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ABSTRACT. We establish the local existence of pathwise solutions for the stochastic Euler equations in a three-
dimensional bounded domain with slip boundary conditions and a suitable nonlinear multiplicative noise. In
the two-dimensional case we obtain the global existence of these solutions with additive or linear-multiplicative
noise. Lastly, we show that, in the three dimensional case, the addition of linear multiplicative noise provides a
regularizing effect; the global existence of solutions occurs with high probability if the initial data is sufficiently
small, or if the noise coefficient is sufficiently large.
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1. Introduction

In this paper we address the well-posedness of the stochastic incompressible Euler equations with mul-
tiplicative noise, in a smooth bounded simply-connected domain D ⊂Rd

du + (u ·∇u +∇π)d t =σ(u)dW , (1.1)
∇·u = 0, (1.2)

where d = 2 or 3, u denotes the velocity vector field, and π the pressure scalar field. Here W is a cylindrical
Brownian motion and σ(u)dW can be written formally in the expansion

∑
k≥1σk (u)dWk where Wk are a
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collection of 1D independent Brownian motions. The system (1.1)–(1.2) is supplemented with the classical
slip boundary condition

u|∂D ·n = 0, (1.3)

where n denotes the outward unit normal to the boundary D. Here ∂D is taken to be sufficiently smooth. In
order to emphasize the stochastic effects and for the simplicity of exposition we do not include a determin-
istic forcing f in (1.1), but note that all the results of this paper may be easily modified to include this more
general case.

The Euler equations are the classical model for the motion of an inviscid, incompressible, homogenous
fluid. The addition of stochastic terms to the governing equations is commonly used to account for numeri-
cal, empirical, and physical uncertainties in applications ranging from climatology to turbulence theory. In
view of the wide usage of stochastics in fluid dynamics, there is an essential need to improve the mathe-
matical foundations of the stochastic partial differential equations of fluid flow, and in particular to study
inviscid models such as the stochastic Euler equations.

Even in the deterministic case, when d = 3 the global existence and uniqueness of smooth solutions
remains a famously open problem for the Euler equations, and also for their dissipative counterpart, the
Navier-Stokes equations. There is a vast literature on the mathematical theory for the deterministic Euler
equations; see for instance the books [Che98, MB02], the recent surveys [BT07, Con07], and references
therein. While the stochastic Navier-Stokes equation has been extensively studied dating back to the sem-
inal works [BT72, BT73] and subsequently in e.g. [Vio76, Cru89, CG94, Fla08, MR05, DPZ96, Bre00,
BF00, BP00, MR04, GHZ09, CI11, DGHT11], rather less has been written concerning the stochastic Eu-
ler equations. Most of the existing literature on this subject treats only the two dimensional case, see e.g.
[BF99, Bes99, CC99, BP01, Kim02, CFM07]. To the best of our knowledge, there are only two works,
[MV00, Kim09], which consider the local existence of solutions in dimension three. Both of these works
consider only an additive noise, and treat (1.1)–(1.2) on the full space, avoiding difficulties which naturally
arise in the presence of boundaries, due to the nonlocal nature of the pressure.

In this paper we establish three main results for the system (1.1)–(1.3). The first result addresses the
local existence and uniqueness of solutions in both two and three dimensions. From the probabilistic point
of view we study pathwise solutions, that is probabilistically strong solutions where the driving noise and
associated filtration is given in advance, as part of the data. From the PDE standpoint, we consider solutions
which evolve continuously in the Sobolev space W m,p (D), for any integer m > d/p+1 and any p ≥ 2, where
d = 2,3.

This local existence result covers a large class of nonlinear multiplicative noise structures in σ(·). In
particular we can handle Nemytskii operators corresponding to any smooth function g : Rd → Rd . Here,
heuristically speaking,

σ(u)dW (t , x) = g (u)η̇(t , x),

where η̇(t , x) is formally a Gaussian process with the spatial-temporal correlation structure described by
E(η̇(t , x)η̇(s, y)) = δt−sK (x, y) for any sufficiently smooth correlation kernel K on D. We can also handle
functionals of the solution forced by white noise, and of course the classical cases of additive and linear
multiplicative noise. See Section 3.2 below for further details on these examples.

As noted above such results appears to be new in dimension three; this seems to be the first work to
address (nonlinear) multiplicative noise, or to consider the evolution on a bounded domain. Moreover, our
method of proof is quite different from those employed in previous works for a two-dimensional bounded
domain. More precisely, we do not approximate solutions of the Euler system by those to the Navier-Stokes
equations subject to Navier boundary conditions, and instead construct solutions to the Euler system directly.

In the second part of the paper we address some situations where the global existence of spatially
smooth solutions evolving in W m,p (D), with m > p/d + 1 can be established. In the case of an additive
noise (σ(u) = σ), when d = 2 we show that the solutions obtained in the first part of the paper are in fact
global in time. To the best of our knowledge such results for smooth solutions was only known in the Hilbert
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space setting, i.e. where p = 2; see [BF99] for a bounded domain and [Kim02, MV00] where the evolution
is considered over the whole space.

Lastly, we turn to the issue of global existence of smooth pathwise solutions with multiplicative noise,
in both d = 2,3. Obtaining the global existence of solutions for generic multiplicative noise σ(u)dW seems
out of reach in view of some open problems that already arise in the deterministic setting for d = 2 (cf. Re-
mark 4.7 below). However, in the particular case of a linear multiplicative stochastic forcing, that is when
σ(u)dW =αudW , where W is a one-dimensional standard Brownian motion, we show that the noise pro-
vides a damping effect on the pathwise behavior of solutions. In the three-dimensional case we prove that
for any R ≥ 1:

P(u is global) ≥ 1−R−1/4, whenever ‖u0‖W m,p (D) ≤ κ(α2,R),

where κ is strictly positive and satisfies

lim
α2→∞

κ(α2,R) =∞,

for every fixed R ≥ 1. This may be viewed as a kind of global existence result in the large noise asymptotic.
Furthermore, in the two-dimensional case, we show that solutions are global in time with probability one,
for any α ∈ R, and independently of the size of the data. Note that in both cases the linear multiplicative
noise allows us to transform (1.1)–(1.3) into an equivalent system for which the presence of an additional
damping term becomes evident. We can exploit this random damping by using certain estimates for the exit
times of geometric Brownian motion, and hence may establish the improved pathwise behavior of solutions.
We note that in the deterministic setting the presence of sufficiently large damping is known to enhance the
time of existence of solutions (see e.g. [PV11]), but in order to carry over these ideas to the stochastic setting
we need to overcome a series of technical difficulties.

The starting point of our analysis of (1.1)–(1.3) is to establish some suitable a priori estimates in the
space L2(Ω;L∞(0,T ;W m,p (D))). Here obstacles arise both due to the presence of boundaries and because
we have to estimate stochastic integrals taking values in Banach spaces, i.e. Lp (D) for p > 2. While we
handle the convective terms using direct commutator estimates, in order to bound the pressure terms we need
to consider the regularity of solutions to an elliptic Neumann problem. At first glance this seems to require
bounding expressions involving first order derivatives of the solution on the boundary, i.e. ((u·∇)u)·n, which
would prevent the estimates from closing. However, by exploiting a geometric insight from [Tem75], one
may obtain suitable estimates for the pressure terms in W m,p (D). In order to treat the stochastic elements of
the problem we follow the construction of stochastic integrals given in e.g. [Kry99, MR01]. Estimates for
the resulting stochastic terms are more technically demanding than in the Hibert space setting, and are dealt
with by a careful application of the Burkholder-Davis-Gundy inequality. Note also that we obtain bounds
on u in W m,p (D) only up to a strictly positive stopping time τ. In contrast to the deterministic setting,
quantitative lower bounds on this τ are unavailable. This leads to further difficulties later in establishing the
compactness necessary to pass to the limit within a class of approximating solutions of (1.1)–(1.3).

With these a priori estimates in hand, we proceed to the first steps of the rigorous analysis. For this
purpose, we introduce a Galerkin approximation scheme directly for (1.1)–(1.3), which we use to construct
solutions for the Hilbert space setting p = 2. We later employ a density and stability argument to obtain
W m,p (D) solutions from the solutions constructed via the Galerkin scheme. We believe that this Galerkin
construction is more natural than in the previous works on the stochastic Euler equations on bounded do-
mains [BF99, Bes99, CC99, BP01], which use approximations via the Navier-Stokes equations with Navier
boundary conditions, and exploits the vorticity formulation of the equations, a method which is mostly
suitable for the two-dimensional case.

As with other nonlinear SPDEs, we face the essential challenge of establishing sufficient compactness in
order to be able to pass to the limit in the class of Galerkin approximations; even if a space X is compactly
embedded in another space Y it is not usually the case that L2(Ω;X ) is compactly embedded in L2(Ω;Y ).
As such, the standard Aubin or Arzelà-Ascoli type compactness results, which classically make possible the
passage to the limit in the nonlinear terms, can not be directly applied in this stochastic setting. With this in
mind, we first establish the existence of martingale solutions following the approach in e.g. [DPZ92] and
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see also [FG95, DGHT11]. Here the main mathematical tools are the Prokhorov theorem, which is used to
obtain compactness in the collection of probability measures associated to the approximate solutions, and the
Skorohod embedding theorem, which provides almost sure convergences, but relative to a new underlying
stochastic basis.

At this stage there is another difficulty in comparison to previous works, e.g. [FG95], which requires
us to consider martingale solutions which are very smooth in x ∈D, i.e. which evolve starting from data in
H m′

(D), with m′ sufficiently large (in particular we may take m′ = m+5). The reason for this initially non-
sharp range for m′ stems from the following complication already alluded to above: the a priori estimates
hold only up to a stopping time, so that when we attempt to find uniform estimates the bounds hold only
up to a sequence of times τn , which may depend on the order n of the approximation. In contrast to the
deterministic case, it is not clear how to bound τn from below, uniformly in n. To compensate for this
difficulty, we add a smooth cut-off function depending on the size of ‖u‖W 1,∞ in front of the nonlinear
and noise terms in the Galerkin scheme. This cut-off function however introduces additional obstacles for
inferring uniqueness, which in view of the Yamada-Watanabe theorem is crucial for later arguments that
allow us to pass to the case of pathwise solutions. For uniqueness, estimates in the L2(D) norm give rise
to terms involving the W 1,∞(D) norm, which prevents one from closing the estimates in the energy space.
On the other hand, if we attempt to prove uniqueness by estimating the difference of solutions in the H m′

norm for arbitrary m′ > d/2+1, we encounter problems due to terms which involve an excessive number of
derivatives. By momentarily restricting ourselves to sufficiently large values of m′, we manage to overcome
both difficulties.

Having passed to the limit in the Galerkin scheme, we obtain the existence of very smooth solutions
to a modified Euler equation with a cut-off in front of the nonlinearity. We can therefore a posteriori
introduce a stopping time and infer the existence of a martingale solution of (1.1)–(1.3). It still remains to
deduce the existence of pathwise solutions, that is solutions of (1.1)–(1.3) defined relative to the initially
given stochastic basis S . For this we are guided by the classical Yamada-Watanabe theorem from finite
dimensional stochastic analysis. This result tells us that, for finite dimensional systems at least, pathwise
solutions exist whenever martingale solutions may be found and pathwise uniqueness holds (cf. [YW71,
WY71]). More recently a different proof of such results was developed in [GK96] which leans on an
elementary characterization of convergence in probability (cf. Lemma 6.10 below). Such an approach can
sometimes be used for stochastic partial differential equations, see e.g. [DGHT11] in the context of viscous
fluids equations. Notwithstanding previous applications of Lemma 6.10 for the stochastic Navier-Stokes
and related systems, the inviscid case studied here presents some new challenges, most important of which
is the difficulty in establishing the uniqueness of pathwise solutions.

With a class of pathwise solutions in very smooth spaces in hand, we next apply a density-stability
argument to obtain the existence of solutions evolving in W m,p (D) where the ranges for m, p are now
sharp, i.e. m > d/p + 1 for any p ≥ 2. Since, for all m′ sufficiently large, H m′

(D) is densely embedded
in W m,p (D), we may smoothen (mollify) the initial data to obtain a sequence of very smooth pathwise
approximating solutions un which evolve in H m′

(D). By estimating these solutions pairwise we are able to
show that they form a Cauchy sequence in W m,p (D), up to a strictly positive stopping time. Since almost
sure control is needed for the individual solutions which each have their own maximal time of existence,
we may use of an abstract lemma from [MR04, GHZ09]. See also [GHT11b] for an application to other
SPDEs, and [GHT11a] for related results in the deterministic setting.

As above for the uniqueness of solutions, when estimating un −um we encounter terms involving ∇un

in the W m,p norm (which is finite since un ∈ H m′
(D) and m′ is large). These terms are dealt with using

some properties of the mollifier Fε used to smoothen the initial data (here ε= 1/n). More precisely, the term
‖∇un‖W m,p is of size 1/ε, but it is multiplied by ‖un −um‖W m−1,p , which converges to 0 when m ≥ n and
n →∞, even when multiplied by 1/ε = n. See [KL84, Mas07] for related estimates for the deterministic
Euler equation.

In the second part of the manuscript we turn to establish some global existence results for (1.1)–(1.2).
We first study the case of additive noise in two spatial dimensions. To address the additive case we apply
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a classical Beale-Kato-Majda type inequality for ‖u‖W 1,∞ (see e.g. [MB02]). This shows that if we can
control the vorticity of the solution in L∞ uniformly in time, then the nonlinear terms may be bounded like
log(‖u‖W m,p )‖u‖p

W m,p . As such our proof relies on suitable estimates for the vorticity curlu in L∞, which in
this additive case can be achieved via a classical change of variables, and by establishing a suitable stochastic
analogue of a logarithmic Grönwall lemma.

The case of linear multiplicative noise is more interesting. As noted above, such noise structures evi-
dence a pathwise damping of the solutions of (1.1)–(1.2), which may be seen by analyzing the transformed
system (9.4)–(9.5) for a new variable v(t ) = u(t )exp(−αWt ). In order to take advantage of this damping in
the three dimensional case, we need to carefully show that the vortex stretching term is suitably controlled
by the damping terms coming from the noise. For a sufficiently large noise coefficient α (or equivalently, for
a sufficiently small initial condition) we see that the vorticity must be decaying, at least for some initial pe-
riod during which ‖u‖W 1,∞ remains below a certain threshold value. Via the usage of the Beale-Kato-Majda
inequality we see in turn that the growth on ‖u‖W m,p is limited by the possible growth of a certain geometric
Brownian motion during this initial period. We are therefore able to show that if ‖u0‖W m,p is sufficiently
small with respect to a function of α and a given R > 0 then, on the event that the geometric Brownian
motion never grows to be larger than R, the quantity ‖u‖W m,p will remain below a certain bound. In turn,
this guarantees that the quantity ‖u‖W 1,∞ will in fact never reach the critical value that would prevent the
decay in vorticity, and we conclude that the solution is in fact global in time on this event that the geometric
Brownian motion always stays below the value R. Since we are able to derive probabilistic bounds on this
event, which crucially are independent of α, we obtain the desired results.

The manuscript is organized as follows. In Section 2 we review some mathematical background, deter-
ministic and stochastic, needed throughout the rest of the work. We then make precise the conditions that
we need to impose on the noise through σ in Section 3. We conclude this section with a detailed discussion
of some examples of nonlinear noise structures covered under the given abstract conditions on σ. Section 4
contains the precise definitions of solutions to (1.1)–(1.3), along with statements of our main results. We
next carry out some a priori estimates in Section 5. In Section 6 we introduce the Galerkin scheme and
establish the existence of very smooth solutions. In Section 7 we establish the existence of solutions in the
optimal spaces W m,p for any m > d/p+1. The final two Sections 8 and 9 are devoted to proofs of the global
existence results for the cases of additive and linear multiplicative noises respectively. Appendices gather
various additional technical tools used throughout the body of the paper.

2. Preliminaries

Here we recall some deterministic and stochastic ingredients which will be used throughout this paper.

2.1. Deterministic Background. We begin by defining the main function spaces used throughout the
work. For each integer m ≥ 0 and p ≥ 2 we let

Xm,p =
{

v ∈ (W m,p (D))d : ∇· v = 0, v |∂D ·n = 0
}

(2.1)

and for simplicity write Xm = Xm,2 (see also [Tem75]). These spaces are endowed with the usual Sobolev
norm of order m

‖v‖p
W m,p (D) := ∑

|α|≤m
‖∂αv‖p

Lp (D).

As usual, the norm on Xm is denoted by ‖·‖H m . We make the convention to write ‖·‖W m,p and ‖·‖H m instead
of ‖ · ‖W m,p (D) and ‖ · ‖H m (D), unless Sobolev spaces on ∂D are considered. We let (·, ·) denote the usual
L2(D) inner product, which makes X0 ⊂ L2(D) a Hilbert space. The inner product on Xm shall be denoted
by (·, ·)H m =∑

|α|≤m(∂α·,∂α·).
Throughout the analysis we shall make frequent use of certain classical “calculus inequalities” which can

be established directly from the Leibniz rule and the Gagliardo-Nirenberg inequalities. Whenever m > d/p
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we have the Moser estimate

‖uv‖W m,p ≤C (‖u‖L∞‖v‖W m,p +‖v‖L∞‖u‖W m,p ), (2.2)

for all u, v ∈ W m,p (D) and some universal constant C = C (m, p,D) > 0. Note that in particular this shows
that W m,p is an algebra whenever m > d/p. The following commutator estimate will also be used frequently∑

0≤|α|≤m
‖∂α(u ·∇v)−u ·∇∂αv‖Lp ≤C (‖u‖W m,p‖∇v‖L∞ +‖∇u‖L∞‖v‖W m,p ) (2.3)

for some constant C =C (m, p,D) > 0, where m > 1+d/p, u ∈ W m,p , and v ∈ W m+1,p . Note that for what
follows we shall assume that m > 1+d/p and p ≥ 2, where d = 2,3 is the dimension of D, allowing us to
apply (2.2) and (2.3).

In order to treat the pressure term appearing in the Euler equations, we will need to bound the solutions
of an elliptic Neumann problem taking the form:

−∆π= f , in D, (2.4)
∂π

∂n
= g , on ∂D, (2.5)

for given f and g , sufficiently smooth. For this purpose we recall the result in [ADN59] which gives the
bound:

‖∇π‖W m,p (D) ≤C (‖ f ‖W m−1,p (D) +‖g‖W m−1/p,p (∂D)) (2.6)

where C =C (m, p,D) > 0 is a universal constant. In fact, (2.6) is usually combined with the bound given by
the trace theorem: ‖h|∂D‖W m−1/p,p (∂D) ≤C‖h‖W m,p (D), which holds for sufficiently smooth h, integers m ≥ 1,
and p ≥ 2 (cf. [AF03]).

Also in relation to the pressure we consider P , the so-called Leray projector, to be the orthogonal
projection in L2(D) onto the closed subspace X0. Equivalently, for any v ∈ L2(D) we have P v = (1−Q)v
where

Qv =−∇π
for any π ∈ H 1(D) which solves the elliptic Neumann problem

−∆π=∇· v, in D, (2.7)
∂π

∂n
= v ·n, on ∂D. (2.8)

Moreover, for v ∈W m,p , observe that ∇· v ∈W m−1,p (D) and v |∂D ·n ∈W m−1/p,p (∂D). Hence, by applying
(2.6) and the trace theorem to (2.7)–(2.8), we infer that

‖P v‖W m,p (D) ≤C‖v‖W m,p (D) (2.9)

for any v ∈W m,p (D). Thus P is also a bounded linear operator from W m,p (D) into Xm,p .
We conclude this section with some bounds on the nonlinear terms which involve the Leray projector.

These bounds will be used throughout the rest of the work.

Lemma 2.1 (Bounds on the nonlinear term). Let m > d/p +1, and p ≥ 2. The following hold:
(a) If u ∈W m,p and v ∈W m+1,p then P (u ·∇v) ∈ Xm,p , and

‖P (u ·∇v)‖W m,p ≤C
(‖u‖L∞‖v‖W m+1,p +‖u‖W m,p‖v‖W 1,∞

)
. (2.10)

(b) If u, v ∈ Xm,p , then Q(u ·∇v) ∈W m,p (D) and

‖Q(u ·∇v)‖W m,p ≤C
(‖u‖W 1,∞‖v‖W m,p +‖u‖W m,p‖v‖W 1,∞

)
. (2.11)

(c) If u ∈ Xm,p and v ∈ Xm+1,p then∣∣∣∣∣ ∑
|α|≤m

(∂αP (u ·∇v),∂αv |∂αv |p−2)

∣∣∣∣∣≤C
(‖u‖W 1,∞‖v‖W m,p +‖u‖W m,p‖v‖W 1,∞

)‖v‖p−1
W m,p . (2.12)
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In (2.10)–(2.12), C =C (m, p,D) is positive universal constant.

PROOF OF LEMMA 2.1. Firstly we observe that if u ∈ W m,p and v ∈ W m+1,p then by (2.2) we have
u ·∇v ∈W m,p and ‖u ·∇v‖W m,p is bounded by the right side of (2.10). Thus (a) follows from (2.9).

The proof of item (b) is due to [Tem75]. If u and v are divergence free, and satisfy the non-penetrating
boundary condition (which occurs when u, v ∈ Xm,p) then boundary term (u · ∇v) ·n may be re-written as
ui v jφi j , for some smooth functions φi j , independent of u, v which parametrize ∂D in a suitable way. Also,
again due to the divergence free condition, ∇ · (u · ∇v) may be re-written as ∂i u j∂ j vi . Hence, neither the
boundary condition nor the force have too many derivatives and the elliptic Neumann problem one has to
solve for the function π such that Q(u ·∇v) =−∇π becomes

−∆π= ∂i u j∂ j vi

∂π

∂n
= ui v jφi j .

The proof of (b) now follows by applying estimate (2.6) to the above system, using the trace theorem and
finally (2.2).

Lastly, in order to prove (c) one uses the cancellation property (u ·∇v, v |v |p−2) = 0, the definition of P ,
the bound (2.3), the Hölder inequality, and item (b) to obtain∣∣∣∣∣ ∑

|α|≤m
(∂αP (u ·∇v),∂αv |∂αv |p−2)

∣∣∣∣∣≤ ∑
|α|≤m

∣∣(∂α(u ·∇v),∂αv |∂αv |p−2)
∣∣+ ∑

|α|≤m

∣∣(∂αQ(u ·∇v),∂αv |∂αv |p−2)
∣∣

≤C

( ∑
|α|≤m

‖∂α(u ·∇v)−u ·∇∂αv‖Lp +‖Q(u ·∇v)‖W m,p

)
‖v‖p−1

W m,p

≤C
(‖u‖W 1,∞‖v‖W m,p +‖u‖W m,p‖v‖W 1,∞

)‖v‖p−1
W m,p ,

concluding the proof of item (c). �

2.2. Background on Stochastic Analysis. We next briefly recall some aspects of the theory of the
infinite dimensional stochastic analysis which we use below. We refer the reader to [DPZ92] for an extended
treatment of this subject. For this purpose we start by fixing a stochastic basis S := (Ω,F ,P, {Ft }t≥0,W ).
Here (Ω,F ,P) is a complete probability space, and W is a cylindrical Brownian motion defined on an
auxiliary Hilbert space U which is adapted to a complete, right continuous filtration {Ft }t≥0. By picking a
complete orthonormal basis {ek }k≥1 for U, W may be written as the formal sum W (t ,ω) =∑

k≥1 ekWk (t ,ω)
where the elements Wk are a sequence of independent 1D standard Brownian motions. Note that W (t ,ω) =∑

k≥1 ekWk (t ,ω) does not actually converge on U and so we will sometimes consider a larger space U0 ⊃U
we define according to

U0 :=
{

v = ∑
k≥0

αk ek :
∑
k

α2
k

k2 <∞
}

,

and endow this family with the norm ‖v‖2
U0

:=∑
k α

2
k k−2, for any v =∑

k αk ek . Observe that the embedding
of U⊂U0 is Hilbert-Schmidt. Moreover, using standard martingale arguments with the fact that each Wk is
almost surely continuous we have that, W ∈C ([0,∞),U0), almost surely. See [DPZ92].

Consider now another separable Hilbert space X . We denote the collection of Hilbert-Schmidt opera-
tors, the set of all bounded operators G from U to X such that ‖G‖2

L2(U,X ) := ∑
k |Gek |2X <∞, by L2(U, X ).

Whenever X =R, i.e. in the case where G is a linear functional, we will denote L2(U,R) by simply L2. Given
an X valued predictable1 process G ∈ L2(Ω;L2

l oc ([0,∞),L2(U, X ))) and taking Gk =Gek one may define the

1Let Φ=Ω× [0,∞) and take G to be the σ-algebra generated by sets of the form

(s, t ]×F, 0 ≤ s < t <∞,F ∈Fs ; {0}×F, F ∈F0.

Recall that a X valued process U is called predictable (with respect to the stochastic basis S ) if it is measurable from (Φ,G ) into
(X ,B(X )), B(X ) being the family of Borel sets of X .
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(Itō) stochastic integral

Mt :=
∫ t

0
GdW =∑

k

∫ t

0
Gk dWk , (2.13)

as an element in M 2
X , that is the space of all X valued square integrable martingales. If we merely assume

that the predictable process G ∈ L2
loc ([0,∞),L2(U, X )) almost surely, i.e. without any moment condition, then

Mt can still be defined as in (2.13) by a suitable localization procedure. Detailed constructions in both cases
may be found in e.g. [DPZ92] or [PR07].

The process {Mt }t≥0 has many desirable properties. Most notably for the analysis here, the Burkholder-
Davis-Gundy inequality holds which in the present context takes the form,

E

(
sup

t∈[0,T ]

∣∣∣∣∫ t

0
GdW

∣∣∣∣r

X

)
≤CE

(∫ T

0
|G|2L2(U,X )d t

)r /2

, (2.14)

valid for any r ≥ 1, and where C is an absolute constant depending only on r . In the coordinate basis {ek },
(2.14) takes the form

E

(
sup

t∈[0,T ]

∣∣∣∣∣∑
k

∫ t

0
Gk dWk

∣∣∣∣∣
r

X

)
≤CE

(∫ T

0

∑
k
|Gk |2X d t

)r /2

.

Since we consider solutions of (1.1)– (1.3) evolving in Xm,p for any p ≥ 2 and m > d/p+1, we will recall
some details of the construction of stochastic integrals evolving on W m,p (D). Here we use the approach
of [Kry99, MR01], to which we refer the reader for further details. See also [Nei78, Brz95] and containing
references for a different, more abstract approach to stochastic integration in the Banach space setting.
Suppose that p ≥ 2, m ≥ 0, define

Wm,p =
{
σ : D → L2 :σk (·) =σ(·)ek ∈W m,p and

∑
|α|≤m

∫
D
|∂ασ|pL2

d x <∞
}

,

which is a Banach space according to the norm

‖σ‖p
Wm,p := ∑

|α|≤m

∫
D
|∂ασ|pL2

d x = ∑
|α|≤m

∫
D

(∑
k≥1

|∂ασk |2
)p/2

d x. (2.15)

Let P be the Leray projection operator defined in Section 2.1. For σ ∈Wm,p we define Pσ as an element in
Wm,p by taking (Pσ)ek = P (σek ) so that P is a linear continuous operator on Wm,p . We take

Xm,p = PWm,p = {Pσ :σ ∈Wm,p }.

Note that Xm,2 = L2(U, Xm) and in accordance with (2.1), we will denote Xm,2 by simply Xm .
Consider any predictable process G ∈ Lp (Ω;Lp

loc ([0,∞),Xm,p ). For such a G we have, for any T > 0

and almost every x ∈ D, that E
∫ T

0
∑

|α|≤m |∂αG(x)|2L2
d t <∞. We thus obtain from the Hilbert space theory

introduced above that Mt as in (2.13) is well defined for almost every x ∈ D as a real valued martingale
and that for each |α| ≤ m, ∂αMt (x) = ∫ t

0 ∂
αG(x)dW . By applying the Burkholder-Davis-Gundy inequality,

(2.14) we have that

E sup
t∈[0,T ]

‖Mt‖p
W m,p ≤C

∑
|α|≤m

∫
D
E

(∫ T

0
|∂αG(x)|2L2

d t

)p/2

d x ≤CE
∫ T

0
|G|p

Xm,p
d t .

Lastly, cf. [Kry99, MR01] one may show that Mt ∈ Lp (Ω;C ([0,∞); Xm,p )) and is an Xm,p valued martingale.

3. Nonlinear multiplicative noise structures and examples

In this section we make precise the conditions that we impose on the noise. While, in abstract form, these
conditions appear to be rather involved, they fact cover a very wide class of physically realistic nonlinear
stochastic regimes. We conclude this section by detailing some of these examples.
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3.1. Abstract conditions. We next describe, in abstract terms, the conditions imposed for σ. Consider
any pair of Banach spaces X , Y with X ⊂ L∞(D). We denote the space of locally bounded maps

Bndu,loc(X ,Y ) :=
{
σ ∈C (X × [0,∞);Y ) : ‖σ(x, t )‖Y ≤β(‖x‖L∞)(1+‖x‖X ),∀x ∈X , t ≥ 0

}
where β(·) ≥ 1 is an increasing function which is locally bounded and is independent of t . In addition we
define the space of locally Lipschitz functions,

Lipu,loc(X ,Y ) =
{
σ ∈ Bndu,loc(X ,Y ) : ‖σ(x, t )−σ(y, t )‖Y ≤β(‖x‖L∞ +‖y‖L∞)‖x − y‖X ,∀x, y ∈X , t ≥ 0

}
.

Note that in in both cases the subscript u is intended to emphasize the that increasing function β appearing in
the above inequalities may be taken to be independent of t ∈ [0,∞). Note furthermore that, by considering
such locally Lipschitz spaces of functions, we are able to cover stochastic forcing involving Nemytskii
operators, i.e. smooth functions of the solutions multiplied by spatially correlated white in time Gaussian
noise (see Section 3.2 below).

For the main local existence results in the work, Theorem 4.3 below, we fix p ≥ 2 and an integer m >
d/p +1, and suppose that

σ ∈ Lipu,loc(Lp ,W0,p )∩Lipu,loc(W m−1,p ,Wm−1,p )∩Lipu,loc(W m,p ,Wm,p ). (3.1)

Since P is a continuous linear operator on Wk,p , for k ≥ 0 it follows that Pσ ∈ Lipu,loc(W k,p ,Xk,p ), for
k = m−1,m. Observe that by (3.1) we have that

∫ t
0 Pσ(u)dW ∈C ([0,∞); Xm,p ) for each predictable process

u ∈C ([0,∞); Xm,p ).
We will also impose some additional technical conditions on σ which are required for the proof of local

existence of solutions (cf. Theorem 4.3 below). These conditions do no preclude any of the examples we
give below. Firstly we suppose that

σ ∈ Bndu,loc(W m+1,p ,Wm+1,p ). (3.2)

Fix some m′ sufficiently large, such that H m′−2 ⊂W m+1,p , e.g. m′ > m +3+d(p −2)/(2p) by the Sobolev
embedding. For simplicity we take an m′ which works for all p ≥ 2, and for the rest of this paper fix

m′ = m +5.

We assume that

σ ∈ Bndu,loc(H m′
,Wm′,2). (3.3)

Condition (3.2) is used for the density and stability arguments in Section 7, while condition (3.3) seems
necessary in order to justify the construction of solutions to the Galerkin system (cf. Section 6.2 below).

In the case of an additive noise when we assume that σ is independent of u (cf. Theorem 4.4), we may
alternatively assume that:

σ ∈ Lp (Ω,Lp
loc ([0,∞);Wm+1,p )) (3.4)

and that σ is predictable. Note that while (3.1)–(3.3) covers many additive noise structures, (3.4) is less
restrictive and allows for ω ∈Ω dependence in σ.

3.2. Examples. We now describe some examples of stochastic forcing structures for σ(u)dW covered
under the conditions (3.1) –(3.3) imposed above, or alternatively (3.4) for additive noise.

Nemytskii operators. One important example is stochastic forcing of a smooth function of the solution.
Suppose that g :Rd →Rd is C∞ smooth and consider α ∈Wm′,2, where as above m′ = m +5. We then take

σk (u) =αk (x)g (u), k ≥ 1. (3.5)

In this case we have that:

σ(u)dW = ∑
k≥1

αk (x)g (u)dWk = g (u)
∑
k≥1

αk (x)dWk = g (u)αdW .
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Note that αdW is formally a Gaussian process with the spatial-temporal correlation structure

E(αdW (x, t )αdW (y, s)) = K (x, y)δt−s for all x, y ∈Rd , t , s ≥ 0,

with K (x, y) =∑
k≥1αk (x)αk (y). Observe that if g (u) ∈W n,q for q ≥ 2 and n ≥ d/q then

‖σ(u)−σ(v)‖q
Wn,q := ∑

|α|≤n

∫
D

(∑
k≥1

|∂α(αk g (u)−αk g (v))|2
)q/2

d x ≤C‖α‖q
Wn,q‖g (u)− g (v)‖q

W n,q .

We may therefore show that (3.5) satisfies (3.1)–(3.3) by making use of the following general fact about the
composition of functions.

Lemma 3.1 (Locally Lipschitz and bounded). Fix any n > d/p with p ≥ 2. Suppose that g :Rd →Rd and
that g ∈W n+1,∞(Rd ). Then

‖g (u)− g (v)‖W n,p (D) ≤β(‖u‖L∞ +‖u‖L∞)‖u − v‖W n,p (D) for every u, v ∈W n,p (D). (3.6)

holds for some positive, increasing function β(·) ≥ 1.

Note that (3.1) follows from (3.6). Moreover setting v = 0 in (3.6) also proves (3.2) and (3.3). The
proof of Lemma 3.1 is based on Moser-type estimates (similar to (2.2)), Gagliardo-Nirenberg interpolation
inequalities, and the chain rule. See e.g. [Tay11, Chapter 13, Section 3] for further details.

Linear multiplicative noise. One important example covered under this general class of Namytskii
operators is a linear multiplicative noise. Here we consider

σ(u)dW =αudW

where now α ∈ R and W is a 1D standard Brownian motion. We obtain this special case from the above
framework by taking g = I d and α1 ≡ 1, αk = 0 for k ≥ 2. We shall treat such noise structures in detail in
Section 9 (cf. Theorem 4.6).

Stochastic forcing of functionals of the solution. We may also consider functionals (linear and non-
linear) of the solution, forced by independent white noise processes. Suppose that, for k ≥ 1 we are given
fk : Lp (D) →R such that

| fk (u)− fk (v)| ≤C‖u − v‖Lp for u, v ∈ Lp (3.7)

where the constant C is independent of k. We take

σk (u) = fk (u)αk (x, t ) (3.8)

then, for any n ≥ d/q

‖σ(u)−σ(v)‖q
Wn,q := ∑

|α|≤n

∫
D

(∑
k≥1

| fk (u)− fk (v)|2|∂ααk |2
)p/2

d x ≤ ‖α‖p
Wn,q‖u − v‖p

Lp .

Thus, under the assumption (3.7) if we furthermore assume that supt≥0 ‖α(t )‖Wm′ ,2 <∞, then σ given by
(3.8) satisfies conditions (3.1)–(3.3).

Additive Noise. For σ : [0,∞) → H m′
, with supt≥0 ‖σ(t )‖H m′ <∞, we may easily observe that σ satis-

fies (3.1)–(3.3). For such noise σdW may be understood in the formal expansion

σdW (t , x,ω) =∑
k
σk (t , x)dWk (t ,ω).

Note that our results for additive noise in Theorem 4.4 are established under a more general ω-dependent σ,
which satisfies (3.4).
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4. Main results

With the mathematical preliminaries in hand and having established the noise structures we shall con-
sider, we now make precise the notions of local, maximal and global solutions of the stochastic Euler
equation (1.1)–(1.3).

Definition 4.1 (Local Pathwise Solutions). Suppose that m > d/p +1 with p ≥ 2 and d = 2,3. Fix a sto-
chastic basis S := (Ω,F ,P, {Ft }t≥0,W ) and u0 an Xm,p valued F0 measurable random variable. Suppose
that σ satisfies the conditions (3.1)–(3.3) (or alternatively (3.4)).

(i) A local pathwise Xm,p solution of the stochastic Euler equation is a pair (u,τ), with τ a strictly
positive stopping time, and u : [0,∞)×Ω→ Xm,p is a predictable process satisfying

u(·∧τ) ∈C ([0,∞), Xm,p )

and for every t ≥ 0,

u(t ∧τ)+
∫ t∧τ

0
P (u ·∇u)d t = u(0)+

∫ t∧τ

0
Pσ(u)dW . (4.1)

(ii) We say that local pathwise solutions are unique (or indistinguishable) if, given any pair (u(1),τ(1)),
(u(2),τ(2)) of local pathwise solutions,

P
(
11u(1)(0)=u(2)(0)(u(1)(t )−u(2)(t )) = 0;∀t ∈ [0,τ(1) ∧τ(2)]

)= 1. (4.2)

Given the existence and uniqueness of such local solutions we can quantify the possibility of any finite
time blow-up. In some cases we are able to show that such pathwise solution in fact are global in time.

Definition 4.2 (Maximal and global solutions). Fix a stochastic basis and assume the conditions u0 and
σ are exactly as in Definition (4.1) above. A maximal pathwise solution is a triple (u, {τn}n≥1,ξ) such that
each pair (u,τn) is a local pathwise solution, τn is increasing with limn→∞τn = ξ and so that

sup
t∈[0,τn ]

‖u(t )‖W 1,∞ ≥ n on the set {ξ<∞}. (4.3)

A maximal pathwise solution (u, {τn}n≥1,ξ) is said to be global if ξ=∞ almost surely.2

Our primary goal in this work is to study local and global pathwise solutions of the stochastic Euler
equation. These type of solutions also fall under the designation of “strong solutions”; we prefer the term
“pathwise” since it avoids possible confusion with classical terminology used in deterministic PDEs. In any
case one can also establish the existence of “martingale” (or probabilistically “weak” solutions) of (1.1)–
(1.3) where the stochastic basis is an unknown in the problem and the initial conditions are only specified in
law. Indeed such type of solutions are essentially established as an intermediate step in the analysis which
is carried out in Section 6; see Remark 6.6 below.

We now state the main results of this paper. The first result concerns the local existence of solutions, the
proof of which is carried out in two steps, in Sections 6 and 7 below.

Theorem 4.3 (Local existence of pathwise solutions). Fix a stochastic basis S := (Ω,F , P, {Ft }t≥0, W ).
Suppose that m > d/p +1 with p ≥ 2 and d = 2,3. Assume that u0 is an Xm,p valued, F0 measurable ran-
dom variable, and that σ satisfies the conditions (3.1)–(3.3). Then there exists a unique maximal pathwise
solution (u, {τn}n≥1,ξ) of (1.1)–(1.3), in the sense of Definitions 4.1 and 4.2.

In Section 8 we show that in two space dimensions we have, in the case of an additive noise, the global
existence of solutions. Note that in contrast to the situation for the 2D Navier-Stokes equations (cf. e.g.
[GHZ09]), proving the global existence for a general Lipschitz nonlinear multiplicative noise seems to be
out of reach with current methods (see Remark 4.7 below for further details).

2Under this definition it is clear that, for every T > 0, supt∈[0,T ] ‖u(t )‖W 1,∞ is almost surely finite on the set {ξ=∞}.
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Theorem 4.4 (Global existence for additive noise in 2D). Fix m > 2/p +1 with p ≥ 2, a stochastic basis
S := (Ω,F ,P, {Ft }t≥0,W ), and assume that u0 is an Xm,p valued, F0 measurable random variable. Assume
that σ does not depend on u and (3.4) (or (3.1)–(3.3)) holds. Then, there exits a unique global pathwise
solution of (1.1)–(1.3), i.e. ξ=∞ almost surely.

Remark 4.5. The local existence of pathwise solutions with additive noise follows directly from Theo-
rem 4.3 in the case of a (deterministic) continuous σ : [0,∞) →Wm′,2, with supt≥0 ‖σ(t )‖Xm′ ,2 <∞, where
m′ is as in (3.3). On the other hand, the proof of local existence for additive noise does not require the
involved machinery employed to deal with a general nonlinear multiplicative noise; in this case one can
transform (1.1) into a random partial differential equation, which can be treated pathwise, using the clas-
sical (deterministic) methods for the Euler equations (cf. [MB02]). Of course, one has to show that this
random transformed system is measurable with respect to the stochastic elements in the problem but this
may be achieve with continuity and stability arguments. These technicalities are essentially contained in
[Kim09], to which we refer for further details.

Finally we address the case of a linear multiplicative noise. In 2D we show that the pathwise solutions
are global in time. In 3D we go further and prove that the noise is regularizing at the pathwise level. Here
we are essentially able to establish that the time of existence converges to +∞ a.s. in the large noise limit.
More precisely, we have:

Theorem 4.6 (Global existence for linear multiplicative noise). Fix S := (Ω,F ,P, {Ft }t≥0,W )3, a sto-
chastic basis. Suppose that m > d/p +1 with p ≥ 2 and d = 2,3, and assume that u0 is an Xm,p valued, F0

measurable random variable. For α ∈R we consider (1.1)–(1.3) with a linear multiplicative noise

σk (u) =σ(u)ek =
{
αu if k = 1,

0 otherwise.

(i) Suppose d = 2. Then for any α ∈ R the maximal pathwise solution of guaranteed by Theorem 4.3
is in fact global, i.e. ξ=∞ almost surely.

(ii) Suppose d = 3. Let R ≥ 1 and α 6= 0 be arbitrary parameters. Then there exists a positive deter-
ministic function κ(R,α) which satisfies

lim
α2→∞

κ(R,α) =∞

for every fixed R ≥ 1, such that whenever

‖u0‖W m,p ≤ κ(R,α), a.s. (4.4)

then

P (ξ=∞) ≥ 1− 1

R1/4
.

In particular, for every ε > 0 and any given deterministic initial condition, the probability that
solutions corresponding to sufficiently large |α| never blow up, is greater than 1−ε.

Remark 4.7 (Lack of global well-posedness in two dimensions with generic multiplicative noise). We
emphasize that even in the two-dimensional setting, and even for D = R2, the global existence of smooth
solutions to (1.1)–(1.3) for a general Lipschitz multiplicative noise appears to be out of reach. In fact, the
analogous result remains open even in the deterministic setting unless the forcing is linear. Indeed, let us
consider the Euler equations with a solution-dependent forcing

∂t u +u ·∇u +∇π= f (u), ∇·u = 0 (4.5)

where f is a smooth function mapping R2 →R2, which decays sufficiently fast at infinity. In order to obtain
the global in time regularity of (4.5) one must have an a priori global in time bound for the supremum of the

3For the noise structure considered here, we need only to have defined a single 1D standard Brownian motion.
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vorticity w = ∇⊥ ·u (or at least a bound in a Besov space “sufficiently close” to L∞). However, using the
Biot-Savart law, the evolution of w is governed by

∂t w +u ·∇w =−∂1 f1(u)w − (∂1 f2(u)+∂2 f1(u))R12w + (∂2 f2(u)−∂1 f1(u))R11w (4.6)

where Ri j are the Riesz transforms ∂i∂ j (−∆)−1, and f (u) = ( f1(u), f2(u)). While the first term on the right
side of of (4.6) is harmless for L∞ estimates on w , unless f is such that ∂1 f2 + ∂2 f1 = ∂2 f2 − ∂1 f1 = 0
identically (which is true for f (u) = u, that is f1(x, y) = x and f2(x, y) = y), the remaining two terms prevent
one from obtaining a bound on ‖w‖L∞ using classical methods, since Calderón-Zygmund operators are not
bounded on L∞. Recently it was proven in [CV11] that if one adds an arbitrary amount of dissipation, in
the form of a positive power of −∆, or even dissipation as mild as log(1−∆), to the left side of (4.5), then
the equations have global in time smooth solutions. The global well-posedness of (4.5) with no dissipation
remains open for generic smooth forcing f .

5. A priori estimates

In this section we carry out a priori estimates for solutions evolving in Xm,p of (1.1)–(1.3) with m >
d/p +1, p ≥ 2. The bounds established in this section will be used extensively throughout the rest of the
work. We begin with the bounds in the Hilbert space case, namely for solutions in Xm . These estimates will
be used in Section 6 in the context of a Galerkin scheme.

5.1. L2-based estimates. We start with estimates in H m(D), where m > d/2+1. Let u be a solution
of (1.1)–(1.2), which lies in H m+1(D) and is defined up to a (possibly infinite) maximal stopping time of
existence ξ > 0. Note however, that the a priori estimates (5.4)–(5.8) involve only the H m norm of the
solution u.

Let α ∈ Nd be a multi-index with |α| ≤ m. Applying the Leray projector P and then ∂α to (1.1) we
obtain

d(∂αu)+∂αP (u ·∇u)d t = ∂αPσ(u)dW . (5.1)

By the Itō lemma we find

d‖∂αu‖2
L2 =−2

(
∂αu,∂αP (u ·∇u)

)
d t +‖∂αPσ(u)‖2

X0
d t +2

(
∂αu,∂αPσ(u)

)
dW

=(Jα1 + Jα3 )d t + Jα3 dW . (5.2)

Fix T > 0 and any stopping time τ≤ ξ∧T . We find that for every s ∈ [0,τ],

‖∂αu(s)‖2
L2 ≤ ‖∂αu0‖2

L2 +
∫ s

0
(|Jα1 |+ |Jα2 |)d s′+

∣∣∣∣∫ s

0
Jα3 dW

∣∣∣∣ .

Hence, summing over all |α| ≤ m, taking a supremum over s ∈ [0,τ] and then taking the expected value we
get

E sup
s∈[0,τ]

‖u(s)‖2
H m ≤E‖u0‖2

H m +E ∑
|α|≤m

∫ τ

0
(|Jα1 |+ |Jα2 |)d t ′+ ∑

|α|≤m
E

(
sup

s∈[0,τ]

∣∣∣∣∫ s

0
Jα3 dW

∣∣∣∣
)

. (5.3)

We first treat the drift terms Jα1 and Jα2 which may be estimated pointwise in time. We bound the
nonlinear term Jα1 by setting p = 2 and v = u in (2.12) to obtain∑

|α|≤m
|Jα1 | ≤C‖u‖W 1,∞‖u‖2

H m (5.4)

for some positive constant C =C (m,D). In view of the assumption (3.1) the Jα2 term is direct:∑
|α|≤m

|Jα2 | ≤β(‖u‖L∞)2(1+‖u‖2
H m ). (5.5)

where β is the increasing function given in (3.1).
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We handle the stochastic term, involving Jα3 , using the Burkholder-Davis-Gundy inequality (2.14) and
assumption (3.1):

E

(
sup

s∈[0,τ]

∣∣∣∣∫ s

0
Jα3 dW

∣∣∣∣
)
≤CE

(∫ τ

0
‖∂αu‖2

L2‖Pσ(u)‖2
Wm,2 d t

)1/2

≤CE

(∫ τ

0
‖∂αu‖2

L2β(‖u‖L∞)2(1+‖u‖2
H m )d t

)1/2

.

Now, summing over |α| ≤ m, we infer

∑
|α|≤m

E

(
sup

s∈[0,τ]

∣∣∣∣∫ s

0
Jα3 dW

∣∣∣∣
)
≤ 1

2
E sup

s∈[0,τ]
‖u‖2

H m +CE
∫ τ

0
β(‖u‖L∞)2(1+‖u‖2

H m )d t . (5.6)

In view of the estimate (5.4) for the nonlinear term, we now define the stopping time

ξR = inf
{

t ≥ 0: ‖u(t )‖W 1,∞ ≥ R
}

. (5.7)

Combining the estimates (5.4)–(5.6), we find that for any t > 0, by taking τ= t ∧ξR ,

E sup
s∈[0,ξR∧t ]

‖u‖2
H m ≤2E‖u0‖2

H m +CE
∫ ξR∧t

0
(‖u‖W 1,∞ +β(‖u‖L∞)2)(1+‖u‖2

H m )d s

≤2E‖u0‖2
H m +C

∫ t

0

(
1+E sup

r∈[0,ξR∧s]
‖u‖2

H m

)
d s,

where the final constant C depends on R through R+β(R)2. From the classical Grönwall inequality we infer

E sup
s∈[0,ξR∧T ]

‖u‖2
H m ≤C (1+E‖u0‖2

H m ) (5.8)

where C =C (m,d ,D,T,R,β).
Of course estimate (5.8) does not prevent ‖u‖W 1,∞ from blowing up before T ; the bound (5.8) grows

exponentially in R and hence we do not a priori know that ξR →∞ as R →∞. Note also that, in contrast to
the case of the full space (or in the periodic setting), when D is a smooth simply-connected bounded domain,
the non-blow-up of solutions is controlled by ‖u‖W 1,∞ , rather than the classical ‖∇u‖L∞ . This is due to the
nonlocal nature of the pressure. In the bound (5.8) this is inherently expressed through the definition of the
stopping time ξR . Of course, the L∞ bound on u is also needed to control the terms involving σ.

5.2. Lp-based estimates, p > 2. We now return to (5.1) again for any α, |α| ≤ m. We apply the Itō for-
mula, pointwise in x, for the function φ(v) = |v |p = (|v |2)p/2. After integrating in x and using the stochastic
Fubini theorem (see [DPZ92]) we obtain:

d‖∂αu‖p
Lp =−p

∫
D
∂αu ·∂αP (u ·∇u)|∂αu|p−2d xd t

+ ∑
k≥1

∫
D

(
p

2
|∂αPσk (u)|2|∂αu|p−2 + p(p −2)

2
(∂αu ·∂αPσk (u))2|∂αu|p−4

)
d xd t

+p
∑
k≥1

(∫
D
∂αu ·∂αPσk (u)|∂αu|p−2 d x

)
dWk

:=Iα1 d t + Iα2 d t + Iα3 dW . (5.9)

By letting v = u in (2.12) we bound

|Iα1 | ≤C‖u‖W 1,∞‖u‖p
W m,p . (5.10)

We turn now to estimate the terms specific to the stochastic case. For Iα2 , using (3.1) we have

|Iα2 | ≤C
∫
D

∑
k≥1

|∂αPσk (u)|2|∂αu|p−2d x ≤C‖Pσ(u)‖2
Wm,p‖u‖p−2

W m,p ≤Cβ(‖u‖L∞)2(1+‖u‖p
W m,p ). (5.11)
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To estimate the stochastic integral terms involving I3, we apply the Burkholder-Davis-Gundy inequality,
(2.14), the Minkowski inequality for integrals, and use (3.1). We obtain, for any stopping time τ≤ T ∧ξ,

E

(
sup

s∈[0,τ]

∣∣∣∣∫ s

0
Iα3 dW

∣∣∣∣
)
≤CE

(∫ τ

0

∑
k≥1

(∫
D
∂αu ·∂αPσk (u)|∂αu|p−2 d x

)2

d s

)1/2

≤CE

∫ τ

0

(∫
D

(∑
k≥1

|∂αPσk (u)|2|∂αu|2(p−1)

)1/2

d x

)2

d s

1/2

≤CE

∫ τ

0
‖∂αu‖2(p−1)

Lp

(∫
D

(∑
k≥1

|∂αPσk (u)|2
)p/2

d x

)2/p

d s

1/2

≤CE

(
sup

s∈[0,τ]
‖∂αu‖p/2

Lp

(∫ τ

0
‖u‖p−2

W m,pβ(‖u‖L∞)2(1+‖u‖2
W m,p )d s

)1/2
)

≤1

2
E sup

s∈[0,τ]
‖∂αu‖p

Lp +CE
∫ τ

0
β(‖u‖L∞)2(1+‖u‖p

W m,p )d s. (5.12)

Combining the Lp Itō formula (5.9) with the estimates (5.10)–(5.12), and making use of the stopping time
ξR defined in (5.7), we may obtain, as in the Hilbert case,

E sup
s∈[0,ξR∧T ]

‖u‖p
W m,p ≤C (1+E‖u0‖p

W m,p ) (5.13)

where C =C (m,d ,D,T,R,β).

Remark 5.1 (From a priori estimates to the construction of solutions). Having completed the a priori
estimates in W m,p , we observe that, even for the deterministic Euler equations on a bounded domain, the
construction of solutions is non-trivial and requires a delicate treatment of the coupled elliptic/degenerate-
hyperbolic system (see e.g. [KL84, Tem75]). In addition, the stochastic nature of the equations introduces a
number of additional difficulties, such as the the lack of compactness in the ω variable. We overcome these
difficulties in Sections 6 and 7 below, by first constructing a sequence of very smooth approximate solutions
evolving from mollified initial data, and then passing to a limit using a Cauchy-type argument.

6. Compactness methods and the existence of very smooth solutions

Leet p ≥ 2 and m > d/p + 1 be as in the statement of Theorem 4.3. In this section we establish the
existence of “very smooth” solutions of (1.1)–(1.3), that is solutions in H m′

, where m′ = m + 5 (so that
m′ > m +3+d(p −2)/(2p) for any d = 2,3 and p ≥ 2). We fix this m′ throughout the rest of the paper. In
particular we shall use that H m′−2 ⊂W m+1,p and m′ > d/2+3. Note that the the initial data in the statement
of our main theorem only lies in W m,p , not necessarily in H m′

, but we will apply the results in this section
to a sequence of mollified initial data (cf. (7.1) below), and then use a limiting argument in order to obtain
the local existence of pathwise solutions for all data in W m,p (see Section 7).

We begin by introducing a Galerkin scheme with cut-offs in front of both the nonlinear drift and diffusion
terms. Crucially, these cut-offs allow us to obtain uniform estimates in the Galerkin approximations globally
in time (see Remark 6.1 below). We then exhibit the relevant uniform estimates for these systems which
partially follow from the a priori estimates in Section 5. We next turn to establish compactness with a
variation on the Arzela-Ascoli theorem, tightness arguments, and the Skorohod embedding theorem. In this
manner we initial infer the existence of martingale solutions to a cutoff stochastic Euler system (cf. (6.17)
below) in a very smooth spaces. We finally turn to prove the existence of pathwise solutions by establishing
the uniqueness for this cutoff system and applying the Gyöngy-Krylov convergence criteria as recalled in
Lemma 6.10 below.
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6.1. Finite Dimensional Spaces and The Galerkin scheme. For each u ∈ X0, by the Lax-Milgram
theorem, there exists a unique Φ(u) ∈ Xm′ solving the variational problem

(Φ(u), v)H m′ = (u, v), for all v ∈ Xm′ .

Actually, the regularity of Φ(u) is expected to be better. In [Ghi84] it is shown that in fact the maximal
regularity Φ(u) ∈ X2m′ holds. We let {φk }∞k=1 be the complete orthonormal system (in X0) of eigenfunctions
for the linear map u 7→ Φ(u), which is compact, injective and self-adjoint on X0. Therefore, (φk , v)H m′ =
λk (φk , v) for all v ∈ Xm′ , where λ−1

k > 0 is the eigenvalue associated to φk , and by [Ghi84] we know φk lies
in X2m′ for all k ≥ 1.

For all n ≥ 1, we consider the orthogonal projection operator Pn , mapping X0 onto span{φ1, . . . ,φn},
given explicitly by

Pn v =
n∑

j=1
(v,φ j )φ j , for all v ∈ X0.

Note that these Pn are also uniformly bounded in n on Xm′ , Xm′−1, etc. See e.g. [LM72] for further details.
Fix R > 0 to be determined, choose a C∞-smooth non-increasing function θR : [0,∞) 7→ [0,1] such that

θR (x) =
{

1 for |x| < R,

0 for |x| > 2R.

We consider the following Galerkin approximation scheme for (1.1)

dun +θR (‖un‖W 1,∞)PnP (un ·∇un)d t = θR (‖un‖W 1,∞)PnPσ(un)dW , (6.1)

un(0) = Pnu0. (6.2)

The system (6.1)–(6.2) may be considered as an SDE in n dimensions, with locally Lipschitz drift (cf.
Proposition 6.8 below) and globally Lipschitz diffusion (cf. (3.1)). Since we also have the additional can-
celation property (PnP (u ·∇u),u)L2 = 0 for all u ∈ Pn Xm′ we may infer that there exists a unique global in
time solution un to (6.1)–(6.2), evolving continuously on Pn Xm′ . See e.g. [Fla08] for further details.

Remark 6.1. The cutoff functions in (6.1) allow us to obtain uniform estimates for un in L∞([0,T ], Xm′)
for any fixed, deterministic T > 0. Without this cutoff function we are only able to obtain uniform estimates
up to a sequence of stopping times τn , depending on n. In contrast to the deterministic case it is unclear if,
for example, infn≥1τ

n > 0 almost surely. Note however that the presence of this cut-off causes additional
difficulties in the passage to the limit of martingale solutions, see Remark 6.6, and in order to establish the
uniqueness of solutions associated to the related to the limit cut-off system, see (6.17), Proposition 6.8 and
Remark 6.9 below.

6.2. Uniform Estimates. Applying the Itō formula to (6.1), and using that Pn is self-adjoint on Xm′ ,
similarly to (5.2) we obtain

d‖un‖2
H m′ =−2θR (‖un‖W 1,∞)

(
un ,P (un ·∇un)

)
H m′ d t

+θR (‖un‖W 1,∞)2‖PnPσ(un)‖2
Xm′ d t +2θR (‖un‖W 1,∞)

(
un ,Pσ(un)

)
H m′ dW .

Further on, in order to establish the needed compactness in the probability distributions associated to un ,
we need uniform estimates on higher moments of ‖un‖2

H m′ . For this purpose we fix any r ≥ 2 and compute
d(‖un‖2

H m′ )r /2 from the Itō formula and the evolution of ‖un‖2
H m′ . We find

d‖un‖r
H m′ =− rθR (‖un‖W 1,∞)‖un‖r−2

H m′
(
un ,P (un ·∇un)

)
H m′ d t

+θR (‖un‖W 1,∞)2
(

r

2
‖un‖r−2

H m′‖PnPσ(un)‖2
Xm′ +

r (r −2)

2
‖un‖r−4

H m′
(
un ,Pσ(un)

)2
H m′

)
d t

+ rθR (‖un‖W 1,∞)‖un‖r−2
H m′

(
un ,Pσ(un)

)
H m′ dW . (6.3)
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Let us introduce the stopping time

τK := inf

{
t ≥ 0 : sup

s∈[0,t ]
‖un‖H m′ ≥ K

}
, for any K > 0.

Using bounds similar to the a priori estimates of Section 5, we obtain the estimate

E

(
sup

s∈[0,t∧τK ]
‖un‖r

H m′

)
≤E‖Pnu0‖r

H m′ +CE
∫ t∧τK

0
θR (‖un‖W 1,∞)

(
β(‖un‖L∞)2 +‖un‖W 1,∞

)(
1+‖un(s)‖r

H m′

)
d s

+CE

(∫ t∧τK

0
θR (‖un‖W 1,∞)2β(‖un‖L∞)2‖un‖r

H m′ (1+‖un‖r
H m′ )d s

)1/2

≤E‖u0‖r
H m′ +C

∫ t

0
1+E

(
sup

s′∈[0,s∧τK ]
‖un(r )‖r

H m′

)
d s + 1

2
E

(
sup

s∈[0,t∧τK ]
‖un(r )‖r

H m′

)
,

where C is a constant independent of n and K but depends on D, m′, r , and R (through θR and β). Therefore,
rearranging and applying the standard Grönwall inequality, we obtain that, for any T > 0

E sup
s∈[0,T∧τK ]

‖un‖r
H m′ ≤C <∞,

for some positive finite constant C =C (T,R,r,β,E‖u0‖r
H m′ ) which is independent of n and K . Since τK →∞

as K →∞, with the monotone convergence theorem we conclude

sup
n≥1

E sup
s∈[0,T ]

‖un‖r
H m′ ≤C <∞. (6.4)

In order to obtain the compactness needed to pass to the limit in un we also would like to have uniform
estimates on the time derivatives of un . Since in the stochastic case we do not expect un to be differentiable
in time, we have to content ourselves instead with estimates on fractional time derivatives of order strictly
less than 1/2. In order to carry out such estimates we shall also make use of a variation on the Burkholder-
Davis-Gundy inequality (2.14), as derived in [FG95].

For this purpose, let us briefly recall a particular characterization of the Sobolev spaces W α,q ([0,T ], X )
where X may be any separable Hilbert space. See, for example, [DPZ92] for further details. For q > 1 and
α ∈ (0,1) we define

W α,q ([0,T ]; X ) :=
{

v ∈ Lq ([0,T ]; X );
∫ T

0

∫ T

0

‖v(t ′)− v(t ′′)‖q
X

|t ′− t ′′|1+αq d t ′d t ′′ <∞
}

,

which is endowed with the norm

‖v‖q
W α,p ([0,T ];X ) :=

∫ T

0
‖v(t ′)‖q

X d t ′+
∫ T

0

∫ T

0

‖v(t ′)− v(t ′′)‖q
X

|t ′− t ′′|1+αq d t ′d t ′′.

Note that for α ∈ (0,1), W 1,q ([0,T ]; X ) ⊂ W α,q ([0,T ]; X ) with ‖v‖W α,q ([0,T ];X ) ≤ C‖v‖W 1,q ([0,T ];X ). As in
[FG95] one can show from (2.14) that for any q ≥ 2 and any α ∈ [0,1/2)

E

(∥∥∥∥∫ t

0
GdW

∥∥∥∥q

W α,q ([0,T ];X )

)
≤CE

(∫ T

0
‖G‖q

L2(U,X )d t

)
, (6.5)

over all X valued predictable G ∈ Lq (Ω;Lq
loc ([0,∞),L2(U, X ))) and where C =C (α, q,T ).

With these definitions and (6.5) in hand we return to (6.3). For any 0 <α< 1/2, we have

E‖un‖r
W α,r ([0,T ],H m′−1)

≤C E

∥∥∥∥Pnu0 +
∫ t

0
θR (‖un‖W 1,∞)PnP (un ·∇un)d s

∥∥∥∥r

W 1,r ([0,T ],H m′−1)

+C E

∥∥∥∥∫ t

0
θR (‖un‖W 1,∞)PnPσ(un)dW

∥∥∥∥r

W α,r ([0,T ],H m′−1)
(6.6)
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for some positive constant C =C (T ), independent of n. Since PnP is uniformly bounded in Xm′−1 indepen-
dently of n, using (2.2) and (6.4) we bound the first term on the right hand side of (6.6) as

E

∥∥∥∥Pnu0 +
∫ t

0
θR (‖un‖W 1,∞)PnP (un ·∇un)d s

∥∥∥∥r

W 1,r ([0,T ],H m′−1)

≤C E‖u0‖r
H m′ +C E

∫ T

0
θR (‖un‖W 1,∞)

∥∥un ·∇un
∥∥r

H m′−1 d t

≤C E‖u0‖r
H m′ +C E

∫ T

0
θR (‖un‖W 1,∞)‖un‖r

W 1,∞‖un‖r
H m′ d t ≤C E

(
sup

t∈[0,T ]
‖un(t )‖r

H m′

)
≤C (6.7)

where the final constant C =C (T,R,r,E‖u0‖r
H m′ ) does not depend on n. For the second term on the left hand

side of (6.6) we make use of (6.5) with q = r and α ∈ (0,1/2), then (3.1) and (6.4) to estimate

E

∥∥∥∥∫ t

0
θR (‖un‖W 1,∞)PnPσ(un)dW

∥∥∥∥r

W α,r ([0,T ],H m′−1)
≤C E

(∫ T

0
θR (‖un‖W 1,∞)r ‖PnPσ(un)‖r

Xm′−1
d t

)
≤C E

∫ T

0
θR (‖un‖W 1,∞)rβ(‖un‖L∞)r (1+‖un‖r

H m′ )d t

≤C E

(
1+ sup

t∈[0,T ]
‖un(t )‖r

H m′

)
≤C , (6.8)

where in the final constant C = C (T,R,r,β,E‖u0‖r
H m′ ) is a sufficiently large constant independent on n.

Combining (6.6)–(6.8) we have now shown that

sup
n≥1

E‖un‖r
W α,r ([0,T ],H m′−1)

≤C , (6.9)

for some positive finite constant C =C (T,R,r,E‖u0‖r
H m′ ,α). In summary, we have proven:

Proposition 6.2. Fix m > d/2+1, m′ = m +5, α ∈ (0,1/2), r ≥ 2, and suppose that σ satisfies conditions
(3.1)–(3.3). Given u0 ∈ Lr (Ω; Xm′), F0 measurable, consider the associated sequence of solutions {un}n≥1

of the Galerkin system (6.1)–(6.2). Then the sequence {un}n≥1 is uniformly bounded in

Lr (Ω;L∞([0,T ], Xm′)∩W α,r (0,T ; Xm′−1))

for any T > 0. Moreover, under the given conditions, we have

sup
n≥1

E

∥∥∥∥∫ t

0
θR (‖un‖W 1,∞)PnPσ(un)dW

∥∥∥∥r

W α,r ([0,T ],H m′−1)
<∞ (6.10)

sup
n≥1

E

∥∥∥∥un(t )−
∫ t

0
θR (‖un‖W 1,∞)PnPσ(un)dW

∥∥∥∥r

W 1,r ([0,T ],H m′−1)
<∞. (6.11)

6.3. Tightness, Compactness and The Existence of Martingale Solutions. For a given initial distri-
bution µ0 on Xm′ we fix a stochastic basis S = (Ω,F , {Ft }t≥0,P,W ) upon which is defined an F0 mea-
surable random element u0 with distribution µ0. As described above, we define the sequence of Galerkin
approximations {un}n≥1 solving (6.1)–(6.2) relative to this basis and initial condition.

To define a sequence of measures associated with {(un ,W )}n≥1 we consider the phase space:

X =XS ×XW , where XS =C ([0,T ], Xm′−2), XW =C ([0,T ],U0). (6.12)

We may think of the first component, XS ⊃ C ([0,T ], Xm′), as the space where the un lives, and the second
component, XW , as being the space on which the driving Brownian motions are defined. On X we define
the probability measures

µn =µn
S ×µW , where µn

S (·) =P(un ∈ ·), µW (·) =P(W ∈ ·). (6.13)

We next show that the collection {µn}n≥1 is in fact weakly compact. Let Pr (X ) be the collection of
Borel probability measures on X . Recall that a sequence {νn}n≥0 ⊂ Pr (X ) is said to converge weakly to
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an element ν ∈ Pr (X ) if
∫

f dνn → ∫
f dν for all continuous bounded f on X . As such, we say that a set

Λ⊂ Pr (X ) is weakly compact if every sequence {νn} ⊂Λ possesses a weakly convergent subsequence. On
the other hand we say that a collection Λ ⊂ Pr (X ) is tight if, for every ε > 0, there exists a compact set
Kε ⊂ X such that, µ(Kε) ≥ 1− ε for all µ ∈ Λ. The classical result of Prohorov (see e.g. [DPZ92]) asserts
that weak compactness and tightness are in fact equivalent conditions for collections Λ⊂ Pr (X ). We have:

Lemma 6.3 (Tightness of Measures for the Galerkin Scheme). Let m > d/2+ 1, m′ = m + 5, r > 2,
assume that σ satisfies conditions (3.1)–(3.3), and consider any µ0 ∈ Pr (Xm′) with

∫
Xm′ |u|r dµ0(u) <∞. Fix

any stochastic basis S = (Ω,F , {Ft }t≥0,P,W ) upon which is defined an F0 measurable random element
u0 with this distribution µ0 and take {un}n≥1 to be the sequence solving (6.1), (6.2) relative to this basis
and initial condition. Define the sequence {µn}n≥1 according to (6.13) using the sequence {un}n≥1. Then
{µn}n≥1 ⊂ Pr (X ) is tight and hence weakly compact.

In order to obtain the compact sets used to show that the sequence {µn}n≥1 is tight we use the following
variation on the classical Arzela-Ascoli compactness theorem from [FG95].

Lemma 6.4. Suppose that Y (0) ⊃ Y are Banach spaces with Y compactly embedded in Y (0). Let α ∈ (0,1]
and q ∈ (1,∞) be such that αq > 1 then

W α,q ([0,T ];Y ) ⊂⊂C ([0,T ],Y (0)) (6.14)

and the embedding is compact.

With this result in hand we proceed to the proof of Lemma 6.3:

PROOF OF LEMMA 6.3. Fix any α ∈ (0,1/2) such that αr > 1. According to Lemma 6.4 we have that
both W 1,2([0,T ]; Xm′−1), W r,α([0,T ]; Xm′) are compactly embedded in XS . Therefore, for s > 0, the sets

B 2
s :=

{
u ∈W 1,2([0,T ]; Xm′−1) : ‖u‖W 1,2([0,T ];H m′−1) ≤ s

}
+

{
u ∈W α,r ([0,T ]; Xm′) : ‖u‖W α,r ([0,T ];H m′−1) ≤ s

}
are pre-compact in XS . Since {un ∈ B 2

s } contains{∥∥∥∥un(t )−
∫ t

0
β(‖un‖W m,p )PnPσ(un)dW

∥∥∥∥
W 1,2([0,T ];H m′−1)

≤ s

}
∩

{∥∥∥∥∫ t

0
β(‖un‖W m,p )PnPσ(un)dW

∥∥∥∥
W α,r ([0,T ];H m′−1)

≤ s

}
,

and using Proposition 6.2, estimates (6.10)–(6.11), and the Chebyshev inequality we bound

µn
S ((B 2

s )C ) ≤P
(∥∥∥∥un(t )−

∫ t

0
θR (‖un‖W 1,∞)PnPσ(un)dW

∥∥∥∥
W 1,2([0,T ];H m′−1)

> s

)
+P

(∥∥∥∥∫ t

0
θR (‖un‖W 1,∞)PnPσ(un)dW

∥∥∥∥
W α,r ([0,T ];H m′−1)

> s

)
≤ C

s
,

where C is a universal constant independent of s and n. We infer that µn
S is a tight sequence on X . Now,

since the sequence {µW } is constant, it is trivially weakly compact and hence tight. We may thus finally infer
that the {µn} is tight, completing the proof. �

With this weak compactness in hand we next apply the Skorokhod embedding theorem (cf. [DPZ92])
to a weakly convergent subsequence of {µn}n≥1. We obtain a new probability space (Ω̃,F̃ , P̃) on which we
have a sequence of random elements {(ũn ,W̃ n)}n≥1 converging almost surely in X to an element (ũ,W̃ ), i.e.

ũn → ũ, in C ([0,T ], Xm′−2) almost surely (6.15)

and

W̃ n → W̃ , in C ([0,T ],U0) almost surely. (6.16)

One may verify as in [Ben95] that (ũn ,W̃ n) satisfies the nth order Galerkin approximation (6.1)–(6.2)
relative to the stochastic basis S n := (Ω̃,F̃ , P̃, {F̃ n

t },W̃ n) with F̃ n
t the completion of the σ-algebra generated
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by {(un(s),W n(s)) : s ≤ t }. Using the uniform bound (6.4) and the almost sure convergences (6.15)–(6.16)
we may now show that (ũ,W̃ ) solves the the cut-off system

dũ +θR (‖ũ‖W 1,∞)P (ũ ·∇ũ)d t = θR (‖ũ‖W 1,∞)Pσ(ũ)dW̃ . (6.17)

For the technical details of this passage to the limit we refer to e.g. [DGHT11] where this analysis is carried
out for the primitive equations. Applying these arguments to the Euler equations introduces no additional
difficulties, so we omit further details. More precisely we have established the following:

Proposition 6.5. Fix any m′ > d/2+ 3, r > 2, and R > 0. Suppose that µ0 ∈ Pr (Xm′) is given such that∫
Xm′ ‖u‖r

H m′ dµ0(u) <∞. Then there exists a stochastic basis S := (Ω̃,F̃ , P̃, {F̃t },W̃ ) and an Xm′ valued,
predictable process

ũ ∈ L2(Ω;L∞
loc ([0,∞); Xm′))∩L2(Ω;C ([0,∞), Xm′−2))

with P̃(ũ(0) ∈ ·) =P(u0 ∈ ·) such that

ũ(t )+
∫ t

0
θR (‖ũ‖W 1,∞)P (ũ ·∇ũ)d t = ũ(0)+

∫ t

0
θR (‖ũ‖W 1,∞)Pσ(ũ)dW̃

for every t ≥ 0.

Remark 6.6. The assumption m′ > d/2+ 3 is needed facilitate the passage from (6.1) to (6.17). Indeed,
when passing to the limit we need to handle some stray terms arising due to the cut-off terms involving the
W 1,∞ norm of the solution. These stray terms are of higher order than the other terms in the estimates, and
in order to deal with them we need to have compactness in sufficiently regular spaces. In the analysis above
this compactness is provided by the Arzela-Ascoli type result, Lemma 6.4. In order to apply this lemma we
need estimates on (fractional) time derivatives of un , which in view of (6.7) must be made in Xm′−1. An
additional degree of regularity is then lost in order to obtain a compact embedding in Xm′−1, as required by
Lemma 6.4, and we therefore arrive at the condition m′ > d/2+3.

We also observe that Proposition 6.5 immediately yield new results on the existence of martingale
solutions of the stochastic Euler equation.

Remark 6.7 (Existence of Martingale Solutions). We may show that the pair (ũ,S̃ ), obtained from Propo-
sition 6.5 is a local martingale solution of (1.1)–(1.3) by introducing the stopping time

τ= inf{t ≥ 0: ‖ũ‖W 1,∞ ≥ R}.

Of course, unless ‖ũ(0)‖W 1,∞ < R, i.e. unless µ0({u0 ∈ Xm′ : ‖u0‖W 1,∞ < R}) = 1, we have P̃ (τ= 0) > 0. Such
stopping times τ will also be used further on to infer the existence of solutions in the pathwise case. Note
however that in this case the L∞(Ω) condition may be subsequently removed with a cutting argument, cf.
(6.26)–(6.27) below.

6.4. Uniqueness, the Gyöngy- Krylov lemma, and the existence of strong solutions. Having now
established Proposition 6.5, and guided by the classical Yamada-Wannabe theorem (see [YW71], [WY71]),
we would now expect pathwise solutions to exist once we establish that solutions are “pathwise unique”.

Proposition 6.8 (Pathwise uniqueness). Fix any r > 2, R > 0, and m′ = m + 5, where p ≥ 2 and m >
d/p +1. Assume that σ satisfies (3.1)–(3.3), and suppose (S ,u(1)) and (S ,u(2)) are two global solutions
of (6.17) in the sense of Proposition 6.5, relative to the same stochastic basis S := (Ω,F , {Ft }t≥0, P,W ). If
u(1)(0) = u(2)(0) = u0, a.s, with E‖u0‖r

H m′ <∞, then u(1) and u(2) are indistinguishable i.e.

P
(
u(1)(t ) = u(2)(t );∀t ≥ 0

)= 1. (6.18)

PROOF OF PROPOSITION 6.8. By the assumption on u0 and Proposition 6.5, we have for every T > 0

E

(
sup

t∈[0,T ]
(‖u(1)‖2

H m′ +‖u(2)‖2
H m′ )

)
≤C <∞, (6.19)
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where C is a universal constant depending only on E‖u0‖2
H m′ , R, β, and T . However, continuity in time is

only guaranteed for the H m′−2 norms of u(1) and u(2), and so, in view of the choice of m′, we may define
the collection of stopping times

ξK := inf
{

t ≥ 0: ‖u(1)‖2
W m+1,p +‖u(2)‖2

W m+1,p > K
}

, K > 0.

Observe that due to (6.19) we have ξK →∞ almost surely as K →∞.
Take v = u(1) −u(2). We have

d v +θR (‖u(1)‖W 1,∞)P
(
u(1) ·∇u(1))d t−θR (‖u(2)‖W 1,∞)P

(
u(2) ·∇u(2))d t

= (
θR (‖u(1)‖W 1,∞)Pσ(u(1))−θR (‖u(2)‖W 1,∞)Pσ(u(2))

)
dW .

We now estimate v in W m,p . For any multi-index |α| ≤ m we apply ∂α to the equation for v . With the Itō
lemma in Lp we find

d‖∂αv‖p
Lp =−p

∫
D
∂αv · (θR (‖u(1)‖W 1,∞)∂αP (u(1) ·∇u(1))−θR (‖u(2)‖W 1,∞)∂αP (u(2) ·∇u(2))

) |∂αv |p−2d xd t

+ ∑
k≥1

∫
D

( p

2
|∂αP (θR (‖u(1)‖W m,p )σk (u(1))−θR (‖u(2)‖W m,p )σk (u(2)))|2|∂αv |p−2

+ p(p −2)

2
(∂αv ·P (θR (‖u(1)‖W m,p )σk (u(1))−θR (‖u(2)‖W m,p )σk (u(2))))2|∂αv |p−4

)
d xd t

+p
∑
k≥1

(∫
D
∂αv ·∂αP (θR (‖u(1)‖W 1,∞)σk (u(1))−θR (‖u(2)‖W 1,∞)σk (u(2)))|∂αv |p−2 d x

)
dWk

:=(Jα1 + Jα2 )d t + Jα3 dW .

Using the mean value theorem for θR , the embedding W 1,∞ ⊂W m,p , and Lemma 2.1 we estimate Jα1 as

|Jα1 | ≤C
∣∣θR (‖u(1)‖W 1,∞)−θR (‖u(2)‖W 1,∞)

∣∣ ∣∣(∂αP (u(1) ·∇u(1)),∂αv |∂αv |p−2)∣∣
+C

∣∣(∂αP (u(1) ·∇u(1))−∂αP (u(2) ·∇u(2)),∂αv |∂αv |p−2)∣∣
≤C

∣∣‖u(1)‖W 1,∞ −‖u(2)‖W 1,∞
∣∣‖P (u(1) ·∇u(1))‖W m,p‖v‖p−1

W m,p

+C
∣∣(∂αP (v ·∇u(1)),∂αv |∂αv |p−2)∣∣+C

∣∣(∂αP (u(2) ·∇v),∂αv |∂αv |p−2)∣∣
≤C‖v‖p

W m,p‖u(1)‖W m,p‖u(1)‖W m+1,p +‖v‖p−1
W m,p

(‖v‖L∞‖u(1)‖W m+1,p +‖u(1)‖W 1,∞‖v‖W m,p
)

+C‖v‖p−1
W m,p

(‖u(2)‖W m,p‖v‖W 1,∞ +‖u(2)‖W 1,∞‖v‖W m,p
)

≤C‖v‖p
W m,p

(
(1+‖u(1)‖W m,p )‖u(1)‖W m+1,p +‖u(2)‖W m,p

)
. (6.20)

Using the local Lipschitz condition on σ, i.e. (3.1), we have

|Jα2 | ≤C‖v‖p−2
W m,p‖θR (‖u(1)‖W 1,∞)σ(u(1))−θR (‖u(2)‖W 1,∞)σ(u(2))‖2

Wm,p

≤C‖v‖p−2
W m,p

(
θR (‖u(1)‖W 1,∞)2‖σ(u(1))−σ(u(2))‖2

Wm,p +
∣∣(θR (‖u(1)‖W 1,∞)−θR (‖u(2)‖W 1,∞)

∣∣2 ‖σ(u(2))‖2
Wm,p

)
≤Cβ(‖u(1)‖L∞ +‖u(2)‖L∞)2(1+‖u(2)‖2

W m,p )‖v‖p
W m,p . (6.21)
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For the terms involving Jα3 we make use of the Burkholder-Davis-Gundy inequality in a similar way to (5.12)
and then argue as in (6.21) in order to finally estimate, that for every t ≥ 0

E sup
s∈[0,t ]

∣∣∣∣∣
∫ s∧ξK

0
Jα3 dW

∣∣∣∣∣
≤CE

(∫ t∧ξK

0

∑
k≥1

(∫
D
∂αv ·∂αP ((θR (‖u(1)‖W 1,∞)σk (u(1))−θR (‖u(2)‖W 1,∞)σk (u(2)))|∂αv |p−2 d x

)2

d s

)1/2

≤CE

(∫ t∧ξK

0
‖∂αv‖2(p−1)

Lp ‖θR (‖u(1)‖W 1,∞)σ(u(1))−θR (‖u(2)‖W 1,∞)σ(u(2))‖2
Wm,p d s

)1/2

≤ 1

2
E sup

s∈[0,t∧ξK ]
‖∂αv‖p

Lp +CE
∫ t∧ξK

0
‖v‖p

W m,p d s. (6.22)

We now combine the estimates obtained in (6.20)–(6.22) and sum over all α with |α| ≤ m. We find that for
any fixed K > 0

E sup
s∈[0,t∧ξK ]

‖v‖p
W m,p ≤CE

∫ t∧ξK

0
‖v‖p

W m,p (β(‖u(1)‖L∞ +‖u(2)‖L∞)2 +1)
(
1+‖u(1)‖2

W m+1,p +‖u(2)‖2
W m,p

)
d s

≤C
∫ t

0
E sup

r∈[0,s∧ξK ]
‖v‖p

W m,p d s

where the constant C may depend on K via the definition of the stopping time ξK . By a classical version of
the Grönwall lemma, the monotone convergence theorem and the fact that ξK →∞ as K →∞ we infer that,
for every T ≥ 0

E sup
t∈[0,T ]

‖v‖p
W m,p = 0.

Since T is arbitrary, (6.18) follows, and the proof of uniqueness is therefore complete. �

Remark 6.9. With obvious modifications the above proof can be used to show that if (u(1),τ(1)) and
(u(2),τ(2)) are local pathwise solutions of (1.1)–(1.2) then

P
(
11u(1)(0)=u(2)(0)(u(1)(t )−u(2)(t )) = 0;∀t ∈ [0,τ(1) ∧τ(2)]

)= 1. (6.23)

With uniqueness for (6.17) in hand, in order to establish the existence of pathwise solution, we shall use
the following criteria from [GK96].

Lemma 6.10. Let X be a complete separable metric space and consider a sequence of X valued random
variables {Y j } j≥0. We denote the collection of joint laws of {Y j } j≥1 by {ν j ,l } j ,l≥1, i.e. we take

ν j ,l (E) :=P((Y j ,Yl ) ∈ E), E ∈B(X ×X ).

Then {Y j } j≥1 converges in probability if and only if for every subsequence of joint probabilities laws,
{ν jk ,lk }k≥0, there exists a further subsequence which converges weakly to a probability measure ν such
that

ν({(u, v) ∈ X ×X : u = v}) = 1. (6.24)

With this result in mind let us now return again to the sequence of solutions u j to the system (6.1)
relative to some stochastic basis S = (Ω,F , {Ft }t≥0,P,W ) which we fix in advance. We define sequences
of measures ν j ,l (·) = P((u j ,ul ) ∈ ·) and µ j ,l (·) = P((u j ,ul ,W ) ∈ ·) on the phase spaces XJ = XS ×XS =
C ([0,T ], Xm′−2)×C ([0,T ], Xm′−2), XT = XJ ×C ([0,T ],U0) respectively. With only minor modifications to
the arguments in Lemma 6.3 we see that the collection {µ j ,l } j ,l≥1 is weakly compact. Extracting a convergent
subsequence µ j ,l * µ and invoking the Skorokhod theorem we infer the existence of a probability space
(Ω̃,F̃ , P̃) on which there are defined random elements (ũl , ũl ,W̃ j ,l ) equal in law to µ j ,l and so that

(ũ j , ũl ,W̃ j ,l ) → (ũ, ũ∗,W̃ ), (6.25)
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where the convergence occurs Ω̃ almost surely in XT . As above we infer that each of (ũ,W̃ ) and (ũ∗,W̃ )
are solutions of (6.17) relative to the same stochastic basis S := (Ω̃,F̃ , P̃, {F̃t },W̃ ) with F̃t the completion
of σ algebra generated by {ũ(s), ũ∗(s),W̃ (s)) : s ≤ t }. Define ν(·) = P̃((ũ, ũ∗) ∈ ·) and observe that, due to
(6.25) ν j ,l → ν, weakly. Now Proposition 6.8 implies that ν({(u,u∗) ∈ XJ : u = u∗}) = 1. Here we use
that H m′−2 ⊂ W m,p , and so uniqueness in W m,p (which is proven in Proposition 6.8) implies uniqueness
everywhere, and hence in H m′−2. We may therefore infer (passing if needed to a subsequence) that u j → u
in XS almost surely, and on the original probability space. Having obtained this convergence and referring
again to (6.4) we may thus show that u is a pathwise solution of (6.17). We finally define the stopping time

τ= inf{t ≥ 0: ‖u‖W m,p > R} .

Note that this stopping time is well defined since u ∈ C ([0,∞), Xm′−2) ⊂ C ([0,∞), Xm,p ) for m′ = m + 5.
Hence, relative to the initial fixed stochastic basis S , (u,τ) is a local pathwise solution of the stochastic
Euler equation (1.1)–(1.2), in the sense that u(·∧τ) ∈ L∞

l oc ([0,∞); Xm′)∩C ([0,∞); Xm′−2) and (4.1) holds for
every t ≥ 0.

In order to show that τ> 0 we initially assume ‖u0‖H m′ ≤ M for some deterministic M > 0, and choose
R > C̄ M , where C̄ ≥ 1 is the constant such that ‖u‖W 1,∞ ≤ C̄‖u‖H m′ , in the cut-off function in (6.1). To pass
to the general case ‖u0‖H m′ < ∞ almost surely, we proceed as follows (see e.g. [GHZ09, Section 4.2]).
For k ≥ 0 we define uk

0 = u011k≤‖u0‖Hm′<k+1 and obtain a corresponding local pathwise solution (uk ,τk ) by
applying the above construction with any R > C̄ (k +1) in the cut-off function θR . We then define

u = ∑
k≥0

uk 11k≤‖u0‖Hm′<k+1 (6.26)

τ= ∑
k≥0

τk 11k≤‖u0‖Hm′<k+1 (6.27)

and find that (u,τ) is in fact the local pathwise solution corresponding to the initial condition u0.
For any fixed u0 ∈ Xm′ we next extend the solution (u,τ) to a maximal time of existence ξ (cf. [GHZ09,

MR04, Jac79]). Take E to be the set of all stopping times σ corresponding to a local pathwise solution of
(1.1)–(1.2) with initial condition u0. Let ξ= supE and consider a sequence σk ∈ E increasing to ξ. Due to
the local uniqueness of pathwise solutions we obtain a process u defined on [0,ξ) such that (u,σk ) are local
pathwise solutions. For each r > 0 we now take

ρr = inf
{

t ≥ 0: ‖u(t )‖W 1,∞ > r
}∧ξ.

Note that u is continuous on W 1,∞ and so ρr is a well-defined stopping time. By continuity and uniqueness
arguments we may infer that (u,ρr ) is a local pathwise solution for each r > 0.4 Suppose toward a contra-
diction that, for some T,r > 0 we have P(ξ= ρr ∧T ) > 0. Since (u,ρr ∧T ) is a local pathwise solution then
there exists, another stopping time ζ> ρr ∧T and a process u∗ such that (u∗,ζ) is a local pathwise solution
corresponding to u0, contradicting the maximality of ξ. Hence we have proven that for every T,r > 0 we
have P(ξ = ρr ∧T ) = 0. Observe that on the set {ξ <∞}, by suitably choosing T , we obtain that ρr < ξ for
every r > 0. On this set we hence have supt∈[0,ρr ] ‖u(t )‖W 1,∞ = r for all r > 0, which gives

sup
t∈[0,ξ)

‖u(t )‖W 1,∞ =∞, on the set {ξ<∞}. (6.28)

In summary in this section we have so far constructed maximal local pathwise H m′
solutions, but only

for the non-sharp smoothness regime m′ = m +5, with the solution guaranteed to evolve continuously only
in Xm′−2, and which remains bounded in Xm′ . In the next section we shall use these very smooth solutions
to construct local (maximal) pathwise W m,p solutions for all m > d/p+1, and for all p ≥ 2, which will then
prove Theorem 4.3.

4Note that, for a given r > 0, we may have P(ρr = 0) 6= 0. However, for almost every ω ∈ Ω, there exists r > 0 such that,
ρr (ω) > 0.
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7. Construction of W m,p solutions

For m > d/p + 1 with p ≥ 2, we now establish the local existence of solutions for any initial data
u0 ∈ Xm,p , which is F0 measurable, which concludes the proof of Theorem 4.3. For this purpose we will
adapt a density and stability argument from [KL84, Mas07], which makes use of the very smooth solutions
constructed in Section 6, as approximating solutions. Indeed, when the initial data lies in Xm′ , where
m′ = m +5, we obtained in Section 6 maximal pathwise solutions in the sense of Definition 4.1. In order to
make use of these smooth solutions we define a sequence of regularized initial data

u j
0 = F j−1 u0 (7.1)

where the smoothing operators F j−1 and their properties are recalled in Appendix A below (see also [KL84]).
For technical reasons we assume initially, that ‖u0‖W m,p ≤ M for some deterministic fixed constant M . As in
Section 6, once we obtain the local existence of solutions for each fixed M , this assumption can be relaxed to
the general case via a cutting argument as given in (6.26)–(6.27). Note that in view of Lemma A.1, estimate
(A.2)

sup
j≥1

‖u j
0‖W m,p ≤C‖u0‖W m,p ≤C M (7.2)

where C = C (m, p,D) is a universal constant. The bound (7.2) will be used in a crucial way in the forth-
coming estimates. Since F j−1 is smoothing, {u j

0} j≥1 ⊂ Xm′ , and we obtain from the results in Section 6 a
sequence (u j ,ξ j ) of maximal, pathwise solutions evolving continuously in Xm′−2 which are bounded in Xm′ .
In order to show that this sequence converges to a local Xm,p solution corresponding to the initial condition
u0 we show that, up to some stopping time τ > 0 the sequence {u j } j≥1 is Cauchy and hence convergent in
C ([0,τ); Xm,p ).

To obtain this convergence (along with an associated stopping time τ) we apply an abstract result from
[GHZ09] (and see also [MR04]). For this purpose pick fix any T > 0 and define the sequence of stopping
times

τT
j := inf

{
t ≥ 0: ‖u j (t )‖W m,p ≥ 2+‖u j

0‖W m,p

}
∧T, (7.3)

and let

τT
j ,k = τT

j ∧τT
k (7.4)

for j ,k ≥ 1. Since W m,p is continuously embedded in W 1,∞ it is clear that τT
j < ξ j , where as usual ξ j is the

maximal (stopping) time of existence of u j , i.e.

sup
t∈[0,ξ j ]

‖u j (t )‖W m,p =∞, on the set {ξ j <∞}. (7.5)

From [GHZ09, Lemma 5.1] we recall:

Lemma 7.1 (Abstract Cauchy lemma). For T > 0 and τT
j ,k as defined in (7.4), suppose that we have

lim
k→∞

sup
j≥k

E sup
t∈[0,τT

j ,k ]
‖u j (t )−uk (t )‖W m,p = 0 (7.6)

and

lim
S→0

sup
j≥1

P

 sup
t∈[0,τT

j ∧S]
‖u j (t )‖W m,p > ‖u j

0‖W m,p +1

= 0. (7.7)

Then, there exists a stopping time τ with:

P(0 < τ≤ T ) = 1, (7.8)

and a process predictable process u(·) = u(·∧τ) ∈C ([0,τ], Xm,p ) such that

sup
t∈[0,τ]

‖u jl −u‖W m,p → 0, a.s. (7.9)
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for some subsequence jl →∞. Moreover, the bound

‖u(t )‖W m,p ≤ 2+ sup
j

‖u j
0‖W m,p , a.s. (7.10)

holds uniformly for t ∈ [0,τ].

In view of Lemma 7.1, we may now establish the essential convergence needed for Theorem 4.3 in the
general case by verifying (7.6) and (7.7). To prove (7.6) we fix arbitrary j ,k ≥ 1 and denote v = uk −u j

where v0 = uk
0 −u j

0 . We have

d v +P
(
v ·∇uk +u j ·∇v

)
d t = P (σ(u j )−σ(uk ))dW .

Applying ∂α to this system and then the Itō lemma in Lp we obtain

d‖∂αv‖p
Lp =−p

∫
D
∂αv ·∂αP (v ·∇uk +u j ·∇v)|∂αv |p−2d xd t

+ ∑
l≥1

∫
D

( p

2
|∂αP (σl (u j )−σl (uk ))|2|∂αv |p−2

+ p(p −2)

2
(∂αv ·P (σl (u j )−σl (uk )))2|∂αv |p−4

)
d xd t

+p
∑
l≥1

(∫
D
∂αv ·∂αP (σl (u j )−σl (uk ))|∂αv |p−2 d x

)
dWl

:=(Jα1 + Jα2 )d t + Jα3 dW . (7.11)

Using (7.11), we now estimate v in W m,p . For the nonlinear terms we use Lemma 2.1 and infer∑
α≤m

|Jα1 | ≤C‖P (v ·∇uk )‖W m,p‖v‖p−1
W m,p +

∑
α≤m

|(∂αP (u j ·∇v),∂αv |∂αv |p−2)|

≤C‖v‖p−1
W m,p (‖v‖L∞‖uk‖W m+1,p +‖v‖W m,p‖∇uk‖L∞)

+C‖v‖p−1
W m,p (‖u j‖W 1,∞‖v‖W m,p +‖v‖W 1,∞‖u j‖W m,p )

≤C‖uk‖W m+1,p‖v‖W m−1,p‖v‖p−1
W m,p +C (‖uk‖W m,p +‖u j‖W m,p )‖v‖p

W m,p

≤C‖uk‖p
W m+1,p‖v‖p

W m−1,p +C (‖uk‖W m,p +‖u j‖W m,p +1)‖v‖p
W m,p . (7.12)

Note that the first term in the final inequality prevents one from directly closing the estimates for v in W m,p .
We will therefore need to make further estimates for uk in W m+1,p and v in W m−1,p , cf. (7.16)–(7.17)
below. For the terms involving Jα2 we use the local Lipschitz condition (3.1) and obtain

∑
α≤m

|Jα2 | ≤C‖v‖p−2
W m,p

( ∑
α≤m

∫
D

(∑
l≥1

|∂αP (σl (u j )−σl (uk ))|2
)p/2)2/p

≤C‖v‖p−2
W m,p‖P (σ(u j )−σ(uk ))‖2

Wm,p ≤Cβ(‖uk‖L∞ +‖u j‖L∞)2‖v‖p
W m,p . (7.13)

Finally, estimating in a similar manner to (5.12), we find that for any stopping time τ,

E

(
sup

s∈[0,τ]

∣∣∣∣∫ s

0
Jα3 dW

∣∣∣∣
)
≤CE

(∫ τ

0

∑
k≥1

(∫
D
∂αv ·∂αP (σl (u j )−σl (uk ))|∂αv |p−2 d x

)2

d s

)1/2

≤1

2
E sup

s∈[0,τ]
‖∂αv‖p

Lp +CE
∫ τ

0
β(‖uk‖L∞ +‖u j‖L∞)2‖v‖p

W m,p d s. (7.14)
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Combining the estimates obtained in (7.12)–(7.14) and recalling the definition of τT
j ,k in (7.4) we find that

E

 sup
[0,τT

j ,k∧t ]
‖v‖p

W m,p

≤2E‖v0‖p
W m,p +CE

∫ τT
j ,k∧t

0

(
‖u j‖W m,p +‖uk‖W m,p +β(‖uk‖L∞ +‖u j‖L∞)2

)
‖v‖p

W m,p d s

+CE
∫ τT

j ,k∧t

0

(
‖uk‖p

W m+1,p‖v‖p
W m−1,p

)
d s

≤2E‖v0‖p
W m,p +C

∫ t

0

E sup
[0,τT

j ,k∧s]
‖v‖p

W m,p +E sup
[0,τT

j ,k∧s]
(‖v‖p

W m−1,p‖uk‖p
W m+1,p )

d s

where C is a positive constant that depends on M and β but is independent of j ,k. By an application of the
classical Grönwall lemma we obtain that

E

 sup
[0,τT

j ,k ]
‖uk −u j‖p

W m,p

= E
 sup

[0,τT
j ,k ]

‖v‖p
W m,p

≤C

E‖uk
0 −u j

0‖
p
W m,p +E sup

[0,τT
j ,k ]

(‖v‖p
W m−1,p‖uk‖p

W m+1,p )


where C =C (m, p,D, M ,T ) is independent of both j ,k. Observe that, in view of Lemma A.1, estimate (A.5),
and applying the dominated convergence theorem we conclude that sup j≥k E‖uk

0 −u j
0‖

p
W m,p goes to zero as

k →∞. As such, (7.6) will follow once we show that

lim
k→∞

sup
j≥k

E sup
[0,τT

j ,k ]
(‖v‖p

W m−1,p‖uk‖p
W m+1,p ) = 0. (7.15)

With this goal of establishing (7.15) in mind, let us determine d(‖v‖p
W m−1,p‖uk‖p

W m+1,p ). We have cf.
(5.9) and (7.11) that

d‖uk‖p
W m+1,p = (I1 + I2)d t + I3dW , (7.16)

d‖v‖p
W m−1,p = (J1 + J2)d t + J3dW , (7.17)

where, to make the notation less cumbersome, we take

Il =
∑

|α|≤m+1
Iαl , and Jl =

∑
|α|≤m−1

Jαl for l = 1,2,3.

The elements Iαl are defined as in (5.9) (with u replaced with uk throughout) and Jαl are as in (7.11). By an
application of the Itō product rule we find that

d(‖v‖p
W m−1,p‖uk‖p

W m+1,p )

=‖v‖p
W m−1,p d‖uk‖p

W m+1,p +‖uk‖p
W m+1,p d‖v‖p

W m−1,p +d‖v‖p
W m−1,p d‖uk‖p

W m+1,p

=
(
‖v‖p

W m−1,p (I1 + I2)+‖uk‖p
W m+1,p (J1 + J2)+K

)
d t +

(
‖v‖p

W m−1,p I3 +‖uk‖p
W m+1,p J3

)
dW ,

where K is the term arising from I3dW J3dW and is given by

K = p2
∑
l≥1

( ∑
|α|≤m+1

∫
D
∂αuk ·∂αPσl (uk )|∂αuk |p−2 d x

)( ∑
|α|≤m−1

∫
D
∂αv ·∂αP (σl (u j )−σl (uk ))|∂αv |p−2 d x

)
.

In view of the estimates carried out in Section 5 (cf. (5.10)–(5.11)) and making use of the assumption (3.2)
we immediately infer that∣∣∣‖v‖p

W m−1,p (I1 + I2)
∣∣∣≤C (β(‖uk‖L∞)2 +‖uk‖W 1,∞)‖uk‖p

W m+1,p‖v‖p
W m−1,p +Cβ(‖uk‖L∞)2‖v‖p

W m−1,p . (7.18)
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We next treat the drift terms in (7.17). For J1, recalling that P = I −Q we write

|J1| ≤ p
∑

|α|≤m−1

∣∣∣∣∫
D
∂αv ·∂αP (v ·∇uk +u j ·∇v)|∂αv |p−2d x

∣∣∣∣
≤C‖v‖p−1

W m−1,p‖P (v ·∇uk )‖W m−1,p +C
∑

|α|≤m−1

∣∣∣∣∫
D
∂αv ·∂α(u j ·∇v)|∂αv |p−2d x

∣∣∣∣
+C

∑
|α|≤m−1

∣∣∣∣∫
D
∂αv ·∂αQ(u j ·∇v)|∂αv |p−2d x

∣∣∣∣
= J1,1 + J1,2 + J1,3 (7.19)

The right side of the above estimate may be bounded as follows. To bound J1,1 we use Lemma 2.1 and
obtain

J1,1 ≤C‖v‖p−1
W m−1,p

(
‖v‖L∞‖uk‖W m,p +‖v‖W m−1,p‖uk‖W 1,∞

)
≤C‖v‖p

W m−1,p‖uk‖W m,p . (7.20)

For the other two terms on the right side of (7.19) we cannot estimate as in Lemma 2.1 directly; we would
obtain bound of the type ‖u j‖W m−1,p‖v‖W m,p‖v‖p−1

W m−1,p , which would prevents us from closing the estimates
involving ‖v‖p

W m−1,p . To bound J1,2 we we use the Leibniz rule, the Hölder and Gagliardo-Nirenberg in-
equalities. There is only one non-standard term ‖∂αu j ·∇v‖Lp , which is bounded as

∑
|α|≤m−1

‖∂αu j ·∇v‖Lp ≤C‖u j‖W m−1,q‖∇v‖Lr ≤ ‖u j‖W m,p‖v‖W m−1,p ,

where q = pd/(d −p), r = pq/(q −p) = d if p < d , and q =∞, r = p if p ≥ d . The other terms are bounded
as in Lemma 2.1, and we obtain

J1,2 ≤C‖v‖p
W m−1,p‖u j‖W m,p . (7.21)

Lastly, the “pressure term” J1,3 is estimated using the the Hölder inequality, the Agmon-Douglis-Nirenberg
estimate (2.6), and the Gagliardo-Nirenberg inequality as

J1,3 ≤‖Q(u j ·∇v)‖W m−1,p‖v‖p−1
W m−1,p

≤C (‖∂i u j
l ∂l vi‖W m−2,p +‖u j v‖W m−1,p )‖v‖p−1

W m−1,p ≤C‖v‖p
W m−1,p‖u j‖W m,p . (7.22)

Combining (7.20) –(7.22) we conclude

|J1| ≤C‖v‖p
W m−1,p (‖u j‖W m,p +‖uk‖W m,p ). (7.23)

For J2 we find, as above in (7.13) that

|J2| ≤C‖v‖p−2
W m−1,p‖P (σ(u j )−σ(uk ))‖2

Wm−1,p ≤Cβ(‖uk‖L∞ +‖u j‖L∞)2‖v‖p
W m−1,p . (7.24)

Combining (7.23)–(7.24) we find∣∣∣‖uk‖p
W m+1,p (J1 + J2)

∣∣∣≤C (β(‖uk‖L∞ +‖u j‖L∞)2 +‖u j‖W m,p +‖uk‖W m,p )‖uk‖p
W m+1,p‖v‖p

W m−1,p . (7.25)
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The term K is estimated using the Hölder and Minkowski inequalities followed by the standing assumption
on σ, (3.1),

|K | ≤C

(∑
l≥1

( ∑
|α|≤m+1

∫
D
|∂αPσl (uk )||∂αuk |p−1 d x

)2)1/2

(∑
l≥1

( ∑
|α|≤m−1

∫
D
|∂αP (σl (u j )−σl (uk ))||∂αv |p−1 d x

)2)1/2

≤C
∑

|α|≤m+1

∫
D

(∑
l≥1

|∂αPσl (uk )|2
)1/2

|∂αuk |p−1 d x

∑
|α|≤m−1

∫
D

(∑
l≥1

|∂αP (σl (u j )−σl (uk ))|2
)1/2

|∂αv |p−1 d x

≤C‖uk‖p−1
W m+1,p

( ∑
|α|≤m+1

∫
D

(∑
l≥1

|∂αPσl (uk )|2
)p/2

d x

)1/p

‖v‖p−1
W m−1,p

( ∑
|α|≤m−1

∫
D

(∑
l≥1

|∂αP (σl (u j )−σl (uk ))|2
)p/2

d x

)1/p

≤C‖uk‖p−1
W m+1,p‖Pσ(uk )‖Wm+1,p‖v‖p−1

W m−1,p‖P (σ(u j )−σ(uk ))‖Wm−1,p

≤Cβ(‖uk‖L∞ +‖u j‖L∞)2
(
‖uk‖p

W m+1,p‖v‖p
W m−1,p +‖v‖p

W m−1,p

)
. (7.26)

To treat the stochastic terms we proceed similarly to (5.12) and find that for any stopping time τ

E

(
sup

s∈[0,τ]

∣∣∣∣∫ s

0
‖uk‖p

W m+1,p J3dW

∣∣∣∣
)

≤CE

(∫ τ

0
‖uk‖2p

W m+1,p

∑
l≥1

( ∑
|α|≤m−1

∫
D
|∂αP (σl (u j )−σl (uk ))||∂αv |p−1 d x

)2

d s

)1/2

≤CE

∫ τ

0
‖uk‖2p

W m+1,p

( ∑
|α|≤m−1

∫
D

(∑
l≥1

|∂αP (σl (u j )−σl (uk ))|2
)1/2

|∂αv |p−1 d x

)2

d s

1/2

≤CE

(∫ τ

0
‖uk‖2p

W m+1,p‖P (σ(u j )−σ(uk ))‖2
Wm−1,p‖v‖2(p−1)

W m−1,p d s

)1/2

≤ 1

4
E sup

s∈[0,τ]

(
‖v‖p

W m−1,p‖uk‖p
W m+1,p

)
+CE

∫ τ

0
β(‖uk‖L∞ +‖u j‖L∞)2‖v‖p

W m−1,p‖uk‖p
W m+1,p d s. (7.27)

Similarly to (7.27) above we also obtain

E

(
sup

s∈[0,τ]

∣∣∣∣∫ s

0
‖v‖p

W m−1,p I3dW

∣∣∣∣
)

≤CE

(∫ τ

0
‖v‖2p

W m−1,p‖P (σ(uk ))‖2
Wm+1,p‖uk‖2(p−1)

W m+1,p d s

)1/2

≤ 1

4
E sup

s∈[0,τ]

(
‖v‖p

W m−1,p‖uk‖p
W m+1,p

)
+CE

∫ τ

0
β(‖uk‖L∞)2‖v‖p

W m−1,p (‖uk‖p
W m+1,p +1)d s. (7.28)
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Summarizing, from the estimates (7.18), (7.25)–(7.28), and the definition of τT
n,m in (7.3) we find that

E

 sup
t∈[0,τT

j ,k∧t ]
‖v‖p

W m−1,p‖uk‖p
W m+1,p


≤ 2E

(
‖v0‖p

W m−1,p‖uk
0‖p

W m+1,p

)
+CE

∫ t

0

 sup
t∈[0,τT

j ,k∧s]

(
‖v‖p

W m−1,p‖uk‖p
W m+1,p

)
+ sup

t∈[0,τT
j ,k∧s]

‖v‖p
W m−1,p

d s

for any t > 0 where the constant C depends on M , β and the data but not on j , k. Thus, again invoking the
Grönwall lemma finally conclude that

E

 sup
t∈[0,τT

j ,k ]
‖uk‖p

W m+1,p‖v‖p
W m−1,p


≤CE

(
‖uk

0‖p
W m+1,p‖uk

0 −u j
0‖

p
W m−1,p

)
+CE

 sup
t∈[0,τT

j ,k ]
‖uk −u j‖p

W m−1,p

 (7.29)

where the constant C is independent of j ,k. By the dominated convergence theorem (for (Ω,F ,P)) and
making use of the properties of the smoothing operator Fε, cf. (A.3) and (A.6), we find

lim
k→∞

sup
j≥k

E
(
‖uk

0‖p
W m+1,p‖uk

0 −u j
0‖

p
W m−1,p

)
≤C lim

k→∞
sup
j≥k

E
(
‖u0‖p

W m,p kp‖uk
0 −u j

0‖
p
W m−1,p

)
= 0.

To handle the second term in (7.29) we refer back to (7.17) and the estimates in (7.23)–(7.24). The sto-
chastic terms involving J3 are handled in a similarly to (7.27) (and also cf. (5.12) above). Combining these
observation, using the Grönwall inequality and the properties of Fε we finally infer:

lim
k→∞

sup
j≥k

E

 sup
t∈[0,τT

j ,k ]
‖u j −uk‖p

W m−1,p

= 0. (7.30)

With this final observation in place we have now established (7.15) and hence the first requirement (7.6) of
Lemma 7.1.

To establish the second condition (7.7) required by Lemma 7.1, we return to (5.9). We find that, for any
k ≥ 1 and S > 0

sup
t≤[0,τT

k ∧S]
‖uk (t )‖p

W m,p ≤ ‖uk
0‖p

W m,p +
∑

|α|≤m

∫ τT
k ∧S

0
|Iα1 + Iα2 |d t + sup

t≤[0,τT
k ∧S]

∣∣∣∣∣
∫ t

0

∑
|α|≤m

Iα3 dW

∣∣∣∣∣ ,

and hence

P

(
sup

t≤[0,τT
k ∧S]

‖uk (t )‖p
W m,p > ‖uk

0‖p
W m,p +1

)

≤P
( ∑
|α|≤m

∫ τT
k ∧S

0
|Iα1 + Iα2 |d t > 1

2

)
+P

(
sup

t≤[0,τT
k ∧S]

∣∣∣∣∣
∫ t

0

∑
|α|≤m

Iα3 dW

∣∣∣∣∣> 1

2

)
. (7.31)

For the first term on the right of (7.31) we apply the estimates in (5.10)–(5.11) and then the Chebyshev
Inequality and find

P

( ∑
|α|≤m

∫ τT
k ∧S

0
|Iα1 + Iα2 |d t > 1

2

)
≤P

(∫ τT
k ∧S

0
C (β(‖uk‖L∞)2 +‖uk‖W m,p )‖uk‖p

W m,p d t > 1

2

)

≤CE
∫ τT

k ∧S

0
(β(‖uk‖L∞)2 +‖uk‖W m,p )‖uk‖p

W m,p d t ≤C S, (7.32)
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where the constant C =C (m, p, M ,β,D) is independent of k and S. With Doob’s inequality, the Itō Isometry
and the integral Minkowski inequality we estimate the second term

P

(
sup

t≤[0,τT
k ∧S]

∣∣∣∣∣
∫ t

0

∑
|α|≤m

Iα3 dW

∣∣∣∣∣> 1

2

)
≤4E

(∫ τT
k ∧S

0

∑
|α|≤m

Iα3 dW

)2

≤CE
∫ τT

k ∧S

0

∑
|α|≤m

∑
l≥1

(∫
D
∂αuk ·∂αPσl (uk )|∂αuk |p−2 d x

)2

d t

≤CE
∫ τT

k ∧S

0
β(‖uk‖L∞)2(1+‖uk‖2p

W m,p )d t ≤C S, (7.33)

where again the constant C is independent of S and k. With (7.31)–(7.33) we now conclude the proof of the
second item in Lemma 7.1, i.e. (7.7).

Having finally established both (7.6) and (7.7), we apply Lemma 7.1 to infer the existence of a strictly
positive stopping time τ, a subsequence {u jl }l≥1 of {u j } j≥1, and a predictable process u such that, up to a
set of measure zero, u jk converges to u in C (0,τ; Xm,p ) and supt∈[0,τ] ‖u‖W m,p ≤C <∞. We may infer that
(u,τ) is a local pathwise solution of (1.1)–(1.3) in the sense of Definition 4.1. Note that, in order to initially
obtain this u we have had impose the almost sure bound on the initial data, u0 in (7.2). This restriction is
easily removed with the cutting argument as employed in Section 6 (cf. (6.26)–(6.27)). We may pass from
the case of local to maximal pathwise solutions as given in Definition 4.2 via maximality arguments similar
to those at the end of Section 6, in (6.28). Recall that this maximality argument involves considering the
set of all stopping times up to which the solution exists. We then show by contradiction that the supremum
of all these stopping times yields the maximal time of existence of the solution (see Section 6 for further
details). The proof of Theorem 4.3 is now complete.

8. Global existence in the two-dimensional case for additive noise

In this section we establish the global existence of solutions to (1.1)–(1.3) in dimension two forced by
an additive noise. Note that, while the local existence of solutions for (1.1)–(1.3) in the case of a general
ω dependent additive noise (cf. (3.4) above), is not covered under the proof of local existence given here,
equations with additive noise can be treated “pathwise” via a simple change of variables. In this way the
local existence follows from more classical arguments. See Remark 4.5 above and the proof of Lemma 8.1
below.

Recalling the a priori estimates in Section 5, we have that, for any m > d/p +1,

d‖u‖p
W m,p = X d t +Z dW , (8.1)

where X and Z are defined according to (5.9). Making use of the estimates in (5.10)–(5.11), we have

|X | ≤C (1+‖u‖W 1,∞)‖u‖p
W m,p +C‖σ‖p

Wm,p , (8.2)

for some universal constant C =C (m,d ,D). For Z we observe with similar estimate to (5.12) that

‖Z‖L2 ≤
(∑

k≥1

(∫
D
∂αu ·∂αPσk |∂αu|p−2 d x

)2
)1/2

≤C‖σ‖Wm,p‖u‖p−1
W m,p . (8.3)

Thus, in view of (8.2)–(8.3), to close the estimates for (8.1) we make use of the Beale-Kato-Majda type
inequality

‖u‖W 1,∞ ≤C2‖u‖L2 +C2‖curlu‖L∞

(
1+ log+

( ‖u‖W m,p

‖curlu‖L∞

))
, (8.4)

where C2 is a universal constant depending only on D, m, p. See e.g. [Fer93] for the simply-connected
bounded domain case. As such the proof of global existence requires us to obtain uniform bound on the
vorticity of the solution in L∞ and also for ‖u‖L2 and to establish a stochastic analogue of the log-Grönwall
lemma. The latter is developed in Appendix C below (and see also related results in [FZ05]).
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In order to carry out suitable estimates for w = curlu we apply ∇⊥ = (∂2,−∂1) to (4.1) and obtain the
evolution:

d w +u ·∇wd t = ρdW , (8.5)

w =∇⊥ ·u, ∇·u = 0, (8.6)

where for ease of notation we denoted ρ = ∇⊥ ·σ. Note that crucially, in contrast to the three dimensional
case, no vortex stretching term w ·∇u appears in (8.5). For w we now establish the following result:

Lemma 8.1 (Non-blow-up of the energy and the supremum of vorticity). Fix m > 2/p +1, consider any
σ that satisfies (3.4), and any u0 ∈ Xm,p . Take (u,ξ) be the maximal solution corresponding to this σ and
u0. Then we have

sup
t∈[0,T∧ξ]

‖u‖2
L2 + sup

t∈[0,T∧ξ]
‖w‖L∞ <∞, (8.7)

almost surely, for each T > 0.

PROOF OF LEMMA 8.1. The bound for ‖u‖L2 required in (8.7) follows directly in view of the cancela-
tion (P (u ·∇u),u)L2 = 0. cf. Section 5.1.

We turn to estimate the vorticity term (8.7). Since (8.5) is forced with an the additive noise we have the
option to introduce the stochastic process

d z = ρdW , z(0) = 0 (8.8)

and then consider the evolution of w̃ := w−z. The equation for w̃ is the random partial differential equation

∂t w̃ +u ·∇w̃ +u ·∇z = 0 (8.9)

w̃ =∇⊥ ·u − z, ∇·u = 0, (8.10)
w̃(0) = w0. (8.11)

This system can be treated pathwise with the methods of ordinary calculus. Multiplying (8.9) by w̃ |w̃ |p−2

and integrating over D we obtain
d

d t
‖w̃‖Lp ≤ ‖u‖Lp‖∇z‖L∞

where we have used the divergence-free nature of u. Integrating in time and sending p to ∞, the above
estimate gives

‖w̃(t )‖L∞ ≤ ‖w0‖L∞ +
∫ t

0
‖u(s)‖L∞‖∇z(s)‖L∞ d s. (8.12)

We can use the two-dimensional Sobolev embedding and the Biot-Savart law to bound

‖u‖L∞ ≤C‖∇u‖L4 +C‖u‖L2 ≤C‖w‖L4 +C‖u‖L2 , (8.13)

where C =C (D). Thus, in view of (8.12)–(8.13) and the fact that w = w̃+z, the proof will be complete once
we obtain suitable bounds for the quantities ‖w‖L4 and ‖∇z‖L∞ .

In order to obtain bounds on ‖w‖L4 we apply the Itō formula in L4 to (8.5) an obtain

d‖w‖4
L4 =

∫
D

(
2|w |2 ∑

k≥1
|ρk |2 +4

∑
k≥1

(wρk )2

)
d xd t +4

∑
k≥1

(∫
D
|w |2wρk d x

)
dWk , (8.14)

where we have used the cancelation (u ·∇w, w |w |2)L2 = 0. Let

σR = inf
{

t ≥ 0: ‖w(t )‖L4 > R
}∧ inf

{
t ≥ 0:

∫ t

0
‖ρ‖2

W0,4 d s > R

}
∧ξ. (8.15)

From (3.4) and the definition of ξ as the maximal time of existence, it follows that σR → ξ almost surely as
R →∞. In addition, for every T > 0 and a.s. ω, if R is sufficiently large we have that σR ∧T = ξ∧T .
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Upon taking a supremum in time in (8.14), and applying the Hölder inequality in the last term, we obtain
on the set {σR > 0}

sup
t∈[0,σR∧T ]

‖w(t )‖4
L4

≤ ‖w0‖4
L4 +4 sup

t∈[0,σR∧T ]

∣∣∣∣∣∑
k≥1

∫ t

0

∫
D
|w |2w ·ρk d xdWk

∣∣∣∣∣+4
∫ σR∧T

0
‖w(t )‖2

L4‖ρ‖2
W0,4 d t

≤ ‖w0‖4
L4 +4 sup

t∈[0,σR∧T ]

∣∣∣∣∣∑
k≥1

∫ t

0

∫
D
|w |2w ·ρk d xdWk

∣∣∣∣∣+ 1

4
sup

t∈[0,σR∧T ]
‖w(t )‖4

L4 +C

(∫ σR∧T

0
‖ρ‖2

W0,4 d t

)2

.

To estimate the stochastic integral terms we find with the Burkholder-Davis-Gundy inequality, (2.14) that

E sup
t∈[0,σR∧T ]

∣∣∣∣∣11σR>0
∑
k≥1

∫ t

0

∫
D
|w |2w ·ρk d xdWk

∣∣∣∣∣
≤CE

(
11σR>0

∫ σR∧T

0

∑
k≥1

(∫
D
|w |3|ρk |d x

)2

d t

)1/2

≤CE

11σR>0

∫ σR∧T

0

(∫
D
|w |3

(∑
k≥1

|ρk |2
)1/2

d x

)2

d t

1/2

≤CE

(
11σR>0

∫ σR∧T

0
‖w‖6

L4‖ρ‖2
W0,4 d t

)1/2

≤ 1

4
E

(
11σR>0 sup

t∈[0,σR∧T ]
‖w‖4

L4

)
+CE

(
11σR>0

∫ σR∧T

0
‖ρ‖2

W0,4 d t

)2

.

Combining the above observations we find E(11σR>0 supt∈[0,σR∧T ] ‖w‖4
L4 ) ≤C , by recalling the definition of

σR (cf. (8.15)), for some C > 0 which depends on R. Since ‖w0‖L4 < ∞ almost surely we conclude that
supt∈[0,σR∧T ] ‖w‖4

L4 <∞ almost surely for all R > 0. Thus we finally conclude that for almost every ω that

sup
t∈[0,ξ∧T ]

‖w‖4
L4 <∞. (8.16)

We now turn to make estimates for z. In view of the Sobolev embedding W 1,∞ ⊂W m,p and the defini-
tion of z, given in (8.8), we estimate using (2.14)

E sup
t∈[0,T ]

∥∥∥∥∫ t

0
ρdW

∥∥∥∥p

W m,p
≤ ∑

|α|≤m

∫
D
E sup

t∈[0,T ]

∣∣∣∣∫ t

0
∂αρdW

∣∣∣∣p

d x

≤C
∑

|α|≤m

∫
D
E

(∫ T

0
|∂αρ|2L2

d t

)p/2

d x ≤CE
∫ T

0
‖ρ‖p

Wm,p d t .

We therefore infer that

E sup
t∈[0,T ]

‖z(t )‖2
W 1,∞ ≤C

(
E sup

t∈[0,T ]

∥∥∥∥∫ t

0
ρdW

∥∥∥∥p

W m,p

)p/2

<∞. (8.17)
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Taking the supremum in time over [0,T ∧ξ] for (8.12), and applying (8.13), we obtain for almost every
ω that

sup
t∈[0,T∧ξ]

‖w̃(t )‖L∞

≤ ‖w0‖L∞ +C

(
sup

t∈[0,T∧ξ]
‖u(t )‖L2

∫ T

0
‖∇z(t )‖L∞ d t

)
+C

(
sup

t∈[0,T∧ξ]
‖w(t )‖L4

∫ T

0
‖∇z(t )‖L∞ d t

)

≤ ‖w0‖L∞ +C

(
sup

t∈[0,T∧ξ]
‖u(t )‖2

L2 + sup
t∈[0,T∧ξ]

‖w(t )‖2
L4 + sup

t∈[0,T ]
‖z(t )‖2

W 1,∞

)
, (8.18)

where C may depend on T . Given the bounds established in (8.16)–(8.17), and since by construction w =
w̃ + z, referring once more to (8.17), the proof of the lemma is now complete. �

With the estimates in Lemma 8.1 in hand we apply the results established in Appendix C below, to show
that (u,ξ) is a global pathwise solution.

PROOF OF THEOREM 4.4. We need to verify that the conditions in Lemma C.1 are satisfied. In what
follows we will assume, without loss of generality that ‖u0‖W m,p ≤ M , for some deterministic constant
M > 0. Indeed, after we obtain global existence in this special case, the general case, u0 ∈ Xm,p a.s, follows
from a cutting argument as in Section 6, see (6.26)–(6.27).

Define the collection of stopping times

τR := inf
{

t ≥ 0: ‖u(t )‖2
L2 +‖w(t )‖L∞ > R

}∧ξ, (8.19)

where we recall that w = curlu. Obviously, τR is increasing in R, almost surely. We need to verify that (C.3)
is satisfied. In other words, we need to show

P

(⋂
R

{τR < T ∧ξ}

)
= 0, (8.20)

for every T > 0. For this purpose we make use of the conclusions of Lemma 8.1. Owing to the fact that τR

is increasing in R and (8.7) we infer

P

( ⋂
R>0

{τR < T ∧ξ}

)
= lim

R∗→∞
P

( ⋂
0<R≤R∗

{τR < T ∧ξ}

)
= lim

R∗→∞
P (τR∗ < T ∧ξ)

≤ lim
R∗→∞

P

(
sup

t∈[0,T∧ξ]

(‖u‖2
L2 +‖w‖L∞

)> R∗
)

≤P
( ⋂

R∗>0

{
sup

t∈[0,T∧ξ]

(‖u‖2
L2 +‖w‖L∞

)> R∗
})

= 0,

for every T > 0.
Returning to the a priori estimates (8.1)–(8.3) we now define the quantities

Y = 1+‖u‖p
W m,p , η= (1+‖σ‖Wm,p )p . (8.21)

Of course, Y satisfies dY = X d t + Z dW . Combining (8.2), (8.4), and the definition of τR , we find that for
each R there exists a deterministic constant KR such that on [0,τR ] we have

|X | ≤C

(
1+‖u‖L2 +‖w‖L∞

(
1+ log+

(‖u‖W m,p

‖w‖L∞

)))
‖u‖p

W m,p +C‖σ‖p
Wm,p

≤C
(
2+R1/2 +R +‖w‖L∞ log+ ‖u‖W m,p

)
Y +C‖σ‖p

Wm,p

≤ KR (1+ logY )Y +C (1+‖σ‖Wm,p )p , (8.22)

and from (8.3) we in addition obtain

‖Z‖L2 ≤C‖σ‖Wm,p‖u‖p−1
W m,p ≤C (1+‖σ‖Wm,p )Y (p−1)/p . (8.23)
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We now have all the ingredients need to apply Lemma C.1. More precisely we take Y and η according
to (8.21), r = 1/p, ξ as the maximal time of existence of u and τR according to (8.19). Having established
(8.20)–(8.23) and recalling the standing assumption (3.4) we infer from Lemma C.1 that indeed ξ=∞. The
proof of Theorem 4.4 is therefore complete. �

9. Global existence for linear multiplicative noise

In this section we consider the stochastic Euler equations in two and three dimensions, with linear
multiplicative noise

du +P (u ·∇u)d t =αudW, (9.1)

where in this case α ∈ R and W is a single 1D Brownian motion. This forcing regime is covered under the
theory developed in the previous sections, so we are guaranteed the existence of a local pathwise solution in
the sense of Definition 4.1 (cf. Theorem 4.3).

As in the case of an additive noise above we may transform (9.1) to an random PDE. To this end consider
the (real valued) stochastic process

γ(t ) = e−αWt . (9.2)

Due to the Itō formula we find the γ satisfies

dγ=−αγdW + 1

2
α2γd t , γ(0) = 1.

By apply the Itō product rule we therefore find that

d(γu) = γdu +udγ+dγdu

=−γP (u ·∇u)d t +αγudW −αγudW + 1

2
α2γud t −α2γud t

=−γP (u ·∇u)d t − 1

2
α2(γu)d t . (9.3)

By defining v = γu we therefore obtain the system

∂t v + α2

2
v +γ−1P (v ·∇v) = 0, (9.4)

v(0) = u0. (9.5)

Fix p ≥ 2, and m > d/p +1 throughout the rest of this section. First, using the standard estimates on the
nonlinear term (cf. (5.4) for p = 2, or (5.10) for p > 2), we may obtain

d

d t
‖v‖W m,p + α2

2
‖v‖W m,p ≤C1γ

−1‖v‖W 1,∞‖v‖W m,p (9.6)

for a positive constant C1 =C1(m, p,D). In order to bound the right side of (9.6) we recall the Beale-Kato-
Majda-type inequality (cf. (8.4))

‖v‖W 1,∞ ≤C2‖v‖L2 +C2‖w‖L∞

(
1+ log+

(‖v‖W m,p

‖w‖L∞

))
(9.7)

where the constant C2 = C2(m, p,D) is fixed, and as usual w = curl v . Due to the cancellation property
(P (v ·∇v), v) = 0, it follows directly from (9.4) that

‖v(t )‖L2 ≤ ‖v0‖L2 e−α
2t/2 (9.8)

for all t ≥ 0. On the other hand, obtaining an a priori estimate on ‖w(t )‖L∞ is more delicate. For this
purpose, we return to (9.4) and consider the equation satisfied by w = curl v , i.e.

∂t w + α2

2
w +γ−1v ·∇w =

{
0, for d = 2,

γ−1w ·∇v, for d = 3.
(9.9)
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Multiplying (9.9) by w |w |p−2, integrating in x, and making use of the divergence-free nature of v , we obtain

1

p

d

d t
‖w‖p

Lp + α2

2
‖w‖p

Lp ≤
{

0, for d = 2,

γ−1‖v‖W 1,∞‖w‖p
Lp , for d = 3.

Upon canceling ‖w‖p−1
Lp , and sending p →∞ in the above estimate we have

d

d t
‖w‖L∞ + α2

2
‖w‖L∞ ≤

{
0, for d = 2,

γ−1‖v‖W 1,∞‖w‖L∞ , for d = 3.
(9.10)

In view of the different bounds obtained in (9.10) in 2D versus 3D, we now treat the two cases separately.
For this purpose it is convenient to first fix the Sobolev embedding constant C3 =C3(m, p,D) such that

‖v‖L2 +‖v‖W 1,∞ ≤C3‖v‖W m,p (9.11)

and to let C̄ =C1C2 +C3 +1.

9.1. The two-dimensional case. In two dimensions we prove the global in time existence of smooth
pathwise solutions, as stated in Theorem 4.6. From (9.10) we immediately obtain that the function

z(t ) = ‖w(t )‖L∞ exp

(
α2t

2

)
is such that

z(t ) ≤ z(0) = ‖w0‖L∞ (9.12)

for all t ≥ 0. Therefore, letting

y(t ) = ‖v(t )‖W m,p exp

(
α2t

2

)
we obtain from (9.6)–(9.8), and (9.12) that

d y

d t
≤ C̄γ−1 y

(
‖v(t )‖L2 +‖w(t )‖L∞

(
1+ log+

(
y(t )

‖w(t )‖L∞ exp(α2t/2)

)))
≤ C̄γ−1 exp

(
−α

2t

2

)
y

(
‖v0‖L2 +‖w0‖L∞ + z log+

( y

z

))
. (9.13)

A short computation reveals that z log+(y/z) ≤ 1/e + z log+(y). In view of (9.12), and defining ρα(t ) =
exp

(
αWt −α2t/2

)
estimate (9.13) gives

d y

d t
≤ C̄ραy

(‖v0‖L2 +‖w0‖L∞ +1+‖w0‖L∞ log+(y)
)

. (9.14)

By the law of iterated logarithms we have supt≥0ρα <∞ a.s. for every α> 0. Hence, (9.14) implies

d y

d t
≤ Ay

(
1+ log+(y)

)
. (9.15)

where

A = C̄

(
sup
t≥0

ρα

)
(‖v0‖L2 +‖w0‖L∞ +1). (9.16)

Let Y (t ) = log(1+ y(t )). We obtain from (9.15) that

dY

d t
≤ A (1+Y (t ))

for all t ≥ 0. This gives Y (t ) ≤ Y (0)exp(t A)+ t A exp(t A), and hence

y(t ) ≤ (1+ y0)exp(t A) exp
(
t A exp(t A)

)
. (9.17)
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Recalling the definition of y(t ), we note that ‖u(t )‖W m,p = γ−1(t )y(t )exp(−α2t/2) = ρα(t )y(t ). Thus,
estimate (9.17) shows that

‖u(t )‖W m,p ≤ ρα(t )(1+‖u0‖W m,p )exp(t A) exp
(
t A exp(t A)

)
with A as defined in (9.16). Therefore, for all T > 0 we have proven

sup
t∈[0,T∧ξ]

‖u‖W 1,∞ <∞, a.s.

So that necessarily (u,ξ) is a global pathwise solution, i.e. we have ξ=∞ (cf. Definition 4.2). We have thus
now established part (i) of Theorem 4.6.

9.2. The three-dimensional case. Fix α> 0. Let (u,ξ) be the maximal strong solution of (9.1). As in
the two-dimensional case, the key ingredient to global regularity is an a priori bound on ‖w‖L∞ . However,
due to the presence of the vortex stretching term, in the three-dimensional case we have (cf. (9.10) above)

d

d t
‖w‖L∞ + α2

2
‖w‖L∞ ≤ γ−1‖v‖W 1,∞‖w‖L∞ . (9.18)

To exploit the damping in (9.18), we now define the stopping time

σ= inf
t≥0

{
t : γ−1(t )‖v(t )‖W m,p ≥ α2

4C̄

}
= inf

t≥0

{
t : ‖u(t )‖W m,p ≥ α2

4C̄

}
(9.19)

where C̄ ≥ 1 is the constant defined above (9.11). Note that σ < ξ on the set {ξ < ∞} (cf. (4.3) and the
Sobolev embedding). In order to ensure that σ> 0 a.s. we will at least need to impose the condition

‖u0‖W m,p < α2

4C̄
. (9.20)

In fact, in order to close the estimates we shall impose additional assumptions on u0 (cf. (9.31) below).
Due to the Sobolev embedding, on [0,σ] we have

γ−1‖w‖L∞ ≤ γ−1‖v‖W 1,∞ ≤ α2

4
. (9.21)

Hence, by (9.18) and (9.21) we obtain

d

d t
‖w‖L∞ + α2

4
‖w‖L∞ ≤ 0 (9.22)

on [0,σ). Therefore, letting

z(t ) = ‖w(t )‖L∞ exp

(
α2t

4

)
we find from (9.21) and (9.22) that

z(t ) ≤ z(0) = ‖w0‖L∞ ≤ α2

4
(9.23)

where we also used that γ(0) = 1. Similarly to above, we now let

y(t ) = ‖v(t )‖W m,p exp

(
α2t

4

)
. (9.24)

By (9.6) and (9.7) we obtain

d y

d t
≤ C̄γ−1 y

(
‖v‖L2 +‖w‖L∞

(
1+ log+

( y

z

)))
.
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Using the decay of ‖v(t )‖L2 obtained in (9.8), and assumption (9.20), the above estimate implies

d y

d t
≤ C̄γ−1 exp

(
−α

2t

4

)
y

(
‖u0‖L2 + z

(
1+ log+

( y

z

)))
≤ C̄ρα exp

(
−α

2t

8

)
y

(
α2

4
+ z + z log+

( y

z

))
(9.25)

where we now denote

ρα(t ) = γ−1(t )exp

(
−α

2t

8

)
= exp

(
αWt − α2t

8

)
. (9.26)

To simplify the right side of (9.25), it is convenient to observe that

α2

4
+ z + z log+

( y

z

)
≤ C̄ +α2 + z log y (9.27)

holds whenever 0 < z ≤ α2/4, and z ≤ C̄ y (note that we indeed have these a priori bounds on z, due to
(9.11) and (9.23)). In order to prove (9.27) we distinguish two cases: z < y , and z/C̄ ≤ y ≤ z. If z < y , then
log+(y/z) = log(y/z) = log(y)− log(z). Hence the left side of (9.27) is bounded by

α2

2
+ z log(y)−11z∈(0,1]z log(z) ≤α2 + z log y + C̄

where we have used the fact that 0 ≤−z log(z) ≤ 1/e ≤ C̄ for all z ∈ (0,1]. This concludes the proof of (9.27)
for y > z. On the other hand, if y ≤ z, then log+(y/z) = 0, and hence we need to prove that α2/4+ z is less
than the left side of (9.27). For this purpose, it is sufficient to prove that

C̄ + z log y ≥ 0,

for all y ∈ [z/C̄ , z] and all z > 0. Indeed, the right side of the above inequality is monotone increasing in
y , so the minimum is attained at y = z/C̄ , and it equals C̄ + z log(z/C̄ ). A simple calculation shows that
C̄ + z log(z/C̄ ) ≥ C̄ − C̄ /e > 0, for all z ≥ 0, concluding the proof of (9.27).

Therefore, by (9.25) and (9.27) we have

d y

d t
≤ C̄ρα exp

(
−α

2t

8

)
y

(
C̄ +α2 + z log y

)
. (9.28)

Fix any R ≥ 1 and define the stopping time

τR = inf
{

t ≥ 0: ρα(t ) ≥ R
}

. (9.29)

From (9.28) we obtain the bound

d y

d t
≤ C̄ R exp

(
−α

2t

8

)
y

(
C̄ +α2 + z log y

)
(9.30)

for all t ∈ [0,τR ∧σ]. We now may apply Lemma B.1, which is a suitable version of the logarithmic Grön-
wall inequality. Lemma B.1 guarantees the existence of a positive deterministic function κ(R,α) with the
properties

κ(R,α) ≤ α2

8C̄
, for every R ≥ 1

lim
R→∞

κ(R,α) = 0, for every fixed α 6= 0

lim
α2→∞

κ(R,α) =∞, for every fixed R ≥ 1

lim
α2→0

κ(R,α) = 0, for every fixed R ≥ 1

such that if the initial data satifies

‖u0‖W m,p = y(0) ≤ κ(R,α) (9.31)
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then a smooth solution of (9.30) satisfies

y(t ) ≤ α2

8RC̄
(9.32)

for all t ∈ [0,τR ∧σ]. For clarity of the presentation we postpone the precise formula for the function κ(R,α)
and the proof that (9.31) implies (9.32) to Appendix B below.

Note that the condition (9.31) imposed on the initial data automatically implies (9.20), and hence σ> 0.
Recalling the definition of y(t ) and ρα(t ) in (9.24) and (9.26) we obtain from (9.32) that for every t in the
interval [0,σ∧τR ]

‖u(t )‖W m,p = γ−1(t )‖v(t )‖W m,p = exp

(
−α

2t

8

)
ρα(t )y(t ) ≤ R

α2

8RC̄
= α2

8C̄
. (9.33)

Hence, due to the definition of σ (cf. (9.19)), the bound (9.33) shows that σ∧τR = τR . Therefore

sup
t∈[0,τR ]

‖u(t )‖W 1,∞ ≤C3 sup
t∈[0,τR ]

‖u(t )‖W m,p ≤ α2

8
,

which implies that ξ≥ τR . Therefore, the maximal pathwise solution (u,ξ) of (9.1) is global in time on the
set {τR =∞}, i.e. on the set where ρα(t ) always stays below R (cf. (9.29)). We now claim that

P(τR =∞) ≥ 1− 1

R1/4
(9.34)

holds, for any R > 1. Note carefully that this lower bound in (9.34) is independent of α. Thus if we wish to
obtain that the local pathwise solution is global in time with high probability, i.e.

P(ξ=∞) = 1−ε,

for some ε ∈ (0,1), it is sufficient to choose R so that
1

ε4 ≤ R (9.35)

and for this fixed R, consider an initial data u0 which satisfies ‖u0‖W m,p ≤ κ(R,α). Alternatively for this
R and a given (deterministic) initial data ‖u0‖W m,p we may choose α2 sufficiently large so that ‖u0‖W m,p ≤
κ(R,α) to guarantee that the associated (u,ξ) is global with probability 1−ε. The proof of Theorem 4.6, (ii),
is now complete, modulo a proof of (9.34), which we give next.

In order to estimate P(τR =∞), letting µ= 3α2

8 we observe that

ρα(t ) = exp

((
µ− α2

2

)
t +αWt

)
is a geometric Brownian motion, the solution of

d x =µxd t +αxdW, x(0) = 1, (9.36)

where W is a standard 1−D Brownian motion. The following lemma, with µ= 3α2

8 , proves estimate (9.34),
and by the above discussion it concludes the proof of Theorem 4.6.

Lemma 9.1 (Estimates for the exit times of geometric Brownian motion). Suppose that µ< α2

2 and x0 > 0
and is deterministic. Let x(t ) be the solution of (9.36) and for R > 1 define τR as

τR = inf{t ≥ 0: x(t ) > R} . (9.37)

Then we have

P(τR =∞) ≥ 1−
(

1

R

)1− 2µ

α2

. (9.38)
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PROOF OF LEMMA 9.1. For λ> 0 we apply the Ito formula for f (x) = xλ and obtain that

d xλ =λxλ−1d x + λ(λ−1)

2
xλ−2d xd x =

(
µλ+ α2λ(λ−1)

2

)
xλd t +αλxλdW.

Integrating up to any time t ∧τR and taking an expected value we find that

Exλ(t ∧τR ) = 1+E
∫ t∧τR

0

(
µλ+ α2λ(λ−1)

2

)
xλd s.

Taking λ=λc = 1− 2µ
α2 in the above expression we find that

Exλc (t ∧τR ) = 1.

Now, using that τR is increasing in R and the continuity of measures we get

P(τR =∞) =P
(⋂

n
{τR > n}

)
= lim

N→∞
P(τR > N ) = lim

N→∞
P(xλc (N ∧τR ) < Rλc )

≥ lim
N→∞

(
1− Exλc (N ∧τR )

Rλc

)
= 1− 1

Rλc

which concludes the proof of the lemma. �

Appendix A. The smoothing operator and associated properties

In this appendix we define and review some basic properties of a class of smoothing operators Fε as
used in [KL84]. These mollifiers are used to construct solutions in W m,p in Section 7 above.

For every ε > 0, let F̃ε be a standard mollifier on Rd , for instance consider F̃ε to be the convolution
against the inverse Fourier transform of exp(−ε|ξ|2). Assuming ∂D is sufficiently smooth, there exists (see
for instance [AF03, Chapter 5]) a linear extension operator E from D to Rd , i.e. Eu(x) = u(x) a.e. in D, and
‖Eu‖W m,p (Rd ) ≤C‖u‖W m,p (D) for m ≥ 0, and all 2 ≤ p <∞. We also take R to be a restriction operator, which
is bounded from W m,p (Rd ) into W m,p (D) for m ≥ 0 and all p ≥ 2. Lastly, we let P be the Leray projection
operator as defined in Section 2. We finally define the smoothing operators Fε by

Fε = P R F̃ε E (A.1)

for every ε> 0. We have the following basic properties for Fε.

Lemma A.1 (Properties of the smoothing operator). Suppose that m ≥ 0, and p ≥ 2. For every ε> 0 the
operator Fε maps Xm,p into Xm′ , where m′ = m +5. Moreover the following properties hold:

(i) The collection Fε is uniformly bounded on Xm,p independently of ε

‖Fεu‖W m,p ≤C‖u‖W m,p , u ∈ Xm,p (A.2)

where C =C (m, p,D) is a universal constant independent of ε> 0.
(ii) For every ε> 0, when m ≥ 1 we have

‖Fεu‖W m,p ≤ C

ε
‖u‖W m−1,p , u ∈ Xm,p (A.3)

and

‖Fεu −u‖W m−1,p ≤Cε‖u‖W m,p , u ∈ Xm,p (A.4)

where C =C (m, p,D) is a universal constant independent of ε> 0.
(iii) The sequence of mollifications Fεu converge to u, for every u in Xm,p , that is

lim
ε→0

‖Fεu −u‖W m,p = 0 (A.5)

and when m ≥ 1 we also have

lim
ε→0

1

ε
‖Fεu −u‖W m−1,p = 0. (A.6)
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(iv) The convergence of Fεu to u is uniform over compact subsets of Xm,p . In particular if {uk }k≥1 is
a sequence of functions in Xm,p which converge in Xm,p , then we have

lim
ε→0

sup
k≥1

‖Fεu
k −uk‖W m,p = 0 (A.7)

and

lim
ε→0

sup
k≥1

1

ε
‖Fεu

k −uk‖W m−1,p = 0, (A.8)

when m ≥ 1.

The above properties hold for Fε, since they hold for the standard mollifier F̃ε on Rd , we have that R
and E are bounded maps between the relevant Sobolev spaces, and RE = IdD a.e.. For further details, see
for instance [AF03, KL84].

Appendix B. A technical lemma about ODEs

In this appendix we give the proof of a technical lemma which was used in proving the 3D case of
Theorem 4.6, in Section 9.2 above. The reason d’être of the below lemma is to very carefully keep track
of the dependence on α for all constants involved. This enables us to control the quantities involved as the
parameter α is sent to either 0 or ∞.

Lemma B.1. Let C̄ ≥ 1 be a universal constant. Fix the parameters R ≥ 1,α 6= 0 and T > 0. For y0 > 0, let
y(t ) be a positive smooth function satisfying

d y

d t
(t ) ≤ C̄ R exp

(
−α

2t

8

)
y(t )

(
C̄ +α2 + z(t ) log y(t )

)
(B.1)

y(0) = y0 (B.2)

where z(t ) is a given continuous function such that 0 < z(t ) ≤ α2/4 for all t ∈ [0,T ]. There exits a positive
function K (R,α) ≥ 2 such that if

y0 ≤ α2

4C̄ K (R,α)
(B.3)

then we have

y(t ) ≤ K (R,α)

2R
y0 ≤ α2

8RC̄
(B.4)

for all t ∈ [0,T ). This function K (R,α) may be chosen explicitly as

K (R,α) = 2R

(
1+

(
α2

8C̄

)(1− 1
8(DR−1) ))

exp

(
8C̄ RDR (C̄ +α2)

α2

)
(B.5)

where we have denoted DR = exp(4C̄ R). Additionally, for every fixed R ≥ 1 we obtain the asymptotic
behavior for the function

κ(R,α) = α2

2C̄ K (R,α)

to be

lim
α2→∞

κ(R,α) = lim
α2→∞

α2

K (R,α)
=∞, (B.6)

lim
α2→0

κ(R,α) = lim
α2→0

α2

K (R,α)
= 0. (B.7)
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PROOF OF LEMMA B.1. For ease of notation, let a(t ) = C̄ R exp(−α2t/8). After letting Y (t ) = log y(t ),
the inequality (B.1) reads

dY (t )

d t
≤ a(t )

(
(C̄ +α2)+ z(t )Y (t )

)
(B.8)

with initial condition Y (0) = log y0. The initial value problem associated to (B.8) leads to the bound

Y (t ) ≤ Y (0)exp

(∫ t

0
a(s)z(s)d s

)
+ (C̄ +α2)

∫ t

0
a(s)exp

(∫ t

s
a(s′)z(s′)d s′

)
d s

≤ Y (0)exp

(∫ t

0
a(s)z(s)d s

)
+ (C̄ +α2)exp(2C̄ R)

∫ t

0
a(s)d s

≤ Y (0)exp

(∫ t

0
a(s)z(s)d s

)
+ 8C̄ R(C̄ +α2)exp(2C̄ R)

α2 (B.9)

where we used the a priori bound z ≤ α2/4 and the identity
∫ ∞

0 a(t )d t = 8C̄ R/α2. By exponentiation it
follows that

y(t ) ≤ y
exp

(∫ t
0 a(s)z(s)d s

)
0 exp

(
8C̄ R(C̄ +α2)exp(2C̄ R)

α2

)
. (B.10)

We note that if y0 ≤ 1, since exp
(∫ t

0 a(s)z(s)d s
)≥ 1, we have

y
exp

(∫ t
0 a(s)z(s)d s

)
0 ≤ y0. (B.11)

On the other hand, if y0 > 1, due to (B.3) we may bound

y0 ≤ α2

M
, (B.12)

whenever M ≤ 4C̄ K . Hence, recalling the a priori bound on z(t ) and integrating a(t ) from 0 to ∞, we obtain
from (B.10) and (B.12) that

y
exp

(∫ t
0 a(s)z(s)d s

)
0 ≤ yDR

0 ≤ y0 yDR−1
0 ≤ y0

(
α2

M

)DR−1

(B.13)

for y0 > 1, since DR = exp(2C̄ R) ≥ 3. Hence, we obtain from (B.10), (B.11), and (B.13) that

y(t ) ≤ y0
1

2R

(
2R

(
1+

(
α2

M

)DR−1)
exp

(
8C̄C∗DR (C̄ +α2)

α2

))
=: y0

1

2R
K̄ (M). (B.14)

The proof of (B.4) is completed if we show that K̄ (M) ≤ K for all α > 0, for some M is chosen such that
M ≤ 4C̄ K . We now let

M = 8C̄ 11α2≤8C̄ +11α2>8C̄ (8C̄ )
1

2(DR−1)α
(2− 1

DR−1 ) (B.15)

and define

K (R,α) = 2R

(
1+

(
α2

8C̄

)(1− 1
8(DR−1) ))

exp

(
8C̄ RDR (C̄ +α2)

α2

)
.

Indeed, it is not hard to verify that for R ≥ 1, and C̄ ≥ 1, we have 4C̄ K ≥ M for all α > 0. Lastly, to verify
that the above defined K indeed is larger than K̄ (M) (which was defined in (B.14)), it is sufficient to check
that (

α2

M

)DR−1

≤
(
α2

8C̄

)(1− 1
8(DR−1) )

(B.16)

for all α> 0. Indeed, (B.16) may be checked by a direct computation using (B.15) and DR ≥ 3.
Lastly, one may directly check that for any fixed R ≥ 1, as α→∞ we have K (R,α) =O(α

2− 1
4(DR−1) ), and

therefore α2/K (R,α) →∞, as α→∞, which concludes the proof of (B.6). To conclude, it is clear from the
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definition of K (Rα) that it is larger than 2, and hence α2/K (R,α) → 0 as α→ 0, which concludes the proof
of the lemma. �

Appendix C. A non-blowup condition for SDEs with linear-logarithmic growth in the drift

In this section we state and prove a condition for the non-blow up of solutions to SODEs via a Logarith-
mic Grönwall type argument. See e.g. [FZ05] for related results.

Lemma C.1. Fix a stochastic basis S := (Ω,F ,P, {Ft }t≥0,W ). Suppose that on S we have defined Y a
real valued, predictable process defined up to a blow up time ξ> 0, i.e. for all bounded stopping times τ< ξ,
supt∈[0,τ] Y <∞ a.s. and

sup
t∈[0,ξ)

Y =∞ on the set {ξ<∞}.

Assume that Y ≥ 1 and that on [0,ξ), Y satisfies the Itō stochastic differential

dY = X d t +Z dW , Y (0) = Y0, (C.1)

where on [0,ξ), X , Z are respectively real valued and L2 valued predictable processes and Y0 is F0 and
bounded above by a deterministic constant M > 0.5 Suppose that there exists a stochastic process

η ∈ L1(Ω;L1
loc [0,∞)) (C.2)

with η ≥ 1 for almost every (ω, t ) and an increasing collection of stopping times τR with τR ≤ ξ and such
that

P

( ⋂
R>0

{τR < ξ∧T }

)
= 0. (C.3)

We further assume that for every fixed R > 0, there exists a deterministic constant KR depending only on R
(independent of t), and a number r ∈ [0,1/2] such that,

|X | ≤KR ((1+ logY )Y +η),

‖Z‖L2 ≤KR Y 1−rηr

which holds over [0,τR ]. Then ξ=∞ and in particular, supt∈[0,T ] Y <∞, a.s. for every T > 0.

PROOF. As in [FZ05], we introduce the functions

ζ(x) = (1+ ln x)

Ψ(x) =
∫ x

0

1

rζ(r )+1
dr

Φ(x) = exp(Ψ(x)). (C.4)

By direct computation we find that

Φ′(x) = Φ(x)

xζ(x)+1
, Φ′′(x) =− Φ(x)ζ(x)

(xζ(x)+1)2 .

Thus, by an application of the Itō lemma, we have

dΦ(Y ) =Φ′(Y )dY + 1

2
Φ′′(Y )dY dY = Φ(Y )

Y ζ(Y )+1
X d t − 1

2

Φ(Y )ζ(Y )

(Y ζ(Y )+1)2 ‖Z‖2
L2

d t + Φ(Y )

Y ζ(Y )+1
Z dW .

For S > 0 we define the stopping times

ζS := inf{t ≥ 0 : Y (t ) > S}∧τR , ρS := inf

{
t ≥ 0 :

∫ t

0
ηd s > S

}
.

5This condition is not essential; we may merely assume that Y0 <∞, almost surely. See Remark C.2 below
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In view of the definition of ξ, we have that lim
S→∞

ζS = τR ∧ξ. Due to (C.2) we also have that lim
S→∞

ρS =∞. Fix

T,S1,S2 > 0. We estimate and any stopping times 0 ≤ τa ≤ τb ≤ ζS1 ∧ρS2 ∧T

E sup
t∈[τa ,τb ]

Φ(Y ) ≤EΦ(Y (τa))+E
∫ τb

τa

Φ(Y )

(
|X |

Y ζ(Y )+1
+ 1

2

∣∣∣∣∣ ζ(Y )‖Z‖2
L2

(Y ζ(Y )+1)2

∣∣∣∣∣
)

d t +E sup
t∈[τa ,τb ]

∣∣∣∣∫ t

τa

Φ(Y )

Y ζ(Y )+1
Z dW

∣∣∣∣ ,

≤EΦ(Y (τa))+CE
∫ τb

τa

Φ(Y )
(
1+η)

d t +CE

(∫ τb

τa

(
Φ(Y )

Y ζ(Y )+1

)2

‖Z‖2
L2

d t

)1/2

,

≤EΦ(Y (τa))+CE
∫ τb

τa

Φ(Y )
(
1+η)

d t +CE

(∫ τb

τa

Φ(Y )2ηd t

)1/2

,

≤EΦ(Y (τa))+CE
∫ τb

τa

Φ(Y )
(
1+η)

d t + 1

2
E sup

t∈[τa ,τb ]
Φ(Y )

where C , depends on R through KR and is is independent of T , S1, ξ, τa and τb . Rearranging and applying
a stochastic version of the Grönwall Lemma given in [GHZ09, Lemma 5.3] we find

E sup
t∈[0,σS1∧ρS2∧T ]

Φ(Y ) ≤C

where here C = C (R,T,S2, M) and is independent of S1 and ξ. Thus, sending S1 → ∞ and applying the
monotone convergence theorem,

E sup
t∈[0,ρS2∧τR∧T ]

Φ(Y ) ≤C . (C.5)

Thus, by the properties of Φ (cf. (C.4)) we infer

sup
t∈[0,ρS2∧τR∧T ]

Y <∞ for each R,S2 > 0,

on a set of full measure. Thus, since lim
S2→∞

ρS2 =∞ we infer that, for each R > 0, supt∈[0,τR∧T ] Y <∞, almost

surely. In view of the condition (C.3) imposed on the stopping times τR this in turn implies supt∈[0,ξ∧T ] Y <
∞. Since T was also arbitrary to begin with, we have perforce ξ=∞, almost surely. The proof is therefore
complete. �

Remark C.2. In Lemma C.1 we may actually just assume that Y0 is finite almost surely. Indeed if we define
the sets ΩM := {Y0 ≤ M } we infer, arguing similarly to above that

E

(
11ΩM sup

t∈[0,ζS1∧ρS2∧T ]
Φ(Y )

)
≤CM .

We thus find that ξ=∞ for almost every ω in ∩MΩM . Since this latter set is clearly of full measure, we may
thus establish the proof of Lemma C.1 in this more general situation.
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