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NECESSARY AND SUFFICIENT CONDITIONS FOR THE
ASYMPTOTIC DISTRIBUTIONS OF COHERENCE OF
ULTRA-HIGH DIMENSIONAL RANDOM MATRICES

By Qi-Man Shao∗, Wen-Xin Zhou

The Chinese University of Hong Kong and Hong Kong University of
Science and Technology

Let x1, · · · ,xn be a random sample from a p-dimensional popu-
lation distribution, where p = pn → ∞ and log p = o(nβ) for some
0 < β ≤ 1, and let Ln be the coherence of the sample correlation
matrix. In this paper it is proved that

√
n/ log pLn → 2 in probabil-

ity if and only if Eet0|x11|
α

< ∞ for some t0 > 0, where α satisfies
β = α/(4 − α). Asymptotic distributions of Ln are also proved un-
der the same sufficient condition. Similar results remain valid for
m-coherence when the variables of the population are m dependent.
The proofs are based on self-normalized moderate deviations, the
Stein-Chen method and a newly developed randomized concentra-
tion inequality.

1. Introduction. This paper is motivated by the recent results of Cai
and Jiang (2011, 2012) on asymptotic behaviours of the largest magnitude of
off-diagonal entries of the sample correlation matrix. Consider a p-variable
population represented by a random vector x = (x1, . . . , xp)

T with the co-
variance matrix Σ and let Xn = (xij) be an n× p random matrix where the
n rows consist a random sample of size n from the population. The Pearson
correlation coefficient ρij between the i-th and j-th columns of Xn is given
by

(1.1) ρij =

∑n
k=1(xki − x̄i)(xkj − x̄j)√∑n

k=1(xki − x̄i)2 ·
√∑n

k=1(xkj − x̄j)2
, 1 ≤ i, j ≤ p

where x̄i = (1/n)
∑n

k=1 xki. Then the sample correlation matrix Γn is defined
by Γn ≡ (ρij).

The main object of interest in this paper is the largest magnitude of
off-diagonal entries of the sample correlation matrix, that is,

(1.2) Ln = max
1≤i<j≤p

|ρij |.
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As in Cai and Jiang [2], Ln is called the coherence of the random matrix
Xn.

In the case where p and n are of the same order, i.e. n/p → λ ∈ (0,∞),
asymptotic properties of coherence Ln have been extensively studied re-
cently. Jiang (2004) was the first to establish the strong laws and limiting
distributions of Ln. The moment assumption in Jiang (2004) has been sub-
stantially improved by Li and Rosalsky (2006), Zhou (2007), Liu, Lin and
Shao (2008), Li, Liu and Rosalsky (2009) and Li, Qi and Rosalsky (2012).
Liu, Lin and Shao (2008) proved that similar results hold for p = O(nα)
where α is a constant. We refer to Cai and Jiang (2011) and references
therein for recent developments on this topic. In particular, Cai and Jiang
(2011) considered the ultra-high dimensional case where p can be as large

as en
β

for some β ∈ (0, 1). Specifically, assuming all the entries of Xn,
{xij , i ≥ 1, j ≥ 1} are i.i.d. real-valued random variables with mean µ and
variance 0 < σ2 <∞, they proved the following results.

Suppose Eet0|x11|α < ∞ for some t0 > 0 and α > 0. Assume that p =
pn →∞ and log p = o(nβ) as n→∞, where β = α

4+α . Then

(1.3)
√
n/(log p)Ln → 2, in probability.

If 0 < α ≤ 2, then

(1.4) nL2
n − 4 log p+ log2 p

d.−→ Y,

where d. denotes convergence in distribution, log2 p ≡ log log p and the ran-
dom variable Y has an extreme distribution of type I with distribution func-
tion

(1.5) FY (y) = e−(1/
√

8π)e−y/2 , y ∈ R.

The main purpose of this paper is to find necessary and sufficient condi-
tions for (1.3) and (1.4). Our result shows that the optimal choice of β is
that β = α/(4 − α), 0 < α ≤ 2 for (1.3), and the same β for (1.4) when
0 < α ≤ 1. It is also shown that, when 1 < α ≤ 4/3 and E(x11 − µ)3 6= 0,
(1.4) doesn’t hold, but a recentered Ln will do.

The rest of the paper is organized as follows. The main results, Theorems
2.1, 2.2 and 2.3 will be stated in Section 2. A closely related problem of
testing for m-dependence of the population is considered and an application
to compressed sensing is revisited in this section. The proofs of Theorems
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2.1 and 2.2 are given in Section 3 and Section 4, respectively, by using the
Stein-Chen method, moderate deviations for both standardized and self-
normalized sums of independent random variables. The proof of Theorem
2.3 is postponed to Section 5.

2. Main results. In this section, we consider the law of large numbers
and asymptotic distributions of the coherence Ln. In Section 2.1, we provide
necessary and sufficient conditions for the two aforementioned limiting prop-
erties and the optimal choice of β in terms of α. In Section 2.2, we consider
the m-coherence, Ln,m, of a random matrix with m-dependent structure in
each row.

Notation. Throughout this paper, an � bn will denote that there exist
two positive constants c1, c2 such that c1 ≤ an/bn ≤ c2, for all n ≥ 1;
an ∼ bn will denote limn→∞ an/bn = 1.

2.1. The i.i.d. case. In this subsection, we assume that the entries xij of
Xn are i.i.d. with mean µ and variance σ2 > 0. Let

(2.1) β = βα = α/(4− α), 0 < α ≤ 2.

We first state the law of large numbers for Ln.

Theorem 2.1. (i) Suppose E exp{t0|x11|α} <∞ for some 0 < α ≤ 2
and t0 > 0. Assume p = pn →∞ and log p = o(nβα) as n→∞. Then

(2.2)
√
n/(log p)Ln → 2

in probability as n→∞.
(ii) Let 0 < β ≤ 1. If (2.2) holds for any p → ∞ satisfying log p = o(nβ),

then E exp{t0|x11|α} <∞ for some t0 > 0, where α = αβ = 4β/(1+β),
i.e. α and β satisfy (2.1).

Remark 2.1. Clearly, when α = 2, β equals to 1, so the range for
dimension p reduces to log p = o(n). On the other hand, as proved by Cai
and Jiang (2012), if x11 ∼ N (0, 1) and (log p)/n→ γ ∈ (0,∞), then

Ln →
√

1− e−4γ > 0 in probability as n→∞.

Hence, result (2.2) no longer holds for log p � n. We believe that the limit
of Ln will also depend on the distribution of x11 in this case, which still
remains an open question.
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The next theorem gives the asymptotic distribution of Ln after proper
normalization. Let κ = E(x11 − µ)3/σ3 and
(2.3)

Wn =

{
nL2

n − 4 log p+ log2 p, 0 < α ≤ 1,

nL2
n − 4 log p− (8κ2/3)n−1/2(log p)3/2 + log2 p, 1 < α ≤ 4/3.

Theorem 2.2. Suppose E exp{t0|x11|α} <∞ for some 0 < α ≤ 4/3 and
t0 > 0. Assume p = p(n)→∞, log p = o(nβα) as n→∞. Then

(2.4) Wn
d.→ Y,

where Y has the distribution function given in (1.5).

Clearly, when α = 4/3, βα = 1/2, (2.4) converges weakly to the distribu-
tion function (1.5) provided that log p = o(n1/2). However, (2.4) is not valid
when log p � n1/2 as shown in Cai and Jiang (2012), if x11 ∼ N (0, 1) and
(log p)/n1/2 → γ ∈ [0,∞), then the limiting distribution of (1.4) is shifted to
the left by 8γ2, that is, exp{−(1/

√
8π)e−(y+8γ2)/2}, y ∈ R. For 4/3 < α ≤ 2,

a more refined Cramér type moderate deviation theorem is needed to derive
the limiting distribution of Ln.

Theorems 2.1 and 2.2 together fully exhibit the dependence between
ranges of dimension p and the optimal moment conditions for asymptotic
properties (1.3) and (1.4) of the coherence Ln.

Remark 2.2. It is known that the convergence rate to type I extreme
distribution is typically slow. When p � n, Liu, Lin and Shao (2008) proved
that the rate of convergence can be improved to O

(
(log n)5/2n−1/2

)
, if an

“intermediate” approximation is used, that is,

sup
y∈R

∣∣∣P (nL2
n ≤ y)

− exp
{
− p(p− 1)

2
P (χ2

1 ≥ y)
}∣∣∣ = O

((log n)5/2

n1/2

)
,(2.5)

where χ2
1 has a chi-square distribution with one degree of freedom. In the

ultra-high dimensional case, Theorem 2.2 implies

sup
y∈R

∣∣∣P (Wn ≤ y)

− exp
{
− p(p− 1)

2
P (χ2

1 ≥ 4 log p− log log p+ y)
}∣∣∣→ 0.(2.6)
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It is possible to prove that the rate of convergence of (2.6) is of order O(n−1/2).
To test the independence of the p-variate population, it may be better to
choose the critical value based on the “intermediate” approximation. That
is, reject the null hypothesis if L2

n ≥ zα/n, where zα satisfies P (χ2
1 ≥ zα) =

−2 log(1− α)/{p(p− 1)}.

Remark 2.3. Both Theorems 2.1 and 2.2 are still valid when Ln is
replaced by

(2.7) L̃n = max
1≤i<j≤p

|ρ̃ij |,

where

(2.8) ρ̃ij =

∑n
k=1(xki − µ)(xkj − µ)√∑n

k=1(xki − µ)2
∑n

k=1(xkj − µ)2
.

The quantity L̃n arises from compress sensing literature. See, for example,
Donoho, Elad and Temlyakov (2006).

2.2. m-dependent case. As discussed in Cai and Jiang (2011), a variant of
coherence Ln can be used to construct a test for bandedness of the covariance
matrix in the Gaussian case. In this paper, we drop the normality assumption
and consider a more general problem of testing whether the population is m-
dependent, where m can depend on n. More specifically, let Xn = (xij)n×p,
where the n rows are i.i.d. random vectors drawn from a p-variate population
represented by x = (x1, . . . , xp)

T with the covariance matrix Σ. Assume all
p components of x are identically distributed with mean µ and variance
σ2 > 0. Then, we wish to test the hypothesis

(2.9) H0 : xi and xj are independent for all |i− j| ≥ m.

Analogous to the definition of Ln, we introduce the m-coherence of the
matrix Xn as follows:

(2.10) Ln,m = max
|i−j|≥m

|ρij |.

In addition, let (rij)p×p be the correlation matrix of x. For any given 0 <
δ < 1, set

(2.11) Γp,δ =
{

1 ≤ i ≤ p : |rij | > 1− δ for some 1 ≤ j ≤ p with j 6= i
}
.

The following theorem establishes the limiting distribution of Ln,m under
the null hypothesis.
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Theorem 2.3. Let κ = E(x11 − µ)3/σ3 and define

Wn,m =

{
nL2

n,m − 4 log p+ log2 p, 0 < α ≤ 1,

nL2
n,m − 4 log p− (8κ2/3)n−1/2(log p)3/2 + log2 p, 1 < α ≤ 4/3.

Suppose E exp{t0|x11|α} < ∞ for some 0 < α ≤ 4/3 and t0 > 0. Moreover,
assume that, as n→∞,

(i) p = pn →∞, log p = o(nβα), where βα is given in (2.1);
(ii) there exists some δ ∈ (0, 1) such that |Γp,δ| = o(p) and m = o(pεδ),

where εδ = (2δ − δ2)/(4− 2δ + δ2).

Then, under H0, Wn,m converges weakly to the extreme distribution (1.5).

Theorem 2.3 was proved in Cai and Jiang (2011) when x is multivariate
normal, log p = o(n1/3), m = o(pt) for any t > 0 and |Γp,δ| = o(p) for some
δ ∈ (0, 1). It was also pointed out therein that the assumption |Γp,δ| = o(p)
is essential in the sense that there exists a covariance matrix Σ such that
the conclusion of Theorem 2.3 for Gaussian entries no longer holds when
p ∼ n en

1/4
, m = n and |Γp,δ| = p for any δ > 0. In Theorem 2.3 here, the

assumption on m is weakened and condition (i) provides the optimal choice
of β in terms of α, and more importantly, Gaussian entries are not required.

Remark 2.4. Similar to Remark 2.2, an “intermediate” approximation
can also be applied here based on

sup
y∈R

∣∣∣P (Wn,m ≤ y)

− exp
{
− (p2/2)P (χ2

1 ≥ 4 log p− log log p+ y)
}∣∣∣→ 0(2.12)

as n→∞.

Remark 2.5. In compressed sensing, the quantity L̃n, defined in (2.7),
is useful because it is closely related to the so-called mutual incoherence prop-
erty (MIP), which requires the pairwise correlations among column vectors
of X = Xn×p to be small. More specifically, under certain assumptions on
X, the condition

(2.13) (2k − 1)L̃n < 1

guarantees the exact recovery of β ∈ Rp from linear measurements y = Xβ,
when β has at most k non-zero entries. This condition is also sharp in
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the sense that there exists matrices X0 such that recovering some k-sparse
signals β based on y = X0β when (2k−1)L̃n = 1 is impossible. See, Donoho
and Huo (2001), Fuchs (2004) and Cai, Wang and Xu (2010).

It was shown in [2] that the limiting properties of L̃n can be directly applied
to compute the probability that random measurement matrices satisfy the
MIP conditions (2.13). In particular, Theorem 2.1 with Ln replaced with
L̃n provides necessary and sufficient conditions for L̃n ∼ 2

√
(log p)/n. This

suggests that the sparsity k should satisfy k <
√
n/(log p)/4 approximately

in order for the MIP condition (2.13) to hold.

3. Proof of Theorem 2.1. We start with collecting some technical
lemmas that will be used to prove our main results. Without loss of gener-
ality, assume {xij ; 1 ≤ i ≤ n, 1 ≤ j ≤ p} are i.i.d. random variables with
mean zero and variance one. Both letters C and c denote constants that do
not depend on n or p, but may depend on the distribution of x11 and vary
from line to line.

3.1. Technical Lemmas. As in many previous works on the extreme dis-
tribution approximation, the following lemma is a special case of Theorem
1 of Arratia, et al. (1989), based on the Stein-Chen method.

Lemma 3.1. Let {ηα, α ∈ I} be random variables on an index set I. For
each α ∈ I, let Bα be a subset of I with α ∈ Bα. For any given t ∈ R, set
λ =

∑
α∈I P (ηα > t). Then

(3.1)
∣∣∣P(max

α∈I
ηα ≤ t

)
− e−λ

∣∣∣ ≤ min(1, λ−1)(b1 + b2 + b3),

where

b1 =
∑
α∈I

∑
β∈Bα

P (ηα > t)P (ηβ > t), b2 =
∑
α∈I

∑
β∈Bα
β 6=α

P (ηα > t, ηβ > t),

b3 =
∑
α∈I

E|P (ηα > t|σ(ηβ, β /∈ Bα))− P (ηα > t)|

and σ(ηβ, β /∈ Bα) is the σ-algebra generated by {ηβ, β /∈ Bα}. In particular,
if ηα is independent of {ηβ, β /∈ Bα}, for each α ∈ I, then b3 vanishes.
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For a sequence of random variables X1, X2, . . . , we use Sn and V 2
n to

denote the partial sum and the partial quadratic sum, respectively, i.e.

Sn =
n∑
i=1

Xi, V 2
n =

n∑
i=1

X2
i .

The following lemma is due to Linnik (1961) on the moderate deviation
under i.i.d. assumption.

Lemma 3.2. Suppose X1, X2, . . . are i.i.d. random variables with EX1 =
0 and EX2

1 = 1.

(i) If Eet0|X1|α <∞ for some 0 < α ≤ 1 and t0 > 0, then

(3.2) lim
n→∞

1

x2
n

logP
(
Sn/
√
n ≥ xn

)
= −1/2

for any xn →∞, xn = o
(
n

α
2(2−α)

)
.

(ii) If Eet0|X1|α <∞ for some 0 < α ≤ 1/2 and t0 > 0, then

(3.3)
P (Sn/

√
n ≥ x)

1− Φ(x)
→ 1

holds uniformly for 0 ≤ x ≤ o
(
n

α
2(2−α)

)
.

(iii) Assume Eet0X1 <∞ for some t0 > 0. If x ≥ 0, x = o(n1/4), then

(3.4)
P (Sn/

√
n ≥ x)

1− Φ(x)
= exp

{x3EX3
1

6n1/2

}[
1 +O

(1 + x

n1/2

)]
.

We also need the following self-normalized moderate deviations:

Lemma 3.3 (Shao, 1997). Assume that X1, X2, . . . are i.i.d. random
variables with EX1 = 0 and 0 < σ2 = EX2

1 <∞. Then, for any sequence of
real numbers xn satisfying xn →∞ and xn = o(

√
n),

(3.5) logP (Sn/Vn ≥ xn) ∼ −x2
n/2.
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3.2. Proof of Theorem 2.1.

Proof of (i): The main idea of the proof is to show that Ln can be reduced
to Ln,0 = max1≤i<j≤p |ρij,0|, where

(3.6) ρij,0 =
1

nσ2

n∑
k=1

(xki − µ)(xkj − µ), 1 ≤ i, j ≤ p.

Let

(3.7) Sn,i =

n∑
k=1

xki, V 2
n,i =

n∑
k=1

x2
ki, ∆n,i =

Sn,i√
nVn,i

, 1 ≤ i ≤ p, n ≥ 1.

Decompose the sample correlation coefficient as

(3.8) ρij = ρij,1 − ρij,2, 1 ≤ i, j ≤ p

and accordingly, define

Ln,k = max
1≤i<j≤p

|ρij,k|, k = 1, 2,

where

(3.9) ρij,1 =

∑n
k=1 xkixkj/(Vn,iVn,j)

{(1−∆2
n,i)(1−∆2

n,j)}1/2
, ρij,2 =

∆n,i∆n,j

{(1−∆2
n,i)(1−∆2

n,j)}1/2
.

Intuitively, Lemma 3.3 suggests that ∆n,i can be negligible and Lemma 3.2
indicates that V 2

n,i/n is close to 1. Let

(3.10) εn1 = c1(log p)1/2/nβ/2 and εn2 = c2(log p)1/2/n1/2,

where c1 and c2 are positive constants only depending on the distribution of
x11 and will be specified later in different cases . Since E exp{t0|x2

11−1|α/2} <
∞, it follows from (3.2) and (3.5) that

(3.11) P
(
|V 2
n,1 − n|/n1/2 > εn1n

β/2
)
≤ 2 exp{−c ε2n1n

β}

and

(3.12) P (|∆n,1| > εn2) ≤ 2 exp{−c ε2n2n}

for all sufficiently large n. Now define the subset

(3.13) En =
{

max
1≤i≤p

|V 2
n,i/n− 1| ≤ εn1n

(β−1)/2, max
1≤i≤p

|∆n,i| ≤ εn2

}
.
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Then, for properly chosen c1 and c2 in (3.10), we have

(3.14) P (Ecn) ≤ 2p
(

exp{−c ε2n1n
β}+ exp{−c ε2n2n}

)
= o(p−4).

Recall Ln,0 defined through (3.6). Clearly, on En

Ln,0

1 + εn1n(β−1)/2
≤ Ln,1 ≤

Ln,0

(1− ε2n2)(1− εn1n(β−1)/2)

and
Ln,2 ≤ ε2n2/(1− ε2n2).

Noting that εn1n
(β−1)/2 = c1(log p)1/2/n1/2 = o(1) and

√
n/ log p ε2n2 =

c2
2(log p)1/2/n1/2 = o(1), we have on En

(3.15) Ln,1/Ln,0 → 1,
√
n/ log p|Ln − Ln,1| → 0,

which together with (3.14) shows that conclusion (2.2) will be a direct con-
sequence of the next proposition. The proof is postponed to the end of this
section.

Proposition 3.1. Under the conditions of (i) in Theorem 2.1, we have√
n/(log p)Ln,0 → 2 in probability as n→∞.

Proof of (ii): We shall prove the necessity of moment conditions under a
weaker assumption than (2.2). Assume that there exists a constant C0 ≥ 4,
such that

(3.16) P
(√

n/(log p) max
1≤i<j≤p

|ρij | ≥ C0

)
→ 0.

Note that max1≤i<j≤p |ρij | ≥ max1≤i≤p/2 |ρi,[p/2]+i|, then (3.16) implies

(3.17) P
(

max
1≤i≤p/2

|ρi,[p/2]+i| > C0

√
(log p)/n

)
→ 0.

Observe that {ρi,[p/2]+i, 1 ≤ i ≤ [p/2]} are i.i.d. random variables and that∑n
k=1(xki − x̄i)2 ≤

∑n
k=1 x

2
ki, (3.17) thus yields

(3.18) p · P
( |

∑n
k=1 xk1xk2 − nx̄1x̄2|

(
∑n

k=1 x
2
k1)1/2(

∑n
k=1 x

2
k2)1/2

> C0

√
(log p)/n

)
→ 0.

For n ≥ 16, define the subset

Dn =
{∑n

k=2 x
2
ki

n
≤ 2,

|
∑n

k=2 xki|√
n

≤ n1/4, i = 1, 2;
|
∑n

k=2 xk1xk2|√
n

≤ 1
}
.



LAWS OF COHERENCE OF RANDOM MATRICES 11

By the central limit theorem and the strong law of large numbers, P (Dn)→
2Φ(1) − 1, so that P (Dn) ≥ 1/2 for sufficiently large n. Furthermore, since
log p = o(n), we have on Dn,{

|
∑n

k=1 xk1xk2|
(
∑n

k=1 x
2
k1)1/2(

∑n
k=1 x

2
k2)1/2

> C0

√
log p

n

}
⊇

{
|x11x12| − 2

√
n− |x11| − |x12|

(x2
11 + 2n)1/2(x2

12 + 2n)1/2
> C0

√
log p

n

}
⊇

{
(|x11| − c

√
log p)(|x12| − c

√
log p) > 3C0

√
n log p

}
,

for some c > 0, which along with the independence of Dn and {x11, x12}
yields

P
( |

∑n
k=1 xk1xk2 − nx̄1x̄2|

(
∑n

k=1 x
2
k1)1/2(

∑n
k=1 x

2
k2)1/2

> C0

√
(log p)/n

)
(3.19)

≥ P (Dn) · P
(
(|x11| − c

√
log p)(|x12| − c

√
log p) > 3C0

√
n log p

)
≥ (1/2) ·

{
P
(
|x11| > 2C

1/2
0 (n log p)1/4

)}2
.

If follows from (3.18) and (3.19) that

(3.20) p1/2P
(
|x11| > C0(n log p)1/4) = o(1)

for any p satisfying log p = o(nβ). By a contradiction argument, it is easy
to see that (3.20) implies that E exp{t0|x11|4β/(1+β)} <∞, for some t0 > 0.
This proves part (ii).

We end this section with the proof of Proposition 3.1.

3.3. Proof of Proposition 3.1. It suffices to show, for any 0 < ε < 1/8,
as n→∞,

(3.21) P
(√

n/(log p)Ln,0 ≤ 2− ε
)
→ 0

and

(3.22) P
(√

n/(log p)Ln,0 > 2 + ε
)
→ 0.

We apply Lemma 3.1 to prove (3.21) by using (3.1) to deal with the maxi-
mum. The proof of (3.22) is similar and so the details are omitted here.

Put yn = (2− ε)
√

(log p)/n, n ≥ 1. Define

I = {(i, j); 1 ≤ i < j ≤ p}, Aij = {|ρij,0| > yn}, 1 ≤ i < j ≤ p
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and
Bi,j =

{
(k, l) ∈ I \ {(i, j)}; either k ∈ {i, j} or l ∈ {i, j}

}
.

Since {xij ; (i, j) ∈ I} are identically distributed, by Lemma 3.1,

(3.23)
∣∣∣P( max

1≤i<j≤p
|ρij,0| ≤ (2− ε)

√
(log p)/n

)
− e−λn

∣∣∣ ≤ bn,1 + bn,2,

where

(3.24) λn =
p(p− 1)

2
P (A12), bn,1 ≤ p3P 2(A12), bn,2 ≤ p3P (A12A13).

Because 0 < α/2 ≤ 1 and E exp{t0|x11x12|α/2} < ∞, it follows from (3.2)
that, for all sufficiently large n,

P (A12) = P
( |∑n

k=1 xk1xk2|
n1/2

>
√
nyn

)
≤ 2 exp{−(1− ε)ny2

n/2} = 2p−(1−ε)(2−ε)2/2,(3.25)

which, in turn implies

(3.26) λn →∞ and bn,1 = o(1) as n→∞.

As for bn,2, we have

P (A12A13) = P
( |∑n

k=1 xk1xk2|
n

> yn,
|
∑n

k=1 xk1xk3|
n

> yn

)
(3.27)

≤ P
( |∑n

k=1 xk1(xk2 + xk3)|
n

> 2yn

)
+P
( |∑n

k=1 xk1(xk2 − xk3)|
n

> 2yn

)
.

Since E[xk1(xk2 +xk3)] = 0 and E[xk1(xk2 +xk3)]2 = 2, applying (3.2) again,
we get

P
( |∑n

k=1 xk1(xk2 + xk3)|
n

> 2yn

)
≤ 2 exp{−(1− ε)ny2

n} = 2p−(1−ε)(2−ε)2
.

Similarly, the same result holds for P (|
∑n

k=1 xk1(xk2−xk3)| > 2yn n). There-
fore,

(3.28) bn,2 ≤ p3P (A12A13) = O
(
p3−(1−ε)(2−ε)2)

= o(1).

This completes the proof of (3.21) by (3.23), (3.24), (3.26) and (3.28).
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4. Proof of Theorem 2.2. The main idea is to use Lemma 3.1 again.
The proof of part (i) is standard while that of part (ii) requires a more
delicate estimate of λn given in (3.24). In particular, we need a randomized
concentration inequality in Lemma 4.2.

We formulate the proof into two cases.

Case 1. 0 < α ≤ 1.

For arbitrary fixed y ∈ R, let

(4.1) yn =
√

(y + 4 log p− log2 p)/n, log2 p ≡ log log p

for large n so that y + 4 log p− log2 p > 0. We need to prove that

(4.2) P
(

max
1≤i<j≤p

|ρij | ≤ yn
)
→ exp

(
− (1/

√
8π)e−z/2

)
.

Similar to (3.23), we have∣∣∣P( max
1≤i<j≤p

|ρij | ≤ yn
)
− e−λn

∣∣∣ ≤ bn,1 + bn,2,(4.3)

where λn, bn,1, bn,2 and Aij are defined as in (3.24) with ρij,0 replaced by
ρij . It suffices to show

(4.4) P (A12) ∼ 2
(
1− Φ(

√
nyn)

)
+ o(p−2) ∼ e−y/2√

2π
p−2

and

(4.5) P (A12A13) = o(p−3).

Analogous to (3.13), let

(4.6) En·3 =
{

max
i=1,2,3

|V 2
n,i/n− 1| ≤ εn1n

(β−1)/2, max
i=1,2,3

|∆n,i| ≤ εn2

}
,

where Vn,i and ∆n,i are given in (3.7). In view of (3.14), we can choose c1

and c2 in (3.10) properly such that

(4.7) P (Ecn·3) = o(p−3).

On En·3, we have

(4.8) |ρ1i| ≤
|ρ1i,0|

(1− ε2n2)(1− εn1n(β−1)/2)
+

ε2n2

1− ε2n2

, i = 2, 3
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and (recall yn ∼ 2n−1/2(log p)1/2)

(4.9) |ρ12| =
{

1 + o
(√

(log p)/n
)}
· |ρ12,0|+O

(
(log p)/n

)
.

We are now ready to prove (4.4) and (4.5).

Proof of (4.4). By (4.9), it follows that, on En·3,

{|ρ12| > yn} =
{
|ρ12,0| > ŷn

}
, with ŷn = yn(1 + o(n−1/2(log p)1/2)).

Recalling the definition of ρ12,0 in (3.6) and

Exk1xk2 = 0, E(xk1xk2)2 = 1, Eet0|x11x12|α/2 <∞ with 0 < α/2 ≤ 1,

it follows directly from (3.3) that, as n→∞,

(4.10)
P (ρ12,0 > ŷn)

1− Φ(
√
nŷn)

→ 1.

Noticing that log p = o(n1/3), it is easy to check that

1− Φ(
√
nyn)

1− Φ(
√
nŷn)

→ 1,

which, together with (4.10) yields (4.4).

Proof of (4.5). By (4.8), following the same argument as in (3.27) and
(3.28), we have for any 0 < ε < 1/8,

P (A12A13)

≤ P
(
|ρ12,0| ≥ {1− o(1)}yn, |ρ13,0| ≥ {1− o(1)}yn

)
+ P (Ecn·3)

≤ C exp{−(1− ε)ny2
n}+ o(p−3)

≤ C(log p)p−4(1−ε) + o(p−3) = o(p−3).

This gives (4.5).

Case 2. 1 < α ≤ 4/3.

Similar to yn in (4.1), for y ∈ R we now define

(4.11) yn =
√

(y + 4 log p+ cn,p − log2 p)/n,
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where cn,p = (8κ2/3)n−1/2(log p)3/2. Following the same argument as in the
proof of Case 1, (4.5) remains valid. It thus remains to show that

(4.12) P (A12) ∼ 2Ln,y + o(p−2),

where
Ln,y =

(
1− Φ(

√
nyn)

)
exp(κ2ny3

n/6).

Let xi = (xi1, · · · , xni)T , i = 1, ..., p be the p columns of Xn and ‖·‖ denotes
the Euclidean norm in Rn. Rewrite ρ12 as
(4.13)

ρ12 = ρ̂12/{(1−∆2
n,1)(1−∆2

n,2)}1/2 with ρ̂12 ≡
xT1 x2 − n−1Sn,1Sn,2

‖x1‖‖x2‖
.

Define the subset

(4.14) En·2 = {max(|∆n,1|, |∆n,2|) ≤ εn2},

where εn2 = c2(log p)1/2/n1/2 is given in (3.10) with c2 > 0 chosen appropri-
ately such that P (Ecn·2) = o(p−4). Hence, with probability at least 1−o(p−4),

(4.15) |ρ12|/|ρ̂12| = 1 + o(n−1/2).

For ρ̂12, using the elementary inequalities

2ab ≤ a2 + b2 and (1 + s)1/2 ≥ 1 + s/2− s2/2, for any s > −1

to give lower and upper bounds as follows:

(4.16) {ρ̂12 > yn} ⊇
{
xT1 x2 − yn(‖x1‖2 + ‖x2‖2)/2 > n−1Sn,1Sn,2

}
and

{ρ̂12 > yn}
⊆

{
xT1 x2 − yn(‖x1‖2 + ‖x2‖2)/2(4.17)

> n−1Sn,1Sn,2 − ny2
n[(‖x1‖2/n− 1)2 + (‖x2‖2/n− 1)2]

}
.

Therefore, in order to prove (4.12), we need to show the following two claims:

(4.18) P
(
xT1 x2 − yn(‖x1‖2 + ‖x2‖2)/2 > 0

)
∼ Ln,y + o(p−2)

and

(4.19) P
(
∆n < xT1 x2 − yn(‖x1‖2 + ‖x2‖2)/2 ≤ 0

)
= o(1)

{
Ln,y + p−2

}
,
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where ∆n = ∆(Sn,1, Sn,2, V
2
n,1, V

2
n,2) is given by

(4.20) ∆n = n−1Sn,1Sn,2 − ny2
n

[
(‖x1‖2/n− 1)2 + (‖x2‖2/n− 1)2

]
.

Proof of (4.18). Given two random vectors x1,x2 ∈ Rn, truncate one of
which as follows:

(4.21) xτk2 = xk2I{|xk2|≤τ}, k = 1, ..., n with τ = τn = t
−1/α
0 nβ/α

and write

(4.22) ξk = ξn,k = ynxk1x
τ
k2 − y2

n(x2
k1 + xτ2

k2)/2, k = 1, ..., n.

By the union bound and Markov inequality,

(4.23) P
(

max
1≤k≤n

|xk2| > τ
)
≤ E[et0|x11|α ] · ne−nβ

and it is easy to see that xT1 x2 − yn(‖x1‖2 + ‖x2‖2)/2 = y−1
n

∑n
k=1 ξk on

{maxk |xk2| ≤ τ}. We thus aim to estimate the probability P (
∑n

k=1 ξk > 0).
Since α > 1 and ynτ

2−α = O
(
(log p)1/2/nβ/2

)
= o(1), it follows that

ξk ≤ ynτ2−α|xk1||xk2|α−1

≤ ynτ
2−α(|xk1|α + |xk2|α

)
= o(1)(|xk1|α + |xk2|α),

which, in turn, implies sup1≤k≤n,n≥1 Eeξk <∞. Moreover, it is easy to verify
that

Eξk = −y2
n + y2

nEx2
11I{|x11|>τ}/2 = −y2

n

{
1 +O(y2

n)
}
,

V ar(ξk) = y2
n

{
1 +O(y2

n)
}

and
E(ξk − Eξk)3

V ar3/2(ξk)
= (Ex3

11)2 +O(yn).

Let µn =
∑n

k=1 Eξk and σ2
n =

∑n
k=1 V ar(ξk), then −µn/σn =

√
nyn{1 +

O(y2
n)}. Moreover, noting that

√
nyn = o(n1/4) and κ = Ex3

11 (with µ = 0
and σ2 = 1), it follows from (3.4) and the above facts that

P
( n∑
k=1

ξk > 0
)

= P
(∑n

k=1(ξk − Eξk)
σn

> −µn/σn
)

∼
(
1− Φ(−µn/σn)

)
exp

((−µn/σn)3

6n1/2

(
κ2 +O(yn)

))
∼

(
1− Φ(

√
nyn)

)
exp

{κ2ny3
n

6

}
= Ln,y, as n→∞.

This, along with (4.23), implies (4.18) immediately.
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Proof of (4.19). This requires a more delicate analysis. The main idea is
to apply a combination of the multivariate conjugate method and a ran-
domized concentration inequality to the truncated variables as defined in
(4.22) and (4.21). Further to the notation used in the proof of (4.18), let
{yk = (xk1, x

τ
k2); 1 ≤ k ≤ n} be a sequence of independent R2-valued ran-

dom variables and let measurable function g : R2 → R3 be given by

(4.24) ∀(u, v) ∈ R2, g(u, v) =
(
uv, u2, v2

)
.

Put

Sn =
n∑
k=1

yk =
( n∑
k=1

xk1,
n∑
k=1

xτk2

)T
and

Vn =
n∑
k=1

g(yk) =
( n∑
k=1

xk1x
τ
k2,

n∑
k=1

x2
k1,

n∑
k=1

xτ2
k2

)T
.

Let λn = (yn,−y2
n/2,−y2

n/2)T ∈ R3. Observe that ξk = ξn,k given in (4.22)
can be rewritten as λTng(yk) that satisfy

(4.25) max
1≤k≤n,n≥1

mn,k <∞,

where
mn,k = Eeξk = E[eλ

T
n g(yk)].

Now, let ŷ1, ŷ2, . . . , ŷn be a sequence of independent R2-valued random vari-
ables such that ŷk has the following distribution

(4.26) ∀B ∈ B2, P (ŷk ∈ B) =
1

mn,k
E[eλ

T
n g(yk)I{yk∈B}].

Accordingly, put Ŝn =
∑n

k=1 ŷk, V̂n =
∑n

k=1 g(ŷk). The multivariate con-
jugate method says that, for any C ∈ B5,

(4.27) P{(Sn,Vn) ∈ C} = E[eλ
T
n V̂nI{(Ŝn,V̂n)∈C}]

n∏
k=1

mn,k.

In particular, define subsets

Cn =
{
u ∈ R5 : ∆(u1, u2, u4, u5) ≤ u3 − yn(u4 + u5)/2 < 0

}
∩ En,

En =
{
u ∈ R3 × R2

+ :
u1√
u4
≤ εn2n

1/2,
∣∣uj
n
− 1
∣∣ ≤ εn1n

(β−1)/2, j = 4, 5
}
,
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where in accordance with (4.20),

(4.28) ∆(v1, v2, v3, v4) = n−1v1v2 − ny2
n[(v3/n− 1)2 + (v4/n− 1)2]

and {εn1, εn2;n ≥ 1} are given as in (3.10), such that

(4.29) P{(Sn,Vn) ∈ Ecn} = o(p−4).

By (4.27), we have

P{(Sn,Vn) ∈ Cn} =
( n∏
k=1

mn,k

)
× E[e−λ

T
n V̂nI{(Ŝn,V̂n)∈Cn}]

:=
( n∏
k=1

mn,k

)
×Kn.(4.30)

Let ξ̂k = λTng(ŷk) be the conjugate version of ξk. Then, by (4.26),

Eξ̂k = E[ξke
ξk ]/E[eξk ], V ar(ξ̂k) = E[ξ2

ke
ξk ]/E[eξk ]− (Eξ̂k)2.

Put µ̂n =
∑n

k=1 Eξ̂k and σ̂2
n =

∑n
k=1 V ar(ξ̂k). Routine calculations show

(recall κ = Ex3
11)

E[eξk ] = 1− y2
n/2 + κ2y3

n/6 +O(y4
n),

E[ξke
ξk ] = κ2y3

n/2 +O(y4
n),

E[ξ2
ke
ξk ] = y2

n + κ2y3
n +O(y4

n).

Consequently,

(4.31) µ̂n = κ2ny3
n/2 +O(ny4

n), σ̂2
n = ny2

n + κ2ny3
n +O(ny4

n)

and

(4.32)

n∏
k=1

mn,k = exp(−ny2
n/2 + κ2ny3

n/6 +O(ny4
n)).

As for Kn in (4.30), we shall show that

(4.33)
√
nynKn = o(1).

Now combining (4.30), (4.32), (4.33) and the well-known result 1− Φ(s) ∼
(2π)−1/2s−1e−s

2/2 as s→∞, it follows

P{(Sn,Vn) ∈ Cn} = o(Ln,y).
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This, together with (4.23), (4.29) and the definition of Cn, gives (4.19).

Proof of (4.33). Observe that on the event {(Ŝn, V̂n) ∈ Cn},

(4.34) λTn V̂n =

n∑
k=1

ξ̂k ≥ (yn/n)Ŝn,1Ŝn,2 − 2nβy3
nε

2
n1,

where Ŝn,1 =
∑n

k=1 x̂k1, Ŝn,2 =
∑n

k=1 x̂
τ
k2. Using Hölder’s inequality gives

Kn ≤
(
Ee−2λTn V̂nI{(Ŝn,V̂n)∈Cn}

)1/2
(4.35)

×
(
P
(

(yn/n)Ŝn,1Ŝn,2 − 2nβy3
nε

2
n1 ≤

n∑
k=1

ξ̂k < 0
))1/2

:= K
1/2
n,1 ×K

1/2
n,2 .

We first estimate Kn,1. By (4.26),

E[x̂k1] = m−1
n,kE[xk1e

ξk ] = −κy3
n/2 +O(y4

n),

E[x̂2
k1] = m−1

n,kE[x2
k1e

ξk ] = 1− y2
n/2− κ2y3

n/2 +O(y4
n)

and same expansions hold for E[x̂τk2] and E[x̂τ2
k2] as well. Thus, for all suffi-

ciently large n,
∑n

k=1 Ex̂τ2
k2 ≤ n and on {(Ŝn, V̂n) ∈ Cn},

|Ŝn,1| ≤
√

2εn2n,
n∑
k=1

x̂τ2
k2 ≤ 2n.

In view of (3.10) and (4.34),

− 2λTn V̂n ≤ −2(yn/n)Ŝn,1(Ŝn,2 − EŜn,2)− 2ynE[x̂τ12]Ŝn,1 + 4nβy3
nε

2
n1

≤ Cn−1/2(log p)Zn +O(n−3/2(log p)5/2),(4.36)

where

Zn ≡
|
∑n

k=1(x̂τk2 − Ex̂τk2)|
4
√∑n

k=1 V ar(x̂
τ
k2) +

√∑n
k=1(x̂τk2 − Ex̂τk2)2

.

Now we can use the following sub-Gaussian property of self-normalized sums
[see, Lemma 6.4 in Jing, Shao and Wang (2003)]:

Lemma 4.1. Let {Xi, 1 ≤ i ≤ n} be a sequence of independent random
variables with EXi = 0 and EX2

i <∞. Then, for a > 0,

P
(∣∣∣ n∑

i=1

Xi

∣∣∣ ≥ a(4Dn +
( n∑
i=1

X2
i

)1/2)) ≤ 8e−a
2/2,

where D2
n =

∑n
i=1 EX2

i .
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Indeed, Lemma 4.1 implies P (Zn ≥ a) ≤ 8e−a
2/2, ∀a > 0. Hence,

∀t > 0, EetZn ≤ 1 + 8
√

2πtet
2/2.

which together with (4.36) yields

(4.37) Kn,1 = O(1).

Next, we estimate Kn,2. The key technical tool is the randomized concen-
tration inequality below developed in Shao and Zhou (2012):

Lemma 4.2. Let η1, · · · , ηn be independent random variables, Wn =∑n
k=1 ηk, and let ∆1 = ∆1(η1, . . . , ηn) and ∆2 = ∆2(η1, . . . , ηn) be two mea-

surable functions of η1, . . . , ηn. Assume that

Eηk = 0 for k = 1, 2, . . . n, and
n∑
k=1

Eη2
k = 1.

For each 1 ≤ k ≤ n, let ∆
(k)
1 and ∆

(k)
2 be any random variables such that ηk

and (∆
(k)
1 ,∆

(k)
2 ,Wn − ηk) are independent. Then

P (∆1 ≤Wn ≤ ∆2)

≤ 21
( n∑
k=1

E|ηk|3 + E|∆2 −∆1|

+
n∑
k=1

{E|ηk(∆1 −∆
(k)
1 )|+ E|ηk(∆−∆

(k)
2 )|}

)
.

We now let Wn be the standardized
∑n

k=1 ξ̂k given by

(4.38) Wn =
1

σ̂n

( n∑
k=1

ξ̂k − µ̂n
)
,

where µ̂n and σ̂n are defined in (4.31). As a direct consequence of Lemma
4.2 by letting ωk = (ξ̂k − Eξ̂k)/σ̂n,

∆1 = −µ̂n/σ̂n + ynŜn,1Ŝn,2/(nσ̂n)− 2nβy3
nε

2
n1/σ̂n, ∆2 = −µ̂n/σ̂n

and
Ŝ

(k)
n,1 = Ŝn,1 − x̂k1, Ŝ

(k)
n,2 = Ŝn,2 − x̂τk2, 1 ≤ k ≤ n,
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we have

P
{

(yn/n)Ŝn,1Ŝn,2 − 2nβy3
nε

2
n1 ≤

n∑
k=1

ξ̂k < 0
}

≤ 21
(
σ̂−3
n

n∑
k=1

E|ξ̂k|3 + yn(nσ̂n)−1E|Ŝn,1Ŝn,2|+ (log p)2n−3/2

+ynn
−1σ̂−2

n

n∑
k=1

E|ξ̂kx̂k1Ŝ
(k)
n,2 + ξ̂kx̂

τ
k2Ŝ

(k)
n,1|+ ynn

−1σ̂−2
n

n∑
k=1

E|ξ̂kx̂k1x̂
τ
k2|
)

≤ C
(
n−1/2 + n−3/2

(
EŜ2

n,1

)1/2 · (EŜ2
n,2

)1/2
+n−2

n∑
k=1

{
EŜ(k)2

n,1

}1/2
+ n−2

n∑
k=1

{
EŜ(k)2

n,2

}1/2
)

≤ Cn−1/2.

This, together with expressions (4.35) and (4.37), verifies our claim (4.33)
and thus completes the proof of Case 2.

5. Proof of Theorem 2.3. The main idea of the proof is similar to
that of Theorem 2.2. We start with the following three technical lemmas
and their proofs are postponed to the end of this section.

Let {(zk1, zk2, zk3, zk4)T ; k ≥ 1} be a sequence of i.i.d. random vectors
with mean zero and common covariance matrix Σ4, which will be specified
under different settings. Set

D2
n,i =

n∑
k=1

z2
ki, i ∈ {1, 2, 3, 4}.

Suppose p = pn →∞, log p = o(nβ) as n→∞. For y ∈ R, let

yn =

{ √
(y + 4 log p− log2 p)/n, 0 < α ≤ 1,√
(y + 4 log p+ cn,p − log2 p)/n, 1 < α ≤ 4/3,

(5.1)

for large n, where cn,p = (8κ2/3)n−1/2(log p)3/2.

Lemma 5.1. Assume

Σ4 =


1 0 r 0
0 1 0 0
r 0 1 0
0 0 0 1

 , |r| ≤ 1.



22 Q.M. SHAO AND W.X. ZHOU

Then, for any 0 < ε < 1,

sup
|r|≤1

P
( |∑n

k=1 zk1zk2|
Dn,1Dn,2

> yn,
|
∑n

k=1 zk3zk4|
Dn,3Dn,4

> yn

)
= O(p−4(1−ε)).

Lemma 5.2. Assume

Σ4 =


1 0 r1 0
0 1 r2 0
r1 r2 1 0
0 0 0 1

 , |r1| ≤ 1, |r2| ≤ 1.

Then, for any 0 < ε < 1,

sup
|r1|,|r2|≤1

P
( |∑n

k=1 zk1zk2|
Dn,1Dn,2

> yn,
|
∑n

k=1 zk3zk4|
Dn,3Dn,4

> yn

)
= O(p−4(1−ε)).

Lemma 5.3. Assume

Σ4 =


1 0 r1 0
0 1 0 r2

r1 0 1 0
0 r2 0 1

 , |r1| ≤ 1, |r2| ≤ 1.

Then for any δ ∈ (0, 1)

sup
|r1|,|r2|≤1−δ

P
( |∑n

k=1 zk1zk2|
Dn,1Dn,2

> yn,
|
∑n

k=1 zk3zk4|
Dn,3Dn,4

> yn

)
= O(p−2(1+εδ)),

where
εδ = (2δ − δ2)/(4− 2δ + δ2).

Back to the proof of Theorem 2.3, w.l.o.g., we assume µ = 0 and σ2 = 1.
Following the arguments for Theorem 2.2, we sketch the proof as follows.
Step 1 : We have

P
(

max
1≤i<j≤p,j−i≥m

|ρij | ≤ yn
)
→ e

− 1√
8π
e−y/2

, as n→∞.

Set

(5.2) Λp =
{

(i, j) : 1 ≤ i < j ≤ p, j − i ≥ m, i, j /∈ Γp,δ
}

and

(5.3) L′n = max
(i,j)∈Λp

|ρij |.
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Clearly,

P (L′n > yn) ≤ P
(

max
1≤i<j≤p,j−i≥m

|ρij | > yn

)
≤ P (L′n > yn) +

∑
P
(
|ρij | > yn

)
,(5.4)

where the last summation is carried out over all pairs (i, j) such that 1 ≤
i < j ≤ p, j − i ≥ m and either i or j is in Γp,δ. The total number of such
pairs is no more than 2p |Γp,δ| = o(p2).

Under H0, x1 and xm+1 are independent and identically distributed.
Then, by (4.4) and (4.12), we have for all 0 < α ≤ 4/3,

(5.5) P
(
|ρ1,m+1| > yn

)
∼
e−y/2√

2π
p−2,

which, in turn, implies that the last summation in (5.4) is o(1).
Step 2 : In view of (5.4) and (5.5), it suffices to prove

(5.6) P (L′n ≤ yn)→ e
− 1√

8π
e−y/2

.

We follow the lines of proof of Proposition 6.4 in [2] with the help of Lemma
3.1 and Lemmas 5.1 - 5.3. For (i, j) ∈ Λp, set

Bi,j =
{

(k, l) ∈ Λp \ {(i, j)}; min{|k − i|, |l − j|, |k − j|, |l − i|} < m
}

and Aij = {|ρij | > yn} with yn given in (5.1). Note that |Bi,j | ≤ 4× (2m×
p) = 8mp and (xi,xj) are independent of {(xk,xl); (k, l) ∈ Λp \ Bi,j}. By
Lemma 3.1,

(5.7) |P (L′n ≤ yn)− e−λn | ≤ bn,1 + bn,2,

where
(5.8)

λn = |Λp|P (A1,m+1), bn,1 =
∑

(i,j)∈Λp
(k,l)∈Bi,j

P (A1,m+1)2 ≤ 4mp3P (A1,m+1)2

and

(5.9) bn,2 =
∑

(i,j)∈Λp

∑
(k,l)∈Bi,j

P
(
AijAkl

)
.

Clearly, |{(i, j) : j ≥ i+m}| = (p−m)(p−m+1)/2 and by definition (5.2),∣∣ |Λp| − |{(i, j) : j ≥ i+m}|
∣∣ ≤ 2p |Γp,δ| = o(p2).
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This implies |Λp| ∼ p2/2 by assumption on m, which, together with (5.5)
gives

(5.10) λn ∼ e−y/2/
√

8π and bn,1 = o(1) as n→∞.

It remains to estimate bn,2. Fix (i, j) ∈ Λp and (k, l) ∈ Bi,j with i < j
and k < l. Without loss of generality, assume i ≤ k (the case k < i can be
identically proved), then by definition of Bi,j

(5.11) min{k − i, |k − j|, |l − j|} < m.

Consider three different cases for the locations of (i, j) and (k, l) from the
above restrictions:

(1) i < j ≤ k < l, k − j < m;
(2) i ≤ k < l ≤ j, min{k − i, j − l} < m;
(3) i ≤ k ≤ j ≤ l, min{k − i, j − k, l − j} < m.

Let Ων be the subset of index (i, j, k, l) with restriction (ν) for ν = 1, 2, 3
and formulate the estimation of P (AijAkl) into three different cases accord-
ingly.
Case (1). It is easy to see that |Ω1| ≤ mp3 = o(p3+εδ). For fixed (i, j, k, l) ∈
Ω1, the covariance matrix of (x1j , x1i, x1k, x1l) is equal to

1 0 r 0
0 1 0 0
r 0 1 0
0 0 0 1


for some |r| ≤ 1. Now we apply Lemma 5.1 to bound P (AijAkl). Put

ρ̂st =

∑n
k=1 xksxkt
Vn,sVn,t

, 1 ≤ s < t ≤ p

and analogous to (3.13), let

(5.12) En·4 =
{

max
s∈{i,j,k,l}

|∆n,s| ≤ εn2

}
,

where εn2 are chosen of the same type as in (3.10) such that P (Ecn·4) =
o(p−4). On En·4, we have

|ρst| ≤
(
|ρ̂st|+ ε2n2

)
/(1− ε2n2) with ε2n2 � (log p)/n,
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which, together with Lemma 5.1 and the fact that yn ∼ 2n−1/2(log p)1/2,
implies that, for any 0 < ε < (1− εδ)/4 and all sufficiently large n,

P (AijAkl)

≤ P
(
|ρ̂ij | > (1 + o(1))yn, |ρ̂kl| > (1 + o(1))yn

)
+ o(p−4)(5.13)

≤ Cp−4(1−ε)

and hence

(5.14)
∑
Ω1

P (AijAkl) = o(1).

We remark that the o(1)’s appeared in (5.13) are of order n−1/2(log p)1/2.

Case (2). Decompose Ω2 as

Ω2 = {(i, j, k, l) ∈ Ω2; k − i < m, j − l < m}
+{(i, j, k, l) ∈ Ω2; k − i < m, j − l ≥ m}
+{(i, j, k, l) ∈ Ω2; k − i ≥ m, j − l < m}

:= Ω2,a + Ω2,b + Ω2,c.

Observe that |Ω2,a| ≤ m2p2 = o(p2(1+εδ)). For (i, j, k, l) ∈ Ω2,a, the covari-
ance matrix of (x1i, x1j , x1k, x1l) is equal to

1 0 r1 0
0 1 0 r2

r1 0 1 0
0 r2 0 1


for some |r1|, |r2| ≤ 1− δ. Using Lemma 5.3, along the lines of the argument
in Case (1), we get

P (AijAkl) ≤ Cp−2(1+εδ)

and therefore

(5.15)
∑
Ω2,a

P (AijAkl) = o(1).

Clearly, |Ω2,b| ≤ mp3 and |Ω2,c| ≤ mp3. For (i, j, k, l) in either Ω2,b or Ω2,c,
the corresponding covariance matrix of (x1i, x1j , x1k, x1l) is

either


1 0 r 0
0 1 0 0
r 0 1 0
0 0 0 1

 or


1 0 0 0
0 1 0 r
0 0 1 0
0 r 0 1

 , |r| ≤ 1.
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By the same argument as that in the proof of (5.14), we have

(5.16)
∑

Ω2,b∪Ω2,c

P (AijAkl) = o(1) as n→∞.

Case (3). We aim to show that

(5.17)
∑
Ω3

P (AijAkl) = o(1).

Essentially, this can be done by following similar arguments as in Case (2).
However, for (i, j, k, l) ∈ Ω3 which satisfies the restriction

min{k − i, j − k, l − j} < m,

we need to decompose Ω3 into seven disjoint subsets and estimate all the
seven possibilities with the help of Lemmas 5.1 - 5.3 as before. The details
are omitted here.

Finally, combining expressions (5.14), (5.15), (5.16) and (5.17) with (5.9),
we get bn,2 → 0 as n→∞. This completes the proof of (5.6).

Proof of Lemmas 5.1 - 5.3. We start with a general consideration for
estimating joint probabilities, the results in Lemmas 5.1 - 5.3 will follow
naturally under various dependence structures. Let

εn1 = c1(log p)1/2/nβ/2,

for some constant c1 > 0 such that, by (3.2),

P
(
D2
n,1/n ≤ 1− εn1n

(β−1)/2
)

= o(p−4).

Put ỹn = yn(1 − εn1n
(β−1)/2) ∼ 2

√
(log p)/n. Using a similar argument as

in the proof of Proposition 3.1 for estimating P (A12A13), we have

P
( |∑n

k=1 zk1zk2|
Dn,1Dn,2

> yn,
|
∑n

k=1 zk3zk4|
Dn,3Dn,4

> yn

)
≤ P

( |∑n
k=1 zk1zk2|
n

> ỹn,
|
∑n

k=1 zk3zk4|
n

> ỹn

)
+ o(p−4)

≤ P
( |∑n

k=1(zk1zk2 + zk3zk4)|
n1/2

> 2n1/2ỹn

)
(5.18)

+P
( |∑n

k=1(zk1zk2 − zk3zk4)|
n1/2

> 2n1/2ỹn

)
+ o(p−4).
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Note that {zk1zk2 + zk3zk4, 1 ≤ k ≤ n} is a sequence of i.i.d. random vari-
ables with mean zero.

Proof of Lemmas 5.1 and 5.2. Under both assumptions on Σ4, z14 is inde-
pendent of (z11, z12, z13), so that

E(z11z12 + z13z14)2 = E(z11z12)2 + E(z13z14)2 + 2E[z11z12z13z14]

= 2 + 2E[z11z12z13] · Ez14 = 2.

It follows from (3.2) that, for any 0 < ε < 1,

P
( |∑n

k=1(zk1zk2 + zk3zk4)|
n1/2

> 2n1/2ỹn

)
≤ 2 exp{−(1− ε/2)nỹ2

n} ≤ 2p4(1−ε)

for all sufficiently large n. The second probability in (5.18) can be estimated
in exact the same way and hence the results of Lemmas 5.1 and 5.2 follow
immediately.

Proof of Lemma 5.3. In this case, (z11, z13) and (z12, z14) are independent.
Then, for all |r1|, |r2| ≤ 1− δ,

E(z11z12 + z13z14)2 = 2 + 2E[z11z13] · E[z12z14] ≤ 2 + 2(1− δ)2.

Set εδ = (2δ − δ2)/(4− 2δ + δ2). Applying (3.2) again, we have

P
( |∑n

k=1(zk1zk2 + zk3zk4)|
n1/2

> 2n1/2ỹn

)
≤ 2 exp

{
− (1− εδ/2)nỹ2

n

1 + (1− δ)2

}
≤ 2p

− 4(1−εδ)

1+(1−δ)2 = 2p−2(1+εδ)

for all sufficiently large n. This completes the proof.
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