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A Systematic Evolution of Ligands by EXponential enrichment
(SELEX) experiment begins in round one with a random pool of
oligonucleotides in equilibrium solution with a target. Over a few
rounds, oligonucleotides having a high affinity for the target are se-
lected. Data from a high throughput SELEX experiment consists of
lists of thousands of oligonucleotides sampled after each round. Thus
far, SELEX experiments have been very good at suggesting the high-
est affinity oligonucleotide but modelling lower affinity recognition
site variants has been difficult. Furthermore, an alignment step has
always been used prior to analyzing SELEX data.

We present a novel model, based on a biochemical parametrization
of SELEX, which allows us to use data from all rounds to estimate
the affinities of the oligonucleotides. Most notably, our model also
aligns the oligonucleotides. We use our model to analyze a SELEX
experiment containing double stranded DNA oligonucleotides and the
transcription factor Bicoid as the target. Our SELEX model outper-
formed other published methods for predicting putative binding sites
for Bicoid as indicated by the results of an in-vivo ChIP-chip exper-
iment.

1. Introduction. Transcription factors are proteins that regulate gene
transcription of DNA by binding to DNA sequence motifs within the genome.
Mapping these DNA recognition sequences and determining the relationship
between DNA sequence and transcription factor binding affinity is central
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to understanding the regulation of gene expression. Transcription factors
comprise approximately 8% of the genes encoded in the human genome. A
comprehensive understanding of the behaviour of these proteins will aid in
our understanding of key developmental processes including body pattern-
ing, brain development, and tissue specification.

One in-vitroassay, known as Systematic Evolution of Ligands by EX-
ponential enrichment (SELEX), indirectly measures the affinity of a tran-
scription factor binding to various DNA sequences. SELEX was introduced
in the 1990’s by Tuerk and Gold (1990) and Ellington and Szostak (1990).
It has been used in a number of genomic studies (e.g. Kim et al. (2003)
and Freede and Brantl (2004)) and for the purposes of drug discovery (e.g.
Guo et al. (2008) and Ng et al. (2006)). In genomic studies, SELEX has
been used to identify the highest affinity recognition sequences for target
proteins.

More recently there has been an emphasis on using SELEX data to esti-
mate not just the highest affinity sequences but also a matrix for the free
energy of binding. Using the free energy matrix one can build a model which
takes as input a nucleotide sequence and outputs the affinity of the se-
quence for the transcription factor. With a flexible model, one can scan the
genome to find high to medium affinity putative binding sites. Having such
a model is important since the nucleotide sequence with the highest affin-
ity for the transcription factor might not be occupied in-vivo. For instance,
due to DNA folding and histone interference the highest affinity site may
be in-accesible to the transcription factor. Also the specificity of the site
may play a role. That is, a medium affinity site surrounded by very low
affinity sequences might be a functionally more important binding site than
a high affinity site surrounded by other high affinity sites. Such require-
ments have lead researchers to consider thermodynamic models for SELEX.
Djordjevic and Sengupta (2006) and Zhoa, Granas and Stormo (2009) are
two thermodynamic models for SELEX that precede ours. We will clearly
illustrate how our model diverges from Djordjevic and Sengupta (2006) and
Zhoa, Granas and Stormo (2009) in Sections 2 and 3 after we describe the
SELEX experiment in detail.

Our model is a result of a large collaboration, the Berkeley Drosophila
Transcription Network Project (BDTNP). The goal of the BDTNP is to
understand the early developmental transcription factors in fly embryos. As
part of this collaboration, in-vitro SELEX, in-vivo ChIP-chip and most re-
cently in-vivo ChIP-seq have been performed on many transcription factors.
Although the in-vivo ChIP-seq results are extremely important because they
identify regions along the genome to which a transcription factor actually
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bound at an instant in time in a particular developmental stage in a specific
tissue or cell lineage, we believe that the in-vitro SELEX experiment is still
extremely relevant for two reasons.

Firstly, the ChIP-seq assay is exceedingly expensive, currently at a mini-
mum cost of $5K per sample. To fully understand a developmental process
it would be necessary to conduct ChIP-seq in every tissue or cell lineage
in an animal throughout its development. At $5K per sample this cost is
already prohibitive before we even account for the man power required. The
in-vitro binding data from SELEX allows us to reason about all locations
in a genome that might be bound by the transcription factor of interest in
any sample. Obviously, this can be very powerful when combined with infor-
mation from other in-vivo assays, such as DNasel accessibility experiments
Li et al. (2011) and Kaplan et al. (2011).

Secondly, there is great value to obtaining the qualitative, thermody-
namic estimates of protein/DNA binding affinities that we model in this
paper from SELEX data. Ultimately, biologists would like to understand
the relationship between transcription factor binding patterns and gene ex-
pression Ay and Arnosti (2011). Transcription factors have been shown to
work together in complex spatial arrangements in order to modulate gene
expression Biggin (2011) and the dynamics of these spatial configurations
and their effects on transcription initiation can not be observed by ChIP-seq
or any other widely utilized assay. Such critical aspects of gene regulation
can, at present, on a large scale, be inputed only computationally, using
models of protein/DNA binding affinities Ravasi et al. (2010), Boyle et al.
(2010) and Kaplan et al. (2011). Therefore models such as the one we pro-
pose here based on SELEX data will continue to be an important area of
computational biology for the foreseeable future.

2. The SELEX Assay and Likelihood for the Model. A typical
SELEX experiment begins in round one with a solution of random double
stranded DNA oligonucleotides and a transcription factor. In the application
presented in this paper the oligonucleotides are 16 base pairs long sequences
and are flanked by additional DNA sequences.

The oligonucleotides react with the transcription factor and eventually a
dynamic equilibrium is reached where the concentrations of bound oligonu-
cleotides, unbound oligonucleotides and unbound target are constant. After
equilibrium is reached, the bound oligonucleotides are separated from the so-
lution. Next, polymerase chain reaction (PCR) is performed on the oligonu-
cleotides sampled from the end of round one. PCR chemically amplifies the
quantity of DNA present in a way that does not significantly change the
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frequency distribution of oligonucleotides. At this point, a sample is taken
for sequencing, and the remaining oligonucleotides are entered into round
two. The main steps for round one of SELEX are depicted in Figure 1.

Fig 1. The main experimental steps for round one of a SELEX experiment.

Round two of SELEX proceeds exactly as round one, except that the
initial pool of oligonucleotides is the set of bound oligonucleotides from round
one that went through PCR but were not sequenced. Thereafter, the assay
proceeds as before: the oligonucleotides react with the transcription factor
and, after equilibrium is reached, the bound oligonucleotides are selected
and PCR is performed. A sample is taken for sequencing and the remaining
oligonucleotides are entered into round three. These steps are repeated for
as many rounds as the experimenter desires, see Ogawa and Biggin (2011)
for full experimental details.

The outcome of a SELEX experiment is observed by sequencing the
oligonucleotides that are sampled at the end of each round. That is, af-
ter performing the assay, the results are a list of sequenced oligonucleotides
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and usually meta-data, such as the SELEX round in which each oligonu-
cleotide was sequenced, the concentration of unbound transcription factor
in a particular round, and/or the temperature at which the experiment was
performed.

Each sequence is denoted by Si where i enumerates over all the different
sequence types. Letting k represent the length of the sequences and carefully
accounting for palindromes and reverse palindromes, for our double stranded
DNA application i = 1, . . . , n where n = 2k−1 + 4k−1. We let r identify the
round number beginning with r = 0 for the initial random pool of sequences.
The number of times sequence type Si is observed in round r is represented
by li,r. Table 1 shows the first ten 16mers Si and the number of times
each sequence appeared lir in round r = 3 of a SELEX experiment for the
transcription factor Bicoid. Although we only show ten sequences, a total of
1324 unique sequences Si were observed in round 3 of the SELEX experiment
depicted in Table 1.

Si li,3

TCCCATTAATCCCACC 2
GGTGTCGGTTTAAGCG 2
CTGATTAATCCGAGTG 1
TGAGATTCCATACCCT 1
TGTGAGGATATGTTTC 1
TGGGGTTGGATTAAAG 1
GGATTAGGGTTAAGCA 1
GACCCCGGCCTAATCC 1
GGTAATCTCGGGATTA 1
TGGACGGATTACGCGG 1

Table 1

Example of first ten sequences Si and their frequencies li,3 collected after the third round
of a SELEX experiment for the transcription factor Bicoid.

A complicating factor of SELEX is that the length of the binding site
l to the transcription factor is less than the length of the sequences k. In
the application of this paper we have k = 16 and we estimate the binding
site length of Bicoid l to be at most 10. All previous methods, including
Djordjevic and Sengupta (2006) and Zhoa, Granas and Stormo (2009) for
analyzing SELEX data use an alignment step prior to analyzing the SE-
LEX data. Such aligners (e.g. Multiple Em for Motif Elicitation (MEME)
Bailey et al. (2006)) are not based on the thermodynamics of binding. For
each kmer, these aligners will output their “best guess” for the lmer to which
the sequence Si bound. We denote the lmer binding sites by bj . For exam-
ple, Table 2 shows ten aligned sequences from a SELEX experiment for the
transcription factor Bicoid. The sequences are aligned for a binding site of
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l = 8 using an aligner written in the Biggin lab by Stuart Davidson.

bj

ATA TTAATCCG ATAAC
CACCC TAAATCTT CGT

TTAATCCA GCGCATCA
ACCC TTAATCCC CCCA

CAACC TTAATCCC
TAA TCCCTCCT AATCC

T TTAATCCT GATCCCC
GGA TTAACTCG GATTA

GAGAGG TTAATCCA CT
GTAC CAAGTCAC CACA

Table 2

Ten aligned sequences from a SELEX experiment for the transcription factor Bicoid. The
sequences here were aligned assuming a binding site of length l = 8.

Previous models for SELEX take the estimated binding site sequences bj
from an aligner as input. Our model selects binding sites dynamically as part
of the optimization. That is, the model takes the full kmer Si sequences that
were sequenced after each round of the SELEX experiment as input. The
likelihood (2.1) is parametrized in terms of Pr(Si), where Pr(Si) denotes the
probability of selecting sequence Si in round r. In Section 3 we provide the
parametrization for Pr(Si) in terms of the free energy, ∆G, a thermodynamic
measure of affinity. Letting R denote the total number of rounds for the
SELEX experiment we have,

(2.1) L(∆G|l11, . . . , lnR) =
R∏

r=1

(
n∏

i=1

Pr(Si)
lir

)
.

It is easily seen from the likelihood (2.1) that our model for SELEX can
take as input data from all rounds of a SELEX experiment. This is important
as there is evidence that a range of affinities is required to properly estimate
the free energy, ∆G (see the review article Djordjevic (2007)). Our model
for SELEX is the first model to use data from all rounds of the experiment,
previous models use only data from the last round which consists of high
affinity sequences.

3. Parametrization of the Model. Section 3.1 describes how the
probability of a sequence Si binding to the transcription factor in round r,
tr(Si), is parametrized in terms of the Gibbs free energy ∆G. Section 3.2
provides the parametrization of the probabilities Pr(Si) of drawing Si from
round r. Appendix A gives the necessary chemical background.
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3.1. Probability of a Sequence Si Binding. In SELEX, we have multiple
oligonucleotide types Si in solution. At dynamic equilibrium in round r, the
probability of any copy of type Si being bound at a particular instant is
equal to the fraction of Si that is bound, tr(Si). Letting [TF : Si]r and [Si]r
represent the long term average concentrations of the bound product and
unbound sequences Si in round r we have,

(3.1) tr(Si) =
[TF : Si]r

[TF : Si]r + [Si]r
.

We are interested in modelling the affinity of oligonucleotides that bind in
a sequence specific manner to the target. Specific binding involves hydrogen
bonding, van der Waals interactions, and other short-range forces. Sequence
independent binding also occurs. This is due in part because oligonucleotides
bind weakly via electrostatic forces, see von Hipple (2007), and because a
small percentage of DNA will non-specifically associate with the bead or
non-DNA binding surfaces of the target. Thus even oligonucleotides that do
not bind to the target specifically can be present in later rounds. We make
three assumptions concerning specific binding for any oligonucleotide type
Si.

1. All identical copies of the same oligonucleotide type Si bind at the
same subsequence bj . We refer to this subsequence as the binding site.

2. The subsequence bj is assumed to be of fixed length l and independent
of the oligonucleotide type Si in which it is contained.

3. The binding site bj for each oligonucleotide type Si is that subsequence
which has maximum affinity according to the proposed model.

These correspond to the assumptions that the binding affinity of the se-
quence is solely a function of the binding site and that there is only one
binding site per oligonucleotide.

Given these assumptions and letting [TF ]r represent the long term aver-
age concentration of unbound transcription factor at dynamic equilibrium
in round r, we can use (A.1), (A.4) and (3.1) to write

(3.2) tr(Si) =
[TF ]r exp(

−∆G(Si)
RGasT

)

1 + [TF ]r exp(
−∆G(Si)
RGasT

)

where ∆G(Si) ≡ ∆G(b(Si)) and b(Si) maximizes ∆G among all bjs of the
length l we have specified contained in Si.

In a SELEX experiment, tr(Si) can also be viewed as the conditional
probability that a particular molecule of the species Si is bound at the end
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of round r given that it is present at the beginning of round r. Formally,

(3.3) tr(Si) ≡ P [Si bound at the end of r | it is present in r].

Defining ̂[TF ]r to be the concentration of the transcription factor at a
particular instant, we obtain t̂r(Si),

(3.4) t̂r(Si) =
̂[TF ]r exp(

−∆G(Si)
RT

)

1 + ̂[TF ]r exp(
−∆G(Si)

RT
)

which is an estimate of tr(Si). We expect that the instantaneous concen-

trations ̂[TF ]r,
̂[TF : S]r, and [̂S]r will vary within 5% of their long term

average concentrations [TF ], [TF : S], and [S].
It is very difficult to measure the amount of transcription factor that is

“active” in a binding reaction, versus denatured or otherwise non fuctional.
Hence we do not have measurements for ̂[TF ]r and this causes an identi-
fiability problem when estimating ∆G. The problem is easily remedied by
estimating ∆∆G instead. See Appendix B.1 for further discussion.

Although the notation differs, our formulation for the probability of a
sequence type Si binding in round r, t̂r(Si), resembles the parametriza-
tion first introduced by Djordjevic and Sengupta (2006) and later used by
Zhoa, Granas and Stormo (2009). The thermodynamic formulation (3.2) in-
cludes competitive binding between oligonucleotides Si since the Si are all
competing for the unbound transcription factor. As we search all possible
binding sites of each oligonucleotide type Si for the optimal site, our model
takes alignment into account implicitly, unlike Djordjevic and Sengupta (2006)
and Zhoa, Granas and Stormo (2009) which either use a pre-alignment step
as in Table 2 or work on data with k = l.

3.2. Probability of Drawing a Sequence Si. Next we express the distribu-
tion of bound sequences in terms of (3.4). We first assume that each sequence
is present in an initial amount C0 in round zero. We then make the assump-
tion that each PCR step replicates each molecule of type Si Ar times on
average in round r. Then, after the rth round of selection the amount of Si

is

C0

r̄∏

r=1

Ar t̂r(Si).

Dividing the total amount of Si after round r̄ by the total amount of all
sequences after round r̄ gives an estimate of the frequency distribution of
bound sequences at the end of round r̄. Formally,

(3.5) Pr̄(Si) = P [Si is sequenced in round r̄ ] =

∏r̄
r=1 t̂r(Si)∑

allSj

∏r̄
r=1 t̂r(Sj)

.
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Djordjevic and Sengupta (2006) assume that all the sequences they see
in the last round bound the protein and all the sequences they do not
see did not bind. Hence their likelihood differs significantly from ours. Like
us, Zhoa, Granas and Stormo (2009) accounts for the multinomial sampling
in (3.5). Zhoa, Granas and Stormo (2009) also account for extra variabil-
ity generated during amplification by PCR. Both Zhoa, Granas and Stormo
(2009) and us fail to correct for the case in which zero oligonucleotides of
a particular species are bound in round r. The large oligonucleotide counts
makes this a reasonable approximation. For instance, in the data we study
in Section 5, each 16mer species had an average of 65,000 copies in round
zero.

As discussed in Section 3.1, it is possible for oligonucleotides to make
it though the selection step via a variety of mechanisms, including non-
sequence mediated, electrostatic protein-DNA interaction (non-specific bind-
ing), DNA-DNA interactions, or DNA-apparatus interactions (experimental
error). We account for such sequences in our model, and refer to the effects
that result in their selection collectively as Junk Binding. If cJ is a constant
between 0 and 1, then we can modify our equations to allow for junk binding
as follows:

t̂r(cJ , Si) =
(
(1− cJ)t̂r(Si) + cJ

)
.

Our parametrization of the junk binding is different from
Djordjevic and Sengupta (2006) and Zhoa, Granas and Stormo (2009) who
both use only a thermodynamic parametrization for the non-specific binding.

3.3. Binding Model. The binding model is the relationship between the
actual DNA sequence of a binding site bj and the free energy ∆G. So
far we have formulated our model in complete generality with respect to
the binding model. The most widely applied model is an additive one.
The additive model was used in both Djordjevic and Sengupta (2006) and
Zhoa, Granas and Stormo (2009). Such a model assumes that each basepair
of DNA makes some contribution to the total binding affinity independent of
all other basepairs in the binding site. Representing the nucleotide base pair
at position k in bj as ok, and letting εt(ok) represent the indicator function

εt(ok) =

{
1 if ok = t

0 otherwise
,

we write the elements of the energy matrix as λkt,

(3.6) ∆G(bj) =
l∑

k=1

∑

t∈{A,C,G,T}

λktεt(ok)
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As before the length l represents the length of the binding site. The param-
eters to be estimated are the λkt from the energy matrix.

It is important to note that our additive model (3.6) does not correspond
to a Position Weight Matrix (PWM). In a PWM the nucleotide positions
are treated independently. In our notation this means that the probability of
sequence Si binding to the transcription factor, tr(Si), will equal a product
of a probabilities where each probability corresponds to a position in the
sequence and the value of each probability is determined by the nucleotide at
the corresponding position. Our model deviates from such an independence
model in two important ways:

• By assuming that the binding of a sequence is determined by a smaller
binding site, our model permits considerable dependence between nu-
cleotide positions and sequences well separated in hamming distance.
If we group the sequences by the binding sites that give minimal free
energy we see that the distribution of binding probabilities over se-
quences is a mixture of probability distributions each of which, ignor-
ing thermodynamic considerations, could be characterized by PWM.

• Even when the sequence and binding site coincide, that is when k and
l are equal, the probability of a sequence Si binding tr(Si) is modelled
by a log odds model. Rearranging equation (3.4).

log

(
tr(Si)

1− tr(Si)

)
= log([TF ]r)−

∆G(Si)

RT
.

4. Optimization. This Section discusses the optimization of our model.
In particular, Section 4.1 explains how we simulate to simplify the denom-
inator of Pr(Si) and Section 4.2 discusses the numerics of the optimization
procedure. There are three identifiability issues with our model that are
easily overcome. The identifiability issues are presented in Appendix B.

4.1. Denominator of Pr(Si). For k = 16 the number of oligonucleotide
types in the initial random pool is 215 + 415. It is infeasible to to include
all oligonucleotide types in the denominator of (3.5). We estimate the de-
nominator using Monte Carlo and take a simple random sample of oligonu-
cleotides by selecting nucleotide base pairs from a uniform distribution. Our
approach differs from Zhoa, Granas and Stormo (2009) who discretized the
energy distribution in order to simplify the denominator before numerically
optimizing to estimate the free energy matrix ∆G.

4.2. Numerical Optimization. With regards to our model, a point not yet
discussed is the difficulty of maximizing the likelihood. If [TF ]r is “small”
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then the denominator in (3.4) can be approximated by one. The likelihood
(2.1) will simplify, and the optimization between each alignment step be-
comes a convex optimization problem. However, since we avoid making sim-
plifications regarding the concentration of transcription factor in each round,
the optimization is more difficult as discussed below.

There are substantial computational and algorithmic difficulties in fit-
ting the model. Standard optimization techniques are often ineffective be-
cause the likelihood surface is neither convex nor differentiable. In particu-
lar, the lack of continuous derivatives makes gradient descent methods like
Broyden-Fletcher-Goldfarb-Shanno (BFGS) Nocedal and Wright (2006) un-
stable. In addition, the lack of convexity means that line search methods
Nelder and Mead (1965) tend to become trapped in local maxima. In view
of these considerations, we have had success using downhill simplex methods
Powell (1964) from a large set of random starting locations. This method is,
empirically, stable. The software tool presented in Supplement A implements
this method. The simulations and results in Section 5 were all produced us-
ing the provided software tool.

5. Results. In Section 5.1 we demonstrate how our model works on
simulated data. Section 5.2 applies our model to Bicoid SELEX data from
the Biggin Lab. We then compare the estimates from our model to esti-
mates made from an in-vitro multiplex assay experiment in the Biggin Lab
and to estimates made from the Binding Energy Estimates using Maximum
Likelihood (BEEML) model of Zhoa, Granas and Stormo (2009) in Section
5.3.

Finally, we see how our model performs versus other published methods
when searching for transcription factor binding sites along the genome. In
Section 5.4 we observe that for the transcription factor Bicoid there is good
agreement between the putative binding sites predicted by an in-vivo ChIP-
chip experiment performed in the Biggin Lab and all the other published
methods we compare it with; however the agreement is strongest between the
ChIP-chip experiment and the results of our model applied to the SELEX
data for Bicoid.

We have chosen to explain the results from Bicoid in detail because it has
been studied extensively in the literature and we have multiple replicates
of the SELEX experiment, the multiplex assay experiment and the ChIP-
chip experiment. The protocol for the SELEX experiment is provided in
Ogawa and Biggin (2011).

5.1. Simulations. To explore the properties of our estimation procedure,
we simulated data under our model and refit the model parameters from
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the simulated data. The energy model that we simulated under is a plau-
sible model for binding of the Bicoid homebox which is strongly attracted
to sequences that include TAAT. In fact, the energy matrix used for the
simulation is the matrix estimated in Table 3.

To simulate data under the SELEX model, we generated one million
16mer random sequences uniformly, which we refer to as round 0. Then,
for rounds r = 1, . . . , 4, we keep each sequence in round r − 1 with the
probability given by (3.2).

To simulate the PCR duplication process, in which the number of oligonu-
cleotides is typically much larger than the number of PCR molecules, we
repeatedly selected a sequence at random and duplicated the selected se-
quence, until we had one million sequences.

After we had reached one million sequences, we randomly sampled 2000
of these without replacement. The 2000 sequences are the data for round r,
which we fed into our model. The other sequences formed the selection pool
for round r − 1.

In Figure 2, we present boxplots of the estimated parameter values for
32 simulations. We simulate our Bicoid SELEX data situation of having a
binding site length of l = 10 inside random 16mer sequences Si. As can
be seen, under the model, our procedure provides biased results. In our
simulations, the binding strength of the consensus sequence is overestimated.
We believe this bias will also be present but hopefully smaller in magnitude
when real SELEX data is analyzed, since a real SELEX experiment will
begin in round 0 with many many more sequences that 1 million. To the
best of our knowledge the bias is present due to the fact that we assume
in our model that every sequence type Si is present in each round r of
the SELEX experiment. In reality of course, and in our simulations, weaker
sequences will not make it to later rounds of SELEX. This will make the
consensus sequence look stronger than it really is.

Many more simulations are provided in the supplementary material. It
appears that as the stringency of the experiment is increased (either by de-
creasing the amount of transcription factor or by increasing the energy ma-
trix) the bias is increased. Also seen in our simulations in the supplementary
material is that the bias is also present and much bigger in magnitude in the
BEEML model. Of course the BEEML model makes the same assumption
as us that every sequence type is present in each round of SELEX.

Unfortunately it is impossible to know exactly what sequence types are
in each round r of a SELEX experiment. Since we wanted to include data
from all rounds of a SELEX experiment and include alignment in our model
we are forced to assume that all possible sequence types are present in every
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round. In our earliest efforts to model SELEX data we used models which
only included the last round of SELEX and we assumed that the only binding
sites bi that were present were the binding site types that were observed.
Of course these models required a pre-alignment step and could only accept
data from the last round of SELEX.
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Fig 2. Boxplots of the free energy parameters estimated from the 32 simulations. The
values that generated the simulations are shown by red crosses.

5.2. Bicoid SELEX Data. Our SELEX model was run on output from
all four rounds of the Bicoid SELEX experiment. Here k = 16 and l =
10. The ∆∆G matrix, is given in Table 3. The sequence with the highest
affinity to Bicoid is called the consensus sequence. Our consensus sequence
is GGATTAGGGG (or equivalently CCTAATCCCC). We have set the energy of
the consensus sequence to be 0 in Table 3.

5.3. Comparison to the Multiplex Assay Experiment and BEEML. In
addition to SELEX the Biggin Lab has also produced an in-vitro multiplex
assay experiment. In this multiplex assay experiment a small number of se-
quence types Si are produced. Usually the consensus sequence is known a
priori (for example, from a SELEX experiment) and the sequence types Si

produced for the experiment vary from the consensus sequence at one or two
positions only. As in the SELEX experiment, the Si are entered in solution
with the transcription factor Bicoid. The solution is allowed to reach equi-
librium and then the bound sequences are separated from the transcription



14 J. ATHERTON ET AL.

A C G T
1 -4.722516 -5.729347 0.000000 -6.251779
2 -7.447426 -5.981440 0.000000 -16.853690
3 0.000000 -6.946246 -15.701235 -8.529272
4 -7.746046 -15.548042 -12.535315 0.000000
5 -7.989755 -7.201358 -24.708969 0.000000
6 0.000000 -9.611195 -8.497223 -5.336888
7 -0.505663 -19.926999 0.000000 -4.445374
8 -1.836787 -0.228140 0.000000 -0.945140
9 -1.841359 -1.612913 0.000000 -1.417988
10 -1.431632 -1.539663 0.000000 -0.235633

Table 3

The Gibbs free energy matrix estimated from a SELEX experiment on the transcription
factor Bicoid.

factor. Since there are very few sequence types Si present in this experi-
ment one can obtain a much more accurate measure of the amount of bound
Si than in a SELEX experiment. Using the thermodynamic concepts pre-
sented in this paper one can easily use the measured amounts of each bound
sequence type to directly calculate a ∆∆G matrix. The results of the multi-
plex assay experiment described above for Bicoid are shown in green in the
Figure 3.

To compare our model to the BEEML model of Zhoa, Granas and Stormo
(2009) we had to pre-align the sequences Si for a binding site of length ten.
To do the alignment we used MEME Bailey et al. (2006). We considered
using MEME to directly align the sequences and then input these sequences
into the BEEML model; however when aligning sequences MEME clusters
like sequences together and also eliminates sequences which do not fit ac-
cording to their model. Hence we decided it was preferable to run MEME
and construct a mean PWM based on the output from round four of the
SELEX experiment. We then used the PWM to find the highest affinity
subsequence of length ten in each 16mer Si from rounds three and four of
the SELEX experiment. These sub-sequences were the aligned binding sites
that were given to the BEEML model as input. The results of BEEML are
shown in grey in the Figure 3.

Finally as described in Section 5.2 we ran our model on all rounds of a
SELEX experiment for Bicoid. The results are plotted in Figure 3 in blue.

From Figure 3 we see that the consensus sequence for the multiplex as-
say experiment is, CTTAATCCCC and the consensus sequence for BEEML
is TGTAATTGGG. Recall from Section 5.2 that the consensus sequence for
our model is CCTAATCCCC. It is clear that all three models pick up the
TAAT homebox which is clearly the most important factor in determining
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the affinity of a sub-sequence to Bicoid. Also seen from Figure 3 is how
deleterious a mutation in the homebox is to binding. Any mutation from
TAAT at positions three to six leads to a very substantial decrease in ∆∆G.
All models show that mutations from the consensus sequence at positions
nine and ten are not very critical to binding. The three models also indicate
that positions one and two are weakly critical to binding; however BEEML
indicates it is deleterious to have nucleotide base A at positions one and two
whereas our model and the multiplex assay do not show the same deleterious
effect. There are other obvious instances where the BEEML model deviates
significantly from our model and the multiplex assay experiment.

As for why the BEEML model deviates quite a bit from our model and
the multiplex assay experiment for certain nucleotide estimates at certain
locations a main reason is most likely the need to pre-align using MEME,
that is, the output we see for BEEML will be heavily influenced by MEME.
Our model aligns during the optimization of the likelihood and hence unlike
MEME our alignment is based on thermodynamic principles. There are also
important differences between BEEML and our model. Both BEEML and
our model are thermodynamic models run on the same SELEX experiment,
however:

• BEEML accounts for the non-specific energy of binding. Although our
model can account for the non-specific binding, in this instance, it was
run without accounting for non-specific binding.

• BEEML accounts for errors in the PCR step. We have chosen not to
account for that explicitly in our model.

• BEEML also has an expression similar to our Expression (3.5) for
Pr(Si). The problem both models encounter is that there are too many
terms to enumerate in the denominator. As described in Section (4.1)
we use Monte Carlo to overcome this. The BEEML model takes a
different approach similar to Djordjevic and Sengupta (2006) where
they discretize over a user defined number of energy levels.

• Our model uses data from all rounds of the experiment. Furthermore
we carefully model the sequence enrichment from one round to the
next. The code for BEEML accepts data from two round of SELEX
however there is no indication in Zhoa, Granas and Stormo (2009) that
they correctly model the progression from one round to the next.

• The final likelihoods for our model and BEEML are different and op-
timization schemes used are also different.

Hence, although the BEEML model has offered significant improvements
to the original Djordjevic and Sengupta (2006) model, we believe that our
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model offers further important improvements.
Of course we also see that our model estimates deviate slightly from the

multiplex assay estimates and we hope that in these instances our model is
providing good estimates for the ∆∆G matrix since we are using data from
many many more sequence types Si than the multiplex assay experiment.
In particular, we are including sequences with a full range of affinities from
low to high.

As the ∆∆G energies from the multiplex assay are calculated directly from
the thermodynamic equations we do not anticipate a big bias in the multiplex
assay estimates. There does not seem to be any consistent difference between
our model estimates of ∆∆G and the estimates from the multiplex assay
experiment. This observation supports our hope that the bias observed in
our SELEX simulations will be reduced when our model is applied to real
data since in a real SELEX experiment there are many more sequences
present and hence many more low affinity sequences will make it through to
later rounds than in our simulation. Basically, we think that the assumption
of each sequence type being present in each round is more valid in the real
data situation than in the simulated data situation.
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Fig 3. Estimated ∆∆G matrices from 1) a multiplex assay experiment from the Biggin
Lab (green), 2) our model applied to all four rounds of a SELEX experiment for Bicoid
(blue), and 3) the BEEML model of Zhoa, Granas and Stormo (2009) applied to data from
rounds three and four of the same SELEX experiment for Bicoid (grey).

5.4. Comparison in an in-vivo setting. Using the ∆∆Gmatrix estimated
by our model on the Bicoid SELEX data in Table 3, we scan the genome
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of Drosophila Melanogaster and compare the results of our model and three
other popular models to the results of an in-vivo ChIP-chip experiment.

The Berkeley Drosophila Transcription Network Project (BDTNP) has
generated SELEX and ChIP-chip data for Bicoid. ChIP-chip data measures
the genome wide relative levels of occupancy for a single protein of interest.
We used the BDNTP ChIP-chip data and a simple, non-parametric method
to validate and compare our Bicoid model with a PWM derived from MEME
Bailey et al. (2006) and two models from the literature, Segal et al. (2006)
and Berman et al. (2004). All four methods show strong agreement with the
in-vivo ChIP-chip data, however our model has the strongest agreement, see
Figure 4.

The ChIP-chip experiments identified thousands of genomic regions to
which Bicoid binds. This data has been shown to provide a quantitative
measure of relative occupancy. That is, regions can be assigned a score,
and those scores have been shown to be reproducible between biological
replicates Li et al. (2008) and MacArthur et al. (2009). From these and other
observations, the authors concluded that the high scoring regions correspond
to those with the highest net occupancy of bound factor.

Because of the complexity of intracellular processes, a binding model alone
does not provide enough information to predict the results of ChIP-chip ex-
periment. For instance, without additional data, we have no way of modelling
the inhibitory affect of chromatin structure. However, we can still use the
identified binding regions to test the validity of our SELEX model and data.

If a binding model is identifying true in-vivo binding sites, then we expect
the number of high affinity sites predicted by our model to be higher near
ChIP-chip peaks. Roughly, we compared the binding models by measuring
the enrichment of identified binding sites as compared to the genomic back-
ground. There were several variables that we controlled for; we explain the
method in detail in Appendix C. We plotted the results of this analysis for
our model and competing models in Figure 4.

Absent from our comparison in Figure 4 is the Zhoa, Granas and Stormo
(2009) model. Since, as discussed in Section 5.3, we have to pre-align the
sequences of the SELEX experiment using MEME, the out- put in Figure 4
after transformation by the sequence ranks will be very near to the output
of MEME presented in the Figure 4.

6. Conclusion. The model presented here attempts to infer a com-
prehensive map of the sequence specific binding affinities between double
stranded DNA and a transcription factor from a SELEX experiment. There
exist a variety of assays, including ChIP-chip, that attempt to measure the
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Fig 4. Smoothed average of predicted binding sites for four models at ChIP-chip peaks.
The legend is as follows: Atherton et al. represents the model discussed in this paper,
MEME represents Bailey et al. (2006), Segal represents Segal et al. (2006) and Berman
et al. represents Berman et al. (2004). The fixed parameters (as described in Appendix C)
for the analysis of the ChIP-chip data are np = 100, ws = 4000, ns = 100, and st = 0.999.
The the peaks are aligned so that the centre of each peak, defined as the highest point in
the peak, appears at 0 on the x-axis.
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average binding behaviour of a protein in a population of cells. However,
only in vitro assays like SELEX can provide precise thermodynamic mod-
els of protein/DNA interactions for downstream models of transcriptional
control.

To make accurate inference from SELEX data, researchers have left the
traditional empirical approaches such as PWMs and recently turned to cre-
ating models for SELEX based on the physical chemistry of binding. The
goal of these models is to estimate the free energy of binding, ∆G, matrix.
Often the exact binding site length l is unknown a priori, hence SELEX
experiments are performed with a sequence length k greater than l. Also by
taking a large k, as in the Biggin Lab, once a random pool of sequences has
been generated, SELEX experiments can be preformed for many transcrip-
tion factors with varying binding site lengths l. Our model for SELEX is the
first model capable of accepting data of the form k > l. Other models for
SELEX can only accept data with k = l or require an alignment step a pri-
ori. Another important feature of our model is that it accepts data from all
rounds of the SELEX experiment. This is crucial for estimation of ∆G, since
a mix of oligonucleotides that have a range of affinities for the transcription
factor are required. Previous models only use data from the last round of
the SELEX experiment and hence base their estimates on oligonucleotides
with a high affinity to the transcription factor.

The success of our model is demonstrated by applying our model and
three others to predict the DNA recognition sites enriched in an in-vivo
ChIP-chip experiment. The in-vivo ChIP-chip experiment indicates the in-
vivo occupancy of the transcription factor along the genome. A prior, it may
not have been the case that the affinity of a sequence for a transcription
factor as measured in an in-vitro experiment is a good predictor for binding
sites occupied in-vivo, even after taking into account of the influence of
other proteins, such as nucleosomes, on occupancy in vivo. However, we
have found that for the transcription factor Bicoid the recognition sites
used in-vitro and in-vivo are very closely related. Hence we can use the in-
vivo ChIP-chip experiment as validation when comparing different models
and motifs for binding. It is important that a comparison of models be
made with the ChIP-chip experiment as this can serve as a gold standard
for binding affinity; otherwise finding that two models produce different
motifs or different energy matrices is insufficient to determine which model
is performing better. Our success using results from an in-vivo experiment
to validate the results of an in-vitro experiment suggests that SELEX dose
provide a quite accurate, fine scale model of the intrinsic DNA recognition
properties of a transcription factor. The results of our comparison in Section
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5.4 demonstrate that our model outperforms the other models.
Preliminary results suggest that varying the additive ∆G parametriza-

tion of our model would provide the biggest predictive improvement. For
instance, basepair dependencies can be added. Alternatively, one could take
a feature based approach, see Sharon, Lubliner and Segal (2008). In the case
of Bicoid a feature based approach could specifically model the TAAT home-
box.

APPENDIX A: CHEMICAL CONCEPTS

The concepts introduced here can be found in the physical chemistry
textbook Atkins (1998). We begin by considering many copies of a single
oligonucleotide species S in solution with a transcription factor TF . Fur-
thermore we assume that S and TF always bind in the same configuration.

When S and TF are entered into solution with one another they will
react to form the product TF : S. We call this the forward reaction. The
product TF : S will also disassociate into S and TF ; we call this the backward
reaction. The following chemical equation,

TF + S ⇀↽ TF : S

represents these reactions. The solution is said to be in dynamic equilibrium

when the forward rate of reaction equals the backward rate of reaction. A
dimensionless physical constant quantifying the dynamic equilibrium is the
equilibrium constant K. Our interest in K is that it relates directly to the
change in Gibbs free energy, ∆G, for the reaction. The change in Gibbs
free energy, ∆G quantifies the affinity of S for TF . Hence, in Section 3, we
parameterize our SELEX model in terms of ∆G.

Letting RGas represent the ideal gas constant and T the temperature in
Kelvins, we have

(A.1) K = exp

(
−

∆G

RGasT

)
.

As we shall see below, K is unidentifiable without meta data. The meta
data was defined in Section 2.

The forward rate of reaction is proportional to the product of concentra-
tions of the reactants. The forward rate constant, kf , is the proportionality
constant. Hence,

(A.2) Forward rate = kf [S][TF ]
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and similarly

(A.3) Backward rate = kb[TF : S].

At equilibrium, equating (A.2) and (A.3) gives the following expression for
the equilibrium constant K.

(A.4) K =
kf

kb
=

[TF : S]

[TF ][S]

We can think of K as an expected value where the “concentrations” are
averages over time and space. In principle, we can use the observable concen-
trations [̂S], ̂[TF ] and ̂[TF : S] to estimate the theoretical physical quantity
K and in turn ∆G (via (A.1)).

APPENDIX B: IDENTIFIABILITY

There are three types of lack of identifiability in the SELEX model out-
lined below.

B.1. Identifiability Between [TF ]r and ∆G. The structure of t̂r(Si)
in (3.4) reveals that the ∆G(bj)s are not directly identifiable without knowl-

edge of ̂[TF ]r. This is because t̂r(Si) is unchanged by rescaling all the

∆G(bj)s and ̂[TF ]r by the same constant. However, with the given data,
we can always estimate

∆∆G(bj) = ∆G(bj)−∆G(bo)

where bo is a reference binding site such as a consensus sequence. Of course,
if we have meta data such as ̂[TF ]r we can estimate ∆G(bj).

B.2. Identifiability in Additive ∆G. Physically, we are able to iden-
tify the total binding affinity of a binding configuration but not the contri-
butions of the individual basepairs. To solve this, we choose to fix the energy
of the highest affinity basepair in each position except one to be zero. Then,
the value of the first position’s highest energy basepair is interpretable as
the binding affinity of the “consensus sequence”, or the modelled highest
affinity binding site. Some care is needed in ensuring that this constraint
does not interfere with whatever optimization algorithm is chosen - such
concerns are discussed in the code’s comments.
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B.3. Identifiability of the Binding Site Names. The third identi-
fiability problem is present in any binding model which represents binding
sites by their sequences. For any segment bj of a double stranded DNA se-
quence there are four possible names. To ensure that the paramterization is
physically meaningful, each binding site must be represented by the same
sequence. For example, Bicoid has a high affinity for sequences that contain
the subsequence TAATCC. As can be seen in Table 2 it is possible to align
the full sequences by the subsequences that are closest to TAATCC in the
Hamming sense. If, for instance, one were to name half of the subsequences
by TAATCC and half by ATTAGG then the likelihood would not optimize
properly. This being said, it is irrelevant which name is chosen, as long as
it is consistent. For instance, the subsequence TAATCC could also be called
CCTAAT, ATTAGG or GGATTA. For the binding model presented in Section
3.3, the likelihood will be symmetric with four identical modes, each corre-
sponding to a different naming scheme for the strongest binding site. Which
of the names our code chooses is chosen, arbitrarily, to be the one with the
consensus sequence that is first alphabetically.

3’ GTTTATAATCCGCGTC 5’
CAAATATTAGGCGCAG

1 GTTTATAATC
2 TTTATAATCC
3 TTATAATCCG
4 TTATAATCCG
5 TATAATCCGC
6 TATAATCCGC
7 TATAATCCGC

Table 4

Possible binding sites of length l = 10 for the factor Bicoid in an oligonucleotide of length
16.

APPENDIX C: DESCRIPTION OF CHIP-CHIP COMPARISON

We compare the predictions for putative binding sites for Bicoid from
our SELEX model and experiment to predictions from Bailey et al. (2006),
Segal et al. (2006) and Berman et al. (2004). For validation, all four models,
ours, Bailey et al. (2006), Segal et al. (2006) and Berman et al. (2004), are
used to predict the putative binding sites at genomic locations previously
highlighted in a ChIP-chip experiment. In MacArthur et al. (2009) they de-
fined a “peak” of the ChIP-chip experiment, to be a single point in the
genome where the local signal achieves its maximum. In our non-parametric
comparison of the models for the binding affinity of Bicoid we chose to con-
sider the np highest peaks in the ChIP-chip experiment. To summarize our
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results, for each of the four models we combine the putative binding site
predictions over the np peaks in the method described below. Note that
since some models attempt to assign physically meaningful affinity scores
to each subsequence (e.g. the use of the free energy matrix in our model)
and other models assign affinity scores based on estimated probabilities or
background frequencies (e.g. the use of the PWM in MEME), an important
step of our comparison is to obtain a common scoring scale for the four
models. In Section C.1 we explain how we obtain the common scoring scale.
For each of the four models, the steps in Section C.1 are repeated at each of
the ChIP-chip peaks. Section C.2 explains how we combine and summarize
the results of the np peaks for each model.

C.1. Common Scoring Scale. To obtain a common scoring scale for
the four models; for each model it is necessary to relate the affinity scores at
the peaks to the affinity scores in the non-coding genome. Therefore for each
model we begin by sampling ns intervals of size 2ws from the non-coding
mappable genome that do not overlap regions identified by the ChIP-chip
experiment. Within each of the ns intervals, we evaluate the affinity score of
each subsequence of length l thus generating ns samples of affinity scores.
Each sample provides an empirical null distribution of affinity scores. We
choose an α (e.g. α = 0.01), and in each of the ns samples we find the αth-
percentile affinity score. To calculate a threshold affinity score we take the
median of the ns αth-percentiles. Our threshold affinity score is denoted by
ŝα.

Next for each model, we examined a symmetric interval of fixed size 2ws

around each ChIP-chip peak. Within each of these intervals, using the chosen
model, we evaluated the affinity score of each subsequence of length l. For
each subsequence of length l in the 2ws interval around each of the np peaks,
we consider a position to be a “hit” if its score is greater than ŝα.

In this way, by determining if each sequence of length l near each ChIP-
chip peak is a hit or not we can compare the four models.

C.2. Combining the Results for the np Peaks. For each model
and each peak, by defining each hit as a 1 and each “miss” as a 0, we
obtain a binary vector that records each position at which a hit begins.
For each model, we align the np vectors at the peaks in the 5’-3’ direction
and sum across them. The resulting vector of counts records, with respect
to the position of peaks, how many of the np intervals had a hit at each
relative position. We smooth these counts with a 200bp moving average1,

1The 200bp is motivated by the fact that in the ChIP-chip assay proteins bind to DNA
fragments of roughly 200 bps
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and then divide the result by the expected number of hits under a uniform
null, np(1 − ŝα)

−1. It is these smoothed results that are plotted for each of
the four models in Figure 4.
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SUPPLEMENTARY MATERIAL

Supplement A: Code for SELEX model
(http://encodestatistics.org/SELEX). The code for the SELEX model used
in the application of this paper is available at the above url.
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