ[0, s]))/2.

For each s ∈ [0, σ] let Ft(s) : H → Ht(s) := ϕ−1(Ds) be the conformal map-
ping satisfying the hydrodynamical normalization Ft(s)(z) = z − 2t(s)/z +
o(1/|z|) at infinity. It is known (see, e.g., [24]) that t(s) is a strictly increas-
ing, continuous function of s up to the disconnection time and we will write
s(t) for the inverse of t(s). One can write (see [24] and [4])

fs = ϕ ◦ Ft(s) ◦∆s. (A.1)

Here

∆s(z) : D→ H, ∆s(z) =
zµt(s) − λsµt(s)

z − λs
, (A.2)

where the reader may verify that if

Gt(s)(z) = F−1
t(s)(z), gs(z) = f−1

s (z),

then
µt(s) = Gt(s)(i), λs = gs(−1).

In fact, by expanding G at infinity via (A.1),

Imµt(s) = −g
′
s(−1)
gs(−1) = |g′s(−1)|. (A.3)

This uses that

Re
(

1− g′′s (−1)
g′s(−1)

)
= −g

′
s(−1)
gs(−1) ,

which holds because the left-hand side equals ∂θ[arg ∂θgs(eiθ)] at θ = π, and
gs maps the circle to the circle locally at −1 so that the change of the tangent
is equal to the change of the argument which is what is represented by the
right-hand side. By Lemma A.1 and (A.3) there exists c1 = c1(ε, T ) > 0
such that

Imµt(s) > c1, s ∈ [0, σ]. (A.4)
Set

τ := t(σ).
and consider the family (Ft), t ∈ [0, τ ] with the half-plane capacity param-
eterization. It satisfies the chordal Loewner PDE in t and we let Ut =
∆s(t)(Ws(t)) be the corresponding chordal driving term. The estimate (A.4)
implies that there is T ′ = T ′(ε, T ) < ∞ such that τ 6 T ′. Indeed, in
Theorem 3 of [24] it is shown that s′(t) = 4(Imµs(t))2/|µs(t) − Ut|4 which
is bounded away from 0 on [0, τ ]. Using (A.4) and that |Ws − λs| > ε for
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s ∈ [0, σ], we see that there exist constants 0 < c <∞ and d0 > 0 depending
only on ε and T such that for all d 6 d0, uniformly in s ∈ [0, σ],∣∣∣Re (∆s((1− d)Ws))− Ut(s)

∣∣∣ 6 c d, c−1d 6 Im (∆s((1− d)Ws)) 6 cd.

In other words, the hyperbolic distance between ∆s((1−d)Ws) and Ut(s) +id
is bounded by a constant depending only on ε and T . Therefore we can use
Koebe’s distortion theorem to see that there exist c, c′ <∞ depending only
on ε, T such that for all s ∈ [0, σ]

|f ′s((1− d)Ws)| 6 c|F ′t(s)(∆s((1− d)Ws))| 6 c′ |F ′t(s)(Ut(s) + id)|.

We have proved the following result.

Proposition A.2. Let T < ∞ and ε > 0 be given. Suppose that (fs,Ws)
is a radial Loewner pair generated by the curve γ(s). Define σ = σ(ε, T )
by (A.1). Let (Ft, Ut) be the chordal Loewner pair generated by the curve
s 7→ ϕ−1(γ(s)), s ∈ [0, σ] reparameterized by half-plane capacity and let
τ = t(σ). There exists c = c(ε, T ) <∞ and d0 = d0(ε, T ) > 0 such that for
all d 6 d0,

sup
s∈[0,σ]

|f ′s((1− d)Ws)| 6 c sup
t∈[0,τ ]

|F ′t(Ut + id)|.

Now assume that (fs) is the radial SLEκ Loewner chain. Then σ is a
stopping time for (fs) and τ is a stopping time for (Ft). The law of the
chordal driving term Ut stopped at τ is absolutely continuous with respect
to the law of standard linear Brownian motion with speed κ, as shown in [24].
Moreover, by (A.4) the Girsanov density is uniformly bounded above by a
constant depending only on κ, ε, and T . Indeed, it is a product of powers
of |G′t(i)|, Imµt, and |µt − Ut|, all which are bounded away from 0 and ∞
when t 6 τ . Since (Ft) is absolutely continuous with respect to a chordal
SLEκ Loewner chain and since the Girsanov density is uniformly bounded
(for fixed κ, ε, T ), using Proposition A.2 we can estimate the behavior of
sups∈[0,σ] |f ′s((1− d)Ws)| using standard chordal SLE.

A.2. Derivative Estimate for Chordal SLE. We now derive the needed
estimate on the growth of the derivative in chordal coordinates. The esti-
mate is essentially a direct consequence of work in [6] and we will describe
the modifications here. Let (Ft), t > 0 be the standard chordal SLE Loewner
chain mapping H onto the unbounded connected component of H \ γ[0, t].
We write F̂t(z) = Ft(z + Ut), where U is the chordal driving term for (Ft).
Recall that the chordal reverse SLEκ flow is the family of conformal map-
pings solving

ḣt = − 2
ht −

√
κBt

, h0(z) = z,

where B is standard Brownian motion. For fixed t0 > 0, |h′t0(z)| is equal to
|F̂ ′t0(z)| in distribution. Hence (first) moment estimates for |F̂ ′t0 | are reduced
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to corresponding estimates for |h′t0 | and these are often more easily obtained.
Note that scaling implies that for fixed y > 0, |h′t(iy)| d= |h′ty−2(i)|. Define

ζ(λ) = λ+
√

(4 + κ)2 − 8λκ− (4 + κ)
4 .

We will assume that

λ < λc = 1 + 2
κ

+ 3κ
32 .

In this range we quote the following estimate from [6]. See also [7] and the
references therein.

Lemma A.3. Let ht be the chordal reverse SLEκ flow, κ > 0. There exists
a constant c <∞ such that for λ < λc.

E[|h′t(i)|λ] 6 ct−ζ(λ)/2, t > 1. (A.5)

This result now implies the needed estimate which is a version of Propo-
sition 4.2 of [6] with a decay rate; we will sketch the proof and refer the
reader to [6] for more details. Let κ > 0 and define the function

ρ(β) = β + 2(1 + β)
κ

+ β2κ

8(1 + β)

and
q(β) = min{λcβ, ρ(β)− 2}, β+ < β < 1,

where

β+ = max
{

0, 4(κ
√

8 + κ− (4− κ))
(4 + κ)2

}
.

Note that q(β) > 0 for β in the above range.

Proposition A.4. Let T < ∞ be fixed and let (Ft) be the chordal SLEκ
Loewner chain, κ ∈ (0, 8). Let β ∈ (β+, 1) and q < q(β). There exists a
constant 0 < c <∞ depending only on T, κ, q such that for every y∗ < 1

P
{
∀ y 6 y∗, sup

t∈[0,T ]
y|F̂ ′t(iy)| 6 cy1−β

}
> 1− cyq∗.

Proof. (Sketch.) By the distortion theorem, scaling, and the fact that Brow-
nian motion is almost surely weakly Hölder-(1/2), it is enough (see [6]) to
show that for β+ < β < 1 and q < q(β)

∞∑
n=N∗

22n∑
j=1

P(|F̂ ′j2−2n(i2−n)| > 2βn) 6 c2−N∗q,
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where N∗ = blog y−1
∗ c. We have for 0 < λ < λc using scaling, Chebyshev’s

inequality, and Lemma A.3
∞∑

n=N∗

22n∑
j=1

P(|F̂ ′j2−2n(i2−n)| > 2βn) 6
∞∑

n=N∗

22n∑
j=1

2−nλβE[|F̂ ′j2−2n(i2−n)|λ]

6 c
∞∑

n=N∗

22n∑
j=1

2−nλβE[|h′j(i)|λ]

6 c
∞∑

n=N∗

22n∑
j=1

2−nλβj−ζ/2

6 c
∞∑

n=N∗

22n∑
j=1

2−nλβ(1 + 2n(2−ζ))

6 c(2−N∗λβ + 2−N∗(λβ+ζ−2)).
Recall that λ ∈ (0, λc). Note that ζ−2 < 0 if and only if κ > 1, so for these κ
the smaller exponent is λβ+ζ−2. In this range, we find q(β) by maximizing
over 0 < λ < λc for β fixed so that q(β) = maxλ λβ + ζ(λ) − 2. The lower
bound β+ is the smallest β > 0 such that β > β+ implies q(β) > 0. When
κ 6 1, λβ is the smaller exponent and we must restrict attention to β > 0.
We pick the largest λ = λc. �

From this and the work in the previous subsection we immediately obtain
the following proposition. Recall that the stopping time σ was defined in
(A.1).

Proposition A.5. Let κ ∈ (0, 8). Let ε > 0 be fixed and let (fs), 0 6 s 6 σ,
be the radial SLEκ Loewner chain stopped at σ as defined by (A.1). For every
β ∈ (β+, 1) and q < q(β) there exists a constant c = c(β, κ, q, ε, T ) <∞ such
that for d∗ < 1,

P
{
∀ d 6 d∗, sup

s∈[0,σ]
d|f ′s((1− d)Ws)| 6 cd1−β

}
> 1− cdq∗.

We note that when κ = 2

q(β) = −1 + 2β + β2

4(1 + β) , β+ = 2(
√

10− 1)
9 .

Appendix B. Grid Domains and Transfer of Information to D

When mapping conformally a curve into a reference domain, bounds on
the tip structure modulus for the curve are not automatically preserved. In
this section we will consider a general case without reference to a specific
discrete model. It seems that this general setting requires information about
boundary regularity of the approximated domain (as opposed to information
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about the behavior of the discrete curve). In particular, we will need uniform
control of the distortion of annuli on the scales of the structure modulus.

B.1. Grid Domains. Recall the definition of a grid domain that was given
in Section 4. Let D 3 0 be simply connected, and assume that the inner ra-
dius with respect to 0 equals 1. Let Dn = Dn(D) be the n−1Z2 grid-domain
approximation of D. Notice that every point on ∂Dn is within distance√

2/n of a point on ∂D, so that the inner Hausdorff distance between ∂Dn

and ∂D is at most
√

2/n. Let ψ : D → D be the conformal map normalized
by ψ(0) = 0 and ψ′(0) > 0. Similarly, for n = 1, 2, . . . , let ψn : Dn → D
be conformal maps with the same normalization. The sequence of domains
Dn converge to D in the Carathéodory sense, and so the ψn converge to ψ
uniformly on compacts. Our goal will be to find a convergence rate for

sup
z∈Dn

|ψn(z)− ψ(z)|.

For this to be achievable we need some information about the regularity of
the boundary of D. We will here consider the class of quasidisks, although
it will be clear that similar methods can be used to handle other classes of
domains (e.g., John domains) where Euclidean geometric estimates on the
behavior of the conformal mapping on the boundary are available.

B.2. Discrete Approximation of a Quasidisk. A quasicircle is the im-
age of the unit circle under a quasiconformal mapping. A quasidisk is a
(bounded) domain bounded by a quasicircle. See [20] for definitions and
an overview from a conformal mapping point of view. A quasicircle is not
necessarily rectifiable as the example of the von Koch snowflake shows.

We find it convenient to use an equivalent but more geometric definition,
namely Ahlfors’ three-point condition: The closed Jordan curve ∂D is a
quasicircle if and only if there exists a constant A < ∞ such that for any
two points x, y ∈ ∂D it holds that

diam J(x, y) 6 A|x− y|, (B.1)
where J(x, y) ⊂ ∂D is the arc of smaller diameter connecting x with y. One
can consider the smallest such A as a measure of regularity. This regularity
implies some uniform regularity for the grid-domain approximation Dn and
this allows us to estimate the convergence rate of ψn using a result from
[26]. See also Section 5 of [16] where similar questions are discussed.

Lemma B.1. Let D be a quasidisk satisfying (B.1) and let Dn be the n−1Z2

grid domain approximation of D. Let ψ,ψn be the normalized conformal
maps from D and Dn, respectively, onto D. Then there exists a constant
c <∞ depending only on A and the diameter of D such that

sup
z∈Dn

|ψn(z)− ψ(z)| 6 c logn√
n
. (B.2)
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Proof. We will first show that Dn satisfies (B.1) uniformly in n with a con-
stant A′ depending only on A. Let x, y ∈ ∂Dn. First we consider the case
when |x− y| < 1/n. Then since ∂Dn is a Jordan curve which is a subset of
the edge set of n−1Z2, we have that diam J(x, y) 6

√
2 |x− y|. Now assume

that |x− y| > 1/n. Let ξ and η be points on ∂D closest to x and y, respec-
tively. Clearly, |x − ξ| and |y − η| are both at most

√
2/n. Let α, β be the

two line segments connecting x with ξ and y with η. First assume that the
curve Γ = J(x, y)∪α∪β separates J(ξ, η) from 0 in D. Let Qj , j = 1, . . . , N
be those lattice squares whose faces are outside of Dn but whose boundaries
touch J(x, y). By the construction of Dn and the Jordan curve theorem,
since Γ separates 0 from J(ξ, η), each Qj is intersected by α ∪ β ∪ J(ξ, η).
Consequently,

diam Γ 6 diam J(ξ, η) + 2
√

2/n 6 A|ξ − η|+ 2
√

2/n.
Hence,

diam J(x, y) 6 diam Γ 6 A|x− y|+ (2A+ 2)
√

2/n.
Now, if Γ does not separate J(ξ, η) from 0 in D, then since Γ is a crosscut
of D, (∂Dn \ J(x, y)) ∪ α ∪ β does separate J(ξ, η) from 0 in D. Thus, in
this case we can do the same argument as in the previous paragraph show-
ing that diam (∂Dn \ J(x, y)) 6 diam J(ξ, η) + 2

√
2/n. But by definition,

diam J(x, y) 6 diam (∂Dn \ J(x, y)).
Using also the estimate we obtained in the case when |x − y| < 1/n we

conclude that,
diam J(x, y) 6 (A+ (2A+ 2)

√
2)|x− y|. (B.3)

By (B.3) there is a constant c depending only on A and the diameter of D
such the Warschawshi structure moduli η(n)

W of ∂Dn satisfy

η
(n)
W (δ) 6 cδ, δ 6 1.

Consequently, since Dn ⊂ D and each point on ∂Dn is within distance
√

2/n
of a point on ∂D, part (a) of Theorem VII in [26] implies (B.2). �

For simplicity we will now assume that ∂D is C1+α for some α > 0, that
is, we assume that there is a parameterization of ∂D which has a Hölder-α
derivative. By Kellogg’s theorem; see, e.g., [5], this assumption implies that
the conformal map ψ : D → D (and ψ−1) is in C1+α(D). (So we can take
the conformal parameterization of ∂D.) In particular ψ is bilipschitz on D,
that is, there is a constant c <∞ depending only on α and the diameter of
D such that

c−1|z − w| 6 |ψ(z)− ψ(w)| 6 c|z − w|, z, w ∈ D. (B.4)
Similar uniform estimates, but of Hölder type, and corresponding versions
of Lemma 4.7 (stated again below) hold if D is assumed to be a quasidisk.
Indeed, the uniformizing conformal map and its inverse are then Hölder
continuous on a neighborhood of ∂D with an exponent depending only on A;
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see [20]. From (B.4) we immediately get the required control over distortion
of annuli up to constants on sufficiently large scales. We can now prove
Lemma 4.7 which we state again:

Lemma B.2. Suppose D 3 0 is a simply connected domain Jordan domain
with C1+α boundary, where α > 0. Let Dn be the n−1Z2 grid domain ap-
proximation of D and let γn be a Loewner curve in Dn connecting ∂Dn with
0. There is a constant c depending only on α and the diameter of D such
that the following holds. Set 0 < r < 1/2 and dn = n−r and let η(n)

tip (δ;Dn)
be the tip structure modulus for γn in Dn. Then for all n sufficiently large
(independently of γn) the tip structure modulus η(n)

tip (δ;D) for ψn(γn) in D
satisfies

η
(n)
tip (c−1dn;D) 6 cη(n)

tip (dn;Dn).

Proof. Let ηn = η(n)(dn;Dn). We can assume that ηn > 2dn. It is enough
to verify that there exists a constant c independent of n such that for all
annuli A(z) = {w : dn 6 |w − z| 6 ηn}, z ∈ Dn we have

ψn (A(z) ∩Dn) ⊂ {w : c−1dn 6 |w − ψn(z)| 6 cηn} ∩ D.

But this follows immediately from Lemma B.1 with the assumption that dn
decays slower than O(n−1/2) and (B.4). �
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