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Abstract. We consider the Burgers equation on the real line with forc-
ing given by Poissonian noise with no periodicity assumption. Under a
weak concentration condition on the driving random force, we prove
existence and uniqueness of a global solution in a certain class. We
describe its basin of attraction that can also be viewed as the main er-
godic component for the model. We establish existence and uniqueness
of global minimizers associated to the variational principle underlying
the dynamics. We also prove the diffusive behavior of the global mini-
mizers on the universal cover in the periodic forcing case.
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1. Introduction

The Burgers equation is one of the basic nonlinear evolution equations:

(1.1) ∂tu(t, x) + u(t, x) · ∂xu(t, x) = f(t, x).

Here t ∈ R is the time variable, x ∈ R is the space variable. The equation
describes the evolution of velocity vector field u(·, ·) of sticky dust particles
in the presence of external potential forcing f(t, x) = −∂xF (t, x).

Burgers introduced this equation as a turbulence model. Although it
was soon discovered that the dynamics governed by (1.1) does not describe
turbulence adequately, the equation has naturally appeared in various other
contexts, from cosmology to traffic modeling. An informative recent survey
on Burgers turbulence is [BK07].

One of the remarkable properies of the Burgers equation is that even
if the initial data at time t0 and the forcing are smooth, the solution of
the Cauchy problem typically develops discontinuities or shocks, and if one
wants to extend the solution beyond the formation of shock waves, one has
to work with generalized solutions. Under mild assumptions on the initial
data and forcing, only one of the generalized solutions is physical. This
solution is called the entropy or viscosity solution and it can be found using
a characterization that is often called the Lax–Oleinik variational principle
(see, e.g., [BK07] and references therein). Namely, the solution potential (a
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function U such that ∂xU(t, x) = u(t, x) for a.e. x ∈ R) satisfies

(1.2) U(t, x) = inf
γ:γ(t)=x

{
U(t0, γ(t0)) +

∫ t

t0

L(s, γ(s), γ̇(s))ds

}
.

The expression in the curly brackets is called action, and the the infimum of
action is taken over all absolutely continuous trajectories γ defined on [t0, t]
and terminating at x at time t. The Lagrangian L is defined by

L(t, x, p) =
p2

2
− F (t, x).

Following the hydrodynamic interpretation of the Burgers equation, one
can identify the action minimizers in (1.2) as the particle trajectories. This
kind of representation holds true for more general equation of Hamilton–
Jacobi type. The specifics of the Burgers equation is that if γ∗ is a unique
minimizer in (1.2), then u(t, x) = γ̇∗(t).

When the forcing is a random field, one has to work with optimization
problems for paths accumulating action from a random Lagrangian land-
scape, so questions about Burgers equations with randomness become ran-
dom media questions.

The ergodic theory of the Burgers equation with random forcing begins
with [EKMS00]. The forcing in [EKMS00] is assumed to be white noise
type in time and smooth and periodic in space. Due to the periodicity as-
sumption, the evolution effectively takes place on a circle. The compactness
of the circle allows for efficient control of the long time behavior of action
minimizers, which leads to constructing attracting global solutions and thus
to a complete description of the ergodic components for the dynamics, each
one consisting of all velocity profiles with given mean velocity.

This work was extended and streamlined in [IK03] and [GIKP05], where
the multidimensional version of the Burgers equation with positive or zero
viscosity on a torus was considered. In [Bak07] the ergodic theory for the
Burgers equation on a segment with random boundary conditions was de-
veloped.

In all these papers the compactness of the domain played an important
role. In fact, in the case of unbounded domain with no periodicity assump-
tion, currently there is no complete understanding of the ergodic properties
of the Burgers equation. Let us summarize what is known.

In [HK03], the Burgers equation in Rd with aperiodic white-noise forcing
with certain localization properties was considered. A global solution con-
structed in the paper was shown to have a basin of attraction containing
the zero velocity profile, but no interesting properties of the global solu-
tion were established, and the description of the domain of attraction of the
global solution was incomplete.

In [Sui05], it was noted that in the absence of periodicity assumptions
the long time behavior of solutions can depend on the behavior of the initial
condition at infinity in an essential way. In particular, it was shown that
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outside the main ergodic component (containing the zero velocity profile),
there are solutions with significantly different behavior.

In this paper we introduce a new kind of random forcing for the Burgers
equation on the real line with no periodicity assumption. The forcing poten-
tial we suggest is given by a Poisson point field. In this model, paths accu-
mulate their action traveling through a cloud of random Poissonian points.
Although this model preserves many features of the white noise model, it
is easier to analyze and visualize. It also has much in common with the
well-known Hammersley process (see, e.g., [AD95]) which has been explic-
itly used for the analysis of hydrodynamic limit resulting in the Burgers
equation in [Sep96].

For the new model we are able to construct a global solution via a limiting
procedure seeded at zero initial condition, prove a so called One Force —
One Solution Principle (1F1S), and describe the main ergodic component of
the system, i.e., the basin of attraction of the global solution.

1F1S for the Burgers equation on the circle is tightly connected to the
hyperbolicity of the global action minimizer. In particular, for any two
Burgers particles, the distance between their backward trajectories (given
by the corresponding one-sided action minimizers) converges to zero. A
stronger phenomenon occurs in the case of Poissonian forcing: for any two
particles, their backward trajectories will meet at one of the Poissonian
points in finite time and coincide from that point on in the reverse time. This
stronger form of hyperbolicity may naturally be called hyperhyperbolicity.

The rest of the paper is organized as follows: In Section 2 we introduce
the new forcing model based on Poissonian points. In Section 3 we discuss
the geometry of foliation of the space-time into particle trajectories under
point forcing. In Section 4 we formulate our main results. In Section 5
we construct the global solution. In Section 6 we describe its behavior
at infinity. In Section 7, we show that this solution is an attractor and
describe its basin of attraction. In Section 8 we study global minimizers.
An important part of that section is a Central limit theorem discribing the
diffusive behavior of global minimizers for periodic Poissonian forcing.

Acknowledgments. The author would like to thank Konstantin Khanin
for stimulating discussions. He is also thankful to NSF for partial support
through CAREER grant DMS-0742424.

2. Poissonian point forcing

The goal of this section is to describe the model rigorously, so let us now
be more precise. The model is based on a Poisson point field and we refer
to [Kal86] for an introduction to point processes as random integer-valued
measures.

We are working on a complete probability space (Ω,F ,P). It is con-
venient to identify Ω with the space of locally finite point configurations
ω = {(si, xi), i ∈ N} in space-time R×R. The sigma-algebra F is generated
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by maps N(B) assigning to each ω the number of points of ω in a bounded
Borel set B ⊂ R× R. The measure P is the distribution of a Poisson point
field with intensity measure µ(dt× dx).

Since we want the forcing to be stationary in time, we shall always assume
that the intensity is a product measure:

µ(dt× dx) = dt×m(dx).

Then for disjoint sets B1,. . . , Bn, the random variables N(B1), . . . , N(Bn)
are independent and Poissonian with parameters µ(B1), . . . , µ(Bn).

We will denote the integral term in (1.2) as

At0,t(γ) =

∫ t

t0

L(s, γ(s), γ̇(s))ds =
1

2

∫ t

t0

γ̇2(s)ds−
∫ t

t0

F (s, γ(s))ds,

and redefine the contribution from the potential by

(2.1)

∫ t

t0

F (s, γ(s))ds = N t0,t(γ),

where for a path γ and times t0 and t satisfying t0 < t, N t0,t(γ) = N t0,t
ω (γ) is

the number of Poissonian points that γ passes through between t0 and t. In
other words, each Poissonian point visited by the path contributes −1 to the
action. An immediate generalization of our model is a compound Poisson
point field where each point comes with a random weight which results in
random contributions to the action. In fact, all our results can be extended
to that case under reasonable assumptions on the random weights. However,
for simplicity we concentrate here on the simple Poisson process.

Definition (2.1) results in the following expression for action accumulated
by a path γ between times t0 and t > t0:

At0,t1(γ) = At0,t
ω (γ) =

1

2

∫ t

t0

γ̇2(s)ds−N t0,t
ω (γ).

It is well-known (or can be easily derived from the Euler–Lagrange equa-
tions) that in the zero forcing field the minimizers (or particle trajectories)
are straight lines. We conclude that between visits to Poissonian points
action-minimizing paths are straight lines.

Let us introduce more notation. For two times t0 and t1 and two sets
A0, A1 ⊂ R we denote by Γt1,A1

t0,A0
the set of all piecewise linear paths defined

between t0 and t1 such that switchings from one linear regime to another
happen only at Poissonian points. We also denote the set of action minimiz-

ers over Γt1,A1

t0,A0
by M t1,A1

t0,A0
= M t1,A1

t0,A0
(ω). If A0 or A1 consists of one point x

we will often use index x instead of {x} in these notations.
To define the main random dynamical system we must start with the

phase space. First we recall that the natural space of solutions for the Burg-
ers equation consists of piecewise continuous functions u defined on R, with
right and left limits at every point, with at most countably many discontinu-
ities, each discontinuity being a downward jump, or shock: u(x−) > u(x+).
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(The shock absorbs incoming particles on both sides.) We shall impose an
additional restriction on these functions to be bounded and will not dis-
tinguish between two functions that coincide at all their continuity points.
We will denote the resulting factor space by U, and often we will abuse the
notation writing u ∈ U when u is a representative of an element of U.

We will need a measure of proximity in U. We denote the set of continuity
points of a function h ∈ U by Ch and for any h1, h2 ∈ U write

d(h1, h2) = exp
[
− sup

{
r > 0 : h1(x) = h2(x), x ∈ Ch1 ∩ Ch2 ∩Br

}]
,

where Br = [−r, r]. If there is no neigborhood of the origin where h1 and h2
coincide, we set d(h1, h2) = 1. If h1 ≡ h2, we set d(h1, h2) = 0. Thus
defined d is a metric in U taking values in [0, 1].

Given v ∈ U, we can define a potential V so that V ′(x) = v(x) for all x.
For any times t0, t1 with t0 < t1, we set

(2.2) Φt0,t1
ω v(x) = γ̇∗(t1),

where γ∗ is the solution of

At0,t1
V (γ) = V (γ(t0)) +At0,t1

ω (γ) → min, γ ∈ Γt1,x
t0,R.(2.3)

Let us assume that

(2.4) m(R) < ∞,

and briefly summarize (without proof) several facts about the Burgers equa-
tion solution map Φ that apply to the current setting.

Lemma 2.1. If h ∈ U, then with probability 1 the following holds:

(1) For any time interval [t0, t1], in definition (2.2)–(2.3), the mini-
mizer γ∗ (and, consequently, its slope γ̇∗(t1) at the terminal time
t1) is defined uniquely for all x ∈ R except at most countably many

points. Every point x where Φt0,t1
ω v(x) is uniquely defined is a con-

tinuity point of Φt0,t1
ω v. At any point where the minimizer is not

unique, Φt0,t1
ω v makes a downward jump.

(2) The function Φt0,t1
ω v is bounded (in particular, combining this with

the first part of this Lemma, we obtain that Φt0,t1
ω is a map from U

to itself).
(3) Moreover, for all ω, if t0 ≤ t1 ≤ t2,

(2.5) Φt1,t2
ω Φt0,t1

ω v = Φt0,t2
ω v.

Remark 2.1. Introducing Φt
ω = Φ0,t

ω for t ≥ 0, we can rewrite the cocycle
property (2.5) as

Φt1+t2
ω v = Φt2

θt1ω
Φt1
ω v, t1, t2 ≥ 0,

where θt denotes the time shift of the Poissonian point field: (si, xi) 7→
(si − t, xi).
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Let us denote by FA the sigma-algebra generated by the restriction of
the Poissonian point field to A × R for any set A of times. Clearly, the
random operator Φt0,t1

ω depends only on the realization of the Poisson process
between times t0 and t1, i.e., it is measurable w.r.t. F[t0,t1].

3. Geometry of solutions under Poissonian forcing

Throughout this paper we consider the external forcing that is concen-
trated on a discrete set of Poissonian points (we will often call them forcing
points.) This is different from traditionally considered smooth forcing fields,
so let us understand the effect of this kind of forcing on the solution.

Let us consider a model situation where a smooth beam of Burgers par-
ticles encounters a forcing point at the origin at time 0. Let us assume that
at time 0, the velocity vector field near 0 is u0(y) = a+ by, where b > 0.

It is clear that for every (t, x) with t > 0 and x close to the origin there are
two minimizer candidates. The minimizer either passes through the origin
or it does not. If it does then (assuming there are no other point sources of
forcing) it has to be a straight line connecting the origin to (t, x), and the
accumulated action is A1(t, x) = x2/(2t)−1, where −1 is the contribution of
the forcing point at the origin, and x2/(2t) is the action accumulated while
moving with constant velocity x/t between 0 and t. If the minimizer does
not pass through the origin, then it is a straight line connecting some point
(0, x0) to (t, x). On the one hand, the velocity of the particle associated
with the minimizer is (x−x0)/t. On the other hand, it has to coincide with
u0(x0) = a+ bx0. Therefore, we can find x0 = (x−at)/(1+ bt). Taking into
account that U0(x0) = ax0 + bx20/2, we can compute that the total action
of that path is A2(t, x) = (bx2 + 2ax− a2t)/(2(1 + bt)).

To see which of the two cases is realized for (t, x) we must compare A1(t, x)
and A2(t, x). If A1(t, x) < A2(t, x), then the particle arriving to x at time t
is at the origin at time 0. If A1(t, x) > A2(t, x), then the particle arriving
to x at time t is one of the particles that moved with constant velocity and
was a part of the incoming beam. If A1(t, x) = A2(t, x), then both of these
paths are minimizers, and at time t there is a shock at point x. The relation
A1(t, x) = A2(t, x) can be rewritten as

(x− at)2 = 2t(1 + bt).

For small values of t, the set of points satisfying this relation looks like a
parabola (x − at)2 = 2t, see Figure 3 where an example with a = 1 and
b = 1/2 is shown.

We see that when a Poissonian point appears, it emits a continuum of par-
ticles each moving with constant velocity, creating two shock fronts moving
(at least for a short time) to the left and right.

It is important to notice that in our model case with a forcing point at the
origin, u(t, x) = x/t for all points connected to the origin by a minimizing
segment. It means that for each time t, the velocity is linear in the domain
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Figure 1. Minimizers around a forcing point

of influence of the forcing point, and the velocity gradient decays with time
as 1/t.

In general, the behavior of this kind occurs near each forcing point, and
in the long run more and more points of the space-time plane get assigned
to forcing points. Grouping together points assigned to the same forcing
point, we obtain a tesselation of space-time into domains of influence of
forcing points. Inside each domain or cell the velocity field is linear in x if
the time t is fixed.

It is well-known that in the Burgers equation the energy is dissipated at
the shocks, see, e.g., [BK07]. By seeding new particles at each Poissonian
point, the forcing pumps energy into the system and, therefore, we can hope
that there is a dynamical or statistical energy balance in the system. We
will actually see that this dissipation results in asymptotic alignment of the
velocities of particles that keep moving away from the origin without being
absorbed into shocks.

Another point of view at the stationarity and ergodicity issues for this
system is related to the stabilization of the tesselation of space-time into
cells described above.

4. Main result

Although it would be interesting to consider the situation where the spa-
tial intensity measure m(dx) satisfies m(R) = ∞, (e.g., the Lebesgue mea-
sure on R), throughout this paper we will adopt either assumption (2.4) or
an even stronger finite first moment assumption

(4.1)

∫
R
(1 + |x|)m(dx) < ∞.
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Theorem 4.1. Suppose (4.1) holds. Then there is a set Ω′ with P(Ω′) = 1
and a function u : R× Ω′ → U such that on Ω′ the following holds true:

(1) u is measurable w.r.t. F(−∞,0]. In other words, it depends only on
ω|(−∞,0].

(2) u defines a global solution (in other words, it is skew-invariant under
(Φ, θ))

Φt
ωuω = uθtω, t ≥ 0.

(3) The solution uω is piecewise linear.
(4) There is a nonrandom constant q > 0 such that

lim
x→±∞

uω(x) = ±q.

(5) This solution u plays the role of a one-point attractor. Namely, if
V ′ = v ∈ U and

(4.2) lim inf
x→∞

V (x)

x
> −q,

we have forward attraction:

(4.3) d(Φt
ωv, uθtω) → 0, t → ∞,

and pullback attraction:

(4.4) d(Φt
θ−tωv, uω) → 0, t → ∞.

The function u is a unique (up to zero measure modifications) global solution
satisfying

(4.5) lim inf
x→∞

Uω(x)

x
> −q,

with positive probability (here Uω is the potential of uω, i.e., U
′
ω ≡ uω.)

Remark 4.1. One can reformulate the theorem in terms of a global solution
defined as a function of three variables: uω(t, x) = uθtω(x).

Remark 4.2. If one accepts a weaker condition 2.4, then all conclusions of
Theorem 4.1 except conclusion 4 still hold and their proofs do not change.
Conclusion 4 has to be replaced with a weaker one

lim
x→∞

Uω(x)

x
= q.

Remark 4.3. Conclusion 4 means that in the stationary regime, at infinity
one observes particles moving away from the origin with velocity q.

Remark 4.4. Conclusion 5 means that if one starts with an initial condition
that sends particles from infinity towards zero with speed that is less than q,
see condition (4.2), then this inbound flow is not strong enough to compete
with the outbound flow of particles developed due to the noise, and in the
long run it is dominated by the latter. If the condition (4.2) is violated,
then the long term properties of solutions are sensitive to the details of
the behavior of the initial condition at infinity because the inbound flow
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of particles may be stronger than the outbound one, and one will observe
effects similar to those discussed in [Sui05].

Remark 4.5. The uniqueness conclusion 5 and measurability property (con-
clusion 1) can be combined into 1F1S Principle — at time 0 there is a unique
velocity profile compatible with the history of the forcing.

5. Constructing a global solution.

In this section we construct a global soulution u. To do this, we start
with the zero initial condition at time −T and take T to infinity. Our goal

is to show that Φ−T,0
ω 0 converges in (U, d) to a limiting function and that

this limit defines a global solution.
It will be convenient to assume that 0 belongs to the support of mea-

sure m, i.e., for any δ > 0, m(Bδ) > 0. We adopt this nonresrictive as-
sumption without loss of generality since one can always introduce a shift
coordinate change to make it hold true.

Since all admissible paths are composed of straight line segments, we will
often use the following elementary result on action accumulated along one
segment:

Lemma 5.1. A path corresponding to a particle moving with constant veloc-
ity v for time t and visiting no Poissonian points, accumulates action equal
to

v2t

2
=

vx

2
=

x2

2t
,

where x = vt is the traveled distance.

Lemma 5.2. There are numbers a, b > 0 and an a.s.-finite random variable
β > 0 such that if t > 0, x ∈ R, and ω ∈ Ω sastisfy t− |x| − 2b ≥ β(ω), then
there is a path γ̄ with γ̄(−t) = x and

A−t,0
ω (γ̄) < −(t− |x|)a+ |x|+ b.

Proof: Let us consider sets Ak = [−2k,−2k+1]×B1/2. For any k ∈ N we
have

P{N(Ak) 6= 0} = 1− e−M ,

where N(Ak) denotes the number of Poisson points in Ak andM = m(B1/2).
For any s > 0 we denote by X(s) the random number of indices k ∈ N
satisfying k < s/2 and N(Ak) 6= 0. The sequence 1{N(Ak) 6=0} is i.i.d. with

mean 1− e−M , and the strong law of large numbers implies that there is a
random time β such that if s > β, then

(5.1) X(s) > s(1− e−M )/3.

Consider a path γ̄ that starts at (−t, x) and visits exactly one point in set Ak

if k satisfies N(Ak) 6= 0 and 2k < t − |x| − 1, and no other points. Each
Poissonian point in the path contributes −1 to the action, and we can use
Lemma 5.1 to see that each segment connecting these points contributes at
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most (2 · 1/2)2/2 = 1/2. The slope of the segment with endpoint (−t, x)
does not exceed 1, and contributes at most (|x|+ 1)/2 to the action.

If t−|x|−1 > β then we can combine this with (5.1) applied to t−|x|−1
and obtain

A−t,0
ω (γ̄) < −(t− |x| − 1)

1− e−M

3

1

2
+ (|x|+ 1)/2

< −(t− |x|)(1− e−M )/6 + |x|+ (1− e−M )/6 + 1/2,

and the lemma follows with a = (1−e−M )/6 and b = (1−e−M )/6+1/2 > 1/2
since t− |x| − 2b > β implies t− |x| − 1 > β. �

Let us recall that Br = [−r, r] for any r > 0. The following is the main
localization lemma.

Lemma 5.3. There are random variables r−, r+, r±, (τ−R )R>0, (τ
+
R )R>0,

(τ±R )R>0, such that for any R > 0,

(5.2) P
{
there are t > τ−R , x ∈ BR, and γ ∈ M0,R

−t,x s.t. |γ(0)| > r−
}
= 0;

(5.3) P
{
there are t > τ+R , x ∈ BR, and γ ∈ M t,x

0,R s.t. |γ(0)| > r+
}
= 0;

(5.4)

P
{
there are t−, t+ > τ±R , x−, x+ ∈ BR, and γ ∈ M

t+,x+

−t−,x− s.t. |γ(0)| > r±
}
= 0.

Additionally, there are random variables (τ̄R)R>0 and a number R′ > 0
such that for any R > R′,
(5.5)

P
{
there are t− > τ̄R, t+ > τ±R , x+ ∈ BR, and γ ∈ M

t+,x+

−t−,R s.t. |γ(0)| > r±
}
= 0.

Remark 5.1. The idea of this lemma is that minimizers over long time
intervals are localized within a random neighborhood of the origin. Each of
the random variables r−, r+, and r± can be called localization radius.

Proof: Let us prove (5.2) first. We are going to construct random vari-
ables K and h so that for any R > 0 and for sufficiently large t, no path γ

with |γ(0)| > Kh can belong to M0,R
−t,x with x ∈ BR. The reason why we

need two random variables is that we will use h as an intermediate threshold.
Let x ∈ BR. Consider a path γ defined on [−t, 0] such that |γ(0)| > Kh

and γ(−t) = x. Suppose that |γ(−s)| ≤ h for some s ∈ [0, t] and define
σ = sup{s ≤ t : |γ(−s)| ≥ h}. Then

A−σ,0
ω (γ) ≥ (K − 1)2h2

2σ
−N([−σ, 0]×Bc

h).

To treat the second term in the r.h.s., we need the following result:

Lemma 5.4. For any ε > 0, there is a positive random variable R0 such
that with probability 1, for every t > 0

N([−t, 0]×Bc
R0

) < εt.
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Proof: Let us choose a number α1 such that m(Bc
α1
) < ε/2. Due to

the strong law of large numbers, there is a random time τ > 0 such that
N([−t, 0] × Bc

α1
) < εt for all t > τ . With probability 1, there are finitely

many Poissonian points in [−τ, 0]×R. Let α2 be the maximal absolute value
of the spatial components of these points. The conclusion of the lemma holds
true with R0 = α1 ∨ α2. �

Coming back to the proof of (5.2), let us set ε = a/2, where a is defined
in Lemma 5.2. Lemma 5.4 applied to this value of ε, ensures the existence
of h = h(ω) such that

(5.6) A−σ,0
ω (γ) ≥ (K − 1)2h2

2σ
− εσ.

If σ < (K − 1)h/
√
2ε, then A−σ,0

ω (γ) > 0, and the comparison with a zero
velocity trajectory with zero action proves that γ cannot be a minimizer.

To treat the case where

(5.7) σ ≥ (K − 1)h/
√
2ε,

we will impose some restrictions onK. First, we require thatK(ω) ≥ K1(ω),
where

K1(ω) =

(
β(ω) + 2b

h(ω)
+ 1

)√
2ε+ 2,

with β and b constructed in Lemma 5.2.
Then, under assumption (5.7), σ−h−2b > β and we can apply Lemma 5.2.

The path γ̄ constructed in that lemma for point (−σ, γ(−σ)) satisfies

A−σ,0
ω (γ̄) ≤ −(σ − h)a+ h+ b.

On the other hand, (5.6) implies

A−σ,0
ω (γ) ≥ −εσ ≥ −aσ/2.

The last two inequalities imply

A−σ,0
ω (γ̄)−A−σ,0

ω (γ) ≤ −(σ − h)a+ h+ b+ aσ/2

≤ −aσ/2 + h(a+ 1) + b,

and, due to (5.7), the r.h.s. is negative if we assume that K(ω) ≥ K2(ω),
where

K2(ω) =
2
√
2ε(h(ω)(a+ 1) + b)

ah(ω)
+ 2.

Therefore, under this assumption γ cannot be a minimizer. We conclude
that if K > K1 ∨ K2, then γ with |γ(0)| > Kh cannot be a minimizer
satisfying |γ(−s)| ≤ h for some s ∈ [0, t].

Let us now consider a path γ with |γ(−s)| > h for all s ∈ [0, t]. We have
then

A−t,0
ω (γ) ≥ −εt ≥ −at/2.
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On the other hand we can invoke Lemma 5.2 to see that if t− |x| − 2b > β
then there is a path γ̄ with γ̄(−t) = x such that

A−t,0
ω (γ̄) < −(t− |x|)a+ |x|+ b,

and

A−t,0
ω (γ̄)−A−t,0

ω (γ) ≤ −(t− |x|)a+ |x|+ b+ at/2

≤ −at/2 + (a+ 1)|x|+ b.

Since |x| ≤ R, the r.h.s. is negative if we require that

t >
2(R(a+ 1) + b)

a
.

Under this additional assumption, γ cannot be a minimizer. We conclude
that (5.2) holds if one chooses

r−(ω) = (K1(ω) ∨K2(ω))h(ω)

and

τ−R (ω) =
2(R(a+ 1) + b)

a
∨ (β(ω) +R+ 2b).

The second part of the lemma, equation (5.3), is only a time reversed
version of the first one. The proof of (5.4) is an adaptation of the above
argument to the two-sided situation.

Let us prove (5.5). First, choose R′ large enough to ensure that due to the
law of large numbers, an optimal path cannot stay infinitely outside BR′ .

Therefore, for sufficiently large t−, minimizers from M
t+,x+

−t−,R visit a point

x− ∈ BR′ ⊂ BR between −t− and −τ±R . Since x−, x+ ∈ BR and a restriction
of a minimizer is a minimizer itself, we can finish the proof by invoking (5.4).
�

Let us denote

r(ω) = r−(ω) ∨ r+(ω) ∨ r±(ω),

τR(ω) = τ−R (ω) ∨ τ+R (ω) ∨ τ±R (ω), R > 0,

D1(R, T ) = {r(ω) < R, r(θTω) < R, τR(ω) < T, τR(θ
Tω) < T}, R, T > 0.

Lemma 5.5. For any L > 0 there are numbers R > L and T > 0 such that
P (D1(R, T )) > 0.

Proof: We take R so large that P{r(ω) > R} < 1/4. Then P{r(θtω) >
R} < 1/4 for any t since θt preserves the measure. Then we take T so large
that P{τR(ω) > T} < 1/4. Then P{τR(θTω) > T} < 1/4, and the lemma
follows. �

Let us fix the values of R and T given by Lemma 5.5 and introduce a new
event D2(R, T ) consisting of all outcomes ω admitting a point (t∗, x∗) =
(t∗, x∗)(ω) ∈ [0, T ] × R such that for any x, y ∈ BR, the optimal path
connecting (0, x) and (T, y) passes through (t∗, x∗).
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Lemma 5.6. Let R and T be provided by Lemma 5.5. Then

P(D1(R, T ) ∩D2(R, T )) > 0.

Proof: The proof of this lemma is based on a resampling of the point
configurations in [0, T ] × R according to a certain kernel. In this proof it
is convenient to represent ω ∈ Ω as ω = (ωin, ωout) where ωin ∈ Ωin and
ωout ∈ Ωout are restrictions of the point configuration ω to [0, T ]×R and its
complement. We also denote by Pin and Pout the distributions of Poisson
point field in [0, T ]× R and its complement in R× R.

We will take a large number n and consider a family of rectangles Lk, k =
1, . . . , n in [0, T ]×R. We postpone a precise description of these rectangles.

For every ω ∈ D1 = D1(R, T ) we consider a new random configuration ω′.
It coincides with ω outside of [0, T ]×R and the restriction of ω′ onto [0, T ]×R
consists of n independent random points such that for each k = 1, . . . , n, the
distribution of k-th point is concentrated in Lk, k = 1, . . . , n. Let us denote
the distribution of the configuration of these n points in [0, T ] × R by P′

in.
Later, we shall choose the distributions of individual points appropriately
to make P′

in absolutely continuous w.r.t. Pin.
To define the resampling more formally, for any ω we consider a version

of conditional probability P(·|ωout) defined for a set D by

P(D|ωout) = Pin{ω′
in : (ω′

in, ωout) ∈ D},

and define a new measure P′ via

P′(E|ωout) = P(D1|ωout)P
′
in{ω′

in : (ω′
in, ωout) ∈ E}

and

P′(E) =

∫
Ωout

Pout(dωout)P
′(E|ωout).

Let us prove that P′ � P. We must show that for any set E with P′(E) >
0, we have P(E) > 0. Since P′(E) > 0, the definition of P′ yields

(5.8) Pout{ωout : P
′(E|ωout) > 0} > 0.

Notice that if ωout satisfies P
′(E|ωout) > 0 then P(D1|ωout) > 0 and P′

in{ω′
in :

(ω′
in, ωout) ∈ E} > 0. The latter and the absolute continuity of P′

in w.r.t.
Pin imply that Pin{ω′

in : (ω′
in, ωout) ∈ E} > 0 for such ωout. Therefore, due

to (5.8),

P(E) = Pout × Pin(E) =

∫
Ω
Pout(dωout)Pin{ω′

in : (ω′
in, ωout) ∈ E} > 0,

and the absolute continuity is proven.
Therefore, P(D1(R, T ) ∩D2(R, T )) > 0 will hold if

(5.9) P′(D1(R, T ) ∩D2(R, T )) > 0.

So, it remains to finish the construction of the measure P′
in and ensure that

(5.9) holds along with P′
in � Pin.
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We know that P(D1(R, T )) > 0 and therefore there are numbers l ∈ N
and ∆,M > 0 such that

(5.10) P(D1(R, T, l,M,∆)) > 0,

where

D1(R, T, l,M,∆) = D1(R, T )∩ {N([0, T ]×R) = N([∆, T −∆]×BM ) = l}.

We let n ∈ N be a large number and δ ∈ (0, 1/2) a small number
to be chosen later and define Lk = Jk × Bδ, k = 1, . . . , n, where Jk =
[(2k − 1)T/(2n + 1), 2kT/(2n + 1)]. The measure P′

in on configurations in
[0, T ] × R is defined as follows: all configurations consist of exactly n in-
dependent points, k-th point distributed independently in Lk according to
(2n+1)/(m(Bδ)T )m(dx)dt. Equivalently, we can say that P′

in is the distri-
bution of the original Poissonian point field conditined on having exactly one
point in each Lk. Thus, the absolute continuity property P′

in � Pin holds
and it remains to prove (5.9). Taking into account (5.10), it is sufficient to
show that for any ω ∈ D1(R, T, l,M,∆),

(5.11) P′
in

{
ω′
in : (ω′

in, ωout) ∈ D1(R, T ) ∩D2(R, T )
}
= 1.

First, let us prove that resampled point configurations belong toD1(R, T ).
Since resampling happens only inside [0, T ]×R, the time τ−R (depending only
on the realization in (−∞, 0] × R does not change. Therefore r−(ω′) < R
and τ−R (ω′) < T , where ω′ = (ω′

in, ωout).

Let us prove that r+(ω′) < R and τ+R (ω′) < T . We need to show that for

any y ∈ BR and any t > T , any γ′ ∈ M t,y
0,R(ω

′) satisfies γ′(0) ∈ BR. This

is certainly true if γ′ passes through a point of ω′
in. So, let us assume that

it does not pass through any points of ω′
in. Therefore, between 0 and T

it is a straight line. Consider now a path γ ∈ M t,y
0,R(ω). We know that

γ(0) ∈ BR. Let t0 = sup{t ∈ [0, T ] : γ(t) ∈ BR}. Due to the definition of
D1(R, T, l,M,∆), t0 > ∆.

Let the path γ̄ visit all available points in ω′
in between 0 and t0/2, then

move straight to (t0, γ
′(t0)) and coincide with γ after t0. We are going to

show that A0,t
ω′ (γ̄) < A0,t

ω′ (γ′) so that γ′ cannot be a minimizer. Since γ′ does
not pass through any points of ω′

in,

(5.12) A0,t
ω′ (γ

′) ≥ A0,t
ω (γ′) ≥ A0,t

ω (γ) ≥ A0,t
ω′ (γ̄) + (A0,t

ω (γ)−A0,t
ω′ (γ̄)).

Let us estimate the difference in the r.h.s. Switching from γ to γ̄ we lose
at most l Poissonian points, but what do we gain? The action of a path
visiting r points from ω′

in in a row does not exceed

A(r) = r
(2δ)2

2T/(2n+ 1)
− r,
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and, since there are at least nt0/(3T ) points visited by γ̄ in ω′
in between 0

and t0,

A0,t0
ω′ (γ̄) <

nt0
3T

(
(2δ)2

2T/(2n+ 1)
− 1

)
+

R2

2(t0/2)
.

Therefore,

A0,t
ω (γ)−A0,t

ω′ (γ̄) ≥ −l +
nt0
3T

(
1− (2δ)2

2T/(2n+ 1)

)
− R2

2(t0/2)
.

Choosing n to be large and δ small we see that the r.h.s. is positive, which
in conjunction with (5.12) gives the desired inequality A0,t

ω′ (γ̄) < A0,t
ω′ (γ′).

This finishes the proof of r+(ω′) < R and τ+R (ω′) < T . It is also easy to
adjust the above argument to show that r(ω′) < R and τR(ω

′) < T , and in
the same way one can prove that r(θTω′) < R and τR(θ

Tω′) < T . Thus,
ω′ ∈ D1(R, T ), and it remains to prove that ω′ ∈ D2(R, T ) a.s.

Let us prove the following claim: for any points x, y ∈ BR, an optimal

path γ ∈ My,T
x,0 (ω

′) cannot avoid all points of ω′ between 0 and T/3. In fact
if it does avoid these points, then

(5.13) A0,T
ω′ (γ) ≥ −2

3
n− 1.

On the other hand, consider the path γ̄ ∈ ΓT,y
0,x that visits all points of ω′

between T/8 and 7T/8.

(5.14) A0,T
ω′ (γ̄) ≤ 2

(2R)2

2T/8
−

(
n

(
7T

8
− T

8

)
− 2

)(
1− (2δ)2

2T/(2n+ 1)

)
,

and, for sufficiently small δ and large n, A0,T
ω′ (γ̄) < A0,T

ω′ (γ), which contra-

dicts our assumption γ ∈ My,T
x,0 (ω

′). Our claim is proven, and in the same

way one can prove that an optimal path γ ∈ My,T
x,0 (ω

′) must pass through

one of the points of ω′ between 2T/3 and T . Clearly, for sufficiently small
δ > 0 any optimal path passing through a point in ω′ between 0 and T/3
and a point in ω′ between 2T/3 and T also passes through all points in ω′ in
between. Therefore, ω′ ∈ D2(R, T ), and the proof of Lemma 5.6 is complete.
�

We can now construct a global solution. For a set A of paths and a time
interval [s, t] we denote by A

∣∣
[s,t]

the set of restrictions of all trajectories

from A to [s, t].

Lemma 5.7. Let R > 0. There are two random times σ0, σ1 > 0 such that
for all x ∈ BR and any two times t1, t2 > σ1

M0,x
−t1,R(ω)

∣∣
[−σ0,0]

= M0,x
−t2,R(ω)

∣∣
[−σ0,0]

.

Proof: The ergodicity of θ1, Lemma 5.6 and Poincaré’s Recurrence Theo-
rem imply that with probability 1 there is an integer time n > T such that
θ−nω ∈ D1(R, T )∩D2(R, T ). Without loss of generality we can assume that
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R > R′, where R′ is defined in Lemma 5.3. The last part of that lemma
implies that if we define

(5.15) σ1(ω) = n+ τ̄R(θ
−nω) + τ̄R(θ

−n+Tω),

then for any t > σ1 and any x ∈ BR, any path γ ∈ M0,x
−t,R(ω) satisfies

γ(−n) ∈ Br±(θ−nω) ⊂ BR and γ(−n + T ) ∈ Br±(θ−n+Tω) ⊂ BR. Here we

used the fact that θ−nω ∈ D1(R, T ).
Since θ−nω ∈ D2(R, T ), for any t1 and t2 satisfying (5.15) and any x ∈ BR,

any paths γ1 ∈ M0,x
−t1,R(ω) and γ2 ∈ M0,x

−t2,R(ω) pass through a common point

at some time σ0 ∈ [−n,−n + T ]. Therefore, the restrictions of the sets of
minimizers on [−σ0, 0] coincide, and the proof is complete. �

Remark 5.2. In fact, there is an infinite strictly increasing sequence (nk)k∈N
such that θ−nkω ∈ D1(R, T ) ∩ D2(R, T ) for all k. Therefore, the theorem
can be strengthened. Its conclusion holds for any (random or deterministic)
σ0 > 0. In particular, the finite time minimizers stabilize to a limiting
infinite one-sided minimizer.

We can now finish our construction of the global solution u. For any
r ∈ R and R > 0, the restriction of Φ−s,t0 on BR stabilizes for large values
of s, and

uω(t) = (U, d) lim
s→∞

Φ−s,t0

is well defined. Clearly, the construction of uω(t) depends only on the re-
striction of ω on (−∞, t]× R.

Since restrictions of minimizers are also minimizers, we can deduce that
for any time interval [t0, t1], uω(t1) is the solution of the Cauchy problem
with initial value uω(t0). Therefore, thus constructed function uω is a global
solution of the Burgers equation corresponding to the realization of the
random forcing ω. This proves parts 1 and 2 of the main theorem.

Let us prove part 3 of the main theorem. For each point x of continuity
of uω, we denote πω(x) the Poissonian point that is visited last by the min-

imizer γ ∈ M0,x
−t,R for sufficiently large t. The map πω is piecewise constant.

If πω(x) = (si, xi) for all x in an interval J , then

uω(x) =
x− xi
|si|

, x ∈ J,

and part 3 follows.

6. The behavior of global solution u(t, x) as x → ∞.

In this section we prove part 4 of the main theorem. We will concentrate
on proving the limit behavior as x → +∞ since the limit x → −∞ can be
studied in exactly the same way.

The idea is that if we want to consider, say, a path in MT,x
0,R for large

values of x and T , then the path naturally decomposes into two parts. Most
Poissonian points are scattered over a compact domain, so in a certain time
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interval [0, t] the path mostly stays in a compact domain around the origin
collecting action at appoximately linear rate S < 0, and then it leaps from
the compact domain straight to x roughly with constant speed between t
and T , hardly meeting any Poissonian points in this regime and collecting
approximately x2/(2(T − t)) action. Finding the minimum of

St+
x2

2(T − t)
, t ∈ [0, T ],

we obtain that the optimal t satisfies
x

t
=

√
−2S.

This nonrigorous argument shows that we can hope that part 4 of the
main theorem holds with q =

√
−2S.

To make this argument precise we need to control the deviations of the
action on [0, t] from St and to control the behavior of minimizers very far
from the origin where Poissonian points are sparse.

For any connected set I ⊂ R and any time interval [t0, t1] we can define

St0,t1
I = St0,t1

I (ω) = inf
{
At0,t1

ω (γ) : γ(s) ∈ I for all s ∈ [t0, t1]
}
.

Clearly, this function is superadditive:

St0,t2
I ≥ St0,t1

I + St1,t2
I , t0 ≤ t1 ≤ t2.

The ergodicity of the flow (θt)t∈R and Kingman’s subbaditive ergodic
theorem imply that the following random variable is well defined and a.s.-
constant :

SI = lim
t1→∞

1

t1 − t0
St0,t1
I = lim

t0→−∞

1

t1 − t0
St0,t1
I = lim

t0→−∞
t1→∞

1

t1 − t0
St0,t1
I .

Clearly, SBR
is a nonincreasing negative function of R > 0, and we define

S = limR→∞ SBR
< 0.

Lemma 6.1. Thus defined constant S satisfies S = SR.

Proof: Obviously, SR ≤ SBR
for any R. Therefore, we only have to prove

that SR ≥ S. Let us take any t > 0 and any path γ realizing S0,t
R . Taking

any R > 0 and decomposing γ into parts that stay inside BR and outside
BR, we see that

S0,t
R = A0,t

ω (γ) ≥ S0,t
BR

−N([0, t]×Bc
R).

Dividing by t and taking t → ∞, we obtain

SR ≥ SBR
−m(Bc

R).

Taking R → ∞ finishes the proof of the lemma. �
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Lemma 6.2.

lim
t→∞

ES0,t
BR

t
= SBR

.

Proof: Since

0 ≥
S0,t
BR

t
≥ −N([0, t]× R)

t
,

the lemma follows by dominated convergence. �

Lemma 6.3. (1) Let R ∈ (0,∞]. If S′ < S , then there are constants
c = c(S′) > 0 and T0 = T0(S

′) > 0 such that for T > T0

P

{
inf
t≥T

S0,t
BR

t
< S′

}
< e−cT .

(2) If S′ > S, then there is a constant R0 = R0(S
′) with the following

property: for every R ∈ [R0,∞], there are c = c(S′, R) > 0 and
T0 = T0(S

′, R) > 0 such that for T > T0,

P

{
sup
t≥T

S0,t
BR

t
> S′

}
< e−cT .

Proof: Recall that SBR
↓ S < 0. Since S′ < S < SBR

, Lemma 6.2 allows
to choose s such that

(6.1) ES0,s
BR

> s
SBR

+ S′

2
.

Then we notice that

S0,t
BR

≥ S0,s
BR

(ω) + Ss,2s
BR

(ω) + . . .+ S
[t/s]s,([t/s]+1)s
BR

(ω)

≥ S0,s
BR

(ω) + S0,s
BR

(θsω) + . . .+ S0,s
BR

(θ[t/s]sω).

Let us denote the r.h.s. by Σ[t/s]+1. It is the sum of [t/s]+1 i.i.d. nonpositive
random variables with finite exponential moments, and with expectations
estimated by (6.1).

Since S′t
[t/s]+1 → S′s as t → ∞, and S′ < (SBR

+ S′)/2, the estimate

P{S0,t
BR

< S′t} ≤ K1e
−c1t,

for all S′ < S, some K1 = K1(S
′), c1 = c1(S

′) > 0, and all t > 0, is a

consequence of the classical Cramér large deviation estimate. Since S0,t
BR

is
nonincreasing in t, and

inf
s∈[t,t+1]

(S0,s
BR

− S0,t
BR

) ≥ −N([t, t+ 1]× R),

we can use this maximal inequality in a standard way to interpolate be-
tween t and t+ 1 and obtain

P

{
inf

s∈[t,t+1]

S0,s
BR

s
< S′

}
≤ K2e

−c2t,
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for all S′ < S, some K2 = K2(S
′), c2 = c2(S

′) > 0, and all t > 0. Now first
part of the lemma follows. The proof of the second part of the lemma is
essentially the same. �

Now we turn to ruling out paths ending at a large x and having slopes
deviating significantly from q. For any x > 0, ε ∈ (0, q), and R ∈ (0, x) let
us denote

Q+(x, ε,R) = {(t, y) : y ∈ (R, x), t < 0, y < x+ t(q + ε)},
Q−(x, ε,R) = {(t, y) : y ∈ (R, x), t < 0, y > x+ t(q − ε)}.

Lemma 6.4. For each ε > 0, there is random variable R such that

(1) For any x > 2R, a path γ inside Q+ connecting a point (t, y) ∈
∂Q+(x, ε,R) with y > R to (0, x) and γ̇(0) > q + 2ε cannot be a
minimizer.

(2) For any x > 2R, a path γ inside Q− connecting a point (t, y) ∈
∂Q−(x, ε,R) with y > R to (0, x) and γ̇(0) < q − 2ε cannot be a
minimizer.

Proof: First, we notice that condition (4.1) implies that the set {(t, x) :
−x < t < 0} contains finitely many Poissonian points with probability 1.
Therefore, we can define a random variable r0 such that with probability 1,
there are no Poissonian points in the set

A = {(t, x) : x > r0, −x < t < 0}.
Let us now define ρ = q/(2 + q) and, for any x,

Ax = [−ρx/q, 0]× [x− ρx, x].

It is easy to check that (−ρx/q, x − ρx) ∈ A for sufficiently large values
of x. Therefore, for these values of x, Ax ⊂ A. We conclude that there is
a random number r1 such that for x > r1, there are no Poissonian points
in Ax.

Let us now take a path γ satisfying the conditions of part 1 of the Lemma.
We would like to compare this path to the straight line segment connecting
(t, y) and (0, x).

Lemma 6.5. Consider points (t0, x0), (t1, x1), (t2, x2) satisfying t0 < t1 <
t2. The free action (i.e. the action without taking account the contribution
from the Poissonian points) of the path connecting these points is bounded
below by

(x2 − x0)
2

2(t2 − t0)
+

2

t2 − t0
(x1 − x̄)2,

where

x̄ =
x2(t1 − t0) + x0(t2 − t1)

t2 − t0
,

so that |x1 − x̄| is the distance from (t1, x1) to the straight line connecting
(t0, x0) and (t2, x2), measured along the x-axis.
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Proof: The free action minimizing path consists of two straight line seg-
ments connecting (t0, x0) to (t1, x1) and (t1, x1) to (t2, x2). The resulting
action is a quadratic polynomial in x1:

f(x1) =
(x1 − x0)

2

2(t1 − t0)
+

(x2 − x1)
2

2(t2 − t1)

=
t2 − t0

2(t2 − t1)(t1 − t0)
(x1 − x̄)2 +

(x2 − x0)
2

2(t2 − t0)
,

and the estimate

t2 − t0
2(t2 − t1)(t1 − t0)

=
(t2 − t1) + (t1 − t0)

2(t2 − t1)(t1 − t0)
≥ 2

(t2 − t1) + (t1 − t0)
=

2

t2 − t0

completes the proof. �
Let us denote by (s, z) the Poissonian point that is connected by the last

segment of path γ to (0, x). To apply Lemma 6.5, we must estimate the
distance from (s, z) to the straignt line connecting (t, y) and (0, x) measured
along the x-axis, i.e., x− z + s(q + ε). Since there are no Poissonian points
in Ax, we have (s, z) ∈ Q+ \Ax and, consequently, z ≤ x−ρx. Since γ̇(0) >
q+2ε, we have (x−z)/(−s) > q+2ε. The minimum of x−z+s(q+ε) under
these restrictions is attained at (−ρx/(q+2ε), x−ρx) and equals ερx/(q+2ε).
We also have |t| < (x−R)/(q + ε). Therefore, Lemma 6.5 implies that the
action gain of γ compared to the straight line motion between t and 0 is at
least

(6.2)
2(q + ε)

x−R

ε2ρ2x2

(q + 2ε)2
≥ K(ε)x, x > (2R) ∨ r1(ω)

for some K(ε).
Now we must estimate the effect of Poissonian points. We use Lemma 5.4

to findR0 = R0(ω) such thatN([−t, 0]×Bc
R0

) < tK(ε)q/2 for all t > 0. Since
the time component of any point in Q+ is bounded by x/q in absolute value,
we see that if R > R0, then there are at most (x/q)K(ε)q/2 < K(ε)x/2
Poissonian points in Q+. Therefore, the reduction of action due to visits
to Poissonian points does not exceed K(ε)x/2, and cannot compensate for
the action gain computed in (6.2). Therefore, if we choose R > R0 ∨ r1,
then for any x > 2R the straight line segment from (t, y) to (0, x) is more
efficient than any path γ satisfying the imposed requirements, so γ cannot
be a minimizer. The proof of the first part of the lemma is complete. The
proof of the second part is similar and we omit it. �

Lemma 6.6. For any ε > 0 there are random variables R > 0 and X > 0
such that if x > X and τ > (x − R)/(q − ε), then no path γ ∈ M0,x

−τ,R can
satisfy

(6.3) γ(s) > (x+ (q − ε)s) ∨R, s ∈ (−τ, 0] .

Proof: We begin with taking δ > 0 (to be chosen later) and using Lemma 5.4
to find R0 such that for all τ > (x−R)/(q−ε) and all R > R0, the action of



BURGERS EQUATION WITH POISSON RANDOM FORCING 21

any path γ satisfying (6.3), connecting (−τ,R) to (0, x), and staying outside
of BR for all times in (−τ, 0], is at least

(x−R)2

2τ
− δτ.

To prove that γ /∈ M0,x
−τ,R, let us find a better path γ̃ in Γ0,x

−τ,R. First,

we will choose γ̃ so that γ̃|[−τ+1,−[(x−R)/q]−2 ∈ M
−[(x−R)/q]−2,BR

−τ+1,BR
. Then we

denote x1 = γ̃(−[(x − R)/q] − 2) and x2 = γ̃(−τ + 1). The remaining
parts of γ̃ are straight line segments connecting (−τ,R) to (−τ + 1, x2),
(−[(x−R)/q]− 2, x1) to (−[(x−R)/q]− 1, R), and (−[(x−R)/q]− 1, R) to
(0, x).

The action of this path is at most

(x−R)2

2([(x−R)/q] + 1)
+

(2R)2

2
+ S

0,τ−1−([(x−R)/q]+2)
BR

(θ−[(x−R)/q]−2ω) +
(2R)2

2
.

We want to exclude the situation where

(6.4) A−τ,0(γ̃) ≥ A−τ,0(γ).

Suppose (6.4) holds. Then

(x−R)2

2([(x−R)/q] + 1)
+ (2R)2 + Sτ ≥ (x−R)2

2τ
− δτ,

where we denoted Sτ = S
0,τ−3−[(x−R)/q]
BR

(θ−[(x−R)/q]−2ω) for brevity. This
can be rewritten as

(6.5)
Sτ

τ − 3− [(x−R)/q]
≥ U,

where

U =

(x−R)2

2

(
1
τ − 1

[(x−R)/q]+1

)
− δτ − (2R)2

τ − 3− [(x−R)/q]
.

To apply large deviation estimates from Lemma 6.3, we need to estimate U
and the length of time interval in the definition of Sτ . Since γ satisfies (6.3)
for s ∈ [−τ, 0], we have τ > (x−R)/(q − ε). For sufficiently small ε,

(6.6) τ −3− [(x−R)/q] ≥ x−R

q − ε
− x−R

q
−4 ≥ (x−R)ε

q(q − ε)
−4 ≥ (x−R)ε

2q2
.

To estimate U , we first notice that, due to (6.6), there is a random variable
X1(R, ε, δ) such that x > X1 implies

(6.7)
δτ + (2R)2

τ − 3− [(x−R)/q]
< 2δ.
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For the same reason, there is a random variable X2(R, ε, δ) such that x > X2

implies

(x−R)2

2

(
1
τ − 1

[(x−R)/q]+1

)
τ − 3− [(x−R)/q]

=
(x−R)2

2τ([(x−R)/q] + 1)
·
(
−τ − 1− [(x−R)/q]

τ − 3− [(x−R)/q]

)
≥ −(x−R)q

2τ
(1 + δ).

≥ −q(q − ε)

2
(1 + δ),(6.8)

where the last inequality follows from τ > (x−R)/(q − ε).
Combining (6.7) and (6.8) and choosing δ sufficiently small we see that

(with the choices of R and x described above)

(6.9) U > −q(q − ε/2)

2
.

Notice that if k is sufficiently large, all the above estimates apply uni-
formly for all x ∈ [R+ kq,R+ (k + 1)q] and all τ ≥ (x−R)/(q − ε).

Let us denote by Bk the event that for some x ∈ [R + kq,R + (k + 1)q]

and some τ ≥ (x−R)/(q− ε) there is a path γ ∈ M0,x
−τ,R satisfying (6.3) for

s ∈ [−τ, 0]. The definition of q, inequality (6.9), and Lemma 6.3 imply that
for some c > 0 and all sufficiently large k

P(Bk) < e−ck.

Now the Borel–Cantelli Lemma implies that with probability 1 only finitely
many events Bk happen, and the proof is complete. �

Lemma 6.7. There are positive random variables R,X, and (Tx)x>0 such

that if x > X and τ > Tx, then for any y ∈ R, no path γ ∈ M0,x
−τ,y can

satisfy (6.3).

Proof: If for some y a path γ ∈ Γ0,x
−τ,y satisfies (6.3) and the time τ ′ =

sup{s : γ(s) ≤ R} is well-defined then we can apply Lemma 6.6 with τ
replaced by τ ′ to see that γ cannot be a minimizer for appropriately chosen R
and X.

Let us fix δ ∈ (0,−S). Due to Lemma 5.4, we can choose R large enough
to ensure that A−τ,0 > −δτ for any γ satisfying γ(s) > R for all s ∈ [−τ, 0].
On the other hand, the optimal action is asymptotic to Sτ as τ → ∞, so γ
cannot be a minimizer for large values of τ . �

Lemma 6.8. There are positive random variables R,X, and (Tx)x>0 such

that for x > X and T > Tx, and any y ∈ R no γ ∈ M0,x
−T,y can satisfy

(6.10) γ(s) < x+ s(q + ε), s ∈ [−(x−R)/(q + ε), 0].

Proof: We need an auxiliary path γ̄ ∈ Γ0,x
−(1+ε)[(x−R)/q],−R. This special

path consists of three straight line segments connecting consecutively (−(1+
ε)[(x−R)/q],−R) to (−[(x−R)/q],−R) to (−[(x−R)/q] + 1, R) to (0, x).
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Lemma 6.9. There are positive random variables R and X such that for
any x > X, any T > −(1 + ε)[(x − R)/q], and any y ∈ R, any γ ∈ M0,x

−T,y

satisfying (6.10) intersects γ̄.

Proof: Denote by Bk the event that there are y ∈ R and γ ∈ M−t,−R
−T,y for

some t < k and T > (1 + ε)k such that γ(s) < −R for all s ∈ [−T,−t].
Lemmas 5.4 and 6.3 imply that for sufficiently large R, for some constants

c1, c2 > 0 and all k, P (Bk) ≤ c1e
−c2εk. The Borel–Cantelli Lemma implies

that with probability 1, only finitely many events Bk happen.
Clearly, if there is a path γ satisfying the conditions of the lemma and

not intersecting γ̄, then Bk holds for k = [(x − R)/q]. Since only finitely
many Bk can hold, a path with these properties is impossible for sufficiently
large x. �

Lemma 6.10. There are random variables R and X such that for x > X
and any path γ satisfying (6.10) and intersecting γ̄ at some time −τ ,

(6.11) A−τ,0(γ) > A−τ,0(γ̄).

Proof: First let us consider the possibility that τ < [(x−R)/q]. We denote
ν = inf{s : γ(−s) = R}. For any δ > 0 there is R such that for x > R,

(6.12) A−τ,0(γ) ≥ (x−R)2

2ν
+ S

−[x−R
q

]+1,−ν

R − δν.

On the other hand

A−τ,0(γ̄) ≤ (x−R)2

2([x−R
q ]− 1)

+
(2R)2

2
.

If (6.11) is violated, the last two inequalities imply:

(6.13)
S
−[x−R

q
]+1,−ν

R
[x−R

q ]− 1− ν
< − (x−R)2

2ν([x−R
q ]− 1)

+
δν

[x−R
q ]− 1− ν

+
2R2

[x−R
q ]− 1− ν

.

From (6.10) we know that ν < (x−R)/(q+ε). We can use this to derive that
the second term in the r.h.s. is bounded by Kδ/ε for a constant K > 0 and
the third term converges to 0 as x → ∞. Choosing δ sufficiently small, then
choosing R so that (6.12) holds, we conclude that for sufficiently large x,
the r.h.s. does not exceed −q(q + ε/2)/2. Now the large deviation estimate
of Lemma 6.3 and the Borel–Cantelli lemma imply that (6.13) can hold true
only for a bounded set of x.

Now we have to exclude the paths γ that cross γ̄ for the first time at
−R. By considering a smaller value of δ in the above reasoning, it is easy to
strengthen it and conclude that that there is ∆ > 0 such that for sufficiently
large x, all paths γ satisfying this restriction satisfy also

(6.14) A−[(x−R)/q],0(γ) > A−[(x−R)/q],0(γ̄) + ∆(x−R).
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On the other hand, denoting Iε,R,x =
[
−(1 + ε)[x−R

q ],−[x−R
q ]

]
inf

t∈Iε,R,x

At,[(x−R)/q](γ) ≥ −N(Iε,R,x × (−∞,−R])

Suppose R is chosen so that EN(Iε,R,x × (−∞,−R]) < ∆(x − R)/2. Then
probability that for some x ∈ [k, k+1] there is a path γ with γ(0) = x satis-
fying (6.14) and violating (6.11) decays exponentially in k. An application
of the Borel–Cantelli finishes the proof. �

Part 4 of the main theorem follows now from Lemmas 6.4, 6.6, 6.7, and 6.8.

7. The global solution as a one-pont attractor

In this section we prove part 5 of the main theorem.
Let us denote by M t1,x

t0,R,V the set of minimizers of (2.3).

Lemma 7.1. Suppose V satisfies (4.2). Then for any L > 0, there is
a random variable R0 > 0 such that for all t > 0 and all x ∈ BL, any
γ ∈ M t,x

0,R,V satisfies γ(0) ∈ BR0.

Proof: Property (4.2) implies that there is α ∈ (0, q) such that

(7.1) V (y) > −αy for sufficiently large y > 0.

Let us take a small δ > 0 to be chosen precisely later and use Lemmas 6.1
and 5.4 to find h > L such that SBh

< S + δ and N(Bc
h × [0, s]) < δs for all

s > 0. Let us consider y ∈ [k, k + 1] for large values of k ∈ N and estimate

the action of a path γ ∈ Γt,x
0,y. Since x ∈ BL ⊂ Bh, we can define

τ = inf{s : γ(s) ∈ Bh}.
The complete action of this path on [0, τ ] satisfies

A0,τ
V (γ) ≥ −α(k + 1)− δτ +

(k − h)2

2τ
.

On the other hand, there is a number C(h) such that the optimal path

γh ∈ M τ,h
0,Bh

satisfies

A0,τ
V (γh) ≤ C(h) + S0,τ−1

Bh
.

Therefore, if γ is optimal, then

−α(k + 1)− δτ +
(k − h)2

2τ
≤ C(h) + S0,τ−1

Bh
.

According to the definition of SBh
, there is τh,δ such that if τ > τh,δ then

S0,τ−1
Bh

+C(h) ≤ (SBh
+δ)τ ≤ (S+2δ)τ . Therefore, if for optimal γ, τ > τh,δ,

then

(7.2) (S + 3δ)τ − (k − h)2

2τ
≥ −α(k + 1).

Elementary calculus shows that the global maximum of the l.h.s. in τ is
achieved at τ∗ = (k − h)/

√
2(−S − 3δ) and equals −(k − h)

√
−2S − 6δ.
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Since α ∈ (0,
√
−2S), inequality (7.2) will be violated for large values of k

if we choose sufficiently small δ.
We conclude that with this choice of δ and h, for sufficiently large y no

path γ ∈ M t,x
0,R,V with γ(0) = y can have τ > τh,δ. On the other hand, if

τ ≤ τh,δ, then

A0,τ
V (γ) ≥ (k − h)2

2τh,δ
−N([0, τh,δ]× R) > V (h)

for sufficiently large k, and such a path cannot be a minimizer since V (h) is
the complete action on [0, τ ] for the trajectory staying at h.

The case of y ∈ [−k − 1,−k] is treated similarly. �

Proof of part 5 of Theorem 4.1: Let us take any two initial conditions
v1 = V ′

1 , v2 = V ′
2 such that V1 and V2 satisfy (4.2). Then there is α ∈ (0, q)

such that (7.1) holds for V = V1 and V = V2.
Let us take R > L given by Lemma 5.6 and R0 = R0(ω) given by

Lemma 7.1. Due to Lemma 5.6, P{r± < R} > 0, where r± was introduced
in Lemma 5.3. That Lemma, along with the ergodicity of the flow (θt) and
Poincaré Recurrence Theorem, allows to find n > 0 such that r±(θ−nω) < R
and τ± = τ±R0

(θ−nω) < n.
If V = V1 or V = V2, then for any x ∈ BR0 and for sufficiently large t,

any γ ∈ M t,x
0,R,V must (by Lemma 7.1) belong to M t,x

0,y for some y ∈ BR0 ,

and, consequently, Lemma 5.3 implies γ(n) ∈ BR.
Lemma 5.6 and the Poincaré Recurrence Theorem imply that there is

n′ > n and a point (t∗, x∗) such that for sufficiently large t and for all

z, x ∈ BR, every γ ∈ M t,x
n,z passes through (t∗, x∗). Therefore, for these

values of t and any x ∈ BL ⊂ BR, any two minimizers γ1 ∈ M t,x
0,R,V1

and

γ2 ∈ M t,x
0,R,V2

pass through (t∗, x∗). Therefore

M t,x
0,R,V1

∣∣
[t∗,t]

= M t,x
0,R,V2

∣∣
[t∗,t]

,

which implies

Φ0,t
ω v1

∣∣
BL

= Φ0,t
ω v2

∣∣
BL

,

and the forward attraction follows since one can take v2 = uω.
The proof of the backward attraction is similar, and we omit it.
The global solution uniqueness also follows automatically if (4.5) holds

with probability 1. If all we know is that (4.5) holds with positive probability,
then we can use its invariance under the dynamics and the ergodicity of (θt)
to see that then it holds with probabilty 1. �

8. Global minimizers

A path γ : R → R is called a global minimizer if γ|[t0,t1] ∈ M
t1,γ(t1)
t0,γ(t0)

for

any t0, t1 satisfying t0 < t1. A global minimizer is called recurrent if there
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is R > 0 and a two-sided sequence (tk)k∈Z such that limk→±∞ tk = ±∞ and
γ(tk) ∈ BR for all k.

Theorem 8.1. With probability 1, there is a unique recurrent global mini-
mizer γ.

Sketch of proof: We can use Lemma 5.6 to derive sequentially that
(i) for any T1 > 0 and for sufficiently large values T2 the restrictions onto

[−T1, T1] of minimizers in MT2,0
−T2,0

can be bounded by the process of localiza-

tion radii r±(θtω), t ∈ [−T1, T1] ; (ii) for any T1 > 0, and for sufficiently large
values T2, these minimizers pass through common points before −T1 and af-
ter T1, and, therefore, coincide between these points. We conclude that as
T2 → ∞ the minimizers stabilize on any finite interval, and the restriction
of the resulting limiting trajectory γ = γω on any finite time interval is a
minimizer. Moreover, |γω(t)| < r±(θtω) and the recurrence property of γω
follows.

If γ̃ is another recurrent global minimizer, then again one can use Lemma 5.6
to prove that there is a sequence of times (sk)k∈Z such that limk→±∞ sk =
±∞ and γ̃(sk) = γω(sk). Therefore, γ̃ has to coincide with γω. �

The following statement can be proven in a similar way:

Theorem 8.2. If γ̃ is one of the one-sided infinite minimizers constructed
in Remark 5.2, then there is τ > 0 such that restrictions of γ and γ̃ on
(−∞, τ ] coincide.

This property shows that the global minimizer has superstrong attrac-
tion property in the reverse time. In previously considered situations the
exponential convergence of one-sided minimizers in the reverse time was a
manifestation of hyperbolicity of the global minimizer. In analogy with that
case, it is natural to refer to the property of finite-time supercontraction
described in Theorem 8.2 as “hyperhyperbolicity”.

Global minimizers for Burgers equation with spatially periodic
forcing. Let us now change the framework and switch to the Burgers equa-
tion with spatially periodic random forcing. One of the questions that has
not been answered for the periodic Burgers equation is the fluctuations of
the global minimizer. This question was posed to the author by Yakov Sinai.
The goal of this section is to prove that for the Poissonian forcing on the
circle S1, the unique global minimizer has diffusive behavior.

Let us consider the Burgers dynamics on S1 = R/Z under Poissonian
forcing with intensity measure given by dt ×m(dx) on the cylinder R × S1
for some Borel measure m on S1. If we restrict ourselves to the set U0 =
{u :

∫
S1 u = 0}, then the potential V of any v ∈ U0 is well-defined and we

can define the dynamics via (2.2),(2.3) with the only correction that paths
are in S1.

The set U0 is invariant under this dynamics. In fact, between occurences
of Poissonian points we are solving the usual unforced Burgers equation and
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the mean velocity stays constant. On the other hand it is easy to see that
the mean velocity is continuous in time even at the time corresponding to
the occurence of a forcing point. A continuous piecewise constant function
is constant, and our invariance claim follows.

The theory that was developed above for the Poisson forcing on the line,
applies to this case as well, so one has a unique global attracting soliution.
One also has a unique global minimizer γω with asymptotic slope 0 corre-
sponding to the mean velocity 0. To formulate the main theorem we must
unfold S1 onto its universal cover R and treat γω as a continuous path on R.

Theorem 8.3. There is a nonrandom number D > 0 such that γω(t)/
√

D|t|
converges in distribution to the standard Gaussian random variable as t →
∞.

Proof: The times between occurences of Poisson points are exponentially
distributed. Therefore, the set of all Poisson points (tk(ω), xk(ω)) such that
there are no other Poisson points in [tk−1, tk+1]×S1 is unbounded in both
directions. We agree that . . . < t−2 < t−1 < 0 < t0 < t1 < t2 < . . .. It is
easy to check that the global minimizer γ passes through all these points on
the cylinder (or their lifts on the universal cover).

Let us denote ∆kt = tk − tk−1, ∆kx = xk − xk−1( mod 1) and ∆kγ =
γ(tk) − γ(tk−1). Notice that all random variables from sequences (xk)k∈Z,
(∆kt)k∈Z, and realizations of Poissonian point field between tk−1 and tk
are jointly independent. They are also identically distributed within each
sequence, the tails of ∆kt are exponential, and the distribution of xk is
m(dx)/m(S1).

Since ∆kγ is a functional of ∆kt, ∆kx, and the realization of the Pois-
sonian field between tk−1 and tk, the sequence (∆kγ)k∈Z of identically dis-
tributed random variables is 1-dependent (the dependence comes only through
xk occuring in both ∆kx and ∆k+1x)

We know that there is no systematic drift, i.e., (γ(tk)−γ(t0))/(tk−t0) → 0
as k → ∞. By the law of large numbers, (tk − t0)/k → h = E(t1 − t0), so
(γ(tk)− γ(t0))/k → 0, and E(γ(t1)− γ(t0)) = 0.

Therefore, by Bernstein’s CLT for m-dependent random variables, we

conclude that the distribution of (γ(tk)− γ(t0))/
√
σ2k converges weakly to

the standard Gaussian one, where σ2 = E(γ(t1)− γ(t0))
2. Applying the law

of large numbers once again we conclude that

γ(t)√
σ2

h t

d−→ N (0, 1)

as t → ∞ along the sequence (tk). To finish the proof one has to extend
this convergence to all intermediate values of t, but this is not hard since
the tails of ∆kt are exponential. This completes the proof with D = σ2/h.
�
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Remark 8.1. It is also possible to prove a functional version of the above
CLT with two-sided Wiener measure in the role of the limiting distribution
for apropriately normalized global minimizer.
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