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IN TWO DIMENSIONS
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All (in)homogeneous bond percolation models on the square, tri-
angular, and hexagonal lattices belong to the same universality class,
in the sense that they have identical critical exponents at the critical
point (assuming the exponents exist). This is proved using the star–
triangle transformation and the box-crossing property. The exponents
in question are the one-arm exponent ρ, the 2j-alternating-arms ex-
ponents ρ2j for j ≥ 1, the volume exponent δ, and the connectivity
exponent η. By earlier results of Kesten, this implies universality also
for the near-critical exponents β, γ, ν, ∆ (assuming these exist) for
any of these models that satisfy a certain additional hypothesis, such
as the homogeneous bond percolation models on these three lattices.

1. Introduction and results.

1.1. Overview. Two-dimensional percolation has enjoyed an extraordi-
nary renaissance since Smirnov’s proof in 2001 of Cardy’s formula (see [16]).
Remarkable progress has been made towards a full understanding of site
percolation on the triangular lattice, at and near its critical point. Other
critical two-dimensional models have, however, resisted solution. The pur-
pose of the current work is to continue our study (beyond [6]) of the phase
transition for inhomogeneous bond percolation on the square, triangular,
and hexagonal lattices. Our specific target is to show that such models be-
long to the same universality class. We prove that critical exponents at the
critical point are constant within this class of models (assuming that such
exponents exist). We indicate a hypothesis under which exponents near crit-
icality are constant also, and note that this is satisfied by the homogenous
models.
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2 G. R. GRIMMETT AND I. MANOLESCU

We focus here on the one-arm exponent ρ, and the 2j-alternating-arms
exponents ρ2j for j ≥ 1. By transporting open primal paths and open dual
paths, we shall show that these exponents are constant across (and beyond)
the above class of bond percolation models. More precisely, if any one of
these exponents, π say, exists for one of these models, then π exists and
is equal for every such model. No progress is made here on the problem of
existence of exponents.

Kesten [11] showed that the exponents δ and η are specified by knowledge
of ρ, under the hypothesis that ρ exists. Therefore, δ and η are universal
across this class of models. Results related to those of [11] were obtained in
[12] for the ‘near-critical’ exponents β, γ, ν, ∆. This last work required a
condition of rotation-invariance not possessed by the strictly inhomogeneous
models. This is discussed further in Section 1.4.

It was shown in [6] that critical inhomogeneous models on the above three
lattices have the box-crossing property; this was proved by transportations
of open box-crossings from the homogeneous square-lattice model. This box-
crossing property, and the star–triangle transformation employed to prove
it, are the basic ingredients that permit the proof of universality presented
here.

A different extension of the star–triangle method has been the subject of
work described in [2, 19, 20]. That work is, in a sense, combinatorial in na-
ture, and it provides connections between percolation on a graph embedded
in R

2 and on a type of dual graph obtained via a generalized star–triangle
transformation. In contrast, the work reported here is closely connected to
the property of isoradiality (see [3, 8]), and is thus more geometric in na-
ture. It permits the proof of relations between a variety of two-dimensional
graphs. The connection to isoradiality will be the subject of a later paper
[5].

The paper is organized as follows. The relevant critical exponents are
summarized in Section 1.3, and the main theorems stated in Section 1.4.
Extensive reference will be made to [6], but the current work is fairly self-
contained. Section 2 contains a short account of the star–triangle transfor-
mation, for more details of which the reader is referred to [6]. The proofs
are to be found in Section 3.

1.2. The models. Let G = (V,E) be a countable connected planar graph,
embedded in R2. The bond percolation model on G is defined as follows. A
configuration on G is an element ω = (ωe : e ∈ E) of the set Ω = {0, 1}E .
An edge with endpoints u, v is denoted uv. The edge e is called open or
ω-open, (respectively, closed) if ωe = 1 (respectively, ωe = 0).
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UNIVERSALITY FOR BOND PERCOLATION 3

For ω ∈ Ω and A,B ⊆ V , we say A is connected to B (in ω), written

A↔ B (or A
G,ω←−→ B), if G contains a path of open edges from some a ∈ A

to some b ∈ B. An open cluster of ω is a maximal set of pairwise-connected
vertices, and the open cluster containing the vertex v is denoted Cv. We
write v ↔∞ if v is the endpoint of an infinite open self-avoiding path.

The homogeneous bond percolation model on G is that associated with
the product measure Pp on Ω with constant intensity p ∈ [0, 1]. Let 0 denote
a designated vertex of V called the origin. The percolation probability and
critical probability are given by

θ(p) = Pp(0↔∞),

pc(G) = sup{p : θ(p) = 0}.

We consider the square, triangular, and hexagonal (or honeycomb) lattices
of Figure 1.1, denoted respectively as Z

2, T, and H. It is standard that
pc(Z

2) = 1
2 , and pc(T) = 1 − pc(H) is the root in the interval (0, 1) of the

cubic equation 3p − p3 − 1 = 0. See the references in [4, 6] for these and
other known facts quoted in this paper.

Fig 1.1. The square lattice and its dual square lattice. The triangular lattice and its dual
hexagonal lattice.

We turn now to inhomogeneous percolation on the above three lattices.
The edges of the square lattice are partitioned into two classes (horizontal
and vertical) of parallel edges, while those of the triangular and hexagonal
lattices may be split into three such classes. We allow the product measure
on Ω to have different intensities on different edges, while requiring that any
two parallel edges have the same intensity. Thus, inhomogeneous percolation
on the square lattice has two parameters, p0 for horizontal edges and p1 for
vertical edges, and we denote the corresponding measure P

�
p where p =
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4 G. R. GRIMMETT AND I. MANOLESCU

(p0, p1). On the triangular and hexagonal lattices, the measure is defined by

a triplet of parameters p = (p0, p1, p2), and we denote these measures P
4
p

and P
7
p , respectively. LetM denote the set of all such inhomogeneous bond

percolation models on the square, triangular, and hexagonal lattices, with
edge-parameters belonging to the half-open interval [0, 1).

These models have percolation probabilities and critical surfaces, and the
latter were given explicitly in [4, 6, 10]. Let

κ�(p) = p0 + p1 − 1, p = (p0, p1),

κ4(p) = p0 + p1 + p2 − p0p1p2 − 1, p = (p0, p1, p2),

κ7(p) = −κ4(1− p0, 1 − p1, 1− p2), p = (p0, p1, p2).

It is well known that the critical surface of the lattice Z2 (respectively, T, H)
is given by κ� = 0 (respectively, κ4(p) = 0, κ7(p) = 0). Bond percolation
on Z

2 may be obtained from that on T by setting one parameter to zero.
The triplet p = (p0, p1, p2) ∈ [0, 1)3 is called self-dual if κ4(p) = 0. We

write α ± p for the triplet (α ± p0, α ± p1, α ± p2), and also N = {1, 2, . . . }
for the natural numbers, and Z = {. . . ,−1, 0, 1, . . . } for the integers.

1.3. Critical exponents. The percolation singularity is believed to be of
power-law type, and to be described by a number of so-called ‘critical ex-
ponents’. These may be divided into two groups of exponents: at criticality,
and near criticality.

First, some notation: we write f(t) � g(t) as t→ t0 ∈ [0,∞] if there exist
strictly positive constants A, B such that

Ag(t) ≤ f(t) ≤ Bg(t)

in some neighbourhood of t0 (or for all large t in the case t0 =∞). We write
f(t) ≈ g(t) if log f(t)/ log g(t) → 1. Two vectors p1 = (p1(e)), p2 = (p2(e))
satisfy p1 < p2 if p1(e) ≤ p2(e) for all e, and p1 6= p2.

For simplicity we restrict ourselves to the percolation models of the last
section. Let L = (V,E) be one of the square, triangular, and hexagonal
lattices, with origin denoted 0. Let p = (p(e) : e ∈ E) ∈ [0, 1)E be invariant
under translations of L as above, and let ω ∈ Ω. The lattice L has a dual
lattice L∗ = (V ∗, E∗), each edge of which is called open∗ if it crosses a closed
edge of L. Open paths of L are said to have colour 1, and open∗ paths of L∗

colour 0. We shall make use of duality as described in [4, Sect. 11.2].
Let Λn be the set of all vertices within graph-theoretic distance n of the

origin 0, with boundary ∂Λn = Λn \ Λn−1. Let A(N,n) = Λn \ ΛN−1 be
the annulus centred at 0, with interior radius N and exterior radius n. We
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UNIVERSALITY FOR BOND PERCOLATION 5

call ∂Λn (respectively, ∂ΛN ) its exterior (respectively, interior) boundary.
We shall soon consider embeddings of planar lattices in R

2, and it will then
be natural to use the L∞ metric rather than graph-distance. The choice of
metric is in fact of no fundamental important for what follows. For v ∈ V ,
we write

rad(Cv) = sup{n : v ↔ v + ∂Λn}.
Let pc be a vector lying on the critical surface. Thus, pc is critical in that

θ(p) := Pp(0↔∞)

{

= 0 if p < pc,

> 0 if p > pc.

Let k ∈ N, and let σ = (σ1, σ2, . . . , σk) ∈ {0, 1}k ; we call σ a colour sequence.
The sequence σ is called monochromatic if either σ = (0, 0, . . . , 0) or σ =
(1, 1, . . . , 1), and bichromatic otherwise. If k is even, σ is called alternating
if either σ = (0, 1, 0, 1, . . . ) or σ = (1, 0, 1, 0, . . . ). For 0 < N < n, the arm
event Aσ(N,n) is the event that the inner boundary of A(N,n) is connected
to its outer boundary by k vertex-disjoint paths with colours σ1, . . . , σk,
taken in anticlockwise order. [Here and later, we require arms to be vertex -
disjoint rather than edge-disjoint. This is an innocuous assumption since we
work in this paper with alternating colour sequences only.]

The choice of N is in part immaterial to the study of the asymptotics of
Ppc

[Aσ(N,n)] as n → ∞, and we shall assume henceforth that N = N(σ)
is sufficiently large that, for n ≥ N , there exists a configuration with the
required k coloured paths. It is believed that there exist constants ρ(σ) such
that

Ppc
[Aσ(N,n)] ≈ n−ρ(σ),

and these are the arm-exponents of the model. [Such asymptotics are to be
understood in the limit as n→∞.]

We concentrate here on the following exponents given in terms of Ppc
,

with limits as n→∞:

(a) volume exponent: Ppc
(|C0| = n) ≈ n−1−1/δ,

(b) connectivity exponent: Ppc
(0↔ x) ≈ |x|−η,

(c) one-arm exponent: Ppc
(rad(C0) = n) ≈ n−1−1/ρ,

(d) 2j-alternating-arms exponents: Ppc
[Aσ(N,n)] ≈ n−ρ2j , for each alter-

nating colour sequence σ of length 2j.

It is believed that the above asymptotic relations hold for suitable exponent-
values, and indeed with≈ replaced by the stronger relation �. Essentially the
only two-dimensional percolation process for which these limits are proved

imsart-aop ver. 2011/05/20 file: star2-aop3.tex date: December 14, 2011



6 G. R. GRIMMETT AND I. MANOLESCU

(and, furthermore, the exponents calculated explicitly) is site percolation on
the triangular lattice (see [16, 17]).

The arm events are defined above in terms of open primal and open∗

dual paths. When considering site percolation, one considers instead open
paths in the primal and matching lattices. This is especially simple for the
triangular lattice since T is self-matching. It is known for site percolation
on the triangular lattice, [1], that for given k ∈ N, the exponent for ρ(σ)
is constant for any bichromatic colour sequence σ of given length k. This
is believed to hold for other two-dimensional models also, but no proof is
known. In particular, it is believed for any model inM that

Ppc
[Aσ(N,n)] ≈ n−ρ2j ,

for any bichromatic colour sequence σ of length 2j, and any j ≥ 1.
We turn now to the near-critical exponents which, for definiteness, we

define as follows. Let p = (p(e) : e ∈ E) ∈ [0, 1)E and ε ∈ R, and write Pp+ε

for the product measure on Ω in which edge e is open with probability

(p+ ε)e := max
{

0,min{p(e) + ε, 1}
}

.

By subcritical exponential-decay (see [4, Sect. 5.2]), for ε > 0, there exists
ξ = ξ(pc − ε) ∈ [0,∞) such that

− 1

n
logPpc−ε(0↔ ∂Λn)→ 1/ξ as n→∞.

The function ξ is termed the correlation length.
Here are the further exponents considered here:

(a) percolation probability: θ(pc + ε) ≈ εβ as ε ↓ 0,
(b) correlation length: ξ(pc − ε) ≈ ε−ν as ε ↓ 0,
(c) mean cluster-size: Ppc+ε(|C0|; |C0| <∞) ≈ |ε|−γ as ε→ 0,
(d) gap exponent: for k ≥ 1, as ε→ 0,

Ppc+ε(|C0|k+1; |C0| <∞)

Ppc+ε(|C0|k; |C0| <∞)
≈ |ε|−∆.

We have written P(X) for the mean of X under the probability measure P,
and P(X;A) = P(X1A) where 1A is the indicator function of the event A.

As above, the near-critical exponents are known to exist essentially only
for site percolation on the triangular lattice. See [4, Chap. 9] for a general
account of critical exponents and scaling theory.
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UNIVERSALITY FOR BOND PERCOLATION 7

1.4. Principal results. A critical exponent π is said to exist for a model
M ∈ M if the appropriate asymptotic relation (above) holds, and π is called
M-invariant if it exists for all M ∈ M and its value is independent of the
choice of such M .

Theorem 1.1. For every π ∈ {ρ} ∪ {ρ2j : j ≥ 1}, if π exists for some
model M ∈ M, then it is M-invariant.

By the box-crossing property of [6, Thm 1.3], we may apply the theorem of
Kesten [11] to deduce the following. If either ρ or η exists for some M ∈ M,
then:

(a) both ρ and η exist for M ,
(b) δ exists for M ,
(c) the scaling relations ηρ = 2 and 2ρ = δ + 1 are valid.

Taken in conjunction with Theorem 1.1, this implies in particular that δ and
η areM-invariant whenever either ρ or η exist for some M ∈ M.

We note in passing that Theorem 1.1 may be extended to certain other
graphs derived from the three main lattices of this paper by sequences
of star–triangle transformations, as well as to their dual graphs. This in-
cludes a number of tessellations (see [7]) and, in particular, two further
Archimedean lattices, namely those denoted (33, 42) and (3, 4, 6, 4) and il-
lustrated in Figure 1.2. The measures on these two lattices are as follows.
Let p = (p0, p1, p2) ∈ [0, 1)3 be self-dual. Edge e is open with probability
p(e) where:

(a) p(e) = p0 if e is horizontal,
(b) p(e) = p1 if e is parallel to the right edge of an upwards pointing

triangle,
(c) p(e) = p2 if e is parallel to the left edge of an upwards pointing triangle,
(d) the two parameters of any rectangle have sum 1.

Theorem 1.1 holds with M augmented by all such bond models on these
two lattices. The proofs are essentially the same. The methods used here
do not appear to extend to homogeneous percolation on these two lattices.
Drawings of the eleven Archimedean lattices and their duals may be found
in [14]. We note that the remaining six Archimedean lattices may not be
embedded isoradially in the plane (see [5, 9]).

There is a simple reason for the fact that Theorem 1.1 concerns the
alternating-arm exponents rather than all arm exponents. We shall see in
Section 2 that the star–triangle transformation conserves open primal and
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8 G. R. GRIMMETT AND I. MANOLESCU

0

12
0

12

21

Fig 1.2. Isoradial embeddings of the Archimedean lattices (33, 42) and (3, 4, 6, 4). The
second may be transformed into the hexagonal lattice by one sequence of star–triangle
transformations as marked. An edge parallel to one labelled i has edge-parameter pi, and
the two parameters on any square have sum 1.

open∗ dual paths, but that, in certain circumstances, it allows distinct paths
of the same colour to coalesce.

The box-crossing property of [6] implies an affine isotropy of these mod-
els at criticality, yielding in particular that certain directional exponents are
independent of the choice of direction. For example, let θ ∈ [0, π), and con-
sider the probability of an open path from the origin to a line with gradient
tan θ and distance ±n from the origin. The associated exponent equals the
undirected exponent ρ. A similar statement holds for arm-directions in the
alternating-arm exponents. These facts follow by the box-crossing property
(in conjunction with the separation theorem of Section 3.5), in particular by
its consequence that any annulus comprising rectangles of given aspect-ratio
contains an open cycle with probability bounded away from 0.

Kesten has shown in [12] (see also [13]) that the above near-critical expo-
nents may be given explicitly in terms of exponents at criticality, for two-
dimensional models satisfying certain hypotheses. Homogeneous percolation
on our three lattices satisfy these hypotheses, but it is not known whether
the strictly inhomogeneous models have sufficient regularity for the conclu-
sions to hold for them. The basic problem is that, while the box-crossing
property of [6] implies an isotropy for these models at criticality, the cor-
responding isotropy away from criticality is unknown. For this reason we
restrict the statement of the next theorem to homogeneous models.

Theorem 1.2. Assume that ρ and ρ4 exist for some M ∈ M. Then
β, γ, ν, and ∆ exist for homogeneous percolation on the square, triangular
and hexagonal lattices, and they are invariant across these three models.
Furthermore, they satisfy the scaling relations

ρβ = ν, ργ = ν(δ − 1), ρ∆ = νδ.
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UNIVERSALITY FOR BOND PERCOLATION 9

The proof is an adaptation of the arguments and conclusions of [12, 13],
and is omitted here.

Other authors have observed hints of universality, and we mention for
example [15], where it is proved that certain dual pairs of lattices have
equal exponents (whenever these exist).

2. Star–triangle transformation. Consider the triangle G = (V,E)
and the star G′ = (V ′, E′), as drawn in Figure 2.1. Let p = (p0, p1, p2) ∈
[0, 1)3. Write Ω = {0, 1}E with associated product probability measure P

4
p ,

and Ω′ = {0, 1}E′

with associated measure P7
1−p, as illustrated in the figure.

Let ω ∈ Ω and ω′ ∈ Ω′. For each graph we may consider open connections

between its vertices, and we abuse notation by writing, for example, x
G,ω←−→ y

for the indicator function of the event that x and y are connected by an open

path of ω. Thus connections in G are described by the family (x
G,ω←−→ y :

x, y ∈ V ) of random variables, and similarly for G′.

p0

p1p2

A

B C

O

1−p0

1−p1 1−p2

A

B C

Fig 2.1. The star–triangle transformation when κ4(p) = 0.

It may be shown that the two families

(

x
G,ω←−→ y : x, y = A,B,C

)

,

(

x
G′,ω′

←−−→ y : x, y = A,B,C

)

,

of random variables have the same joint law whenever κ4(p) = 0. That is to
say, if p is self-dual, the existence (or not) of open connections is preserved
(in law) under the star–triangle transformation. See [4, Sect. 11.9].

The two measures P
4
p and P

7
1−p may be coupled in a natural way. Let

p ∈ [0, 1)3 be self-dual, and let Ω (respectively, Ω′) have associated measure

P
4
p (respectively, P7

1−p) as above. The random mappings T : Ω → Ω′ and

S : Ω′ → Ω of Figure 2.2 are such that: T (ω) has law P
7
1−p, and S(ω′) has

law P
4
p . Under this coupling, the presence or absence of connections between

the corners A, B, C is preserved.
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10 G. R. GRIMMETT AND I. MANOLESCU

and similarly for all pairs of edges

(1− p0)p1p2
P

p0p1p2

P

p0(1− p1)p2
P

p0p1(1− p2)

P

(1− p0)p1p2
P

p0p1p2

P

p0(1− p1)p2
P

p0p1(1− p2)

P

and similarly for all single edges

T

T

S

S

S

T

Fig 2.2. The ‘kernels’ T and S and their transition probabilities. The constant P is given
by P := (1− p0)(1− p1)(1− p2).

The maps S and T act on configurations on stars and triangles. They act
simultaneously on the duals of these graph elements, illustrated in Figure
2.3. Let ω ∈ Ω, and define ω∗(e∗) = 1 − ω(e) for each primal/dual pair
e/e∗ of the left side of the figure. The action of T on Ω induces an action
on the dual space Ω∗, and it is easily checked that this action preserves ω∗-
connections. The map S behaves similarly. This property of the star–triangle
transformation has been generalized and studied in [2] and the references
therein.

So-called mixed lattices were introduced in [6]. These are hybrid embed-
dings of the square lattice with either the triangular or hexagonal lattice,
the two parts being separated by a horizontal interface. By means of ap-
propriate star–triangle transformations, the interface may be moved up or
down, and this operation permits the transportation of open box-crossings
between the square lattice and the other lattice. Whereas this was suited
for proving the box-crossing property, a slightly altered hybrid is useful for
studying arm exponents.

Let m ≥ 0, and consider the mixed lattice L
m = (V m, Em) drawn on the
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UNIVERSALITY FOR BOND PERCOLATION 11

A

B C

O

A

B Ce
e∗

Fig 2.3. The star–triangle transformation acts simultaneously on primal and dual graph
elements.

left of Figure 2.4, formed of a horizontal strip of the square lattice centred
on the x axis of height 2m, with the triangular lattice above and beneath it.
The embedding of each lattice is otherwise as in [6]: the triangular lattice
comprises equilateral triangles with side length

√
3, and the square lattice

comprises rectangles with horizontal dimension
√
3 and vertical dimension

1. We require also that the origin of R2 be a vertex of the mixed lattice.
Let p ∈ [0, 1)3, and let Pm

p be the product measure on Ωm = {0, 1}Em

for
which edge e is open with probability p(e) given by:

(a) p(e) = p0 if e is horizontal,
(b) p(e) = 1− p0 if e is vertical,
(c) p(e) = p1 if e is the right edge of an upwards pointing triangle,
(d) p(e) = p2 if e is the left edge of an upwards pointing triangle.

1−p0
1−p1

1−p2

p2 p1

p1p2

1−p0

p0

p0

p2 p1

p0

T−

T+
S+

S−

Fig 2.4. The transformation S+
◦ T+ (respectively, S−

◦ T−) transforms L
1 into L

2 (re-
spectively, L2 into L

1). They map the dashed graphs to the bold graphs.

Suppose further that p is self-dual, in that κ4(p) = 0, and let ωm ∈ Ωm.
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12 G. R. GRIMMETT AND I. MANOLESCU

We denote by TM (respectively, TO) the transformation T of Figure 2.2
applied to an upwards (respectively, downwards) pointing triangle. Write
T+ for the transformation of ω obtained by applying TO to every downwards
pointing triangle in the upper half plane, and TM similarly in the lower half
plane; sequential applications of star–triangle transformations are required
to be independent of one another.

Similarly, we denote by S� (respectively, S�) the transformation S of
Figure 2.2 applied to an upwards (respectively, downwards) pointing star.
Write S+ for the transformation of (T+

L
m, T+(ωm)) obtained by applying

S� to all upwards pointing stars in the upper half-plane and similarly S�

in the lower half-plane. It may be checked that ωm+1 = S+ ◦ T+(ωm) lies
in Ωm+1 and has law P

m+1
p . That is, viewed as a transformation acting on

measures, we have (S+ ◦ T+)Pm
p = P

m+1
p .

The transformations T− and S− are defined similarly, and illustrated in
Figure 2.4. As in that figure, for m ≥ 0,

(S+ ◦ T+)Lm = L
m+1, (S+ ◦ T+)Pm

p = P
m+1
p ,

(S− ◦ T−)Lm+1 = L
m, (S− ◦ T−)Pm+1

p = P
m
p .

We turn to the operation of these two transformations on open paths, and
will concentrate on S+ ◦ T+; similar statements are valid for S− ◦ T−. Let
ωm ∈ Ωm, and let π be an ωm-open path of Lm. It is not difficult to see (and
is explained fully in [6]) that the image of π under S+ ◦ T+ contains some
ωm+1-open path π′. Furthermore, π′ lies within the 1-neighbourhood of π
viewed as a subset of R2, and has endpoints within unit Euclidean distance
of those of π. Any vertex of π in the square part of Lm is unchanged by the
transformation. The corresponding statements hold also for open∗ paths of
the dual of Lm. These facts will be useful in observing the effect of S+ ◦ T+

on the arm events.
Arm exponents are defined in Section 1.3 in terms of boxes that are

adapted to the lattice viewed as a graph. It will be convenient to work also
with boxes of R2. Let L = (V,E) be a mixed lattice duly embedded in R

2,
and write V0 for the subset of V lying on the x-axis. Let ω ∈ Ω = {0, 1}E .
For R ⊆ R

2 and A,B ⊆ R ∩ V0, we write A
R,ω←−→ B (with negation written

A /
R,ω←−→ B) if there exists an ω-open path joining some a ∈ A and some b ∈ B

using only edges that intersect R. Let D be the unit (Euclidean) disk of R2

and write R+D for the direct sum {r + d : r ∈ R, d ∈ D}.

Proposition 2.1. Let m ≥ 0, ω ∈ Ωm, R ⊆ R
2, and u, v ∈ R ∩ V0. For

τ ∈ {S+ ◦ T+, S− ◦ T−},
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UNIVERSALITY FOR BOND PERCOLATION 13

(a) if u
R,ω←−→ v then u

R+D,τ(ω)←−−−−−→ v,
(b) if u /

R+D,ω←−−−→ v then u /
R,τ(ω)←−−−→ v.

Proof. (a) Let τ = S+ ◦T+; the case τ = S− ◦T− is similar (we assume

m ≥ 1 where necessary). If u
R,ω←−→ v, there exists an ω-open path π of L

from u to v using edges that intersect R. Since u, v are not moved by τ , the
image τ(π) contains a τ(ω)-open path of τL from u to v. It is elementary
that τ transports paths through a distance not exceeding 1 (see [6, Prop.
2.4]). Therefore, every edge of τ(π) intersects R+D.

(b) Suppose u
R,τ(ω)←−−−→ v. By considering the star–triangle transformations

that constitute the mapping τ (as in part (a)), we have that u
R+D,ω←−−−→ v.

3. Universality of arm exponents. This section contains the proof
of Theorem 1.1. The reader is reminded that we work with translation-
invariant measures associated with the square, triangular, and hexagonal
lattices.

3.1. The arm exponents. Let k ∈ N and σ ∈ {0, 1}k . The arm event
Aσ(N,n) is empty if N is too small to support the existence of the required k
disjoint paths to the exterior boundary of the annulus A(N,n). As explained
in [13] for example, for each σ, there exists N = N0(σ) such that the arm
exponent (assuming existence) is independent of the choice of N ≥ N0(σ).
We assume henceforth that N is chosen sufficiently large for this to be the
case.

It is a significant open problem of probability theory to prove the existence
and invariance of arm exponents for general lattices. This amounts to the
following in the present situation.

Conjecture 3.1. Let p ∈ [0, 1)3 be self-dual. For k ∈ N and a colour
sequence σ ∈ {0, 1}k, there exists ρ = ρ(σ,p) > 0 such that

P
4
p [Aσ(N,n)] ≈ n−ρ.

Furthermore, ρ(σ,p) is constant for all self-dual p.

This is phrased for the triangular lattice, but it embraces also the square
and hexagonal lattices, the first by setting a component of p to 0, and the
second by a single application of the star–triangle transformation. (See also
[15].) We make no contribution towards a proof of the claim of existence in
this conjecture. Theorem 1.1 amounts to the proof of the claim of constant-
ness, for an alternating sequence σ of length k ∈ {1, 2, 4, . . . }.
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14 G. R. GRIMMETT AND I. MANOLESCU

Hereafter, we consider only the one-arm event with σ = {1}, and the 2j-
alternating-arms events with σ = (1, 0, 1, 0, . . . ), with associated exponents
denoted respectively as ρ1 and ρ2j. Thus ρ1 = 1/ρ with ρ as in Section 1.3.

3.2. The arm events. Let L be one of the square, triangular, and hexago-
nal lattices, or a hybrid thereof as in Section 2. We embed L in R

2 in the man-
ner described in that section. Let xi = (i

√
3, 0), i ≥ 0, denote the vertices

common to these lattices to the right of the origin, and yi = ((i+ 1
2)
√
3, 12 ),

i ≥ 0, the vertices of the dual lattice L∗ corresponding to the faces of L lying
immediately above the edge xixi+1. For r ∈ (0,∞), let Br = [−r, r]2 ⊆ R

2,
with boundary ∂Br. We recall that Cx (respectively, C∗

y ) denotes the open
cluster of L containing x (respectively, the open∗ cluster of L∗ containing
y). For n ≥ 1 and any connected subgraph C of either L or L

∗, we write
C ∩ ∂Br 6= ∅ if C contains vertices in both Br and R

2 \ (−r, r)2. Note that
we may have C ∩ ∂Br 6= ∅ even when no vertices of C lie in ∂Br.

For j, n ∈ N with j ≥ 2, let

A1(n) = {Cx0
∩ ∂Bn 6= ∅},

A2(n) = {Cx0
∩ ∂Bn 6= ∅, C∗

y0 ∩ ∂Bn 6= ∅},
A2j(n) =

⋂

0≤i<j

{

Cxi
∩ ∂Bn 6= ∅, and xi /

Bn,ω←−−→ {x0, x1, . . . , xi−1}
}

.

We write AL

k (n) when the role of L is to be stressed. Note the condition of
disconnection in the definition of A2j(n): it is required that the xi are not
connected by open paths of edges all of which intersect Bn.

An alternative proof of the second inequality of the next lemma may be
obtained with the help of the forthcoming separation theorem, Theorem 3.5,
as in the final part of the proof of Proposition 3.7. The latter route is more
general since it assumes less about the underlying lattice, but it is also more
complex since it relies on a version of the separation theorem of [12] whose
somewhat complicated proof is omitted from the current work.

Lemma 3.2. Let p ∈ [0, 1)E be self-dual. Let k ∈ {1, 2, 4, 6, . . . }, and let
σ be an alternating colour sequence of length k (when k = 1 we set σ = {1}).
There exists N0 = N0(k) ∈ N and c = c(p, N, k) > 0 such that

(3.1) P
4
p [Ak(n

√
3)] ≤ P

4
p [Aσ(N,n)] ≤ cP4

p [Ak(n)]

for n ≥ N ≥ N0.

Outline proof of Lemma 3.2. First, here is a note concerning the
event A2j(n) with j ≥ 2. If ω ∈ A2j(n), vertices xi, 0 ≤ i < j, are con-
nected to ∂Bn by open paths. We claim that j such open paths may be
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UNIVERSALITY FOR BOND PERCOLATION 15

found that are vertex-disjoint and interspersed by j open∗ paths joining the
yi to ∂Bn. This will imply the existence of 2j arms of alternating types join-
ing {x0, y0, x1, y1, . . . , xj−1} to ∂Bn, such that the open primal paths are
vertex-disjoint, and the open∗ dual paths are vertex-disjoint except at the
yi. The claim may be seen as follows (see also Figure 3.1). The dual edge e
with endpoints y0, y0−(0, 1) is necessarily open∗. By exploring the boundary
of Cx0

at e, one may find two open∗ paths denoted π0, π
′
0, joining y0 to ∂Bn,

and vertex-disjoint except at y0. Let 1 ≤ r ≤ j−2. Since xr, xr+1
Bn,ω←−−→ ∂Bn

and xr /
Bn,ω←−−→ xr+1, we may similarly explore the boundary of Cxr to find an

open∗ path πr of Bn that joins yr to ∂Bn, and is vertex-disjoint from either
π0 or π′

0, and in addition from πs, s < r. The dual paths π′
0, π0, π1, . . . , πj−2

are the required open∗ arms.
The set Λn induces a subgraph of T whose boundary is denoted ∂Λn. We

denote the inside of ∂Λn (that is, the closure of the bounded component
of R2 \ ∂Λn) by Λn also. It is easily seen that Λn ⊆ Bn

√
3, and the first

inequality of (3.1) follows immediately.
For the second inequality, we shall use the fact that Bn ⊆ Λn, together

with a suitable construction of open and open∗ paths within ΛN . Let k =
2j ∈ {2, 4, 6, . . . } and suppose Aσ(N,n) occurs. On an anticlockwise tra-
verse of ∂ΛN , we find points a0, b0, a1, b1, . . . , aj−1, bj−1 such that the ai
(respectively, bi) are endpoints of open (respectively, open∗) paths crossing
the annulus A(N,n). Note that the bi are not vertices of L∗, but instead lie
in open∗ edges. Write a = (a0, a1, . . . , aj−1), b = (b0, b1, . . . , bj−1).

As illustrated in Figure 3.1, for sufficiently large N and all vectors a, b of
length j, there exists a configuration ωa,b of primal edges of ΛN such that

xr
ΛN←→ ar for 0 ≤ r ≤ j−1, and yr

ΛN←→∗ br and yr
ΛN←→∗ bj+1 for 0 ≤ r ≤ j−2.

That is, conditional on Aσ(N,n), if ωa,b occurs then so does Ak(n). Assume
for the moment that pi > 0 for all i. The configurations ωa,b may be chosen
in such a way that

c′ = c′(p, N, k) := min
a,b,ω

P
4
p (ωa,b | Aσ(N,n))

satisfies c′ > 0. Note that c′ does not depend on n. The details of the
construction of the ωa,b are slightly complicated but follow standard lines
and are omitted (similar arguments are used in [4, Sect. 8.2] and [18, Chap.
2]). It follows as required that

c′P4
p [Aσ(N,n)] ≤ P

4
p [Ak(n)].

Whereas a naive construction of the ωa,b succeeds when pi > 0 for all i,
a minor variant of the argument is needed if pi = 0 for some i. The details
are elementary and are omitted.
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16 G. R. GRIMMETT AND I. MANOLESCU

a0

b0

a1

b1

a2

b2

x2

x0

∂ΛN

∂Bn

y0 y1

Fig 3.1. The vertices xr (respectively, yr) may be connected by open (respectively, open∗)
paths to the ar (respectively, br) in such a way that the event A6(n) results.

The case k = 1 is similar but simpler.

3.3. Proof of Theorem 1.1. Let p ∈ [0, 1)3 be self-dual with p0 > 0,

and consider the two measures P
�

(p0,1−p0)
(respectively, P4

p ) on the square

(respectively, triangular) lattice. The proof of the universality of the box-
crossing property was based on a technique that transforms one of these
lattices into the other while preserving primal and dual connections. The
same technique will be used here to prove the following result, the proof of
which is deferred to Section 3.4.

Proposition 3.3. For any k ∈ {1, 2, 4, 6, . . .} and any self-dual triplet
p ∈ [0, 1)3 with p0 > 0, there exist c0, c1, n0 > 0 such that, for all n ≥ n0,

c0P
4
p [Ak(n)] ≤ P

�

(p0,1−p0)
[Ak(n)] ≤ c1P

4
p [Ak(n)].

Proof of Theorem 1.1. Suppose there exist k ∈ {1, 2, 4, 6, . . . }, a self-
dual p ∈ [0, 1)3, and α > 0, such that

(3.2) P
4
p [Aσ(N,n)] ≈ n−α,

with σ the alternating colour sequence of length k (when k = 1, we take
σ = {1}). By Lemma 3.2, (3.2) is equivalent to

(3.3) P
4
p [Ak(n)] ≈ n−α.
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We say that ‘P satisfies (3.3)’ if (3.3) holds with P
4
p replaced by P.

By self-duality, there exists i such that pi > 0, and we assume without
loss of generality that p0 > 0. By Proposition 3.3, P�

(p0,1−p0)
satisfies (3.3).

Similarly, P4
p′ satisfies (3.3) for any self-dual p′ ∈ [0, 1)3 of the form p′ =

(p0, p
′
1, p

′
2). The claim is proved after further applications of the proposition.

3.4. Proof of Proposition 3.3. A significant step in the arguments of [12]
is called the ‘separation theorem’ (see also [13, Thm 11]). This states roughly
that, conditional on the arm event Aσ(N,n), there is probability bounded
away from 0 that arms with the required colours can be found whose end-
points on the exterior boundary of the annulus are separated from one an-
other by a given distance or more. A formal statement of the separation
theorem is included in Section 3.5 as Theorem 3.5; the proof is rather tech-
nical and very similar to those of [12, 13] and is therefore omitted. The proof
of Proposition 3.3 relies on arm-separation techniques. More specifically, it
relies on Proposition 3.7, which is an application of the separation theorem,
Theorem 3.5.

The proof of Proposition 3.3 uses the following lemma, in which the
probability-vector p helps define the star–triangle transformations compris-
ing the map τ .

Lemma 3.4. Let L = (V,E) be a mixed lattice, let p ∈ [0, 1)3 be self-dual,
and let k ∈ {1, 2, 4, 6, . . .}. For n/

√
3 > k + 2 and τ ∈ {S+ ◦ T+, S− ◦ T−},

we have (‘surely’) that τAL

k (n) ⊆ AτL
k (n− 1).

Proof. Let k ∈ {1, 4, 6, . . .}, we shall consider the case k = 2 separately.
Let τ ∈ {S+ ◦ T+, S− ◦ T−} and ω ∈ AL

k (n). Note that the points xr,
r = 0, 1, . . . , are invariant under τ .

It is explained in Section 2 (see also [6, Sect. 2]) that the image τ(π) of an
ω-open path π contains a τ(ω)-open path of τL lying within distance 1 of π.
Therefore, for n/

√
3 > 2r+2, if Cxr(ω)∩∂Bn 6= ∅, then Cxr(τ(ω))∩∂Bn−1 6=

∅. The proof when k = 1 is complete, and we assume now that k ≥ 4.
Let j = k/2 and n/

√
3 > k + 2. By Proposition 2.1, xr /

Bn−1,τ(ω)←−−−−−→ xs for
0 ≤ r < s ≤ j − 1, whence τ(ω) ∈ AτL

k (n− 1).
Finally, let k = 2. Let τ ∈ {S+ ◦ T+, S− ◦ T−} and ω ∈ AL

2 (n). Let Γ
(respectively, Γ∗) be an open primal (respectively open∗ dual) path starting
at x0 (respectively y0) that intersects ∂Bn. Since x0 and y0 are unchanged
under τ , they are contained, respectively, in τ(Γ) and τ(Γ∗). By the remarks
in Section 2 concerning the operation of τ on open∗ dual paths, we conclude
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18 G. R. GRIMMETT AND I. MANOLESCU

that Cx0
∩ ∂Bn−1 6= ∅ in τL, and similarly C∗

y0 ∩ ∂Bn−1 6= ∅ in τL∗. The
proof is complete.

Proof of Proposition 3.3. Let c and N1 be as in Proposition 3.7. By
making n applications of τ = S+ ◦ T+ to L

0, we deduce that τnAL
0

k (2n) ⊆
AL

n

k (n). Therefore, for n ≥ N1,

P
�

(p0,1−p0)
[Ak(n)] = P

n
p[Ak(n)]

≥ P
0
p[Ak(2n)] by Lemma 3.4

= P
4
p [Ak(2n)]

≥ cP4
p [Ak(n)] by Proposition 3.7.

This proves the first inequality of Proposition 3.3.
Let n ≥ max{k

√
3, N1}, and consider the event Ak(n) on the lattice L

n.
If we apply n times the transformation S− ◦T− to L

n, we obtain via Lemma
3.4 applied to the event Ak(2n) that:

P
�

(p0,1−p0)
[Ak(n)] = P

n
p[Ak(n)]

≤ c−1
P
n
p[Ak(2n)] by Proposition 3.7

≤ c−1
P
0
p[Ak(n)] by Lemma 3.4

= c−1
P
4
p [Ak(n)].

The proof is complete.

3.5. Separation theorem. The so-called ‘separation theorem’ is a basic
element in Kesten’s work on scaling relations in two dimensions. It asserts
roughly that, conditional on the occurrence of a given arm event, there is
probability bounded from 0 that such arms may be found whose endpoints
on the interior and exterior boundaries of the annulus are distant from one
another. The separation theorem is useful since it permits the extensions of
the arms using box-crossings.

Kesten proved his theorem in [12] for homogeneous site percolation mod-
els, while noting that it is valid more generally. The proof has been reworked
in [13], also in the context of site percolation. The principal tool is the box-
crossing property of the critical model. In this section, we state a general
form of the separation theorem, for use in both the current paper and the
forthcoming [5]. The proof follows closely that found in [12, 13] and is omit-
ted.

Let G = (V,E) be a connected planar graph, embedded in the plane in
such a way that each edge is a straight line segment, and let P be a product

imsart-aop ver. 2011/05/20 file: star2-aop3.tex date: December 14, 2011



UNIVERSALITY FOR BOND PERCOLATION 19

measure on Ω = {0, 1}E . As usual we denote by G∗ the dual graph of G,
and more generally the superscript ∗ indicates quantities defined on the dual.
We shall use the usual notation from percolation theory, [4], and we assume
there exists a uniform upper bound L <∞ on the lengths of edges of G and
G∗, viewed as straight line segments of R2.

The hypothesis required for the separation theorem concerns a lower
bound on the probabilities of open and open∗ box-crossings. Let ω ∈ Ω
and let R be a (non-square) rectangle of R2. A graph-path π is said to cross
R if π contains an arc (termed a box-crossing) lying in the interior of R
except for its two endpoints, which are required to lie, respectively, on the
two shorter sides of R. Note that box-crossings lie in the longer direction.
The rectangle R is said to possess an open crossing (respectively, open∗ dual
crossing) if there exists an open path of G (respectively, open∗ path of G∗)
crossing R, and we write C(R) (respectively, C∗(R)) for the event that this
occurs.

Let T be the set of translations of R2, and τ ∈ T . Let Hn = [0, 2n]× [0, n]
and Vn = [0, n] × [0, 2n], and let n0 = n0(G) < ∞ be minimal with the
property that, for all τ and all n ≥ n0, τHn and τVn possess crossings in
both G and G∗. Let

b(G,P) = inf
{

P(C(τHn)),P(C(τVn)) : n ≥ n0, τ ∈ T
}

,(3.4)

b∗(G,P) = inf
{

P(C∗(τHn)),P(C
∗(τVn)) : n ≥ n0, τ ∈ T

}

,(3.5)

and

(3.6) β = β(G,P) = min{b, b∗}.

The pair (G,P) (respectively, (G∗,P∗)) is said to have the box-crossing
property if and only if b(G,P) > 0 (respectively, b∗(G,P) > 0). In [6], the
box-crossing property is given in terms of boxes of arbitrary orientation and
aspect-ratio. It is shown there that it suffices to consider only horizontal
and vertical boxes. It is a consequence of the FKG inequality that the box-
crossing property does not depend on the chosen aspect-ratio (so long as it is

strictly greater than 1). By [6, Thm 1.3], P4
p has the box-crossing property

whenever p ∈ [0, 1)3 is self-dual.
Let k ∈ N and σ ∈ {0, 1}k. Rather than working with the arm events

Aσ(N,n) of Section 1.3, we use instead the events Āσ(N,n) defined in the
same way except that Λn is replaced throughout the definition by Bn =
[−n, n]2, and arms are required to comprise edges that intersect Bn. All
constants in the following statements are permitted to depend on the colour
sequence σ.
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Let Ā(N,n) = Bn\(−N,N)2 be the annulus with interior boundary ∂BN

and exterior boundary ∂Bn. We shall consider open and open∗ crossings be-
tween the interior and exterior boundaries. We emphasize that the endpoints
of these crossings are not required to be graph vertices.

O

n

2ηn

√

ηn
Γ1

Γ2
e1

e2

Fig 3.2. A primal η-exterior-fence Γ1 with exterior endpoint e1, and a dual η-exterior-
fence Γ2.

For clarity, we concentrate first on the behaviour of crossings at their
exterior endpoints. Let η ∈ (0, 1). A primal (respectively, dual) η-exterior-
fence is a set Γ of connected open (respectively, open∗) paths comprising
the union of:

(i) a crossing of Ā(N,n) from its interior to its exterior boundary, with
exterior endpoint denoted ext(Γ),

together with certain further paths which we describe thus under the as-
sumption that ext(Γ) = (n, y) is on the right side of ∂Bn:

(ii) a vertical crossing of the box [n, (1 +
√
η)n]× [y − ηn, y + ηn],

(iii) a connection between the above two crossings, contained in ext(Γ) +
B√

ηn.

If ext(Γ) is on a different side of ∂Bn, the event of condition (ii) is replaced by
an appropriately rotated and translated event. This definition is illustrated
in Figure 3.2.

One may similarly define an η-interior -fence by considering the behaviour
of the crossing near its interior endpoint. We introduce also the concept of a
primal (respectively, dual) η-fence; this is a union of an open (respectively,
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O

e1

e2

e3

nJ3

nJ1

2
√
ηn ≤

≥ 2
√
ηn

n

ηn

nJ2

Fig 3.3. The event A∅,J
σ (N,n) with σ = (1, 0, 1) and η-landing-sequence J. Each crossing

Γi is an η-exterior-fence with exterior endpoint ei ∈ nJi.

open∗) crossing of Ā(N,n) together with further paths in the vicinities of
both interior and exterior endpoints along the lines of the above definitions.

An η-landing-sequence is a sequence of closed sub-intervals I = (Ii : i =
1, 2, . . . , k) of ∂B1, taken in anticlockwise order, such that each Ii has length
η, and the minimal distance between any two intervals, and between any
interval and a corner of B1, is greater than 2

√
η. We shall assume that

(3.7) 0 < k(η + 2
√
η) < 8,

so that η-landing-sequences exist.
Let η, η′ satisfy (3.7), and let I (respectively, J) be an η-landing-sequence

(respectively, η′-landing-sequence). Write ĀI,J
σ (N,n) for the event that there

exists a sequence of η-fences (Γi : i = 1, 2, . . . , k) in the annulus Bn \
(−N,N)2, with colours prescribed by σ, such that, for all i, the interior
(respectively, exterior) endpoint of Γi lies in NIi (respectively, nJi). Let
ĀI,∅

σ (N,n) (respectively, Ā∅,J
σ (N,n)) be given similarly in terms of η-interior-

fences (respectively, η′-exterior-fences). Note that

(3.8) ĀI,J
σ (N,n) ⊆ Ā∅,J

σ (N,n), ĀI,∅
σ (N,n) ⊆ Āσ(N,n).

These definitions are illustrated in Figure 3.3.
In the proof of the forthcoming Proposition 3.7 (and nowhere else), we

shall make use of a piece of related notation introduced here. Let k = 2j ≥ 2,
and let η and I be as above. As explained in the proof of Lemma 3.2, the
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event Ak(n) of Section 3.2 requires the existence of an alternating sequence
of open and open∗ paths joining the set {x0, y0, x1, y1, . . . , xj−1} to the
boundary ∂Bn. Let A

I
k(n) be the sub-event in which the exterior endpoints

of the open (respectively, open∗) paths lie in I1, I3, . . . , Ik−1 (respectively,
I2, I4, . . . , Ik), and in addition these exterior endpoints have associated paths
as given in (ii)–(iii) of the above definition of an η-exterior-fence.

We now state the separation theorem. The proof is omitted, and may
be constructed via careful readings of the appropriate sections of [12, 13].
There is a small complication arising from the fact that the endpoints of
box-crossings are not necessarily vertices of the relevant graph, and this is
controlled using the uniform upper bound L on the lengths of embeddings
of edges.

Theorem 3.5 (Separation theorem). Let k ∈ N, and σ ∈ {0, 1}k. For
β0 > 0, M ∈ N, and η0 > 0, there exist constants c > 0 and n1 ∈ N such
that: for any pair (G,P) with β(G,P) > β0 and n0(G) ≤M , for all η, η′ > η0
satisfying (3.7), all η-landing-sequences I and η′-landing-sequences J , and
all N ≥ n1 and n ≥ 2N , we have

P
[

ĀI,J
σ (N,n)

]

≥ cP
[

Āσ(N,n)
]

.

Amongst the consequences of Theorem 3.5 is the following. The proof
(also omitted) is essentially that of [13, Prop. 12], and it uses the extension
of paths by judiciously positioned box-crossings.

Corollary 3.6. Suppose that β = β(G,P) > 0. For k ∈ N and σ ∈
{0, 1}k, there exists c = c(β, σ) > 0 and N0 ∈ N such that, for all N ≥ N0

and n ≥ 2N ,
P[Āσ(N, 2n)] ≥ cP[Āσ(N,n)].

The proof of Proposition 3.3 makes use of the following application of
Corollary 3.6 to the pairs (Lm,Pm

p ).

Proposition 3.7. For k ∈ {1, 2, 4, 6, . . . } and a self-dual triplet p ∈
[0, 1)3 with p0 > 0, there exist c > 0 and N1 ∈ N such that, for m ≥ 0 and
n ≥ N1,

P
m
p [Ak(2n)] ≥ cPm

p [Ak(n)].

Proof. The box-crossing property has been studied in [6] in the context
of hybrids of Z2/T or Z2/H type. The arguments of [6] may be adapted as
follows to obtain that, for given self-dual p ∈ [0, 1)3 with p0 > 0, the pairs
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(Lm,Pm
p ) satisfy a uniform box-crossing property in the sense that: there

exists β0 > 0 such that

(3.9) β(Lm,Pm
p ) > β0, m ≥ 0.

Write BM,N = [0,M ] × [0, N ], and denote by Ch(BM,N ) (respectively,
Cv(BM,N )) the event that there exists a horizontal (respectively, vertical)
open crossing of BM,N (with a similar notation C∗

h, C
∗
v for dual crossings).

Since every translate of BM,3N contains a rectangle with dimensions M ×N
lying in either the square or triangular part of Lm,

P
m
p [Ch(τBM,3N )] ≥ min

{

P
4
p [Ch(BM,N )],P�

(p0,1−p0)
[Ch(BM,N )]

}

,

for all τ ∈ T . The dual model lives on a mixed square/hexagonal lattice
with parameter 1 − p, and the same inequality holds with Ch replaced by
C∗
h. By [6, Thm 1.3], there exists b1 = b1(p) > 0 such that

(3.10)
P
m
p [Ch(τBM,3N )],Pm

p [C∗
h(τBM,3N )] ≥ b1, m ≥ 0, M,N ≥ 1, τ ∈ T .

Adapting the proof of [6, Prop. 3.8], we obtain that

P
m
p [Cv(τB3N,N )] ≥ P

4
p [Cv(BN,2N )], m ≥ 0, N ≥ 1, τ ∈ T .

The same inequality holds with Cv replaced by C∗
v , as above, and therefore

there exists b2 = b2(p) > 0 such that

(3.11) P
m
p [Cv(τB3N,N )],Pm

p [C∗
v(τB3N,N )] ≥ b2, m ≥ 0, N ≥ 1, τ ∈ T .

Inequalities (3.10)–(3.11) imply as in the proof of [6, Prop. 3.1] that (3.9)
holds for some n0 <∞ and β0 > 0, and we choose these accordingly.

Let σ be an alternating colour sequence of length k (we set σ = {1} when
k = 1), and denote Āσ(N,n) by Āk(N,n).

Let η satisfy (3.7) and let I be an η-landing sequence. Let c = c2 and n1

be as in Theorem 3.5. By Corollary 3.6, there exists c0 = c0(β0, k) > 0 and
N0 ≥ n1 such that

(3.12) P
m
p [Āk(N, 2n)] ≥ c0P

m
p [Āk(N,n)], m ≥ 0, n ≥ 2N ≥ 2N0.

Therefore,

(3.13) P
m
p [Ak(n)] ≤ P

m
p [Āk(N,n)] ≤ c−1

0 P
m
p [Āk(N, 2n)].

By an elementary consideration of paths of Lm, there exist N1 ≥ 2N0 and
c1 = c1(p, N1) such that

(3.14) P
m
p [AI

k(
1
2N1)] ≥ c1, m ≥ 0.
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By Theorem 3.5 and (3.8),

(3.15) P
m
p [ĀI,∅

k (N1, 2n)] ≥ c2P
m
p [Āk(N1, 2n)], m ≥ 0, n ≥ N1.

Furthermore, by the uniform box-crossing property as in [13, Prop. 12], there
exists c3 = c3(p, η) > 0 such that

P
m
p [Ak(2n)] ≥ c3P

m
p [AI

k(
1
2N1)]P

m
p [ĀI,∅

k (N1, 2n)]

≥ c1c2c3P
m
p [Āk(N1, 2n)] by (3.14)–(3.15).

The claim follows by (3.13) with c = c0c1c2c3.
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