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Abstract. We study local correlations of certain interacting particle systems on the real
line which show repulsion similar to eigenvalues of random Hermitian matrices. Although the
new particle system does not seem to have a natural spectral or determinantal representation,
the local correlations in the bulk coincide in the limit of infinitely many particles with those
known from random Hermitian matrices, in particular they can be expressed as determinants
of the so-called sine kernel. These results may provide an explanation for the appearance
of sine kernel correlation statistics in a number of situations which do not have an obvious
interpretation in terms of random matrices.

1. Introduction and Main Results

This paper is motivated by the surprising emergence of sine kernel statistics in many real
world observations, parking cars, perching birds on lines and so on. In the field of random
matrices, the sine kernel describes the local correlations of eigenvalues in the bulk of the
spectrum of Hermitian random matrices. There it has been shown to be universal to a high
extent, i.e. it appears for many essentially different matrix distributions. In this article we
show that the sine kernel describes the local correlations of more general repulsive particle
systems on the real line which only share the repulsion strength exponent β = 2 with the
eigenvalues of (unitary invariant) Hermitian random matrices. We expect that this behavior
extends to larger classes of invariant ensembles of random matrices, with repulsion exponents
β different from two.
To formulate our results, let us recall the so-called invariant β−ensembles from random matrix
theory. Given a continuous function Q : R −→ R of sufficient growth at infinity and β > 0,
set

PN,Q,β(x) :=
1

ZN,Q,β

∏
i<j

|xi − xj |β e−N
∑N
j=1Q(xj). (1)

(With a slight abuse of notation, we will not distinguish between a measure and its density.)
For the “classical values” β = 1, 2, 4, PN,Q,β is the eigenvalue distribution of a probability
ensemble on the space of (N ×N) matrices with real symmetric (β = 1), complex Hermitian
(β = 2) or quaternionic self-dual (β = 4) entries, respectively. For arbitrary β, only for
quadratic Q, PN,Q,β is known to be an eigenvalue distribution.
The notion of bulk universality is usually formulated via the correlation functions of the
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ensemble. For a probability measure PN (x)dx on RN and k = 1, 2, . . . , N , the k-th correlation
function ρkN : Rk −→ R of PN is defined as

ρkN (x1, . . . , xk) :=

∫
RN−k

PN (x)dxk+1 . . . dxN .

The correlation functions ρkN are the densities of the marginals of PN . The measure ρkN (t)dt

on Rk is called k-th correlation measure.
It is known that under very mild conditions onQ, there is an absolutely continuous probability
measure µQ,β(t)dt on R, which is the weak limit of ρ1

N,Q,β(t)dt as N →∞.

Now, PN,Q,β is said to admit bulk universality, if for all a with µQ,β(a) > 0 and all t1, . . . , tk
the limit

lim
N→∞

1

µQ,β(a)k
ρkN

(
a+

t1
NµQ,β(a)

, . . . , a+
tk

NµQ,β(a)

)
(2)

exists and coincides with the one for PN,G,β, G quadratic (the so-called Gaussian β-ensemble).
Universality here should be understood as coincidence of the limit (2) with the corresponding
Gaussian β-ensemble. This has been established for large classes of Q. The scaling in (2) is
chosen such that the asymptotic mean spacing between consecutive eigenvalues is normalized
to 1. However, it is known that the limit depends on β though.
In the case β = 2, which appears frequently in “real world statistical studies“, the limiting
object (2) is determinantal of type

lim
N→∞

1

µQ,2(a)k
ρkN

(
a+

t1
NµQ,2(a)

, . . . , a+
tk

NµQ,2(a)

)
= det

[
sin (π(ti − tj))
π(ti − tj)

]
1≤i,j≤k

, (3)

involving the sine-kernel

S(t) :=
sin(πt)

πt
, t 6= 0, S(0) := 1.

Universality for unitary invariant ensembles, i.e. β = 2 invariant ensembles, was proved in
many papers, for example (naming only few) [PS97, PS08, DKM+99, MM08, LL08]. Recently
universality (for general β−Ensembles) was proved in [BEY11, BEY12]. For β = 1, 2, bulk
universality was also proved for Wigner matrices by two groups of authors. Based on earlier
work of Johansson [Joh01], universality was shown for general classes of Wigner matrices in
a series of papers by Erdős, Yau, Schlein, Yin, Ramirez and Peche (see [EY12] for a survey
on their results) and Tao and Vu (see [TV12] for a survey on their results). We remark that
bulk universality was proved in [GG08] for the Hermitian fixed trace ensemble, a random
matrix which is neither a Wigner matrix nor unitary invariant.
Writing the density (1) in the Gibbsian form

PN,Q,β =
1

ZN,Q,β
eβ

∑
i<j log|xi−xj |−N

∑N
j=1Q(xj), (4)

we see that PN,Q,β can be interpreted as an interacting particle system on R in an external
field, interacting via a 2d Coulomb potential.
It is believed that many complicated, strongly correlated systems share the local bulk scaling
limit (defined again by correlation functions) with some random matrix model. This was
conjectured by Wigner who used random matrices to model energy levels of nuclei. By the
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underlying matrix structure, physical requirements (conserved quantities, time reversal,. . . )
determine the value of β in the cases β = 1, 2, 4. The limits with β = 2 also seem to appear
in statistics of distances between parking cars [AM06], waiting times at bus stops in certain
cities [KS00b] (see [BBDS06] for a determinantal model) and the pair correlation conjecture of
Montgomery [Mon73] for the zeros of the Riemann Zeta function on the critical line. See e.g.
[KS00a] for more relations between the Riemann Zeta function and random matrix theory.
A common cause for the appearance of sine kernel statistics in a number of statistics about
real world repulsive systems and in physics and mathematics still remains to be identified.
We consider here a class of more general interacting particle systems, defined by the density

1

ZN,ϕ,Q

∏
i<j

ϕ(xi − xj)e−N
∑N
j=1Q(xj), (5)

where Q is a continuous function of sufficient growth at infinity compared to the continuous
function ϕ : R −→ [0,∞). Apart from some technical conditions we will assume that

ϕ(0) = 0, ϕ(t) > 0 for t 6= 0 and lim
t→0

ϕ(t)

|t|β
= c > 0, (6)

or, in other terms, 0 is the only zero of ϕ and it is of order β.
We expect that (at least under some smoothness and growth conditions) the bulk scaling limit
of (5) coincides with that of the β-ensembles, since in view of the regular local distribution
of eigenvalues/particles at 1/N spacings only the exponents of the interaction kernel should
determine the local universality class.
The purpose of this paper is to prove this for β = 2 and a special class of ϕ and Q. From now
on, we will always deal with the case β = 2, therefore omitting the subscript β. To state our
results, let h be a continuous even function which is bounded below. Let Q be a continuous
even function of sufficient growth at infinity. By P hN,Q we will denote the probability density

on RN defined by

P hN,Q(x) :=
1

ZhN,Q

∏
i<j

|xi − xj |2 exp{−N
N∑
j=1

Q(xj)−
∑
i<j

h(xi − xj)}, (7)

where ZhN,Q denotes the normalizing constant. The density P hN,Q can also be written in the

form (5) with ϕ(t) := t2 exp{−h(t)}. The first result describes the global scaling limit of
the correlation measures of P hN,Q. To formulate it, introduce for a twice differentiable convex

function Q the quantity αQ := inft∈RQ
′′(t). Moreover, denote by ρh,kN,Q the k−th correlation

function of P hN,Q.

Theorem 1. Let h be a real analytic and even Schwartz function. Then there exists a
constant αh ≥ 0 such that for all real analytic, strictly convex and even Q with αQ > αh, the
following holds:
There exists a compactly supported probability measure µhQ having a non-zero and continuous
density on the interior of its support and for k = 1, 2, . . . , the k-th correlation measure of

P hN,Q converges weakly to the k-fold product
(
µhQ

)⊗k
, that is for any bounded and continuous
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function g : Rk −→ R,

lim
N→∞

∫
g ρh,kN,Q d

kt =

∫
g d
(
µhQ

)⊗k
. (8)

Remark 2.

a) If h is (additionally) positive definite, then αh in Theorem 1 may be explicitly chosen
as αh = supt∈R−h′′(t).

b) In general, the measure µhQ depends on h.

c) P hN,Q does not seem to be either determinantal or have a natural spectral interpretation,
therefore we will speak of particles instead of eigenvalues.

The next result states the universality of the sine kernel in the local scaling limit in the bulk.

Theorem 3. Let h and Q satisfy the assumptions of Theorem 1. Then for k = 1, 2, . . . , we
have

lim
N→∞

1

µhQ(a)k
ρh,kN,Q

(
a+

t1

NµhQ(a)
, . . . , a+

tk

NµhQ(a)

)
= det

[
sin (π(ti − tj))
π(ti − tj)

]
1≤i,j≤k

(9)

uniformly in t1, . . . , tk from any compact subset of Rk and uniformly in the point a from any
compact proper subset of the support of µhQ.

Remark 4.

a) If h is positive definite, then αh in Theorem 3 may be explicitly chosen as αh =
supt∈R−h′′(t).

b) Similar results hold at the edge of the support of µhQ. An article on edge universality

of this new model is in preparation [KV13].

We shall demonstrate our approach to bulk universality by means of the following example
of functions h and Q.

Theorem 5. Let γ > 0 and α > 0 be arbitrary. Let h(t−s) := γ(t−s)2 and Q(t) = αt2. Then

(8) and (9) hold for
(
P hN,Q

)
N

uniformly as in Theorem 3. Here µhQ will be the semi-circle

distribution with support [−ω, ω], ω := (
√
α+ γ)−1.

A first step in the proof of Theorems 1 and 3 is to compare the correlation functions of P hN,Q
with correlation functions of eigenvalues of some unitary invariant ensemble. To construct
such an ensemble, we first determine µhQ as the equilibrium measure of some external field V

(depending on h and Q) using a fixed point argument. The difference between P hN,Q and this

unitary invariant ensemble PN,V consists of (up to normalization) a factor exp{U(x)}, where
U is a quadratic interaction energy which may be expressed as a mixture of linear interaction
energy terms using Gaussian processes. This finally leads after some truncation procedure to
a mixture representation of P hN,Q by invariant ensembles with the same bulk universality.

The paper is organised as follows. In Section 2, the asymptotics of P hN,Q for h(t − s) :=

γ(t − s)2 and Q(t) = αt2 are investigated, in particular Theorem 5 is proved. In Section
3, we associate to P hN,Q a unitary invariant ensemble which will turn out to have the same

asymptotic behaviour as P hN,Q. Section 4 contains concentration of measure inequalities
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which are needed furtheron. Section 5 deals with bounds on the first correlation function
of a unitary invariant ensemble. The proofs in this section use established techniques which
we decided to include in detail for the sake of completeness of the exposition. Theorems 1
and 3 are proved in Section 6. In the appendix we recall a number of results on equilibrium
measures.
A prior version of these results is based on the PhD-Thesis of the second author [Ven11].

2. A first Example

In this section, we will study the probability measure

Pα,γN (x) :=
1

Zα,γN

∏
1≤i<j≤N

|xi − xj |2 exp
{
− αNM2(x)− γ

∑
i<j

(xi − xj)2
}
, (10)

using the potentials Mp(x) :=
∑N

j=1 x
p
j with p = 2 and constants α, γ > 0, where Zα,γN denotes

the normalization factor. In the following we shall suppress the dependencies on α and γ.
We will reduce bulk universality of

(
Pα,γN

)
N

to the well-known bulk universality of the GUE.
It is convenient to introduce the distribution GUEω, depending on a parameter ω > 0, as

PGUE
N,ω (x) :=

1

ZGUE
N,ω

∏
j<k

|xk − xj |2 exp
{
− 2

ω2
N M2(x)

}
.

Under this scaling the first correlation measure of PGUE
N,ω will converge to the semicircle law

supported on [−ω, ω] (for a proof see e.g. [Pas99]). First we rewrite the density PN := Pα,γN
using

γ
∑
i<j

(xi − xj)2 = γNM2(x)− γM1(x)2, as

PN (x) =
1

ZN

∏
1≤i<j≤N

|xi − xj |2 exp
{
− (α+ γ)NM2(x) + γM1(x)2

}
. (11)

Using the simple identity

exp
{
γt2
}

=
1

2π

∫
R

exp
{
ε
√
γt
}

exp
{
− ε2/4

}
dε, we may write (12)

PN (x) =
1

2π

∫
R

1

ZN

∏
1≤i<j≤N

|xi − xj |2 exp
{
− (α+ γ)N M2(x) +

√
γεM1(x)

}
exp

{
−ε2/4

}
dε,

=
1

2π

∫
R

ZεN
ZN

P εN (x)e−ε
2/4dε, where (13)

P εN (x) :=
1

ZεN

∏
1≤i<j≤N

|xi − xj |2 exp{−(α+ γ)NM2(x) +
√
γεM1(x)},

ZεN :=

∫
RN

∏
1≤i<j≤N

|xi − xj |2 exp{−(α+ γ)NM2(x) +
√
γεM1(x)}dx.

We have thus expressed PN as a probabilistic mixture of the probability measures P εN .
The next lemma deals with the ratio ZεN/ZN .
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Lemma 6. For each ε, each N and all α, γ > 0 we have

ZεN/ZN = exp

{
γε2

4(α+ γ)

}(√
1− γ

α+ γ

)−1

.

Proof. We first expand the fraction

ZεN/ZN = (ZεN/Z
GUE
N,ω )/(ZN/Z

GUE
N,ω ), where ω = (α+ γ)−1/2.

The diagonal elements of a GUEω matrix are independent Gaussians with mean 0 and variance
1

2N(α+γ) . Using this, we get easily for any ε, any N and any α, γ > 0

ZεN/Z
GUE
N,ω = EN,GUEω exp{ε√γM1(x)} = exp

{
γε2 · (4(α+ γ))−1

}
,

where EN,GUEω denotes expectation w.r.t. PGUE
N,ω . Similarly, we get for any N and any α, γ > 0

ZN/Z
GUE
N,ω = EN,GUEω exp

{
γM1(x)2

}
= (1− γ/(α+ γ))−1/2 .

�

Definition 7. For ω > 0, the probability measure σω on R given by

σω(t)dt :=
2

πω2

√
ω2 − t21[−ω,ω](x)dt

is called (Wigner’s) semicircle law (with parameter ω).

By equation (13), PN is a mixture of P εN . We show first that the statement of Theorem 5 is

true for each ε ∈ R if we replace P hN,Q by P εN . Eventually we will use Lebesgue’s dominated
convergence theorem.

Proposition 8. Let ρk,εN denote the k-th correlation function of P εN and set ω =
√

1
α+γ .

a) For any ε ∈ R, any k and any continuous, bounded g : Rk −→ R we have

lim
N→∞

∫
Rk
g dρk,εN =

∫
[−ω,ω]k

g d(σω)k.

b) We have for any ε and any k,

lim
N→∞

1

σω(a)k
ρk,εN

(
a+

t1
Nσω(a)

, . . . , a+
tk

Nσω(a)

)
= det (S(ti − tj))1≤i,j≤k

locally uniformly for all t1, . . . tk and uniformly for a varying in a compact subset of
(−ω, ω).

Proof. A proof of the first part can be found in [Joh98]. For the second part we use orthogonal
polynomials. Note that the polynomials orthogonal to a Gaussian weight with non-zero mean

are normalized shifted Hermite polynomials. Let π
(N)

j denote the j-th Hermite polynomial

orthonormal w.r.t. the weight e−N(α+γ)t2 .

It is easy to check that the set of polynomials orthogonal w.r.t. the weight e−N(α+γ)t2+ε
√
γt

are the polynomials
(
π
(N)∗
j

)
j
, where

π
(N)∗
j (t) := e(ω′′ε2/2N)π

(N)

j (t− ω′ε/2N) with ω′ :=
√
γ/(α+ γ) and ω′′ := ω′

2
/4. (14)
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The ensemble P εN is determinantal, i.e.

ρk,εN (t1, . . . , tk) = (N − k)!/(N !) det (K∗N (ti, tj))
k
i,j=1 , (15)

where K∗N (t, s) =
∑N−1

j=0 π
(N)∗
j (t)π

(N)∗
j (s). From (14) we get

K∗N (t, s) = e(ω′′ε2)/NKN (t− ω′ε/2N, s− ω′ε/2N), (16)

where KN denotes the kernel corresponding to the ensemble PGUE
N,ω . Hence we have

1

σω(a)
K∗N

(
a+

t

Nσω(a)
, a+

s

Nσω(a)

)
=
e(ω′′ε2)/N

σω(a)
KN

(
a+

t− ω′εσω(a)/2

Nσω(a)
, a+

s− ω′εσω(a)/2

Nσω(a)

)
=
e(ω′′ε2)/N

σω(a)
KN

(
a+

t′

Nσω(a)
, a+

s′

Nσω(a)

)
, (17)

where t′ := t− ω′εσω(a)/2 and s′ := s− ω′εσω(a)/2. It is well-known that

lim
N→∞

1

σω(a)
KN

(
a+

t′

Nσω(a)
, a+

s′

Nσω(a)

)
=

sin(π(t′ − s′))
π(t′ − s′)

. (18)

For a proof of (18) see e.g. [Dei98, Chapter 8] or Theorem 23. Since limN→∞ exp
{

(ω′′ε2)/N
}

=
1, we get from (17) and (18) that

lim
N→∞

1

σω(a)
K∗N

(
a+

t

Nσω(a)
, a+

s

Nσω(a)

)
=

sin(π(t′ − s′))
π(t′ − s′)

=
sin(π(t− s))
π(t− s)

. (19)

Now, by (19) and (15), the second assertion of Proposition 8 follows. As (18) is true locally
uniformly in t′, s′ and uniformly in a ∈ I, I ⊂ [−ω, ω] compact, we get (19) locally uniformly
in t, s and uniformly in a ∈ I. �

Proof of Theorem 5. By equation (13) and Lemma 6 we know that

PN (x) =

∫
R
P εN (x)p(ε)dε, (20)

where p is an N -independent probability measure on R. Using Fubini’s Theorem, (20) implies∫
Rk
g dρkN =

∫
R

∫
Rk
g dρk,εN p(ε)dε and ρkN (t1, . . . , tk) =

∫
R
ρk,εN (t1, . . . , tk)p(ε)dε,

and hence for each compact K ⊂ Rk and each compact I ⊂ (−ω, ω)

sup
t∈K,a∈I

∣∣σω(a)−kρkN (a+
t1

Nσw(a)
, . . . , a+

tk
Nσw(a)

)− det (S(ti − tj))1≤i,j≤k
∣∣

= sup
t∈K,a∈I

∣∣ ∫
R
p(ε)

(
σω(a)−kρk,εN (a+

t1
Nσw(a)

, . . . , a+
tk

Nσw(a)
)− det (S(ti − tj))1≤i,j≤k

)
dε
∣∣

≤
∫
R
p(ε) sup

t∈K,a∈I

∣∣σω(a)−kρk,εN (a+
t1

Nσw(a)
, . . . , a+

tk
Nσw(a)

)− det
(
S(ti − tj)

)
1≤i,j≤k

∣∣dε,
(21)
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where we stick to the notation of Proposition 8. Theorem 5 will follow from Proposition 8 if∫
Rk g dρ

k,ε
N and supt∈K,a∈I

∣∣∣ρk,εN (s1, . . . , sk)
∣∣∣, si := a+ ti/(Nσω(a)), are uniformly bounded in

ε. The uniform boundedness of
∫
Rk g dρ

k,ε
N is immediate as g is bounded.

To show uniform boundedness of ρk,εN (s1, . . . , sk) uniformly in ε, t and a, we proceed as in
the paper by Pastur and Shcherbina [PS08]. Since all correlation functions are nonnega-
tive, we see by Sylvester’s criterion from the determinantal relations (15) that the matrix
(K∗N (ti, tj))1≤i,j≤k =: A is positive semidefinite and can hence be written as A = B2 for some
matrix B. Now using Hadamard’s inequality we get

detA = (detB)2 ≤
k∏
j=1

k∑
i=1

|Bij |2 =
k∏
j=1

Ajj . In our case this reads

ρk,εN (s1, . . . , sk) ≤ (N − k)!/(N !)
k∏
j=1

KN (sj , sj) ≤ Ck
k∏
j=1

ρ1,ε
N (sj), (22)

where C is a constant such that C ≥ N/(N − k). Using (14), we get

ρ1,ε
N (sj) =

1

N

N−1∑
i=0

π
(N)∗
i (sj)

2e−N(α+γ)s2j+
√
γεsj

=
1

N

N−1∑
i=0

π
(N)

i (t− ω′ε/2N)2e−N(α+γ)(sj−ω′ε/2N)2 = ρ1,GUEω
N (sj − ω′ε/2N),

where ρ1,GUEω
N is the first correlation function of the GUEω. From Proposition 8 b) for

k = 1, ε = 0 we get that ρ1,GUEω
N (sj − ω′ε/2N) converges (locally) uniformly in tj and a

towards the bounded function σω(a), hence there is a constant C ′ such that for all N and all

t ∈ K, a ∈ I we have ρ1,GUEω
N (sj − ω′ε/2N) ≤ C ′. This estimate together with (22) finishes

the proof of Theorem 5. �

3. The Associated Random Matrix Ensemble

In this section, we start with the investigation of our main model. Let h be a continuous
even function and Q a strictly convex symmetric function and assume that

P hN,Q(x) :=
1

ZhN,Q

∏
1≤i<j≤N

|xi − xj |2 e−N
∑N
j=1Q(xj)−

∑
i<j h(xi−xj), (23)

defines the density of a probability measure on RN , where

ZhN,Q :=

∫
RN

∏
1≤i<j≤N

|xi − xj |2 e−N
∑N
j=1Q(xj)−

∑
i<j h(xi−xj)dx

denotes the normalizing constant. This is for example the case if h is bounded below.
We will frequently use the notation

hµ(s) :=

∫
h(t− s)dµ(t), hµµ :=

∫ ∫
h(t− s)dµ(t)dµ(s). (24)
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for a compactly supported probability measure µ on R. For the statement of the next lemma,
M1

c will denote the set of compactly supported (Borel) probability measures on R.

Lemma 9. Let h : R −→ R be even, twice differentiable, bounded and such that h′′(t) ≥ −αQ
for all t. Define Th : M1

c −→ M1
c , Th(µ) as the equilibrium measure to the external field

t 7→ Q(t) + hµ(t).

Then Th has a fixed point, i.e. there exists a probability measure µhQ which is the equilibrium

measure to the external field t 7→ Q(t) +
∫
h(t− s)dµhQ(s).

Proof. We will apply Schauder’s Fixed Point Theorem, which states that each continuous
mapping T : C −→ C of a compact, convex and non-empty subset C of a Hausdorff topo-
logical vector space has a fixed point.
We consider the topological vector space M(K) of all signed finite Borel measures on some
compact interval K of R, equipped with the topology of vague convergence. This topology
is metrizable and hence the space is Hausdorff (see [ST97, Chapter 0]). The subset M1(K)
of all Borel probability measures on K is non-empty, convex and compact. The compactness
follows from Helly’s Selection Theorem. We will further restrict to measures µ which are
symmetric around 0, i.e. µ(A) = µ(−A) for all Borel sets A. It is easy to see that this subset
still fulfills the assumptions of Schauder’s Fixed Point Theorem.
Now we show that since h′′(t) ≥ −αQ and h is bounded, the support of the equilibrium
measure to the external field Q(t) + hµ(t) is included in a compact set which can be chosen
to be independent of µ. Indeed, by Theorem 32, the support of the equilibrium measure for
Q(t) + hµ(t) is the smallest compact set K (w.r.t. inclusion) of positive capacity maximizing
the functional

K 7→ FQ+hµ(K) = log cap(K)− 2

∫
Q(t)dωK(t)− 2

∫
hµ(t)dωK(t). (25)

= FQ(K)− 2

∫
hµ(t)dωK(t), in particular we have

FQ+hµ(suppµQ) ≥ FQ(suppµQ)− 2‖h‖∞ ∈ R, since |hµ| ≤ ‖h‖∞. (26)

As Q is convex and symmetric, suppµQ is a symmetric interval (see Theorem 32). Because h
is twice differentiable, h′ (and by assumption also h) are bounded on any compact set. Hence,
if we choose a probability measure µ with compact support, hµ is two times differentiable
and (hµ)′′ = (h′′)µ. By the condition h′′(t) ≥ −αQ, Q(t) +hµ(t) is convex for each compactly
supported µ. Theorem 32 implies that the support of the equilibrium measure to Q(t)+hµ(t)
is a symmetric interval, say [−lµ, lµ]. Using Lemma 27, we can rewrite (25) for an arbitrary
symmetric interval [−l, l] as

FQ+hµ([−l, l]) = log(l/2)− 2

∫ l

−l
Q(t)

1

π
√
l2 − t2

dt− 2

∫ l

−l
hµ(t)

1

π
√
l2 − t2

dt. (27)

Since Q is strictly convex and symmetric, we have Q(t) ≥ αQt2 +C for some C ∈ R and (27)
implies (using that the variance of ω[−l,l] is l2/2) the inequality

FQ+hµ([−l, l]) ≤ log(l/2)− αQl2 − C + 2‖h‖∞, (28)
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which holds for any µ. Comparing (26) and (28), we see that

FQ+hµ(suppµQ) > FQ+hµ([−l, l]),

for all l > L, where L > 0 does not depend on µ. Hence such an [−l, l] can not be the support
[−lµ, lµ] of the equilibrium measure for Q+ hµ. Hence lµ ≤ L for all compactly supported µ.
We have thus seen that Th maps the setM1

s(K) of symmetric probability measures supported
in K into itself, if K is chosen large enough. It remains to show continuity of this map. Since
we deal with a metric space, it is enough to show that by Th, converging sequences are
mapped to converging sequences. Let (µn)n ⊂M1(K) be a sequence converging vaguely, or
equivalently, weakly to a probability measure µ. Denote Th(µn) =: νn. Define the sequence
of external fields Vn(t) := Q(t) + hµn(t) which converges pointwise to V (t) := Q(t) + hµ(t).
We may assume that this convergence is uniform: By Theorem 30, the equilibrium measure
does not depend on values of the external field outside of its support (from which we know
a priori that it lies in a certain compact set). Since h′ is bounded on this compact set by
some constant, say C, we also have

∣∣h′µn∣∣ ≤ C. This implies that the sequence of functions
(hµn)n is uniformly Lipschitz and hence equicontinuous. It follows that the sequence (Vn)n
is also equicontinuous. Since their domain is a compact and Vn converges pointwise, the
equicontinuity implies uniform convergence by Arzela-Ascoli’s Theorem.
Since all νn are supported on the same compact set, it follows that (νn)n is tight and hence
has a weakly converging subsequence (νnm)m. We will prove that this limit measure, say ν ′,
is in fact ν = Th(µ), the measure belonging to the external field V , and does not depend on
the particular subsequence. It follows that the sequence (νn)n converges to ν weakly as weak
convergence is metrizable.
From the uniform convergence of Vn towards V it follows by Theorem 31 1. that

Uνnm (s) =

∫
log |t− s|−1 dνnm(t)

converges uniformly (on C) towards Uν(s) :=
∫

log |t− s|−1 dν(t). On the other hand, by
Theorem 31 2. we have for all s ∈ C except a set of zero capacity

lim
m→∞

Uνnm (s) = Uν
′
(s) =

∫
log |t− s|−1 dν ′(t).

Hence Uν(s) = Uν
′
(s) almost everywhere on C. Theorem 31 3. yields that ν = ν ′, implying

that the sequence (νn)n converges weakly to ν. As Th is a continuous mapping, Schauder’s
Fixed Point Theorem yields the existence of a fixed point. �

Remark 10 (Uniqueness). So far we did not prove that this fixed point of Th is unique.
Uniqueness will follow for the class of ensembles from Theorem 1. For those ensembles we
will show that the first correlation measure converges weakly to any fixed point, which shows
uniqueness.

We proceed by decomposing the additional interaction term. Let h be as in Lemma 9. Choose
a fixed point µhQ as in Lemma 9. We will stick to this measure from now on and write µ
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instead of µhQ. We set using the notation (24)∑
i<j

h(xi − xj)

= −N
2

2
hµµ −

N

2
h(0) +N

N∑
j=1

hµ(xj) +
1

2

( N∑
i,j=1

h(xi − xj)− [hµ(xi) + hµ(xj)− hµµ]
)

= −N
2

2
hµµ −

N

2
h(0) +N

N∑
j=1

hµ(xj)− U(x), where

U(x) := −1

2

( N∑
i,j=1

h(xi − xj)− [hµ(xi) + hµ(xj)− hµµ]
)
. (29)

Now we can rewrite P hN,Q as

P hN,Q(x) =
1

ZN,V,U

∏
1≤i<j≤N

|xi − xj |2 e−N
∑N
j=1 V (xj)+U(x), (30)

where we defined the external field

V (t) := Q(t) + hµ(t)

and absorbed the constant exp{−(N2/2)hµµ− (N/2)h(0)} into the new normalizing constant

ZN,V,U . We will from now on work with this representation of the density of P hN,Q. The
proofs of Theorems 1 and 3 rely on comparison with the unitary invariant matrix ensemble

PN,V (x) =
1

ZN,V

∏
1≤i<j≤N

|xi − xj |2 e−N
∑N
j=1 V (xj). (31)

We will show that in the large N limit, the correlation measures in the global scaling as well
as correlation functions in the local scaling, are the same for P hN,Q and PN,V . In this sense
the quantity U will turn out to be negligible.

4. Concentration of Measure Inequalities

We will frequently use the following well-known concentration of measure inequality ([AGZ10,
Section 4.4]).

Theorem 11. Let Q be an external field on an interval I = (a, b) (possibly unbounded) with
Q′′ ≥ c > 0 on I. Then we have for any Lipschitz function f on I and any ε > 0

PN,Q
(∣∣ N∑
j=1

f(xj)− EN,Q
N∑
j=1

f(xj)
∣∣ > ε

)
≤ 2 exp

{
− cε2

2 |f |L 2

}
and

EN,Q exp
{
ε
( N∑
j=1

f(xj)− EN,Q
N∑
j=1

f(xj)
)}
≤ exp

{ε2 |f |2L
2c

}
,

where for any Lipschitz function f we denote its Lipschitz constant by |f |L (on I).
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Remark 12. In [AGZ10], only the case (a, b) = R is stated. As the proof for general (a, b) is
completely analogous, we do not give it here.

Theorem 11 yields a concentration inequality for linear statistics around their expectations.
However, we rather need concentration around their “limiting expectations”. It is well-known
(see e.g. [Joh98, Theorem 2.1]) that for bounded and continuous functions

lim
N→∞

1

N
E

N∑
j=1

f(xj) =

∫
f(t)dµQ(t), (32)

where µQ denotes the equilibrium measure to Q. We need to quantify the rates of convergence
in (32). The following is a special case of a result in [Shc11] (see also [KS10]).

Proposition 13. Let Q be a convex external field on R which is real analytic in a neighbor-
hood of supp(µQ). Let f be a function whose third derivative is bounded on a neighborhood
of supp(µQ). Then ∣∣EN,Q N∑

j=1

f(xj)−N
∫
fdµQ

∣∣ ≤ C(‖f‖∞ + ‖f (3)‖∞),

where C does not depend on N or f and ‖ · ‖∞ denotes the bound on the neighborhood of
supp(µQ).

From Theorem 11 and Proposition 13 we immediately get the following concentration in-
equality.

Corollary 14. Let Q be a real analytic external field with Q′′ ≥ c > 0. Then for any Lipschitz
function f whose third derivative is bounded on a neighborhood of supp(µQ), we have for any
ε > 0

EN,Q exp
{
ε
( N∑
j=1

f(xj)−N
∫
f(t)dµQ(t)

)}
≤ exp

{ε2 |f |2L
2c

+ εC(‖f‖∞ + ‖f (3)‖∞)
}
.

Remark 15. Proposition 13 and Corollary 14 remain true up to an error of order e−cN if we
replace R by an interval I which covers the domain of the equilibrium measure µQ. It is well-
known (see e.g. [PS08],[BG11]) that changing the external field outside a small neighborhood
of the equilibrium measure results in a change of the first correlation function of order e−cN

for some c > 0. We will prove this in Lemma 25 provided that I is large enough.

The next lemma gives, using Fourier techniques, a representation of the bivariate statistic U
in terms of certain linear statistics. A similar idea is used in [LP08].

Lemma 16. The following holds

U(x) = − 1

2
√

2π

∫ ∣∣∣◦uN (t, x)
∣∣∣2 ĥ(t)dt, where

◦
uN (t, x) :=

N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s) +
√
−1

N∑
j=1

sin(txj), ĥ(t) :=
1√
2π

∫
R
e−itsh(s)ds.
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Proof. Recall from (29) that

U(x) = −1

2

( N∑
i,j=1

h(xi − xj)− [hµ(xi) + hµ(xj)− hµµ]
)
. Note that

1

2

∑
j,k

h(xj − xk) =
1

2
√

2π

∫ ∑
j,k

ei(xj−xk)t ĥ(t)dt =
1

2
√

2π

∫
|uN (t, x)|2 ĥ(t)dt,

with uN (t, x) :=
∑N

j=1 e
itxj . Writing

◦
uN (t, x) := uN (t, x) − N

∫
eitsdµ(s), it is not hard to

check that

U(x) = − 1

2
√

2π

∫ ∣∣∣◦uN (t, x)
∣∣∣2 ĥ(t)dt. (33)

�

Note that we can write

EhN,Qf(x) = (ZN,V /ZN,V,U )EN,V f(x)eU(x).

With the help of the representation (33) we shall bound this ratio of normalizing constants.

Proposition 17. If the constant αQ is large enough, then there exist constants C1, C2 > 0
such that for all N

0 < C1 ≤ ZN,V,U/ZN,V = EN,V exp
{
U(x)

}
≤ C2.

Proof. We start with proving the lower bound. By Jensen’s inequality we see

EN,V exp
{
U(x)

}
≥ exp

{
EN,V U(x)

}
.

Using Lemma 16 we show that the expectation of U is bounded in N . Fubini’s Theorem gives

− EN,V U(x) =
1

2
√

2π

∫
EN,V

∣∣∣◦uN (t, x)
∣∣∣2 ĥ(t)dt

=
1

2
√

2π

∫ EN,V
∣∣ N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s)
∣∣2 + EN,V |

N∑
j=1

sin(txj)|2
 ĥ(t)dt.

By Corollary 14, the terms in the parenthesis are bounded by a polynomial function in t, as

|cos(t·)|L , |sin(t·)|L ≤ t and ‖cos(t·)(3)‖∞, ‖sin(t·)(3)‖∞ ≤ Ct3. Hence, ĥ being a Schwartz
function, we have EN,V U(x) ≥ −C ′ for some C ′ > 0. Thus the lower bound follows choosing
C1 := exp(−C ′).
For the upper bound we will again use the representation of Lemma 16. Recall that since

h is even, ĥ is real-valued. Define ĥ+(y) := max{0, ĥ(y)} and ĥ−(y) := max{0,−ĥ(y)} such

that ĥ = ĥ+ − ĥ−. For ĥ− = 0, which corresponds to the case of a positive definite h, there

is nothing to prove, so assume that ĥ− 6= 0.
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Introducing H− :=
(
ĥ−
)1/2 ≥ 0, we obtain by Jensen’s inequality and Tonelli’s Theorem

EN,V exp
{
− (2
√

2π)−1

∫
ĥ(t)

∣∣◦uN (t, x)
∣∣2dt} ≤ EN,V exp

{
(2
√

2π)−1

∫
H−(t)2

∣∣◦uN (t, x)
∣∣2dt}

= EN,V exp
{

(2
√

2π)−1
∥∥H−∥∥L1

∫ (
H−(t)

/∥∥H−∥∥L1

)
H−(t)

∣∣◦uN (t, x)
∣∣2dt}

≤
∫ (

H−(t)
/∥∥H−∥∥L1

)
EN,V exp

{
(2
√

2π)−1
∥∥H−∥∥L1H−(t)

∣∣◦uN (t, x)
∣∣2}dt. (34)

Abbreviating Kh := (2
√

2π)−1
∥∥H−∥∥L1 and using the Cauchy-Schwarz inequality and repre-

sentation (33), we find

EN,V exp
{
KhH−(t)

∣∣◦uN (t, x)
∣∣2} (35)

≤ E1/2
N,V exp

{
2KhH−(t)

∣∣∣ N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s)
∣∣∣2} (36)

× E1/2
N,V exp

{
2KhH−(t)

∣∣∣ N∑
j=1

sin(txj)
∣∣∣2}. (37)

Since by Corollary 14 the distributions of
∑N

j=1 cos(txj)−N
∫

cos(ts)dµ(s) and
∑N

j=1 sin(txj)
are sub-Gaussian, we obtain for example for the first term for any ε > 0,

EN,V exp
{
ε ·
√

2KhH−(t)
( N∑
j=1

cos(txj)−N
∫

cos(ts)dµ(s)
)}

≤ exp
{
ε2 · 2KhH−(t)t2(2αV )−1 + ε

√
2KhH−(t)C(1 + t3)

}
, (38)

where αV := mint V
′′(t) > 0, C does not depend on t or N . For αQ large enough (hence

αV large enough), we have 2KhH−(t)t2(2αV )−1 < 1/4 for all t. Since H−(t) = ĥ
1/2
− (t) is

decaying rapidly,
√

2KhH−(t)C(1 + t3) is bounded in t. Summarizing, if αQ is large enough,
we can bound (38) by

exp{cε2 + εC}

with 0 < c < 1/4 and c, C do not depend on N or t. We conclude that (36) and (37) and

hence (35) are bounded in N . Finally, since ĥ is a Schwartz function, it follows from (34)
that

EN,V exp
{
−
∫
ĥ(t)

∣∣◦uN (t, x)
∣∣2dt} ≤ C

for some constant C > 0 independent of N . This proves the upper bound and hence the
proposition. �

Remark 18. The proof of Proposition 17 actually shows that for each λ > 0 there is a
threshold αh(λ) > 0 and constants C1, C2 (depending on λ and αh) such that

0 < C1 < EN,V exp{λU(x)} ≤ C2, if αQ ≥ αh(λ).
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5. Bounding the First Correlation Function

This section deals with properties of the first correlation function. We give information on
its decay and dependence on additional external fields of lower order.
First of all, we need to introduce some notations from [Joh98].

KN,Q(x) :=
∑

1≤i 6=j≤N
kQ(xi, xj), kQ(t, s) := log|t− s|−1 +

1

2
Q(t) +

1

2
Q(s), (39)

FQ := IQ(µ), ψQ(t) := Q(t)− log(t2 + 1), where IQ(µ) is defined in (82). (40)

From the simple inequality |t− s| ≤
√
t2 + 1

√
s2 + 1 we conclude log |t− s|−1 ≥ −1

2 log(t2 +

1)(s2 + 1) and hence

kQ(t, s) ≥ (1/2)ψQ(t) + (1/2)ψQ(s). (41)

We also note that since V is an external field, there is a constant cQ such that

ψQ(t) ≥ cQ. (42)

We define a generalized unitary invariant ensemble on RN (or some compact [a, b]N ) via

PMN,Q,f (x) :=
1

ZMN,Q,f

∏
1≤i<j≤N

|xi − xj |2 e−M
∑N
j=1Q(xj)+

∑N
j=1 f(xj), (43)

where N,M ∈ N and f is a continuous function with |f(t)| ≤ Q(t) for t large enough. Usually
we have M = N or M = N − 1. If M = N , we will write PN,Q,f instead of PMN,Q,f . If f = 0,

we write PMN,Q. The following result is due to Johansson.

Proposition 19. Let

AN,ε :=

{
x ∈ RN :

1

N2
KN,Q(x) ≤ FQ + ε

}
.

Then there is some constant C such that, if limN→∞N/MN → 1,

PMN
N,Q(RN \AN,ε+a) ≤ Ce−aN

2
for all N ≥ N0(ε) and all a ≥ 0.

Proof. See [Joh98, Lemma 4.2]. �

We abbreviate in the following ρ1
N,Q = ρ1

N . We now deal with the decay of ρ1
N . The following

lemma can be found in several papers including [Joh98, PS08]. We follow [Joh98].

Lemma 20. Let Q be a continuous function satisfying Q(t) ≥ (1 + δ) log(1 + t2) for some
δ > 0 and all t large enough. Then there is a constant C > 0 such that for all t

ρ1
N,Q(t) ≤ eCNe−N[Q(t)−log(1+t2)].
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Proof. We will from now on drop the subscript Q, defining

PMN (x) :=
1

ZMN

∏
1≤i<j≤N

|xi − xj |2 e−M
∑N
j=1Q(xj) and abbreviating ρ1

N := ρ1
N,Q, we compute

ρ1
N (t) =

ZNN−1

ZNN
EN−1
N

(N−1∏
j=1

(
xj − t

)2)
e−NQ(t),

ZNN
ZNN−1

= ENN−1

( ∫
e2

∑N−1
j=1 log

∣∣xj−t∣∣−NQ(t)dt
)
.

(44)

Since adding a constant to Q does not change the ensemble, we will assume that Q ≥ 0,
which corresponds to considering the potential Q+ CQ, where CQ denotes a lower bound of

Q. Setting Z :=
∫
e−Q(t)dt we get by Jensen’s inequality

Z
1

Z

∫
exp

{
2

N−1∑
j=1

log |xj − t| −NQ(t)
}
dt ≥ Z exp

{ 1

Z

∫ (
2

N−1∑
j=1

log |xj − t| − (N − 1)Q(t)
)
e−Q(t)dt

}
.

Since Q ≥ 0, we get∫
log |t− xj | e−Q(t)dt ≥

∫ xj+1

xj−1
log |t− xj | e−Q(t)dt ≥

∫ xj+1

xj−1
log |t− xj | dt = −2.

Summarizing we see that

ZNN /Z
N
N−1 ≥ Z exp{−CN} for some constant C > 0. (45)

Using the inequality (xj − t)2 ≤ (1 + x2
j )(1 + t2) gives

EN−1
N

(N−1∏
j=1

(
xj − t

)2) ≤ (1 + t2)NEN−1
N

(N−1∏
j=1

(
1 + x2

j

))
. (46)

As before, we can assume (otherwise we add a constant) that Q satisfies Q(t) ≥ (1+δ) log(1+
t2) for all t and some δ > 0. Using notations (39-40) and inequality (41), this condition yields

KN−1,Q(x) ≥ δ(N − 1)

N−1∑
j=1

log(1 + xj)
2.

Proposition 19 shows that for A large enough we have

PNN−1,Q

(N−1∑
j=1

log(1 + xj)
2 ≥ AN

)
≤ PNN−1,Q

(
KN−1,Q(x) ≥ δA(N − 1)N

)
≤ e−cAN2

(47)

for some constant c > 0. From this we conclude that for A large enough

EN−1
N

(N−1∏
j=1

(
1 + x2

j

))
≤ eAN + EN−1

N

(N−1∏
j=1

(
1 + x2

j

)
1∏N−1

j=1

(
1+x2j

)
≥eAN

)
. (47) gives that

PNN−1,Q

(N−1∑
j=1

log(1 + xj)
2 −AN ≥ |y|

)
≤ exp{−cAN2 − c |y|N}.
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From this bound it is easy to see that EN−1
N

(∏N−1
j=1 (1 +x2

j )1∏N−1
j=1

(
1+x2j

)
≥exp{AN}

)
is of order

exp{−CN2} for some C > 0. Hence we have

EN−1
N

(N−1∏
j=1

(
1 + x2

j

))
≤ exp{cAN} for some c. (48)

In view of (44) we find combining (45), (46) and (48)

ρ1
N,Q(t) ≤ exp{CN} exp{−N

[
Q(t)− log(1 + t2)

]
}.

�

From the previous lemma we easily deduce the following important corollary (cf. [Joh98,
PS08, Dei98]).

Corollary 21. Let Q be as in Lemma 20. Then there are L,C > 0 such that for all t with
t > L, we have

ρ1
N (t) ≤ exp{−CNQ(t)}.

We finish the section with a useful bound on the first correlation function ρ1
N,Q,f of the unitary

invariant ensemble PN,Q,f (see (43)).

Lemma 22. Let f be bounded. Then we have

ρ1
N,Q,f (t) ≤ ρ1

N,Q(t)e2‖f‖∞ .

Proof. We use the identity

ρ1
N,Q,f (t) =

e−NQ+f

NλN (e−NQ+f , t)
, (49)

where λN (e−NQ+f , ·) is the so-called N -th Christoffel function to the weight e−NQ+f (see
[Tot00] for references and more information on Christoffel functions)

λN (W, t) := inf
PN−1(t)=1

∫
|PN−1(s)|2W (s)ds, (50)

where the infimum is taken over all polynomials PN−1 of at most degree N − 1 with the
property that PN−1(t) = 1 and W denotes a weight function on R. It is obvious from (50)

that λN (W1, ·) ≤ λN (W2, ·) if W1 ≤ W2. Then the lemma follows easily by e−NQ−‖f‖∞ ≤
e−NQ+f ≤ e−NQ+‖f‖∞ . �

6. Proofs of Theorems 1 and 3

We first cite a general result by Levin and Lubinsky ([LL08, Theorem 1.1]) about bulk
universality for unitary invariant ensembles. Recall the definition of ρkN,Q,f following (43).

Theorem 23. Let Q be a continuous external field on the set Σ ⊂ R, which is assumed to
consist of at most finitely many intervals. Let f be a bounded continuous function on Σ. Let
KN denote the kernel

KN (t, s) =
N−1∑
j=0

ψ
(N)

j (t)ψ
(N)

j (s),
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where
(
ψ

(N)

j

)
j

are the orthonormal functions to the weight e−NQ(t)+f(t). Let J be a closed

interval lying inside the support of µQ. Assume that µQ is absolutely continuous in a neigh-
borhood of J and that Q′ and the density µQ are continuous in that neighborhood, while
µQ > 0 there. Then uniformly for a ∈ J and t, s in compacts of the real line, we have

lim
N→∞

KN

(
a+ t

KN (a,a) , a+ s
KN (a,a)

)
KN (a, a)

=
sin (π(t− s))
π(t− s)

. (51)

We use a notion of bulk universality which slightly differs from (51), namely we scale by the
limiting density µQ instead of using the N -particle density. The following obvious corollary
is a translation of Theorem 23 into this setup.

Corollary 24. Let Q, f and µQ be as in Theorem 23. Then bulk universality as defined in
(2) holds for the unitary invariant ensemble PN,Q,f .

Proof. The corollary follows from the well-known determinantal relations for unitary invariant
ensembles, the local uniformness of the limit (51) in t, s and the fact that by [Tot00, Theorem
1.2] we have uniformly in compact proper subsets of suppµQ

lim
N→∞

1

N
KN (a, a) = lim

N→∞
ρ1
N,Q,f (a) = µQ(a).

�

We will prove Theorems 1 and 3 together by comparing the correlation functions of the
ensembles P hN,Q (see (30)) and PN,V (see (31)). We start with ρkN,V , the k-th correlation

function of PN,V . We obtain ρkN,V
(
a + t1

Nµ(a) , . . . , a + tk
Nµ(a)

)
as k-marginal, integrating the

density

PN,V
(
a+

t1
Nµ(a)

, . . . , a+
tk

Nµ(a)
, xk+1, . . . , xN

)
over xk+1, . . . , xN . We have k fixed eigenvalues at positions a + t1

Nµ(a) , . . . , a + tk
Nµ(a) and

N−k random eigenvalues. We first rewrite ρkN,V

(
a+ t1

Nµ(a) , . . . , a+ tk
Nµ(a)

)
in terms of these

N − k random eigenvalues as follows.

ρkN,V
(
a+

t1
Nµ(a)

, . . . , a+
tk

Nµ(a)

)
=

∫
RN−k

1

ZN,V
exp

{
−N

N∑
j=k+1

V (xj) + 2
∑

i<j; i,j>k

log
∣∣xj − xi∣∣}

× exp
{
−N

k∑
j=1

V
(
a+

tj
Nµ(a)

)
+ 2

∑
i<j; i,j≤k

log
∣∣ ti − tj
Nµ(a)

∣∣} (52)

× exp
{

2
∑

i≤k, j>k
log
∣∣a+

ti
Nµ(a)

− xj
∣∣}dxk+1 . . . dxN
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= F (a, t)
ZNN−k,V
ZN,V

ENN−k,V exp
{

2
∑

i≤k, j>k
log
∣∣a+

ti
Nµ(a)

− xj
∣∣}, where (53)

F (a, t) := exp
{
−N

k∑
j=1

V
(
a+

tj
Nµ(a)

)
+ 2

∑
i<j; i,j≤k

log
∣∣ ti − tj
Nµ(a)

∣∣} (54)

is the factor (52), which depends only on the fixed particles, and

PNN−k,V (xk+1, . . . , xN ) :=
1

ZNN−k,V

∏
k+1≤i<j≤N

|xi − xj |2 e−N
∑N
j=k+1 V (xj).

As before, the subscript N − k indicates that PNN−k,V is a probability measure in N − k
variables, whereas the superscript N indicates that the factor in front of the external field
term

∑N
j=k+1 V (xj) of PNN−k,V is N and not N − k. We keep the labelling xk+1, . . . , xN .

Setting

LNN−k,V (a, t, x) := 2
∑

i≤k, j>k
log
∣∣a+

ti
Nµ(a)

− xj
∣∣+ log

[
F (a, t)

ZNN−k,V
ZN,V

]
, (55)

we get from (53) the equality

ρkN,V
(
a+

t1
Nµ(a)

, . . . , a+
tk

Nµ(a)

)
= ENN−k,V exp

{
LNN−k,V (a, t, x)

}
. (56)

Similar as in (53), we see that the k-th correlation function ρh,kN,Q of P hN,Q at a+ t1
Nµ(a) , . . . , a+

tk
Nµ(a) can be written as

1

EN,V exp
{
U(x)

}ENN−k,V exp
{
U(t, x) + LNN−k,V (a, t, x)

}
, (57)

where we abbreviated U(a+ t1
Nµ(a) , . . . , a+ tk

Nµ(a) , xk+1, . . . , xN ) by U(t, x).

In the following we shall abbreviate (t1, . . . , tk, xk+1, . . . , xN ) by (t, x) and by (t, x)j we will
denote the j-th component of the vector (t, x). Furthermore, for the sake of brevity, we set

Ra := LNN−k,V (a, t, x) and R := LNN−k,V (0, Nµ(0)t, x). (58)

Note that R arises in the global scaling, whereas Ra appears in the local scaling. It will later
turn out to be convenient that all the xj ’s lie in a compact set. To this end we formulate the
following truncation lemma. This procedure is well-known for invariant ensembles (see for
instance [Joh98] or [BdMPS95]).

Lemma 25. For αQ large enough, the following holds: For each k there are L,C > 0 such
that for all N and for all t1, . . . , tk∣∣∣∣∣ρh,kN,Q(t1, . . . , tk)−

1

EN,V,L exp
{
U(x)

}ENN−k,V,L exp
{
U(t, x) +RL

}∣∣∣∣∣ ≤ e−CN ,
where EMN,V,L denotes expectation w.r.t. the ensemble PMN,V,L obtained by normalizing the

ensemble PMN,V restricted to [−L,L]N and RL is the analog of R in which all integrations



20

over R have been replaced by integrations over [−L,L]. Furthermore, for any external field Q
on R, the following holds: For each k there are L′, C > 0 such that for all N and all t1, . . . , tk∣∣∣ρkN,Q(t1, . . . , tk)− ρkN,Q,L′(t1, . . . , tk)

∣∣∣ ≤ e−C′N ,
where ρkN,Q,L′ is the k-th correlation function of the ensemble PN,Q,L′ obtained by normalizing

the ensemble PN,Q restricted to [−L′, L′]N .

Proof. We will use the representation (57) and show that the restriction of integrals to
[−L,L]N ⊂ RN respectively [−L,L]N−k ⊂ RN−k results in an asymptotically negligible
error. For EN,V eU we use Hölder’s inequality to estimate

EN,V
(

exp{U(x)}1([−L,L]N )c(x)
)
≤ (EN,V exp{(1 + ε)U(x)})1/(1+ε)

(
PN,V

((
[−L,L]N

)c))1/ε′

,

where 1/(1 + ε) + 1/ε′ = 1 and ε > 0 is fixed. Now EN,V e(1+ε)U(x) is uniformly bounded in
N by Proposition 17 provided that αQ is large enough. Furthermore, by Corollary 21 we get
for the L defined there

PN,V

((
[−L,L]N

)c) ≤ N ∫
|t|>L

ρ1
N,V (t)dt ≤ N

∫
|t|>L

e−CNV (t)dt ≤ e−C′N (59)

for some C ′ > 0. In fact, C ′ can be chosen arbitrarily large by increasing L. We conclude
that

EN,V
(

exp{U(x)}1([−L,L]N )c(x)
)
≤ exp{−C ′′N},

for some C ′′ > 0, if L is large enough. It follows by (59) as well that the exchange of the
normalizing constants ZN,V and ZNN−k,V by their counterparts ZN,V,L and ZNN−k,V,L and hence
also the exchange of R by RL is asymptotically negligible.

In order to bound ENN−k,V
(

exp
{
U(t, x) +R

}
1([−L,L]N )c(x)

)
, first use Hölder’s inequality as

above. It remains to estimate ENN−k,V exp
{

(1 + ε)U(t, x) + (1 + ε)R
}

for some fixed ε > 0.

Again by Hölder’s inequality we reduce this to bounding ENN−k,V exp
{

(1 + ε′)U(t, x)
}

and

ENN−k,V exp
{

(1 + ε′′)R
}

for some ε′, ε′′ > 0. Recall from (33) that

U(x) = − 1

2
√

2π

∫ ∣∣∣◦uN (s, x)
∣∣∣2 ĥ(s)ds, where

◦
uN (s, x) =

N∑
j=1

cos(sxj)−N
∫

cos(st)dµ(t) +
√
−1

N∑
j=1

sin(sxj).
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For any a and any t1, . . . , tk we get

U(t, x) ≤ 1

2
√

2π

∫ ∣∣ N∑
j=k+1

cos(sxj)− (N − k)

∫
cos(su)dµ(u) +

k∑
j=1

cos(stj)− k
∫

cos(su)dµ(u)
∣∣2 ĥ−(s)ds

+
1

2
√

2π

∫ ∣∣ N∑
j=k+1

sin(sxj) +

k∑
j=1

sin(stj)
∣∣2 ĥ−(s)ds

≤ 1√
2π

∫ ∣∣ N∑
j=k+1

cos(sxj)− (N − k)

∫
cos(su)dµ(u)

∣∣2 ĥ−(s)ds

+
1√
2π

∫ ∣∣ N∑
j=k+1

sin(sxj)
∣∣2 ĥ−(s)ds+

5k2

√
2π

∫
ĥ−(s)ds, (60)

where we used the inequalities (a+b)2 ≤ 2(a2+b2) and |cos| , |sin| ≤ 1. From this we conclude
as in the proof of Proposition 17 that ENN−k,V exp

{
(1 + ε′)U(t, x)

}
≤ C provided that αQ

is large enough (which does not depend on k) and C does not depend on t1, . . . , tk or N .
To see that Theorem 11 also applies for PNN−k,V , is obvious, for Proposition 13 we use that

PNN−k,V = PN−kN−k,V,f with f(t) := kV (t) and the notation introduced in (43). Proposition 13

is proved in [Shc11] also for the case of PN,Q,f for real-analytic Q and f , hence it can be

applied as in the proof of Proposition 17. We may now bound ENN−k,V exp
{

(1 + ε′′)R
}

as in

the arguments following (46). Recall that

R := 2
∑

i≤k, j>k
log |ti − xj |+ log

[
F (0, Nµ(0)t)

ZNN−k,V
ZN,V

]
,

where F (a, t) was defined in (54). Using the same Jensen type trick as in the proof of Lemma
20, we find that ZNN−k,V /ZN,V ≤ exp{CkN} for some C. As in (46) we get

ENN−k,V exp
{

(2 + 2ε′′)
∑

i≤k, j>k
log
∣∣ti − xj∣∣}

≤ exp
{

(N − k)(1 + ε′′)
∑
i≤k

log
(
1 + t2i

)}
ENN−k,V exp

{
(1 + ε′′)

∑
j>k

log(1 + x2
j )
}
. (61)

Analogously to (48) we conclude that ENN−k,V exp
{

(2 + 2ε′′)
∑

j>k log(1 + x2
j )
}
≤ exp{cN}

for some c > 0. Using (42), it is straightforward to bound

exp
{

(N − k)(2 + 2ε′′)
∑
i≤k

log
(
1 + t2i

)
+ log

[
F (0, Nµ(0)t)ZNN−k,V /ZN,V

]}
≤ exp{−c1N

k∑
i=1

[V (ti)− c2 log(1 + t2i )] + CkN}, (62)
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where c1, c2 are absolute positive constants. Since V is strictly convex, this yields

ENN−k,V exp
{

(1 + ε′′)R
}
≤ eCN and hence

ENN−k,V exp
{

(1 + ε)U(t, x) + (1 + ε)R
}
≤ eC′N

for some C,C ′. From (59), we get that for L and N large enough

ENN−k,V
(

exp
{
U(t, x) +R

}
1([−L,L]N )c(x)

)
≤ e−C′′N

for some C ′′ > 0 and all t1, . . . , tk.
From (57), (60) and (61) we also obtain similar as in Lemma 20

ρh,kN,Q(t1, . . . , tk) ≤ exp{CN − c1N

k∑
i=1

[V (ti)− c2 log(1 + t2i )]}

for some positive C, c1, c2. As before, this implies that we can assume all t1, . . . , tk to lie in
some compact set.
The second assertion of the lemma follows analogously from (59), (62) and (61) with ε′′ =
0. �

Proof of Theorems 1 and 3. We first outline the main idea of the proof. Recall from (29)
that

U(x) = −(1/2)
( N∑
i,j=1

h(xi − xj)− [hµ(xi) + hµ(xj)− hµµ]
)
.

Assume for a moment that −h/2 is positive semi-definite, or in other words, the covariance
function of a centered stationary Gaussian process (Gt)t∈[−L,L], i.e. −h(t− s)/2 = E(GtGs).

We may linearize the bivariate statistic −(1/2)
∑N

i,j=1 h(xi − xj) via

exp{−(1/2)

N∑
i,j=1

h(xi − xj)} = E exp{
N∑
j=1

Gxj},

where E denotes expectation w.r.t. the underlying probability measure. By definition we
conclude that

exp{U(x)} = E exp
{ N∑
j=1

Gxj −N
∫
G·dµ

}
, (63)

provided that G· is a.s. integrable w.r.t. µ. Since we would like to apply Corollary 14 to
the linear statistic in (63), we need that G· is sufficiently smooth with probability one. To
see this, we use the well-known Karhunen-Loève expansion of G. By a classical result due to
Mercer the covariance function h admits an expansion, converging uniformly on [−L,L],

−h(t− s)/2 =
∞∑
i=1

λiθi(t)θi(s), (64)
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where (θi)i denotes an orthonormal system of eigenfunctions of the integral kernel h with real
and positive eigenvalues (λi)i, i.e.∫ L

−L
−(1/2)h(t− s)θi(s)ds = λiθi(t) ∀i.

The Karhunen-Loève expansion of G is then given by

Gt =
∞∑
i=1

λ
1/2
i ξiθi(t), (65)

where (ξi)i, ξi := (λi)
−1/2

∫ L
−L θi(t)Gtdt, are independent standard normal variables. The

convergence in (65) is a.s. uniform on the compact interval [−L,L], see [AT07, Theorem
3.1.2]. The a.s. continuity of Gt used for this theorem follows e.g. from the Kolmogorov-
Chentsov Theorem ([Kal02, Theorem 3.23]). Since h is analytic on some domain containing
the compact set, say A := [−L,L] × [−δ, δ] ⊂ C, δ > 0, its eigenfunctions (with nonzero
eigenvalues) are analytic on A. Hence the uniform convergence in (65) implies that Gw, w ∈ A
is analytic with probability one. Furthermore, recall that the derivative process (G′t)t∈[−L,L]

of G is a centered (real-valued) Gaussian process with covariance function h′′/2. See e.g.
[Adl81, Theorem 2.2.2].
To summarize, if −h is positive semi-definite, U admits the linearization (63) in terms of
linear statistics with random test functions which fulfill the prerequisites of Corollary 14 if
we restrict ourselves to a compact [−L,L]. In the following we sketch the main strategy in
this case. Let k ∈ N be fixed. Eventually we will prove

lim
N→∞

ρh,kN,Q
(
a+

t1
Nµ(a)

, . . . , a+
tk

Nµ(a)

)
− Sk(t) = 0 (66)

locally uniformly, where

Sk(t) := µ(a)k det

[
sin (π(ti − tj))
π(ti − tj)

]
1≤i,j≤k

.

By the boundedness of EN,V eU (Proposition 17) and Lemma 25, (66) converges to zero if and
only if

EN,V,LeUρh,kN,Q
(
a+

t1
Nµ(a)

, . . . , a+
tk

Nµ(a)

)
− EN,V,LeUSk(t)

tends to 0, where the L > 0 was introduced in Lemma 25. But this means, using (56), (57)
and the abbreviation Ra,L, which denotes a version of Ra which is truncated to [−L,L] (see
(58)) and Lemma 25 that

ENN−k,V,L exp
{
U(t, x) +Ra,L

}
− EN,V,L exp

{
U
}
Sk(t)→ 0 (67)

as N →∞. The linearization procedure then gives

ENN−k,V,L exp
{
U(t, x) +Ra,L

}
− EN,V,L exp

{
U
}
Sk(t)

=E
[
ENN−k,V,L exp

{ N∑
j=1

G(t,x)j +Ra,L
}
− EN,V,L exp

{ N∑
j=1

Gxj
}
Sk(t)

]
. (68)
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We find similarly as in (57) that(
EN,V,L exp

{ N∑
j=1

Gxj
})−1ENN−k,V,L exp

{ N∑
j=1

G(t,x)j +Ra,L
}

= ρkN,V,G·,L
(
a+

t1
Nµ(a)

, . . . , a+
tk

Nµ(a)

)
,

(69)

where PN,V,G·,L denotes the determinantal ensemble on [−L,L]N with external field exp
{
−

NV (t) +Gt
}

.
With the representation (69), we can use the bulk universality of PN,V,G·,L to show conver-
gence of

ENN−k,V,L exp
{ N∑
j=1

G(t,x)j +Ra,L
}
− EN,V,L exp

{ N∑
j=1

Gxj
}
Sk(t) (70)

to 0 almost surely. To show that convergence to 0 also holds for the expectation, we will
bound (70) in terms of G·. Here we can use that G is a Gaussian process and quantities like
‖G·‖∞ and ‖G′·‖∞ have sub-Gaussian tails.
We now turn to the detailed proof. As −h is in general not positive semi-definite, we may

extend the previous case by means of the following argument. Recall the decomposition of ĥ

into nonnegative functions ĥ = (ĥ)+ − (ĥ)−. By setting h+ := (̂ĥ)+, h− := (̂ĥ)−, we get a
decomposition h = h+ − h− of h into positive semi-definite, real-analytic functions. Define
for a complex parameter z ∈ C

Uz(x) :=
z

2

( N∑
i,j=1

h+(xi − xj)−
[
h+
µ (xi) + h+

µ (xj)− h+
µµ

] )
(71)

+
1

2

( N∑
i,j=1

h−(xi − xj)−
[
h−µ (xi) + h−µ (xj)− h−µµ

] )
. (72)

Note that U−1 = U . Similar to (67), we have to show that for z = −1

ENN−k,V,L exp
{
Uz(t, x) +Ra,L

}
− EN,V,L exp

{
Uz
}
Sk(t)→ 0

as N → ∞. As the linearization procedure only works for nonnegative z, we shall use the
following result, known as Vitali’s Convergence Theorem, which can be found e.g. in [Tit39].

Theorem 26 (Vitali’s Convergence Theorem). Let fn(z) be a sequence of analytic functions
on a region D ⊂ C with |fn(z)| ≤ M for all n and all z ∈ D. Assume that limn→∞ fn(z)
exists for a set of z having a limit point in D. Then limn→∞ fn(z) exists for all z in the
interior of D and the limit is an analytic function in z.

We will apply Vitali’s Convergence Theorem to the sequence (in N) of the following analytic
functions of z:

WN,z(a, t) := ENN−k,V,L exp
{
Uz(t, x) +Ra,L

}
− EN,V,L exp

{
Uz
}
Sk(t). (73)

Introduce the domain D := {z = x+ iy ∈ C : x, y ∈ R, x < C(αQ)}, where C(αQ) > 0 is a
sufficiently small constant such that the following quantity is bounded by some constant C:

EN,V,L exp
{
UC(αQ)

}
≤ C
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(the existence of such constants follows from the proof of Proposition 17). First we shall
show uniform boundedness of WN,z(a, t) for all N, a, t and z ∈ D. By the definition of
Uz in (71) and the positivity of (72) and (71) for positive z (being variances of Gaussian
random variables) it is clear that it suffices to bound WN,z(a, t) for real, positive z, since for
negative real parts of z the boundedness of WN,z(a, t) is obvious. Hence we restrict ourselves
to 0 ≤ z < C(αQ) only. Let G+ and G− denote two independent, centered and stationary
Gaussian processes on a probability space (Ω,A, P ) indexed by A := [−L,L] × [−ε, ε] ⊂ C
with covariance functions (z/2)h+ and h−/2, respectively, where h+ and h− are analytic on
A. Writing Gt = G+

t −
∫
G+
· dµ+G−t −

∫
G−· dµ and denoting by E the expectation w.r.t. P ,

we can rewrite

ENN−k,V,L exp
{
Uz(t, x) +Ra,L

}
− EN,V,L exp

{
Uz
}
Sk(t)

=E
[
ENN−k,V,L exp

{ N∑
j=1

G(t,x)j +Ra,L
}
− EN,V,L exp

{ N∑
j=1

Gxj
}
Sk(t)

]
. (74)

Similar to (69), we have(
EN,V,L exp

{ N∑
j=1

Gxj
})−1ENN−k,V,L exp

{ N∑
j=1

G(t,x)j +Ra,L
}

= ρkN,V,G·,L
(
a+

t1
Nµ(a)

, . . . , a+
tk

Nµ(a)

)
,

(75)

where PN,V,G·,L denotes the determinantal ensemble on [−L,L]N with external field exp
{
−

NV (t) +G+
t +G−t

}
.

Fix compact sets E ⊂ Rk and I ⊂ suppµ◦. We have

sup
t∈E,a∈I

∣∣∣E[ENN−k,V,L exp
{ N∑
j=1

G(t,x)j +Ra,L
}
− EN,V,L exp

{ N∑
j=1

Gxj
}
Sk(t)

]∣∣∣ (76)

≤ E sup
t∈E,a∈I

∣∣∣ENN−k,V,L exp
{ N∑
j=1

G(t,x)j +Ra,L
}
− EN,V,L exp

{ N∑
j=1

Gxj
}
Sk(t)

∣∣∣.
Since (75) converges by Theorem 23 to Sk(t) locally uniformly and the term EN,V,L exp

{∑N
j=1Gxj

}
is bounded in N by Corollary 14 and bounded away from 0 by Proposition 13 and Lemma
25, we see that the term

sup
t∈E,a∈I

∣∣∣∣∣ENN−k,V,L exp
{ N∑
j=1

G(t,x)j +Ra,L
}
− EN,V,L exp

{ N∑
j=1

Gxj
}
Sk(t)

∣∣∣∣∣ (77)

converges to 0 a.s. w.r.t. P . To show convergence of (76) to 0, it remains to show that (77)

is uniformly integrable w.r.t. P . We first consider the term EN,V,L exp
{∑N

j=1Gxj
}

. In view

of Corollary 14, we need to determine the distribution of the Lipschitz constant of G+ +G−

and of

‖G+ +G−‖∞ + ‖(G+ +G−)(3)‖∞ (78)

on [−L,L]. The derivative processes (G+)′ and (G−)′ are Gaussian with covariance functions
−(z/2)(h+)′′ and −(h−)′′/2, respectively. Furthermore, it is well-known that supt∈[−L,L]|G+

t |
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and supt∈[−L,L]|G−t | are sub-Gaussian with certain means and variances −(z/2)(h+)′′(0) and

−(h−)′′(0)/2, respectively. By the same argument, ‖G+ + G−‖∞ and ‖(G+ + G−)(3)‖∞ are
sub-Gaussian with certain means and the variances given in terms of derivatives of (h+) and
(h−). For a reference, see e.g. [AT07, Theorem 2.1.1]. From the sub-Gaussianity of these
quantities and Corollary 14, it is easy to see that

EN,V,L exp
{ N∑
j=1

Gxj
}
, (79)

has a P -integrable dominating function, provided that αQ (and hence αV ) is large enough.
Note that the estimates above are uniform in z varying in a small interval. It remains to
show that

ENN−k,V,L exp
{ N∑
j=1

G(t,x)j +Ra,L
}

(80)

is uniformly integrable and bounded in z for z varying in a small interval. To this end we
use that (80) is equal to

EN,V,L exp
{ N∑
j=1

Gxj
}
ρkN,V,G·,L

(
a+

t1
Nµ(a)

, . . . , a+
tk

Nµ(a)

)
.

As in the proof of Theorem 5, we get

ρkN,V,G·,L
(
a+

t1
Nµ(a)

, . . . , a+
tk

Nµ(a)

)
≤ Ck

k∏
j=1

ρ1
N,V,G·,L

(
a+

tj
Nµ(a)

)
,

where C is such that C ≥ N/(N − k). By Lemma 22 we have

ρ1
N,V,G·,L

(
a+

tj
Nµ(a)

)
≤ ρ1

N,V,L

(
a+

tj
Nµ(a)

)
e2‖G·‖∞ ,

where ‖G·‖∞ := supt∈[−L,L] |Gt|. Bulk universality for k = 1 gives that ρ1
N,V,L(a +

tj
Nµ(a))

converges (locally) uniformly towards the bounded function µ(a). We conclude that there is
a constant C > 0 such that for t1, . . . , tk ∈ E, a ∈ I we have

ρkN,V,G·,L
(
a+

t1
Nµ(a)

, . . . , a+
tk

Nµ(a)

)
≤ Ce2k‖G·‖∞ .

As ‖G·‖∞ is sub-Gaussian, we get in combination with (79) that (77) is uniformly integrable
w.r.t. P , provided that αQ is large enough. It is clear that this bound is uniform in z ∈ [0, ε)
for some small ε > 0.
To summarize, we have shown that (76) converges to 0 for (small) positive z, or in other
terms, locally uniform convergence in a and t of WN,z(a, t) (for small positive z) as N →∞.
We have also shown uniform boundedness of WN,z(a, t) for arbitrary N, a, t and z ∈ (−∞, ε)×
R ⊂ C and as locally uniform convergence implies pointwise convergence, we get by Vitali’s
Convergence Theorem that the sequence (in N) of functions WN,z(a, t) converges to 0 for
z = −1 pointwise in a and t. To get locally uniform convergence in t and a for z = −1,
recall that by Arzelà-Ascoli’s Theorem, a sequence of continuous functions on a compact set
has a uniformly converging subsequence if and only if the sequence is uniformly bounded
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and equicontinuous. Thus it remains to show that (WN,z(a, t))N is equicontinuous in a and
t (boundedness has already been shown). As the convergence of WN,z(a, t) is uniform in a, t
for small positive z, Arzelà-Ascoli’s Theorem implies equicontinuity (in a, t) of (WN,z(a, t))N
for small positive z. To see that this implies equicontinuity (in a, t) of (WN,z(a, t))N also for

z = −1, observe that a (real-valued) sequence of functions (fN )N on some compact K ⊂ Rd
is equicontinuous in x ∈ K if and only if for each sequence (xm)m ⊂ K, limm→∞ xm =
x and each sequence (Nm)m ⊂ N we have limm→∞ fNm(xm) − fNm(x) = 0. Using this
characterisation, equicontinuity for z = −1 is easily seen by applying Vitali’s Convergence
Theorem to deduce limm→∞WNm,−1(am, tm) = 0 from limm→∞WNm,z(am, tm) = 0 for small
positive z. This completes the proof of Theorem 3.
To prove Theorem 1, take g : Rk −→ R bounded and continuous. With the same arguments
as above, we arrive in analogy to (74)-(75) at proving

E
[
EN,V,L exp

{ N∑
j=1

Gxj
}∫

Rk
ρkN,V,G·,L (t1, . . . , tk) g(t1, . . . , tk)dt1 . . . dtk

− EN,V,L exp
{ N∑
j=1

Gxj
}∫

Rk
g(t1, . . . , tk)µ(t1) . . . µ(tk)dt1 . . . dtk

]
→ 0 as N →∞.

All the boundedness and integrability arguments above for EN,V,L exp
{∑N

j=1Gxj
}

can be

used again. The convergence of
∫
Rk ρ

k
N,V,G·

(
t
)
g(t)dt towards

∫
g(t)µ(t1) . . . µ(tk)dt is given by

[Joh98, Theorem 2.1]. Lemma 25 enables us to transfer Johansson’s result to the correlation
function ρkN,V,G·,L. This finishes the proof of Theorem 1. �

7. Appendix: Equilibrium Measures with External Fields

In this appendix, we recall some results about equilibrium measures, mainly from the book
by Saff and Totik [ST97, Section I.1]. The following can be found in [ST97, Section I.1].
LetM1(Σ) denote the set of Borel probability measures on a set Σ. Define for Σ ⊂ C compact
the logarithmic energy of µ ∈M1(Σ) as

I(µ) :=

∫ ∫
log |z − t|−1 dµ(z)dµ(t) (81)

and the energy V of Σ by V := infµ∈M1(Σ) I(µ). It turns out that V is finite or ∞ and in
the finite case there is a unique measure ωΣ which minimizes (81). This measure ωΣ is called
equilibrium measure of Σ and the quantity cap(Σ) := e−V is called capacity of Σ. For an
arbitrary Borel set Σ we define the capacity of Σ as

cap(Σ) := sup{cap(K) : K ⊂ Σ compact}.

Lemma 27. If Σ = [−l, l], l ≥ 0, then cap(Σ) = l/2 and the equilibrium measure is the
arcsine distribution with support [−l, l]:

dωΣ(t) =
1

π
√
l2 − t2

dt, t ∈ [−l, l].

ωΣ has mean 0 and variance l2/2.

Proof. See [ST97, Section I.1]. �
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Definition 28. Let Σ ⊂ R be closed. Let Q : Σ −→ [0,∞] satisfy

a) Q is lower semicontinuous,
b) Σ0 := {t ∈ Σ : Q(t) <∞} has positive capacity,
c) if Σ is unbounded, then lim

|t|→∞,t∈Σ
Q(t)− log |t| =∞.

If Q satisfies these properties, we call it external field on Σ and W = e−Q its corresponding
weight function.

Furthermore, define for µ ∈M1(Σ) the energy functional

IQ(µ) :=

∫
Q(t)dµ(t) +

∫ ∫
log |s− t|−1 dµ(s)dµ(t). (82)

Remark 29. In [ST97] the authors define the energy functional to be (in our notation) I2Q

instead of IQ. It is more convenient for our purposes to use this definition. We note that
under this change qualitative results from [ST97] remain the same but quantitative results
involving Q have to be changed by a factor 2 or 1/2, respectively.

IQ(µ) might be ∞, but the following theorem holds. The support of a measure µ will be
denoted as supp(µ).

Theorem 30. Let Q be an external field on Σ.

a) There is a unique probability measure µQ ∈M1(Σ) with

IQ(µQ) = inf
µ∈M1(Σ)

IQ(µ). (83)

b) µQ has a compact support.

c) Let Q̃ be an external field on Σ such that Q̃ = Q on a compact set K with supp(µQ) ⊂ K
and Q̃(t) =∞ for t /∈ K. Then µ

Q̃
= µQ.

Proof. Statements 1) and 2) can be found in [ST97, Theorem I.1.3], 3) follows from [ST97,
Theorem I.3.3] (also see the remark on page 48 in [ST97]). �

µQ is called the equilibrium measure for Q. The next theorem summarizes properties of the
logarithmic potential

Uµ(z) :=

∫
log |z − t|−1 dµ(t).

Theorem 31.

a) Let Q and Q̃ be external fields on Σ such that
∣∣Q− Q̃∣∣ ≤ ε on Σ. Then for all z ∈ C∣∣UµQ(z)− UµQ̃(z)
∣∣ ≤ 2ε.

b) Let K ⊂ R be compact and (µn)n be a sequence in M1(K) converging weakly to a
probability measure µ. Then for a.e. z ∈ C (w.r.t. the Lebesgue measure on C)

lim inf
n→∞

Uµn(z) = Uµ(z).

c) If µ and ν are two compactly supported probability measures and their logarithmic
potentials Uµ and Uν coincide almost everywhere on C, then µ = ν.
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Proof. Statement 1. is contained in [ST97, Corollary I.4.2], statement 2. is [ST97, Theorem
I.6.9] and assertion 3. is [ST97, Corollary II.2.2]. �

We also need a characterization of the support of the equilibrium measure.

Theorem 32. Let Q be an external field on Σ.

a) For a compact set K of positive capacity define the functional

FQ(K) := log cap(K)− 2

∫
QdωK .

For any compact K of positive capacity we have FQ(K) ≤ FQ(supp(µQ)). Furthermore,
if K is compact and of positive capacity and such that FQ(K) = FQ(supp(µQ)), then
supp(µQ) ⊂ K.

b) If Q is convex, then supp(µQ) is an interval.
c) If Q is even, then supp(µQ) is even.

Proof. For statement 1. see [ST97, Theorem IV.1.5], for statements 2. and 3. [ST97, Theorem
IV.1.10]. �

The last fact is about existence and properties of a continuous density of the equilibrium
measure.

Theorem 33.

a) Let Q be an external field on Σ. If Q is finite on supp(µQ) and locally of class C1+ε

for some ε > 0 (which means that Q is continuously differentiable and the derivative
Q′ is Hölder continuous with parameter ε), then µQ has a continuous density on the
interior of supp(µQ).

b) If Q has two Lipschitz derivatives and is strictly convex, then supp(µQ) =: [a, b] and
the density of µQ can be represented as

dµ(t)

dt
= r(t)

√
(t− a)(b− t)1[a,b](t), (84)

where r can be extended into an analytic function on a domain containing [a, b] and
r(t) > 0 for t ∈ [a, b]. In particular, the density is positive on (a, b).

Proof. Statement 1. is [ST97, Theorem IV.2.5], for assertion 2. see e.g. the appendix of the
paper by McLaughlin and Miller [MM08]. �
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