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We identify stationary distributions of generalized Fleming-Viot pro-
cesses with jump mechanisms specified by certain beta laws together
with a parameter measure. Each of these distributions is obtained from
normalized stable random measures after a suitable biased transforma-
tion followed by mixing by the law of a Dirichlet random measure with
the same parameter measure. The calculations are based primarily on
the well-known relationship to measure-valued branching processes with
immigration.

1 Introduction

In the study of population genetics models, it is of great importance to identify their
stationary distributions. Such identifications provide us with basic information of
possible equilibria of the models and are needed prior to quantitative discussions on
statistical inference. Since [5], [14] and [1], theory of generalized Fleming-Viot pro-
cesses has served as a new area to be cultivated and has been developed considerably.
(See [3] for an exposition.) In view of such progress, it seems that we are in a position
to explore the aforementioned problems for some appropriate subclass of those mod-
els. In this respect, it would be natural to think of the one-dimensional Wright-Fisher
diffusion with mutation as a prototype. This celebrated process is prescribed by its
generator

A :=
1

2
x(1− x)

d2

dx2
+

1

2
[c1(1− x)− c2x]

d

dx
, x ∈ [0, 1], (1.1)

where c1 and c2 are positive constants interpreted as mutation rates. The stationary
distribution is a beta distribution

Bc1,c2(dx) :=
Γ(c1 + c2)

Γ(c1)Γ(c2)
xc1−1(1− x)c2−1dx, (1.2)

1 AMS 2010 subject classifications. Primary 60J75; secondary 60G57.
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where Γ(·) is the gamma function. In addition, the process associated with (1.1)
admits an infinite-dimensional generalization known as the Fleming-Viot process with
parent-independent mutation, whose stationary distribution is identified with the law
of a Dirichlet random measure.

In the present paper we consider a problem of finding a class of generalized
Fleming-Viot processes whose stationary distributions can be identified. As far as
the first term on the right side of (1.1) is concerned, its jump-type version has been
discussed in population genetics as the generator of a model with ‘occasional extreme
reproduction’. (See Section 1.2 of [3] for a comprehensive account.) We addition-
ally need to look for an appropriate modification of the second term, which should
correspond to a generalization of the mutation mechanism. With these situations in
mind, our problems can be described as follows.
(I) By modifying both mechanisms of reproduction and mutation, find a jump pro-
cess on [0,1] whose generator extends (1.1) and whose stationary distribution can be
identified.
(II) Establish an analogous generalization for the Fleming-Viot process with parent-
independent mutation.

Since these problems are rather vague, it may be worth showing now the generator
we will believe to give an ‘answer’ to (I). For each α ∈ (0, 1), define an operator Aα

by

AαG(x)

=
∫ 1

0

B1−α,1+α(du)

u2
[xG((1− u)x+ u) + (1− x)G((1− u)x)−G(x)]

+
∫ 1

0

B1−α,α(du)

(α + 1)u
[c1G((1− u)x+ u) + c2G((1− u)x)− (c1 + c2)G(x)] ,(1.3)

where G are smooth functions on [0, 1]. Observe that AαG(x) → AG(x) as α ↑ 1.
It should be noted that Aα is a one-dimensional version of the generator of the
process studied in [2] if c1 = c2 = 0. See also [12] and [13]. The reader, however,
is cautioned that our notation α is in conflict with that of these papers, in which
α plays the same role as α + 1 in our notation. (We adopt such notation in order
for the formulae below to be simpler.) The constant c1 (resp. c2) in (1.3) can be
interpreted as the rate of ‘simultaneous mutation’ from one type to the other type
and a proportion u of the individuals with that type, which are supposed to have
the frequency 1− x (resp. x) in the population, are involved in this ‘mutation’ event
with intensity B1−α,α(du)/((α + 1)u). (Note that (1 − u)x + u = x + u(1 − x).) As
will be seen in Proposition 3.1 below for more general case, the closure of (1.3) with
a suitable domain generates a Feller semigroup on C([0, 1]), and our main concern
is the equilibrium state of the associated Markov process. It will be shown in the
forthcoming section that a unique stationary distribution of the process governed by
(1.3) is identified with

Pα,(c1,c2)(dx) := Γ(α + 1)
∫ 1

0
Bc1,c2(dy)Eα,y

[
(Y1 + Y2)

−α;
Y1

Y1 + Y2
∈ dx

]
, (1.4)
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where Eα,y denotes the expectation with respect to (Y1, Y2) with law determined by
logEα,y[e

−λ1Y1−λ2Y2 ] = −yλα1 − (1 − y)λα2 (λ1, λ2 ≥ 0). Again we see that (1.4) with
α = 1 reduces to (1.2).

One might think that (1.3) appears very special among possible generalizations
of (1.1). In fact, such restriction has resulted from our strategy, which is described
in the following. It is well-known [20] that the Fleming-Viot process with parent-
independent mutation can be obtained by way of a normalization and a random time
change from a measure-valued branching diffusion with immigration. (See also [10]
and [18] for related works.) An extension of this significant result was shown in [2] for
a class of generalized Fleming-Viot processes, one-dimensional version of which corre-
sponds to (1.3) with c1 = c2 = 0. Moreover, [2] proved that such a jump mechanism
is necessary for a generalized Fleming-Viot process to have the above mentioned link
to a measure-valued branching process with immigration (henceforth MBI-process).
Recently, [13] showed essentially that the second term of (1.3) is required when we
additionally take a generalization of the mutation mechanism into account. Our ar-
gument will be crucially based on this kind of relationship between the generalized
Fleming-Viot process associated with a natural generalization of (1.3) and a certain
ergodic MBI-process. That relationship can be reformulated as a factorization result
on the level of generators and hence is expected to yield also an explicit connection
between stationary distributions. In principle, the problems (I) and (II) can be con-
sidered in a unified way. Nevertheless, we shall discuss (I) and (II) separately. This is
mainly because the factorization identity will turn out to yield a correct answer only
for certain restricted cases and in one-dimension one can avoid to use it by taking
an analytic approach instead (although this does not reveal clearly the mathematical
structure underlying).

The organization of this paper is as follows. Section 2 is devoted to derivation of
(1.4) by purely analytic argument. Exploiting the relationship to MBI-processes, we
show in Section 3 that the above mentioned answer to (I) has a natural generalization
which settles (II). The irreversibility of the processes we consider is discussed in
Section 4.

2 The one-dimensional model

Let 0 < α < 1, c1 > 0 and c2 > 0 be given. The purpose of this section is to show
that (1.4) is a unique stationary distribution of the process with generator (1.3).
Analytically we shall prove that a probability measure P on [0, 1] satisfying∫ 1

0
AαG(x)P (dx) = 0 for all G(x) = φn(x) := xn with n = 1, 2, . . . (2.1)

is uniquely identified with (1.4). Actual starting point of the calculations below is∫ 1

0
AαG(x)P (dx) = 0 for all G(x) = Gt(x) := (1 + tx)−1 with t > 0. (2.2)
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The equivalence of (2.1) and (2.2) is a consequence of uniform estimates

|Aαφn(x)| ≤
(
1 +

c1 + c2
α + 1

)
2n, n = 1, 2, . . . ,

which can be shown by observing that

c1((1− u)x+ u)n + c2((1− u)x)n − (c1 + c2)x
n

= c1 [((1− u)x+ u)n − ((1− u)x+ ux)n] + c2x
n [(1− u)n − ((1− u) + u)n]

= c1
n∑

k=1

(
n

k

)
(1− u)n−kxn−kuk(1− xk)− c2x

n
n∑

k=1

(
n

k

)
(1− u)n−kuk

=
n∑

k=1

(
n

k

)
(1− u)n−kuk

[
c1x

n−k − (c1 + c2)x
n
]

(2.3)

= u
n∑

k=1

(
n

k

)
(1− u)n−kuk−1

[
c1x

n−k − (c1 + c2)x
n
]

and in particular

x((1− u)x+ u)n + (1− x)((1− u)x)n − xn

=
n∑

k=2

(
n

k

)
(1− u)n−kuk(xn−k+1 − xn)

= u2
n∑

k=2

(
n

k

)
(1− u)n−kuk−2(xn−k+1 − xn).

Indeed, these bounds ensure that the function

t 7→
∫ 1

0
AαGt(x)P (dx) =

∞∑
n=1

(−t)n
∫ 1

0
Aαφn(x)P (dx)

is real analytic at least for −1/2 < t < 1/2. We prepare a simple lemma in order to
calculate AαGt.

Lemma 2.1 Assume that b > 0 and a+ b > 0.
(i) It holds that for any θ1 > 0 and θ2 > 0

∫ 1

0

Bθ1,θ2(du)

(au+ b)θ1+θ2
= (a+ b)−θ1b−θ2 . (2.4)

(ii) In addition, suppose that a′ ̸= a and a′ + b > 0. Then

∫ 1

0

B1−α,1+α(du)

(au+ b)(a′u+ b)
=

1

α(a− a′)b1+α
[(a+ b)α − (a′ + b)α] . (2.5)

(2.4) is a one-dimensional version of the formula due to [4], which is sometimes
referred to as the Markov-Krein identity. (See e.g. [22] or (3.6) below.) We will give
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a self-contained proof based essentially on the well-known relationship between beta
and gamma laws.
Proof of Lemma 2.1. The proof of (2.4) is simply done by noting that

(a+ b)−θ1b−θ2 =
∫ ∞

0

dz1
Γ(θ1)

zθ1−1
1 e−(a+b)z1

∫ ∞

0

dz2
Γ(θ2)

zθ2−1
2 e−bz2

and then by change of variables to u := z1/(z1+z2), v := z1+z2. (2.5) can be deduced
from (2.4) with θ1 = 1−α and θ2 = α since B1−α,1+α(du) = B1−α,α(du)(1−u)/α and

1− u

(au+ b)(a′u+ b)
=

1

(a− a′)b

(
a+ b

au+ b
− a′ + b

a′u+ b

)
.

We proceed to calculate AαGt.

Lemma 2.2 For any t > 0 and x ∈ [0, 1],

AαGt(x) = t · (1 + t)α − 1

α
· x(1− x)

(1 + tx)2+α
− t

α + 1
· c1(1− x)(1 + t)α−1 − c2x

(1 + tx)1+α
. (2.6)

Proof. By straightforward calculations

c1Gt((1− u)x+ u) + c2Gt((1− u)x)− (c1 + c2)Gt(x)

= − tu

1 + tx

[
c1(1− x)

1 + t(1− u)x+ tu
− c2x

1 + t(1− u)x

]
.

Replacing c1 and c2 by x and 1− x, respectively, we get

xGt((1− u)x+ u) + (1− x)Gt((1− u)x)−Gt(x)

=
t2u2x(1− x)

1 + tx
· 1

(1 + t(1− u)x+ tu)(1 + t(1− u)x)
.

Plugging these equalities into (1.3) with G = Gt and then applying Lemma 2.1 yield

AαGt(x) =
t2x(1− x)

1 + tx

∫ 1

0

B1−α,1+α(du)

(1 + t(1− u)x+ tu)(1 + t(1− u)x)

− t

(α + 1)(1 + tx)
· c1(1− x)

∫ 1

0

B1−α,α(du)

1 + t(1− u)x+ tu

+
t

(α + 1)(1 + tx)
· c2x

∫ 1

0

B1−α,α(du)

1 + t(1− u)x

=
t2x(1− x)

1 + tx
· 1

αt(1 + tx)1+α
· [(1 + t)α − 1]

− t

(α + 1)(1 + tx)

[
c1(1− x)

(1 + t)1−α(1 + tx)α
− c2x

(1 + tx)α

]
,

5



which equals the right side of (2.6).

Next, we are going to characterize stationary distributions P in terms of

Sα(t) :=
∫ 1

0

P (dx)

(1 + tx)α
, t ≥ 0, (2.7)

which is a variant of the generalized Stieltjes transform of order α.

Proposition 2.3 A probability measure P on [0, 1] is a stationary distribution of the
process associated with (1.3) if and only if Sα defined by (2.7) satisfies for all t > 0

(1 + t)α − 1

α
(1 + t)S ′′

α(t) (2.8)

+
[(
c1 + 1 +

1

α

)
((1 + t)α − 1) + c1 + c2

]
S ′
α(t) + αc1(1 + t)α−1Sα(t) = 0.

Proof. By virtue of Theorem 9.17 in Chapter 4 of [7], P is a stationary distribution
of the process associated with Aα if and only if (2.1) (or (2.2)) holds. By Lemma 2.2
(2.2) now reads for all t > 0

−(1 + t)α − 1

α

∫ 1

0

x(1− x)

(1 + tx)2+α
P (dx)

+
c1

α + 1
(1 + t)α−1

∫ 1

0

1− x

(1 + tx)1+α
P (dx)− c2

α + 1

∫ 1

0

x

(1 + tx)1+α
P (dx) = 0.

This equation becomes (2.8) by substituting the equalities

−
∫ 1

0

x(1− x)

(1 + tx)2+α
P (dx) =

1 + t

α(α + 1)
S ′′
α(t) +

1

α
S ′
α(t),

∫ 1

0

1− x

(1 + tx)1+α
P (dx) =

1 + t

α
S ′
α(t) + Sα(t)

and ∫ 1

0

x

(1 + tx)1+α
P (dx) = − 1

α
S ′
α(t),

all of which are verified easily.

We now derive (1.4) as the unique stationary distribution we are looking for.
Recall that for each y ∈ (0, 1) we denote by Eα,y the expectation with respect to the
two-dimensional random variable (Y1, Y2) with joint law determined by

Eα,y[e
−λ1Y1−λ2Y2 ] = e−yλα

1−(1−y)λα
2 , λ1, λ2 ≥ 0.

By using t−α = Γ(α)−1
∫∞
0 dvvα−1e−vt (t > 0) and Fubini’s theorem, observe that

Eα,y

[
(tY1 + Y2)

−α
]

= Γ(α)−1
∫ ∞

0
dvvα−1 exp [−y(vt)α − (1− y)vα]

=
1

Γ(α + 1)
· 1

1 + (tα − 1)y
(2.9)
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for t ≥ 0. In particular, Eα,y [(Y1 + Y2)
−α] = 1/Γ(α+ 1) and hence

Pα,(c1,c2)(dx) = Γ(α+ 1)
∫ 1

0
Bc1,c2(dy)Eα,y

[
(Y1 + Y2)

−α;
Y1

Y1 + Y2
∈ dx

]
(2.10)

defines a probability measure on [0, 1]. Although for each y ∈ (0, 1) an expression of
the distribution function

[0, 1] ∋ x 7→ Γ(α + 1)Eα,y

[
(Y1 + Y2)

−α;
Y1

Y1 + Y2
≤ x

]
is given as the formula (3.2) in [23], i.e.

sinαπ

π

∫ x

0

(1− y)(x− u)α−1uαdu

(1− y)2u2α + y2(1− u)2α + 2y(1− y)uα(1− u)α cosαπ
,

we do not have any explicit form concerning Pα,(c1,c2) except the case c1 + c2 = 1.
(See Remark (ii) at the end of this section.)

The main result of this section is the following.

Theorem 2.4 The process associated with (1.3) has a unique stationary distribution,
which coincides with Pα,(c1,c2).

Proof. Notice that the existence of a stationary distribution follows from compactness
of the state space [0, 1]. (See e.g. Remark 9.4 in Chapter 4 of [7].) Let P be
an arbitrary stationary distribution of the process associated with (1.3) and Sα be
defined by (2.7). Put

Tα(u) = Sα

(
(1 + u)1/α − 1

)
for u ≥ 0. Setting t = (1 + u)1/α − 1 or u = (1 + t)α − 1, observe that for u > 0

T ′
α(u) =

1

α
(1 + u)

1
α
−1S ′

α(t)

and

T ′′
α(u) =

1

α

(
1

α
− 1

)
(1 + u)

1
α
−2S ′

α(t) +
[
1

α
(1 + u)

1
α
−1
]2
S ′′
α(t)

=
(
1

α
− 1

)
(1 + u)−1T ′

α(u) +
1

α2
(1 + u)

2
α
−2S ′′

α(t).

Hence S ′
α(t) = α(1 + u)1−

1
αT ′

α(u) and

S ′′
α(t) = α2(1 + u)2−

2
α

[
T ′′
α(u)−

(
1

α
− 1

)
(1 + u)−1T ′

α(u)
]
.

Also, (2.8) can be rewritten as

u

α
(1 + u)

1
αS ′′

α(t) +
[(
c1 + 1 +

1

α

)
u+ c1 + c2

]
S ′
α(t) + αc1(1 + u)1−

1
αSα(t) = 0.

7



From these preliminary observations, it is direct to see that the equation (2.8) is
transformed into a hypergeometric equation of the form

u(1 + u)T ′′
α(u) + [(c1 + c2) + (c1 + 2)u]T ′

α(u) + c1Tα(u) = 0, u > 0. (2.11)

Clearly Tα(0) = Sα(0) = 1. In addition,

T ′
α(0) = S ′

α(0)/α = −
∫ 1

0
P (dx)x = −c1/(c1 + c2),

where the last equality follows from (2.1) with n = 1. These facts together imply
that

Tα(u) =
∫ 1

0

Bc1,c2(dy)

1 + uy
, u ≥ 0

or

Sα(t) =
∫ 1

0

Bc1,c2(dy)

1 + {(1 + t)α − 1} y
, t ≥ 0.

(See e.g. Sections 7.2 and 9.1 in [16].) Combining this with

1

1 + {(1 + t)α − 1} y
= Γ(α + 1)

∫ 1

0

1

(1 + tx)α
Eα,y

[
(Y1 + Y2)

−α;
Y1

Y1 + Y2
∈ dx

]
,

which is immediate from (2.9), we arrive at

Sα(t) =
∫ 1

0

Pα,(c1,c2)(dx)

(1 + tx)α
, t ≥ 0 (2.12)

in view of (2.10). Therefore, we conclude that P = Pα,(c1,c2) and the proof of Theorem
2.4 is complete.

Remarks. (i) In the case where c1 + c2 > 1, an alternative expression for Pα,(c1,c2)

exists:

Pα,(c1,c2)(dx) = Γ(α + 1)(c1 + c2 − 1)E
[
(Z1 + Z2)

−α;
Z1

Z1 + Z2

∈ dx
]
=: P̃α,(c1,c2)(dx),

(2.13)
where Z1 and Z2 are independent random variables with Laplace transforms

E[e−λZi ] = exp [−ci log(1 + λα)] , λ ≥ 0. (2.14)

This reflects the fact that the solution to (2.11) with the same initial conditions
Tα(0) = 1 and T ′

α(0) = −c1/(c1 + c2) admits another integral expression of the form

Tα(u) =
∫ 1

0

B1,c1+c2−1(dy)

(1 + uy)c1
, u ≥ 0

and accordingly by (2.12)∫ 1

0

Pα,(c1,c2)(dx)

(1 + tx)α
=
∫ 1

0

B1,c1+c2−1(dy)

[1 + {(1 + t)α − 1} y]c1
, t ≥ 0. (2.15)

8



On the other hand, it is not difficult to show that (2.15) with P̃α,(c1,c2) in place of
Pα,(c1,c2) holds, too. In fact, we prove in Lemma 3.5 below a generalization of the
coincidence (2.13) in the setting of random measures. Also, the role of Z1 and Z2

will be made clear in connection with branching processes with immigration related
closely to the process generated by (1.3). (Compare (2.14) with (3.9) below.)
(ii) It will be shown in the Remark after Lemma 3.5 below that Pα,(c1,c2) = Bαc1,αc2

holds whenever c1 + c2 = 1. At least at a formal level, this would be seen by letting
c1 + c2 ↓ 1 in (2.15) and then by making use of (2.4).
(iii) In contrast with the case of the Wright-Fisher diffusion mentioned in the Intro-
duction, Pα,(c1,c2) with 0 < α < 1 is not a reversible distribution for the generator
(1.3) at least in case c1 ̸= c2. This will be seen in Section 4.

3 The measure-valued process case

The main subject of this section is an extension of Theorem 2.4 to a class of gen-
eralized Fleming-Viot processes. But the strategy will be different from that in the
previous section, and so an alternative proof of Theorem 2.4 will be given as a by-
product. To discuss in the setting of measure-valued processes, we need new notation.
Let E be a compact metric space having at least two distinct points and C(E) (resp.
B+(E)) the set of continuous (resp. non-negative, bounded Borel) functions on E.
Define M(E) to be the totality of finite Borel measures on E, and we equip M(E)
with the weak topology. Denote by M(E)◦ the set of non-null elements of M(E).
The set M1(E) of Borel probability measures on E is regarded as a subspace of
M(E). We also use the notation ⟨η, f⟩ to stand for the integral of a function f with
respect a measure η. For each r ∈ E, let δr denote the delta distribution at r. Given
a probability measure Q, we write also EQ[·] for the expectation with respect to Q.

Let 0 < α < 1 and m ∈ M(E) be given. We shall discuss in this section an
M1(E)-valued Markov process associated with

Aα,mΦ(µ) (3.1)

:=
∫ 1

0

B1−α,1+α(du)

u2

∫
E
µ(dr) [Φ((1− u)µ+ uδr)− Φ(µ)]

+
∫ 1

0

B1−α,α(du)

(α + 1)u

∫
E
m(dr) [Φ((1− u)µ+ uδr)− Φ(µ)] , µ ∈ M1(E),

where Φ belongs to the class F1 of functions of the form Φf (µ) := ⟨µ⊗n, f⟩ for some
positive integer n and f ∈ C(En). (3.1) shows clearly that Aα,m satisfies the positive
maximum principle and hence is dissipative. (See Lemma 2.1 in Chapter 4 of [7].)
We begin by seeing that Aα,m defines a Markov process on M1(E) in an appropriate
sense. For this purpose, we need an expression for Aα,mΦf with f ∈ C(En). Set
(a)b = Γ(a + b)/Γ(a) for a > 0 and b ≥ 0, and let | · | stand for the cardinality. It
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holds that for any θ ≥ 0 and ν ∈ M1(E)

Aα,θνΦf (µ) =
n∑

k=2

(1− α)k−2(α+ 1)n−k

Γ(n)

∑
I:|I|=k

(⟨µ⊗n,Θ
(n)
I f⟩ − Φf (µ))

+θ
n∑

k=1

(1− α)k−1(α)n−k

(α + 1)Γ(n)

∑
I:|I|=k

(⟨µ⊗n,Ξ
(n)
I,νf⟩ − Φf (µ)), (3.2)

where I are nonempty subsets of {1, . . . , n}, Θ(n)
I : C(En) → C(En) is defined by let-

ting Θ
(n)
I f be the function obtained from f by replacing all the variables ri with i ∈ I

by rmin I and Ξ
(n)
I,ν : C(En) → C(En) is defined by letting Ξ

(n)
I,νf be the function ob-

tained from f by replacing all the variables ri with i ∈ I by r and then by integrating
with respect to ν(dr). (For a degenerate ν (3.2) is a special case of the corresponding
expression found in the proof of Lemma 11 in [12].) (3.2) can be deduced from the
following identities (cf. (2.3)) among signed measures on En:

n⊗
i=1

((1− u)µ(dri) + uδr(dri))−
n⊗

i=1

µ(dri)

=
n⊗

i=1

((1− u)µ(dri) + uδr(dri))−
n⊗

i=1

((1− u)µ(dri) + uµ(dri))

=
∑
I ̸=∅

⊗
j /∈I

((1− u)µ(drj))

[⊗
i∈I

(uδr(dri))−
⊗
i∈I

(uµ(dri))

]

=
∑
I ̸=∅

u|I|(1− u)n−|I|⊗
j /∈I

µ(drj)

[⊗
i∈I

δr(dri)−
⊗
i∈I

µ(dri)

]
.

As for the Fleming-Viot process with parent-independent mutation, the result corre-
sponding to the next proposition is a special case of Theorem 3.4 in [8].

Proposition 3.1 For each m ∈ M(E) the closure of Aα,m defined on F1 generates
a Feller semigroup on C(M1(E)).

Proof. Let θ ≥ 0 and ν ∈ M1(E) be such that m = θν. We simply mimic the
proof of Theorem 3.4 in [8]. In particular, the Hille-Yosida theorem (Theorem 2.2
in Chapter 4 of [7]) will be applied. Let n be an arbitrary positive integer. Rewrite
(3.2) as

Aα,θνΦf (µ) = ⟨µ⊗n,Θ(n)f⟩+ θ⟨µ⊗n,Ξ(n)
ν f⟩ − cn(α, θ)Φf (µ),

where Θ(n), Ξ(n)
ν : C(En) → C(En) and cn(α, θ) are respectively the non-negative

operators and the positive constant defined implicitly by the above equation combined
with (3.2). Let λ > 0 be arbitrary. Given g ∈ C(En), define

h = (λ+ cn(α, θ))
−1

∞∑
k=0

[
(λ+ cn(α, θ))

−1
(
Θ(n) + θΞ(n)

ν

)]k
g.
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Then h ∈ C(En) since the operator norm of Θ(n) + θΞ(n)
ν equals cn(α, θ). Moreover,

(λ+ cn(α, θ))h− (Θ(n) + θΞ(n)
ν )h = g,

so (λ−Aα,θν)Φh = Φg. This implies that the range of λ−Aα,θν contains F1, which
is dense in C(M1(E)). The rest of the proof is the same as that of Theorem 3.4 in
[8].

For simplicity, we call the Aα,m-process the Markov process governed by Aα,m in
the sense of Proposition 3.1. This process is a natural generalization of the process
generated by (1.3) in the following sense. Suppose that E consists of two points, say
r1 and r2, set m = c1δr1 + c2δr2 , and let {X(t) : t ≥ 0} be the process generated by
(1.3). Then, verifying the identity Aα,mΦ(µ) = AαG(x) for µ = xδr1 +(1− x)δr2 and
Φ(µ) = G(x), we see that the process {X(t)δr1 + (1 − X(t))δr2 : t ≥ 0} defines an
Aα,m-process. We note that [13] discusses the case where E = [0, 1] and m = cδ0 for
some c > 0.

We could also establish the well-posedness of the martingale problem for Aα,m

by modifying some existing arguments. More precisely, the existence could be shown
through a limit theorem for suitably generalized Moran particle systems by modifying
those considered in the proof of Theorem 2.1 (especially (2.2)) of [14], which took ac-
count of the jump mechanism describing simultaneous reproduction (sampling) only,
so that simultaneous movement (mutation) of particles to a random location (type)
distributed according to m(dr)/m(E) is allowed. The uniqueness would follow by the
duality argument employing a function-valued process as in the proof of Theorem 2.1
of [14]. Its possible transitions and the associated transition rates are found in (3.2).
The duality would be useful in discussing (weak) ergodicity of the Aα,m-process. (See
e.g. Theorem 5.2 in [8] for such a result in the Fleming-Viot process case.)

The following argument is based primarily on the relationship between the Aα,m-
process and a suitable MBI-process, which takes values in M(E). More precisely,
the generator, say Lα,m, of the latter will be chosen so that for some constant C > 0

Lα,mΨ(η) = Cη(E)−αAα,mΦ
(
η(E)−1η

)
, η ∈ M(E)◦, (3.3)

where Ψ(η) = Φ(η(E)−1η) and Φ is in the linear span F0 of functions of the form
µ 7→ ⟨µ, f1⟩ · · · ⟨µ, fn⟩ with fi ∈ C(E), i = 1, · · · , n and n being a positive integer.
In the case of the Fleming-Viot process (which corresponds to α = 1 formally),
such a relation is well-known. For instance, it played a key role in [20]. As for the
generalized Fleming-Viot process, factorizations of the form (3.3) have been shown
in [2] for m = 0 (the null measure) and in [13] for degenerate measures m. From
now on, suppose that m ∈ M(E)◦. To exploit (3.3) in the study of stationary
distributions, we further require the MBI-process associated with Lα,m to be ergodic,
i.e., to have a unique stationary distribution, say Q̃α,m, supported on M(E)◦. Once
these requirements are fulfilled, (3.3) suggests that

P̃α,m(·) := EQ̃α,m

[
η(E)−α; η(E)−1η ∈ ·

]
/EQ̃α,m

[
η(E)−α

]
(3.4)
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would give a stationary distribution of the Aα,m-process provided that η(E)−α is
integrable with respect to Q̃α,m. This conditional answer may be modified to be a
general one, which must be consistent with the one-dimensional result (1.4).

To describe the answer, we need both the α-stable random measure with parame-
ter measure m and the Dirichlet random measure with parameter measure m, whose
laws on M(E)◦ and M1(E) are denoted by Qα,m and Dm, respectively. These infinite
dimensional laws are determined uniquely by the identities∫

M(E)◦
Qα,m(dη)e

−⟨η,f⟩ = e−⟨m,fα⟩ (3.5)

and ∫
M1(E)

Dm(dµ)⟨µ, 1 + f⟩−m(E) = e−⟨m,log(1+f)⟩, (3.6)

where f ∈ B+(E) is arbitrary. A random measure with law Qα,m is constructed from
a Poisson random measure on (0,∞)×E. (See also Definition 6 in [22].) Observe from
(3.5) that EQα,m [η(E)−α] = 1/(m(E)Γ(α + 1)). As in [11], Dm is defined originally
to be the law of a random measure whose arbitrary finite-dimensional distributions
are Dirichlet distributions with parameters specified by m. The useful identity (3.6)
is due to [4] and reduces to (2.4) in one-dimension. We now state the main result of
this paper.

Theorem 3.2 For any m ∈ M(E)◦, the Aα,m-process has a unique stationary dis-
tribution, which is identified with

Pα,m(·) := Γ(α+ 1)
∫
M1(E)

Dm(dµ)E
Qα,µ

[
η(E)−α; η(E)−1η ∈ ·

]
. (3.7)

To illustrate, consider the trivial case where m = θδr for some θ > 0 and r ∈ E. Then
it is verified easily that Pα,m concentrates at δr ∈ M1(E), and this is consistent with
the equality Aα,mΦ(δr) = 0 in that case. Also, for every m ∈ M(E)◦, we note that
Pα,m → Dm as α ↑ 1 since by (3.5) Qα,µ converges weakly to the delta distribution
at µ for each µ ∈ M1(E).

The proof of Theorem 3.2 will be divided into three steps. As mentioned earlier,
we first find an ergodic MBI-process whose generator satisfies (3.3) and show, under
necessary integrability condition, that P̃α,m in (3.4) gives a stationary distribution of
the Aα,m-process. (In fact, the condition will turn out to be that m(E) > 1. This
motivates us to make a reparametrization m =: θν with θ > 0 and ν ∈ M1(E).)
Second, for each ν ∈ M1(E), we prove that P̃α,θν = Pα,θν for any θ > 1. As the last
step, we extend stationarity of Pα,θν with respect to Aα,θν to all θ > 0 by interpreting
the condition of stationarity as certain recursion equations among moment measures
which are seen to be real analytic in θ > 0. Also, the recursion equations will be
shown to yield uniqueness of the stationary distribution.

For the first step, we prove in the next proposition that the MBI-process with the
following generator is the desired one:

Lα,mΨ(η)

12



:=
α + 1

Γ(1− α)

∫ ∞

0

dz

z2+α

∫
E
η(dr)

[
Ψ(η + zδr)−Ψ(η)− z

δΨ

δη
(r)

]
− 1

α
⟨η, δΨ

δη
⟩

+
α

Γ(1− α)

∫ ∞

0

dz

z1+α

∫
E
m(dr) [Ψ(η + zδr)−Ψ(η)] , (3.8)

where Ψ is in the class F of functions of the form η 7→ F (⟨η, f1⟩, . . . , ⟨η, fn⟩) for some

F ∈ C2
b (R

n), fi ∈ C(E) and a positive integer n, and δΨ
δη
(r) = d

dϵ
Ψ(η + ϵδr)

∣∣∣
ϵ=0

. Up

to this first order differential term, the operator (3.8) for E = [0, 1] and m = cδ0 with
c > 0 is the same as the one discussed in Lemma 17 of [13], in which the factorization
(3.3) has been proved. Thus, our main observation in the next proposition is that,
keeping the validity of (3.3), such an extra term yields the ergodicity. Note that
the generator (3.8) is a special case of the one discussed in Chapter 9 of [17]. (See
(9.25) combined with (7.12) there for an expression of the generator.) In particular, a
unique solution to the martingale problem for Lα,m defines an M(E)-valued Markov
process, which henceforth we call the Lα,m-process. Intuitively, because of absence of
the ‘motion process’, the law of this process is considered as continuum convolution
of the continuous-state branching process with immigration (CBI-process) studied in
[15]. (See (3.11) below.) In addition, Example 1.1 and Theorem 2.3 in [15] concern
the one-dimensional version of the Lα,m-process without the drift. The latter proved
that the offspring distribution and the distribution associated with immigration of
the approximating branching processes may have probability generating functions of
the form s+ c(1− s)α+1 and 1− d(1− s)α, respectively.

Proposition 3.3 Let m ∈ M(E)◦. Then Lα,m in (3.8) and Aα,m in (3.1) together
satisfy (3.3) with C = Γ(α + 2) and Ψ(η) = Φ(η(E)−1η) for any Φ ∈ F0. Moreover,
the Lα,m-process has a unique stationary distribution Q̃α,m with Laplace functional∫

M(E)◦
Q̃α,m(dη)e

−⟨η,f⟩ = e−⟨m,log(1+fα)⟩, f ∈ B+(E). (3.9)

A random measure with law Q̃α,m may be called a Linnik random measure since it is
an infinite-dimensional analogue of the random variable with law sometimes referred
to as a (non-symmetric) Linnik distribution, whose Laplace transform appeared al-
ready in (2.14). It is obtained by subordinating to an α-stable subordinator by a
gamma process. (See e.g. Example 30.8 in [19].) Namely, letting {Yα(t) : t ≥ 0} and
{γ(t) : t ≥ 0} be independent Lévy processes such that

E[e−λYα(t)] = e−tλα

and E[e−λγ(t)] = e−t log(1+λ), t, λ ≥ 0,

we have for each c > 0

E[e−λYα(γ(c))] = E[e−γ(c)λα

] = e−c log(1+λα), λ ≥ 0.

The first equality implies that

P (Yα(γ(c)) ∈ ·) =
∫ ∞

0
P (γ(c) ∈ dt)P (Yα(t) ∈ ·).
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(3.9) clearly shows an analogous structure underlying, i.e.,

Q̃α,m(·) =
∫
M(E)◦

Gm(dη)Qα,η(·),

where Gm is the law of the standard gamma process on (E,m). (See Definition 5 in
[22]). It is also obvious from (3.9) that, as α ↑ 1, Q̃α,m converges to Gm. In addition,
one can see that

lim
α↑1

Lα,mΨ(η) = ⟨η, δ
2Ψ

δη2
⟩ − ⟨η, δΨ

δη
⟩+ ⟨m, δΨ

δη
⟩ =: LmΨ(η)

for ‘nice’ functions Ψ, where δ2Ψ
δη2

(r) = d2

dϵ2
Ψ(η + ϵδr)

∣∣∣
ϵ=0

. This is a special case of the

generator of MBI-processes discussed in Section 3 of [21]. It has been proved there
that Gm is a reversible stationary distribution of the process associated with Lm.

Proof of Proposition 3.3. As already remarked, if the term −α−1⟨η, δΨ
δη
⟩ in (3.8)

would vanish, (3.3) can be shown by essentially the same calculations as in the proof
of Lemma 17 in [13]. (In fact, the change of variable z =: η(E)u/(1−u) in the integrals
with respect to dz in (3.8) almost suffices for our purpose.) So, for the proof of (3.3),
we only need to observe that ⟨η, δΨ

δη
⟩ = 0 for Ψ of the form Ψ(η) = Φ(η(E)−1η) with

Φ ∈ F0. But this is readily done by giving a specific form of Φ. Indeed, for Φ(µ) =
⟨µ, f1⟩ · · · ⟨µ, fn⟩ the function Ψ takes the form Ψ(η) = ⟨η, f1⟩ · · · ⟨η, fn⟩⟨η, 1⟩−n, from
which it follows that

δΨ

δη
(r) =

n∑
i=1

fi(r)⟨η, 1⟩ − ⟨η, fi⟩
⟨η, 1⟩n+1

∏
j ̸=i

⟨η, fj⟩.

After integrating with respect to η(dr), the numerator on the right side vanishes.
The argument regarding ergodicity is based on a well-known formula for Laplace

functionals of transition functions. (See (9.18) in [17] for a much more general case
than ours.) To write it down, we need only auxiliary functions called Ψ-semigroup
[15] because there is no ‘motion process’. These functions form a one-parameter
family {ψ(t, ·)}t≥0 of non-negative functions on [0,∞) and are determined by the
equation

∂ψ

∂t
(t, λ) = − 1

α
ψ(t, λ)1+α − 1

α
ψ(t, λ), ψ(0, λ) = λ (3.10)

with λ ≥ 0 being arbitrary. An explicit expression is found in Example 3.1 of [17]:

ψ(t, λ) =
e−t/αλ

[1 + (1− e−t)λα]1/α
.

Let {ηt : t ≥ 0} be an Lα,m-process, and for each η ∈ M(E) denote by Eη the
expectation with respect to {ηt : t ≥ 0} starting at η. Then for any f ∈ B+(E) and
t ≥ 0

Eη

[
e−⟨ηt,f⟩

]
= exp

[
−⟨η, Vtf⟩ −

∫ t

0
⟨m, (Vsf)α⟩ds

]
, (3.11)
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where Vtf(r) = ψ(t, f(r)). As t→ ∞ the right side converges to

exp
[
−
∫ ∞

0
⟨m, (Vtf)α⟩dt

]
= exp [−⟨m, log(1 + fα)⟩]

since by (3.10)
d

dt
log (1 + (Vtf(r))

α) = −(Vtf(r))
α.

This shows the ergodicity required and completes the proof.

Proposition 3.4 Suppose that m(E) > 1 and let Q̃α,m be as in Proposition 3.3.
Then

EQ̃α,m

[
η(E)−α

]
= (Γ(α+ 1)(m(E)− 1))−1.

Moreover,

P̃α,m(·) = Γ(α + 1)(m(E)− 1)EQ̃α,m

[
η(E)−α; η(E)−1η ∈ ·

]
(3.12)

is a stationary distribution of the Aα,m-process.

Proof. The first assertion is shown by using t−α = Γ(α)−1
∫∞
0 dvvα−1e−vt (t > 0)

and (3.9) with f ≡ v. Indeed, these equalities together with Fubini’s theorem yield

EQ̃α,m

[
η(E)−α

]
= Γ(α)−1

∫ ∞

0
dvvα−1 exp [−m(E) log(1 + vα)]

= Γ(α + 1)−1
∫ ∞

0
dz exp [−m(E) log(1 + z)]

= Γ(α + 1)−1(m(E)− 1)−1.

As in the one-dimensional case, Theorem 9.17 in Chapter 4 of [7] reduces the
proof of stationarity of (3.12) with respect to Aα,m to showing that∫

M1(E)
P̃α,m(dµ)Aα,mΦ(µ) = 0 (3.13)

for any Φ of the form Φ(µ) = ⟨µ, f1⟩ · · · ⟨µ, fn⟩ with fi ∈ C(E) and n being a positive
integer. Without any loss of generality we can assume that 0 ≤ fi(x) ≤ 1 for any
x ∈ E and i = 1, . . . , n. Furthermore, we only have to consider the case where f1 =
· · · = fn =: f because the coefficients of the monomial t1 · · · tn in ⟨µ, t1f1+· · ·+tnfn⟩n
equals n!⟨µ, f1⟩ · · · ⟨µ, fn⟩. Thus, we let Φ(µ) = ⟨µ, f⟩n with 0 ≤ f(x) ≤ 1 for any
x ∈ E. Because of the basic relation (3.3) and (3.12) together, (3.13) can be rewritten
as ∫

M(E)◦
Q̃α,m(dη)Lα,mΨ(η) = 0, (3.14)

where Ψ(η) = ⟨η, f⟩n⟨η, 1⟩−n. The main difficulty comes from the fact that Ψ does
not belong to F . For each ϵ > 0, introduce Ψϵ(η) := ⟨η, f⟩n(⟨η, 1⟩+ ϵ)−n and observe
that Ψϵ ∈ F . Thanks to Proposition 3.3, we then have (3.14) with Ψϵ in place of Ψ
provided that Lα,mΨϵ is bounded. Thus, the proof of (3.14) reduces to showing the
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following two assertions:
(i) For every ϵ > 0, L(1)

α,mΨϵ, L(2)
α,mΨϵ and L(3)

α,mΨϵ are bounded functions on M(E).
(ii) It holds that for each k ∈ {1, 2, 3}

lim
ϵ↓0

∫
M(E)◦

Q̃α,m(dη)L(k)
α,mΨϵ(η) =

∫
M(E)◦

Q̃α,m(dη)L(k)
α,mΨ(η). (3.15)

Here, Lα,m = L(1)
α,m+L(2)

α,m+L(3)
α,m, and the operators L(1)

α,m, L(2)
α,m and L(3)

α,m correspond
respectively to the first, second and last term on the right side of (3.8).

First, we consider L(2)
α,m. Observe that

δΨϵ

δη
(r) =

nf(r)⟨η, f⟩n−1

(⟨η, 1⟩+ ϵ)n
− n⟨η, f⟩n

(⟨η, 1⟩+ ϵ)n+1

=
n (f(r)⟨η, 1⟩ − ⟨η, f⟩+ ϵf(r)) ⟨η, f⟩n−1

(⟨η, 1⟩+ ϵ)n+1
, (3.16)

from which it follows that

αL(2)
α,mΨϵ(η) = −⟨η, δΨϵ

δη
⟩

= −n (⟨η, f⟩⟨η, 1⟩ − ⟨η, f⟩⟨η, 1⟩+ ϵ⟨η, f⟩) ⟨η, f⟩n−1

(⟨η, 1⟩+ ϵ)n+1

= −nϵ Ψϵ(η)

⟨η, 1⟩+ ϵ
.

Hence L(2)
α,mΨϵ is a bounded function on M(E) and L(2)

α,mΨϵ(η) → 0 = L(2)
α,mΨ(η)

boundedly as ϵ ↓ 0. This proves that (i) and (ii) hold true for L(2)
α,m.

In calculating L(3)
α,mΨϵ, (3.16) is useful since

d
dz
Ψϵ(η + zδr) =

δΨϵ

δ(η+zδr)
(r). Indeed,

by Fubini’s theorem∫ ∞

0

dz

z1+α
[Ψϵ(η + zδr)−Ψϵ(η)] =

∫ ∞

0

dz

z1+α

∫ z

0
dw

δΨϵ

δ(η + wδr)
(r)

=
1

α

∫ ∞

0
w−αdw

δΨϵ

δ(η + wδr)
(r), (3.17)

and combining with (3.16) yields∣∣∣∣∣
∫ ∞

0

dz

z1+α
[Ψϵ(η + zδr)−Ψϵ(η)]

∣∣∣∣∣
≤ 1

α

∫ ∞

0
w−αdw

n |f(r)⟨η + wδr, 1⟩ − ⟨η + wδr, f⟩+ ϵf(r)| ⟨η + wδr, f⟩n−1

(⟨η + wδr, 1⟩+ ϵ)n+1

≤ n

α

∫ ∞

0
w−αdw

1

⟨η, 1⟩+ w + ϵ

=
n

α

∫ ∞

0
w−αdw

∫ ∞

0
dve−v(⟨η,1⟩+w+ϵ)

= n
Γ(α)Γ(1− α)

α
(⟨η, 1⟩+ ϵ)−α. (3.18)

16



This shows not only that L(3)
α,mΨϵ is bounded but also

|L(3)
α,mΨϵ(η)| ≤ nΓ(α) · ⟨m, 1⟩

⟨η, 1⟩α
,

which is integrable with respect to Q̃α,m as proved already. It can be seen also from
(3.16) and (3.17) that L(3)

α,mΨϵ converges pointwise to L(3)
α,mΨ as ϵ ↓ 0. By Lebesgue’s

dominated convergence theorem we have proved (3.15) for L(3)
α,m.

The final task is to deal with L(1)
α,mΨϵ. Similarly to (3.17)

Iϵ(η, r) :=
∫ ∞

0

dz

z2+α

[
Ψϵ(η + zδr)−Ψϵ(η)− z

δΨϵ

δη
(r)

]

=
∫ ∞

0

dz

z2+α

∫ z

0
dw

[
δΨϵ

δ(η + wδr)
(r)− δΨϵ

δη
(r)

]

=
1

1 + α

∫ ∞

0

dw

w1+α

[
δΨϵ

δ(η + wδr)
(r)− δΨϵ

δη
(r)

]
.

By (3.16) δΨϵ

δ(η+wδr)
(r)− δΨϵ

δη
(r) equals

(⟨η, 1⟩+ ϵ)n+1n (f(r)⟨η, 1⟩ − ⟨η, f⟩+ ϵf(r))
[
⟨η + wδr, f⟩n−1 − ⟨η, f⟩n−1

]
(⟨η, 1⟩+ w + ϵ)n+1(⟨η, 1⟩+ ϵ)n+1

+

[
(⟨η, 1⟩+ ϵ)n+1 − (⟨η, 1⟩+ w + ϵ)n+1

]
n (f(r)⟨η, 1⟩ − ⟨η, f⟩+ ϵf(r)) ⟨η, f⟩n−1

(⟨η, 1⟩+ w + ϵ)n+1(⟨η, 1⟩+ ϵ)n+1
.

Moreover, we have bounds∣∣∣⟨η + wδr, f⟩n−1 − ⟨η, f⟩n−1
∣∣∣ =

∣∣∣∣∫ w

0
dv(n− 1)f(r)⟨η + vδr, f⟩n−2

∣∣∣∣
≤ w(n− 1)(⟨η, 1⟩+ w)n−2

and ∣∣∣(⟨η, 1⟩+ ϵ)n+1 − (⟨η, 1⟩+ w + ϵ)n+1
∣∣∣ = (n+ 1)

∫ w

0
dv(⟨η, 1⟩+ v + ϵ)n

≤ w(n+ 1)(⟨η, 1⟩+ w + ϵ)n.

Consequently∣∣∣∣∣ δΨϵ

δ(η + wδr)
(r)− δΨϵ

δη
(r)

∣∣∣∣∣ ≤ w
n(⟨η, 1⟩+ ϵ)n+2(n− 1)(⟨η, 1⟩+ w)n−2

(⟨η, 1⟩+ w + ϵ)n+1(⟨η, 1⟩+ ϵ)n+1

+w
(n+ 1)(⟨η, 1⟩+ w + ϵ)nn(⟨η, 1⟩+ ϵ)⟨η, 1⟩n−1

(⟨η, 1⟩+ w + ϵ)n+1(⟨η, 1⟩+ ϵ)n+1

≤ w
2n2

(⟨η, 1⟩+ w + ϵ)(⟨η, 1⟩+ ϵ)
.
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Therefore, analogous calculations to those in (3.18) lead to

∣∣∣L(1)
α,mΨϵ(η)

∣∣∣ =

∣∣∣∣∣ α + 1

Γ(1− α)

∫
E
Iϵ(η, r)η(dr)

∣∣∣∣∣
≤ 2n2Γ(α)(⟨η, 1⟩+ ϵ)−α · ⟨η, 1⟩

⟨η, 1⟩+ ϵ
.

This makes it possible to argue as in the case of L(3)
α,mΨϵ to verify (i) and (ii) for L(1)

α,m.
We complete the proof of Proposition 3.4.

Next, we show the coincidence of two distributions (3.4) (or (3.12)) and (3.7). Before
going to the proof, it is worth noting that

Pα,m(·) =
∫
M1(E)

Dm(dµ)D(α,α)
µ (·), (3.19)

where in general, for θ > −α and m ∈ M(E), D(α,θ)
m is the law of the two-parameter

generalization of the Dirichlet random measure with parameter (α, θ) and parameter
measure m defined by

D(α,θ)
m (·) = Γ(θ + 1)

Γ( θ
α
+ 1)

EQα,m

[
η(E)−θ; η(E)−1η ∈ ·

]
.

(See e.g. Section 5 of [22].) We will make use of the identity∫
M1(E)

D(α,α)
m (dµ)⟨µ, 1 + f⟩−α = ⟨m, (1 + f)α⟩−1, f ∈ B+(E). (3.20)

This is a special case of Theorem 4 in [22] and can be shown as follows.∫
M1(E)

D(α,α)
m (dµ)⟨µ, 1 + f⟩−α = Γ(α + 1)EQα,m

[
⟨η, 1⟩−α

(
1 + ⟨η, 1⟩−1⟨η, f⟩

)−α
]

= Γ(α + 1)EQα,m

[
⟨η, 1 + f⟩−α

]
= α

∫ ∞

0
dvvα−1 exp [−vα⟨m, (1 + f)α⟩]

= ⟨m, (1 + f)α⟩−1.

Lemma 3.5 If m(E) > 1, then P̃α,m in (3.12) coincides with Pα,m in (3.7).

Proof. It suffices to show that for any f ∈ B+(E)

Ĩ(f) :=
∫
M1(E)

P̃α,m(dµ)⟨µ, 1 + f⟩−α =
∫
M1(E)

Pα,m(dµ)⟨µ, 1 + f⟩−α =: I(f).

In view of (3.12), calculations similar to the proof of (3.20) show that

(Γ(α + 1)(m(E)− 1))−1Ĩ(f) = EQ̃α,m

[
⟨η, 1 + f⟩−α

]
18



= Γ(α)−1
∫ ∞

0
dvvα−1 exp [−⟨m, log(1 + vα(1 + f)α)⟩]

= Γ(α+ 1)−1
∫ ∞

0
dz exp [−⟨m, log(1 + z(1 + f)α)⟩]

=
1

Γ(α + 1)

∫ 1

0
du(1− u)−2 exp

[
−⟨m, log(1 + u

1− u
(1 + f)α)⟩

]
=

1

Γ(α + 1)

∫ 1

0
du(1− u)m(E)−2 exp [−⟨m, log(1 + u((1 + f)α − 1))⟩]

=
1

Γ(α + 1)

∫ 1

0
du(1− u)m(E)−2

∫
M1(E)

Dm(dµ)⟨µ, 1 + u((1 + f)α − 1))⟩−m(E),

where the last equality follows from (3.6). Hence, by applying Fubini’s theorem and
(2.4)

Ĩ(f) =
∫
M1(E)

Dm(dµ)
∫ 1

0

B1,m(E)−1(du)

⟨µ, 1 + u((1 + f)α − 1))⟩m(E)

=
∫
M1(E)

Dm(dµ)⟨µ, (1 + f)α⟩−1.

On the other hand, combining (3.19) with (3.20), we get

I(f) =
∫
M1(E)

Dm(dµ)⟨µ, (1 + f)α⟩−1 (3.21)

and therefore I(f) = Ĩ(f) as desired.

Remark. The ‘semi-explicit’ form (3.19) can be explicit ifm is a probability measure.
More precisely, we have Pα,ν = Dαν for any ν ∈ M1(E). Indeed, observe that by
(3.21) with m = ν∫

M1(E)
Pα,ν(dµ)⟨µ, 1 + f⟩−α =

∫
M1(E)

Dν(dµ)⟨µ, (1 + f)α⟩−1

= exp[−⟨ν, log{(1 + f)α}⟩]
= exp[−⟨αν, log(1 + f)⟩]

=
∫
M1(E)

Dαν(dµ)⟨µ, 1 + f⟩−α,

where (3.6) has been applied twice. (A one-dimensional version of the identity Pα,ν =
Dαν is mentioned in Remark (ii) at the end of Section 2.) By (3.19) what we have
just seen is rewritten as ∫

M1(E)
Dν(dµ)D(α,α)

µ (·) = Dαν(·),

which is a special case of∫
M1(E)

D(β,θ/α)
ν (dµ)D(α,θ)

µ (·) = D(αβ,θ)
ν (·), β ∈ [0, 1), θ > −αβ.
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Here notice that, in case β = 0, D(0,θ)
ν = Dθν by definition. This generalization can be

proved analogously by virtue of the two-parameter generalization of (3.6) and (3.20).
(See e.g. Theorem 4 in [22].)

We can now prove our main result, Theorem 3.2. In the proof we write θν (θ > 0,
ν ∈ M1(E)) for the parameter measure m.
Proof of Theorem 3.2. Let ν ∈ M1(E) be given. We first show that, for arbitrary
θ > 0, Pα,θν is a stationary distribution of the Aα,θν-process. For the same reason as
in the proof of Proposition 3.4 (cf. (3.13)), it is sufficient to prove that∫

M1(E)
Pα,θν(dµ)Aα,θνΦ(µ) = 0 (3.22)

for Φ of the form Φ(µ) = ⟨µ, f⟩n with f ∈ C(E) and n being a positive integer. Since
Proposition 3.4 and Lemma 3.5 together imply that (3.22) holds true for any θ > 1,
it is enough to show that the left side of (3.22) defines a real analytic function of
θ > 0. We claim that

Aα,θνΦ(µ) =
1

Γ(n)

n∑
k=2

(
n

k

)
(1− α)k−2(α + 1)n−k(⟨µ, fk⟩⟨µ, f⟩n−k − ⟨µ, f⟩n)

+
θ

(α + 1)Γ(n)

n∑
k=1

(
n

k

)
(1− α)k−1(α)n−k(⟨ν, fk⟩⟨µ, f⟩n−k − ⟨µ, f⟩n)

=
1

Γ(n)

n∑
k=2

(
n

k

)
(1− α)k−2(α + 1)n−k⟨µ, fk⟩⟨µ, f⟩n−k

+
θ

(α + 1)Γ(n)

n∑
k=1

(
n

k

)
(1− α)k−1(α)n−k⟨ν, fk⟩⟨µ, f⟩n−k (3.23)

− (α + 1)n−1

(α+ 1)Γ(n)
(θ + n− 1)⟨µ, f⟩n.

The first equality is a special case of (3.2), and the second one can be shown with
the help of Leibniz’s formula

(ϕ1ϕ2)
(n)(0) =

n∑
k=0

(
n

k

)
ϕ
(n−k)
1 (0)ϕ

(k)
2 (0)

for ϕ1(t) = (1 − t)−a and ϕ2(t) = (1 − t)−b with (a, b) = (α + 1,−α − 1) or (a, b) =
(α,−α). In view of (3.23), it is clear that the proof reduces to verifying real analyticity
of
∫
Pα,θν(dµ)⟨µ, f1⟩ · · · ⟨µ, fn⟩ in θ for arbitrary f1, . . . , fn ∈ C(E).
To this end, we shall exploit the following identity which is equivalent to (3.21):∫

M1(E)
Pα,θν(dµ)⟨µ, 1 + f⟩−α =

∫
M1(E)

Dθν(dµ)⟨µ, (1 + f)α⟩−1, (3.24)

where f ∈ B+(E) is arbitrary. Clearly this remains true for all bounded Borel
functions f on E such that infr∈E f(r) > −1. Therefore, for any t1, . . . , tn ∈ R with
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|t1| + · · · + |tn| being sufficiently small, (3.24) for f = −∑n
i=1 tifi is valid, that is,

I(t1, · · · , tn) = J(t1, · · · , tn), where

I(t1, . . . , tn) =
∫
M1(E)

Pα,θν(dµ)

(
1− ⟨µ,

n∑
i=1

tifi⟩
)−α

(3.25)

and

J(t1, . . . , tn) =
∫
M1(E)

Dθν(dµ)⟨µ,
(
1−

n∑
i=1

tifi

)α

⟩−1. (3.26)

Noting that (1− t)−α = 1+
∑∞

k=1(α)kt
k/k! as long as |t| is small enough, we see from

(3.25) that the coefficient of the monomial t1 · · · tn in the expansion of I(t1, . . . , tn)
is given by

(α)n

∫
M1(E)

Pα,θν(dµ)⟨µ, f1⟩ · · · ⟨µ, fn⟩. (3.27)

To find the corresponding coefficient for J(t1, . . . , tn), define

hα(t) = 1− (1− t)α = α
∞∑
l=1

(1− α)l−1t
l/l!

and observe from (3.26) that J(t1, . . . , tn) equals∫
M1(E)

Dθν(dµ)⟨µ, 1− hα

(
n∑

i=1

tifi

)
⟩−1

= 1 +
∞∑
k=1

∫
M1(E)

Dθν(dµ)⟨µ, hα
(

n∑
i=1

tifi

)
⟩k

= 1 +
∞∑
k=1

αk
∫
M1(E)

Dθν(dµ)
∞∑

l1,...,lk=1

k∏
j=1

(1− α)lj−1

lj!
⟨µ,

(
n∑

i=1

tifi

)lj

⟩

 .
One can see that the coefficient of the monomial t1 · · · tn in the expansion of J(t1, . . . , tn)
can be expressed as

n∑
k=1

αkk!
∑

γ∈π(n,k)

∫
M1(E)

Dθν(dµ)
k∏

j=1

(1− α)|γj |−1

|γj|!
⟨µ,

∏
i∈γj

fi⟩

 , (3.28)

where π(n, k) is the set of partitions γ of {1, . . . , n} into k unordered nonempty
subsets γ1, . . . , γk. By Lemma 2.2 of [6] (or equivalently by Lemma 2.4 of [9]), each
integral in the above sum is a real analytic function of θ > 0. Hence, so is the integral
in (3.27) and the stationarity of Pα,θν with respect to Aα,θν follows.

It remains to prove the uniqueness of stationary distribution P of theAα,θν-process
for each θ > 0. But this is an immediate consequence of (3.22) with P in place of
Pα,θν and (3.23), which together determine uniquely

∫
P (dµ)⟨µ, f⟩n and hence the

nth moment measure

Mn(dr1 · · · drn) :=
∫
M1(E)

P (dµ)µ(dr1) · · ·µ(drn)
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for any n = 1, 2, . . .. This completes the proof of Theorem 3.2.

It is not clear whether we can derive from (3.28) an extension of the Ewens sam-
pling formula in some explicit and informative form. (See Remarks after the proof
of Lemma 2.2 in [6].) In view of (3.19), one might think that Pitman’s sampling
formula would be applicable. But it is not the case since Dm(µ is discrete) = 1. The
expression (3.12) might be rather useful for such a purpose.

4 Irreversibility

In this section we discuss reversibility of our processes. In contrast with the Fleming-
Viot diffusion case, we guess that for any 0 < α < 1 and non-degenerate m the
Aα,m-process would be irreversible. Unfortunately, the following result does not give
an affirmative answer in all cases. However, this does not suggest any possibility of
the reversibility in the exceptional case, which is believed to be dealt with a different
choice of test functions.

Theorem 4.1 Let m ∈ M(E)◦ be given. Assume that either of the following two
conditions holds.
(i) The support of m has at least three distinct points.
(ii) The support of m has exactly two points, say r1 and r2, and m({r1}) ̸= m({r2}).
Then the stationary distribution Pα,m of the Aα,m-process is not a reversible distri-
bution of it.

Proof. As in the proof of Theorem 3.2, we write θν instead of m. Thus, θ > 0 and
ν ∈ M1(E). Recall that an equivalent condition to the reversibility of Pα,θν with
respect to Aα,θν is the symmetry

E [ΦAα,θνΦ
′] = E [Φ′Aα,θνΦ] , Φ,Φ′ ∈ F0,

in which E[·] stands for the expectation with respect to Pα,θν . (See the proof of
Theorem 2.3 in [6].) In the rest of the proof we suppress the suffix ‘α, θν’ for simplicity.
Let f ∈ C(E) be given and define Φn(µ) = ⟨µ, f⟩n for each positive integer n. We
are going to calculate

∆ := E [Φ2AΦ1]− E [Φ1AΦ2] . (4.1)

For this purpose, observe from (3.23) that

AΦ1(µ) =
θ

α + 1
(⟨ν, f⟩ − ⟨µ, f⟩), (4.2)

AΦ2(µ) = ⟨µ, f 2⟩+ 2αθ

α + 1
⟨ν, f⟩⟨µ, f⟩+ (1− α)θ

α + 1
⟨ν, f 2⟩ − (θ + 1)⟨µ, f⟩2 (4.3)
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and

Γ(3)AΦ3(µ) = 3(α + 1)⟨µ, f 2⟩⟨µ, f⟩+ (1− α)⟨µ, f 3⟩

+
θ

α + 1
· 3α(α + 1)⟨ν, f⟩⟨µ, f⟩2 + θ

α + 1
· 3(1− α)α⟨ν, f 2⟩⟨µ, f⟩

+
θ

α + 1
· (1− α)(2− α)⟨ν, f 3⟩ − (α+ 2)(θ + 2)⟨µ, f⟩3. (4.4)

Combining (4.2) with the stationarity E[AΦ1] = 0, we get E[⟨µ, f⟩] = ⟨ν, f⟩. There-
fore, it is possible to deduce from (4.3) and E[AΦ2] = 0

(θ + 1)E[⟨µ, f⟩2] = 2αθ

α + 1
⟨ν, f⟩2 +

(
1 +

(1− α)

α + 1
θ

)
⟨ν, f 2⟩.

Moreover, this equality between quadratic forms is enough to imply the one between
symmetric bilinear forms:

(θ + 1)E[⟨µ, f⟩⟨µ, g⟩] = 2αθ

α + 1
⟨ν, f⟩⟨ν, g⟩+

(
1 +

(1− α)

α + 1
θ

)
⟨ν, fg⟩, (4.5)

where g ∈ C(E) is also arbitrary. In the rest of the proof we assume that ⟨ν, f⟩ = 0.
This makes the calculations below considerably simple. By (4.5)

M1,2 := E[⟨µ, f⟩⟨µ, f 2⟩] = (α + 1) + (1− α)θ

(α + 1)(θ + 1)
⟨ν, f 3⟩. (4.6)

The equality E[AΦ3] = 0 together with (4.4) implies that

(α + 2)(θ + 2)E[⟨µ, f⟩3] = 3(α + 1)M1,2 + (1− α)
(
1 +

2− α

α + 1
θ
)
⟨ν, f 3⟩. (4.7)

These preliminaries help us calculate ∆ in (4.1) as follows. By (4.3) and (4.4)

∆ = E

[
⟨µ, f⟩2

(
− θ

α + 1
⟨µ, f⟩

)]
− E

[
⟨µ, f⟩

(
⟨µ, f 2⟩ − (θ + 1)⟨µ, f⟩2⟩

)]
=

(α + 1) + αθ

α + 1
E[⟨µ, f⟩3]−M1,2

and hence (4.7) yields

(α + 1)(α + 2)(θ + 2)∆

= [(α + 1) + αθ]
[
3(α+ 1)M1,2 + (1− α)

(
1 +

2− α

α + 1
θ
)
⟨ν, f 3⟩

]
−(α + 1)(α + 2)(θ + 2)M1,2

= (α + 1)(α− 1)(2θ + 1)M1,2 + [(α + 1) + αθ] (1− α)
(
1 +

2− α

α + 1
θ
)
⟨ν, f 3⟩.
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Plugging (4.6) into this expression, we obtain

(α+ 1)(α + 2)(θ + 2)∆ =
1− α

(α + 1)(θ + 1)
U(α, θ)⟨ν, f 3⟩,

where

U(α, θ) = −(α+ 1)(2θ + 1) [(α + 1) + (1− α)θ]

+ [(α+ 1) + αθ] (θ + 1) [(α + 1) + (2− α)θ]

= αθ2 [(α+ 4) + (2− α)θ] =: V (α, θ).

(The second equality between quadratic functions of α is verified by checking that
U(−1, θ) = −3θ2(θ+ 1) = V (−1, θ), U(0, θ) = 0 = V (0, θ) and U(1, θ) = θ2(θ+ 5) =
V (1, θ).) Consequently, whenever ⟨ν, f⟩ = 0, we have

∆ =
α(1− α)θ2 [(α + 4) + (2− α)θ]

(α + 1)2(α + 2)(θ + 1)(θ + 2)
⟨ν, f 3⟩.

Thus, all that remains is to construct an f ∈ C(E) such that ⟨ν, f⟩ = 0 and
⟨ν, f 3⟩ > 0. Because of the assumption, we can choose a closed subset E0 of E such
that 0 < ν(E0) < 1/2. Indeed, in the case (ii) this is trivial while in the case (i) there
exist disjoint closed subsets E1, E2 and E3 of E such that ν(E1)ν(E2)ν(E3) > 0 and
so 0 < ν(Ei) < 1/2 for some i ∈ {1, 2, 3}. Letting g denote the indicator function of
E0, we observe that

⟨ν, (g − ⟨ν, g⟩)3⟩ = ⟨ν, g3⟩ − 3⟨ν, g2⟩⟨ν, g⟩+ 3⟨ν, g⟩⟨ν, g⟩2 − ⟨ν, g⟩3

= ν(E0)− 3ν(E0)
2 + 2ν(E0)

3

= ν(E0)(1− ν(E0))(1− 2ν(E0)) > 0.

Finally, the required f exists since g can be approximated boundedly and pointwise
by a sequence of functions in C(E). The proof of the theorem is complete.

It is worth noting that the exceptional case of Theorem 4.1 corresponds to a subclass
of the one-dimensional case discussed in Section 1, more specifically, the process gen-
erated by (1.3) with c1 = c2. There is no reason why this class should be so special
with respect to the reversibility, and it seems that such a ‘spatial symmetry’ makes
it more subtle to see the asymmetry in time. The actual difficulty in showing the
irreversibility for these processes along similar lines to the above proof is that expres-
sions of E[Φn1AΦn2 ] with n1 +n2 ≥ 4 as functions of α and θ are too complicated to
handle.
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