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The vast amount of biological knowledge accumulated over#ars has
allowed researchers to identify various biochemical exdttéons and define
different families of pathways. There is an increased egem identifying
pathways and pathway elements involved in particular lgickl processes.
Drug discovery efforts, for example, are focused on idgimg biomarkers
as well as pathways related to a disease. We propose a Bayasie! that
addresses this question by incorporating information dhvgays and gene
networks in the analysis of DNA microarray data. Such infation is used
to define pathway summaries, specify prior distributiomsj atructure the
MCMC moves to fit the model. We illustrate the method with aplia-
tion to gene expression data with censored survival outsoimeaddition to
identifying markers that would have been missed otherwigbimproving
prediction accuracy, the integration of existing biol@diknowledge into the
analysis provides a better understanding of underlyingemoér processes.

1. Introduction. DNA microarrays have been used successfully to identify
gene expression signatures characteristic of diseasgpashGolub et al. 1999
or distinct outcomes to therap$liipp et al. 2002 Many statistical methods have
been developed to select genes for disease diagnosis,gsisgand therapeutic
targets. However, gene selection alone may not be suffidierdancer pharma-
cogenomics, for instance, cancer drugs are increasingiged to target specific
pathways to account for the complexity of the oncogenic gge@nd the complex
relationships between gend3dwnward 200%. Metabolic pathways, for example,
are defined as a series of chemical reactions in a living ltalldan be activated or
inhibited at multiple points. If a gene at the top of a signglcascade is selected
as a target, it is not guaranteed that the reaction will beessfully inactivated,
because multiple genes downstream can still be activatathitnited. Signals are
generally relayed via multiple signaling routes or netvgorkven if a branch of
the pathway is completely blocked by inhibition or actieatiof multiple genes,
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the signal may still be relayed through an alternative dnamiceven through a
different pathway Bild et al. 200§. Downward(2006) pointed out that targeting a
single pathway or a few signaling pathways might not be gefiic Thus, the focus
is increasingly on identifying both relevant genes andatls. Genes and/or gene
products generally interact with one another and they dftantion together con-
certedly. Here we propose a Bayesian model that addressepigstion by incor-
porating information of pathway memberships and gene misvim the analysis
of DNA microarray data. Such information is used to defindwpaly summaries,
specify prior distributions, and structure the MCMC moves.

Several public and commercial databases have been degdlmg&ucture and
store the vast amount of biological knowledge accumulatest the years into
functionally or biochemically related groups. These dasas focus on describing
signaling, metabolic or regulatory pathways. Some exasnpledude Gene Ontol-
ogy (GO) ([The Gene Ontology Consortium 200&yoto Encyclopedia of Genes
and Genomes (KEGGXK@anehisa & Goto 2000 MetaCyc Krieger et al. 200%
PathDB (www.ncgr.org/pathdb), Reactome KnowledgeBassh(i-Tope et al. 2005
Invitrogen iPath (www.invitrogen.com) and Cell Signalifechnology (CST) Path-
way (www.cellsignal.com). The need to integrate gene esgioa data with the
biological knowledge accumulated in these databases isremgnized. Several
software packages that query pathway information and ayddINA microarray
data on pathways have been developéakao et al(1999 implemented a visual-
ization tool that color-codes KEGG pathway diagrams to ceftdanges in their
gene expression levels. GenMARPahlquist et al. 200@is another graphical tool
that allows visualization of microarray data in the contefbiological pathways
or any other functional grouping of gené&oniger et al(2003 use GenMAPP to
view genes involved in specific GO terms. Another widely usegthod that re-
lates pathways to a set of differentially expressed gendmigene set enrichment
analysis (GSEA)%ubramanian et al. 20p5Given a list of genes GSEA computes
an enrichment score to reflect the degree to which a pre-defiathway is over-
represented at the top or bottom of the ranked list. Theseedtoes are useful
starting points to observe gene expression changes forrkbmhogical processes.

Recent studies have gone a step further and focused on aratiny pathway
information or gene-gene network information into the ggial of gene expression
data. For exampleRark et al.(2007) have attempted to incorporate GO annota-
tion to predict survival time, first grouping genes basedhm@irtGO membership,
calculating the first principal component to form a supeneg&vithin each clus-
ter and then applying a Cox model wiily penalty to identify super-genes, i.e.,
GO terms related to the outcom@lei & Li (2007 have considered a small set
of 33 pre-selected signaling pathways and used the impéildionships among
genes to infer differentially expressed genes, W & Li (2008 have extended
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this work by including a temporal dimensidni.& Li (2008 andPan et al(2009
have proposed different procedures that use the gene-gémerk to build penal-
ties in a regression model for gene selection. Bayesiaroappes have also been
developedLi & Zhang (2010 have incorporated the dependence structure of tran-
scription factors in a regression model with gene expressigstcomes. There,
a network is defined based on the Hamming distance betweeahded® motifs
and used to specify a Markov random field prior for the motleston indica-
tor. Telesca et al(2008 have proposed a model for the identification of differ-
entially expressed genes that takes into account the depeadstructure among
genes from available pathways while allowing for corrattio the gene network
topology.Stingo & Vannucci(2011) use a Markov random field prior that captures
the gene-gene interaction network in a discriminant afabestting.

These methods use the gene-pathway relationships or gemerkénformation
to identify either the important pathways or the genes. Gaal gs to develop a
more comprehensive method that selects both pathways aned gsing a model
that incorporates pathway-gene relationships and genendepce structures. In
order to identify relevant genes and pathways, latent pimectors are introduced
and updated using a two-stage Metropolis-Hastings sampgliheme. The gene
networks are used to define a Markov random field prior on time gelection in-
dicators and to structure the Markov chain Monte Carlo (MQM®ves. In addi-
tion, the pathway information is used to derive pathway egpion measures that
summarize the group behavior of genes within pathways. ilmpgaper we make
use of the first latent components obtained by applying gddeast squares (PLS)
regressions on the selected genes from each pathway. PibSeffi@ent statisti-
cal regression technique that was initially proposed incthemometrics literature
(Wold 1966 and more recently used for the analysis of genomic and q@nute
data, se®oulesteix & Strimmef2007). We apply the model to simulated and real
data using the pathway structure from the KEGG database.

Our simulation studies show that the MRF prior leads to aebetéparation
between and non-relevant pathways, and to less false yassith a model with
fairly small regression coefficients. Other authors haymrmred similar results.
Li & Zhang (2010, in particular, comment on the effect of the MRF prior on the
selection power in their linear regression setting. Thep alotice that adding the
MRF prior implies a relatively small increase in computatib cost.Wei & Li
(2007, 2008 report that their method is quite effective in identifyiggnes and
modified subnetworks and that it has higher sensitivity t@nmonly used proce-
dures that do not use the pathway structure, with similar emgbme cases, lower
false discovery rates. Furthermore, in our model formarative use the network
information not only for prior specification but also to stture the MCMC moves.
This is helpful for arriving at promising models faster bpposing relevant config-
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Fic 1. Schematic representation of our proposed approach. inédion on known pathways and
gene-gene networks is obtained from available databadeS cBmponents restricted to known path-
ways serve as possible regressors to predict a diseasematarcording to modelj. The goal of
the inference is to identify the pathways to be included erttodel and the genes to be included
within those pathways.

urations. In real data applications the integration of wathinformation may allow
the identification of relevant predictors that could be misstherwise, aiding the
interpretation of the results, in particular for the sedelcjenes that are connected
in the MRF, and also improving the prediction accuracy oésield models.

The paper is organized as follows. Section 2 contains theemfodmulation
and prior specification. Section 3 describes the MCMC procednd strategies
for posterior inference. In Section 4 performances areuavatl on simulated data
and an application of the method to gene expression dataswithival outcomes
is presented. Section 5 concludes the paper with a briefisssan.

2. Model specification. We describe how we incorporate pathway and gene
network information into a Bayesian modeling framework g@ne and pathway
selection. Figurd represents a schematic representation of our approacheatel.m

2.1. Regression on latent measures of pathway activi@ur goal is to build a
model for identifying pathways related to a particular phtgpe while simultane-
ously locating genes from these selected pathways thataskvéd in the biologi-
cal process of interest. The data we have available for sisatpnsist of:

1. Y, ann x 1 vector of outcomes.
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2. X, ann x p matrix of gene expression levels. Without loss of gengraXt
is centered so that its columns sum to O.

3. S, aK x p matrix indicating membership of genes in pathways, with ele
mentss;; = 1 if gene;j belongs to pathway, ands;; = 0 otherwise.

4. R, ap x p matrix describing relationships between genes, wjth= 1 if
genes andj have a direct link in the gene network, ang = 0 otherwise.

The matricesS andR . are constructed using information retrieved from pathway
databases, see the application in Sedfi@for details.

Since the goal of the analysis is to study the associationwdset the response
variable and the pathways, we need to derive a score as a mea#s(pathway
expression” that summarizes the group behavior of inclugksaes within path-
ways. We do this by using the latent components from a PLSssgn ofY” on
selected subsets of genes from each pathway. A number aiftretelies have,
in fact, applied dimension reduction techniques to captiieegroup behavior of
multiple genesPittman et al(2004), for instance, first apply:-means clustering
to identify subsets of potentially related genes, then ssegressors the first prin-
cipal components obtained from applying principal comparamalysis (PCA) to
each clusterBair et al. (2006 start by removing genes that have low univariate
correlation with the outcome variable then apply PCA on #maaining genes to
form clusters or conceptual pathways, which are used agssgrs. In our method,
instead of attempting to infer conceptual pathways, we heeekisting pathway
information. We compute a pathway activity measure by apglPLS regression
of Y on a subset of selected genes from the pathway. PLS has taetage of tak-
ing into account the covariance between regressors ancespemse variabl&’,
whereas PCA focuses solely on the variability in the covaritata. The selection
of a subset of gene expressions to form the PLS componeritailarsin spirit to
the sparse PCA method proposed4nu et al.(2006, which selects variables to
form the principal components.

To identify both relevant groups and important genes wethice two binary
vector indicators, & x 1 vector@ for the inclusion of the groups andzax 1
vector+y for the inclusion of genes, i.e; = 1 if genej is selected for at least one
pathway score, angl; = 0 otherwise. Assuming that the responsés continuous,
the linear regression model that relaiéso the selected pathways and genes is

Ko
1) Y =1a+ Y Timbie +& &~N(0,0%),
k=1

whereKy = Zszl 0 is the number of selected pathways and wlgye, corre-
sponds to the first latent PLS component generated base@ @xpinession levels
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of selected genes belonging to pathwiaythat is using theX;’s corresponding to

spj = 1 andvy; = 1. To be more precise, let pathwéycontainp;, = Z?;l Skj
genes and lgby, = E?:l sj7; denote the number of selected genes (i.e., genes
included in the model) that belong to pathwayThenT},,) corresponds to the
first latent PLS component generated by applying PLS to tipeession data of
thepy, genes, denoted &),

Tr(y) = iU,

whereU, is thepy, x 1 eigenvector corresponding to the largest eigenvalue of
Cwycfy, with Cyyy = cov(Xy (), Y') (see for exampléindgren et al. 1998 Thus,
Ti(v) is ann x 1 vector and3x () is a scalar. Modell) can therefore be seen as a
PLS regression model with PLS components restricted tdadolaipathways, and
where the goal of the inference is to identify the pathwaybdadncluded in the

model, and the genes to be included within those pathways.

2.2. Models for categorical or censored outcome#n the construction above,
we have assumed a continuous response. However, our moaeil&ion can eas-
ily be extended to handle categorical or censored outcomables.

WhenY is a categorical variable taking one@fpossible valued),...,G — 1,
a probit model can be used, as doneMiyert & Chib (1993, Sha et al(2004) and
Kwon et al.(2007). Briefly, each outcom#; is associated with a vect@p; o, . . . , pi,c—1),
wherep;, = P(Y; = g) is the probability that subjedtfalls in the g-th category.
The probabilitieg;, can be related to the linear predictors using a data augmenta
tion approach. LeE; be latent data corresponding to the unobserved propensitie
of subjecti to belong to one of the classes. When the observed outcbjcesre-
spond to nominal values, the relationship betwgeandZ; = (z;1,...,zic-1)
can be defined as

0 if maxi<<g-1{zi1} <0
g If maxi<<g-_1{zi;} > 0andz g = maxi<<g—1{zi;}

2 Y= {
A multivariate normal model can then be used to asso@ate the predictors

Kg
(3) Z2:1a+zn,k(’y)ﬂk(’y)+8la 62'\“-/\/(072)7 t=1,...,n.
k=1

If the observed outcom@s correspond, instead, to ordinal categories, the latent
variableZ; is defined such that; = g if 6, < Z; <0441, 9=0,...,G -1,
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where the boundarie, are unknown and-oo = 6y < 6; < ... < dg—1 < dg =
oo. The latent variableZ; is associated with the predictors through the linear model

Ko
(4) Zi:a+ZTi,k(~/)/8k(fy)+5iy EiNN(O,O'2), 1=1,...,n.

k=1

For censored survival outcomes, an accelerated failure (&% T) model can

be used Wei 1992 Shaetal. 2006 In this case, the observed data afe =
min(T;, C;) andd; = I{Y; < C;}, whereT; is the survival time for subject,
C; is the censoring time, anf] is a censoring indicator. A data augmentation ap-
proach can be used and latent varialifggan be introduced such that

()

The AFT model can then be written in terms of the lat&nsimilarly to (4) where
thee;’s are independent and identically distributed randomaldes that may take
one of several parametric formSha et al(2006 consider cases whetg follows
a normal or &-distribution.

2.3. Prior for regression parameters.The regression coefficiep, in (1) mea-
sures the effect of the PLS latent component summarizingfteet of pathwayk
on the response variable. However, not all pathways areeteta the phenotype
and the goal is to identify the predictive ones. Bayesiarhoud that use mixture
priors for variable selection have been thoroughly inged#d in the literature, in
particular for linear models, s€eeorge & McCulloch(1997) for multiple regres-
sion, Brown et al. (1999 for extensions to multivariate responses &tth et al.
(2004 for probit models. A comprehensive review on features efdblection pri-
ors and on computational aspects of the method can be fou@thipman et al.
(2001). Similarly, we use the latent vectérto specify a scale mixture of a normal
density and a point mass at zero for the prior on gachm (1):

(6) 5k’|9k’702N0kN(B()vho-z)_'_(l_ek’)50(6/6)7 k= 17"'7K'

where dy (k) is a Dirac delta function. The hyperparametein (6) regulates,
together with the hyperparametersigf, «|n) defined in Section 2.4 below, the
amount of shrinkage in the model. We follow the guidelinesvted bySha et al.
(2004) and specifyh in the range of variability of the data so as to control therat
of prior to posterior precision. For the intercept teum,and the variances?, we
take conjugate priors|o? ~ N (ag, hoo?) ando? ~ Inv-Gammdvy /2, vood/2),
whereay, 5o, ho, h, Vg andag are to be elicited.
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2.4. Priors for pathway and gene selection indicatorsn this section we de-
fine the prior distributions for the pathway selection iradar, &, and gene selection
indicator, . These priors are first defined marginally then jointly, takinto ac-
count some necessary constraints.

Each element of the later{-vector@ is defined as

(7)

0, — 1 if pathwayk is represented in the model
¥~ 0 otherwise

fork =1,..., K. We assume independent Bernoulli priors for this,
Ko

(8) p0ler) = [] (1 — o),
k=1

wherep;. determines the proportion of pathways expectgutiori in the model. A
mixture prior can be further specified foy, to achieve a better discrimination in
terms of posterior probabilities between significant and-significant pathways

by inflating p(6;, = 0) toward 1 for the non-relevant pathways, as first suggested
by Lucas et al(2006),

(9) p(x) = pdo(er) + (1 — p)B(pklao, bo),

where B(¢x|ag, bo) is a Beta density function with parametets an by. Since
inference onyy, is not of interest, it can be integrated out to simplify the MC
implementation. This leads to the following marginal pffior 6

B(ag + 0k, bo + 1 — 6f)
B(ag, bo) ’

(10) p<0>=H[p'<1—ek>+<1—p>-

k

whereB(-, -) is the Beta function. PriorlQ) corresponds to a product of Bernoulli

distributions with parametep;, = %.

For the latenip-vectory we specify a prior distribution that is able to take into
account not only the pathway membership of each gene buttedoiological re-
lationships between genes within and across pathwayshvene captured by the
matrix R. Following Li & Zhang (2010 we model these relations using a Markov
random field (MRF), where genes are represented by nodeskatidns between
genes by edges. A MRF is a graphical model in which the digioh of a set of
random variables follow Markov properties that can be dbedrby an undirected
graph. In particular, two unconnected genes are considemeditionally indepen-
dent given all other gene8ésag 197} Relations on the MRF are represented by

the following probabilities
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. exp (7 £'(75))
11 i\n,7vi,i € Nj) = ———L—-2
whereF'(v;) = (1 + 12 ien, %)) and Nj is the set of direct neighbors of gene
j in the MRF using only pathways represented in the madde|,pathways with
0, = 1. The corresponding global distribution on the MRF is givgn b

(12) p(710, 11, m) o exp(plyy 4+ ny'Ry)

with 1,, the unit vector of dimensiop andR the matrix introduced in sectich 1
The parameter controls the sparsity of the model, whileregulates the smooth-
ness of the distribution of over the graph by controlling the prior probability
of selecting a gene based on how many of its neighbors aretasgldn particular,
higher values of; encourage the selection of genes with neighbors alreadgtsel
into the model. If a gene does not have any neighbor, themids gistribution re-
duces to an independent Bernoulli with paramegter exp(u)/[1+exp ()], which

is a logistic transformation qi.

Here, unlikeLi & Zhang (2010, who fix both parameters of the MRF prior,
we specify a hyperprior for. We give positive probability to values af bigger
than0, which is biologically more intuitive than negative valugfsthis parameter
(which would favor neighboring genes to have different uisagbn status). Such
restriction on the domain of also minimizes the “phase transition” problem that
typically occurs with MRF parameterizations of tydd), where the dimension of
the selected model increases massively for small incresradmt When the phase
transition occurs the number of selected genes increabstastially. Here, after
having detected the phase transition vajue, by simulating from {2) over a grid
of n values, we specify a Beta distributid®eta(cy, dy) onn/npr.

Constraints need to be imposed to ensure both interpriggedoild identifiability
of the model. We essentially want to avoid:

1. empty pathways,e., selecting a pathway but none of its member genes;

2. orphan genes.g., selecting a gene but none of the pathways that contain it;

3. selection of identical subsets of genes by differentygayts, a situation that
generates identical valug$ .,y and7}, (. to be included in the model.

These constraints imply that some combination@ ahd-y values are not allowed.
The joint prior probability for(@, ) taking into account these constraints is given

by
*Gk

0, 4ln) o T, o F (1 — )10 exp(ulyy +ny'Ry) for valid configurations
P%am 0 for invalid configurations.
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3. Model fitting. We now describe our MCMC procedure to fit the model
and discuss strategies for posterior inference with hugéepor spaces, as in this
model. In the Bayesian literature on variable selectionstandard linear regres-
sion models stochastic search algorithms have been ddsigrexplore the pos-
terior space, and have been successfully employed in genapplications with
prohibitive settings, handling models with thousands oigge A key to these appli-
cations is the assumption of sparsity of the model, i.e h#iief that the response is
associated with a small number of regressors. A stochassdicls then allows one
to explore the posterior space in an effective way, quickigifig the most prob-
able configurations, i.e., those corresponding to coeffisievith high marginal
probabilities, while spending less time in regions with lpasterior probability.

We describe below the MCMC algorithm we have designed forpsablem.
In particular, borrowing from the literature on stochastgarches for variable se-
lection, we work with a marginalized model and design a Mmtiis-Hastings al-
gorithm that updates the indicator parameters for the snotuof pathways and
genes with a set of moves that add and/or delete a single geha single path-
way. Also, we update the parameteof the MRF from its posterior distribution by
employing the general method proposedgller et al.(2006. In the Appendix
we discuss how our Bayesian stochastic search variabletisgldernel generates
an ergodic Markov chain over the restricted space. In agipics, we have found
that a good way to asses if the stochastic exploration canmsdered satisfactory
is to check the concordance of the posterior probabilitigsioed from different
chains started from different initial points.

3.1. Marginal Posterior probabilities. The model parameters consist(of, 8,
o2,7,0,n). The MCMC procedure can be made more efficient by integratirtg
some of the parameters. Here, we integrate out the regngsaiametersy, 8 and
o2. This leads to a multivariatedistribution

(13) f(YIT,0,7) ~ Top(20ln + T(9,5)50, 0% (In + holn1y, + Ty X0T (4 ),

with 1, degrees of freedom arf, ann-vector of ones, and wheB, = hlg,,
with I,, then x n identity matrix, andl’ 4 ) then x Ky matrix derived from the
first PLS latent components for the selected pathways usiagéelected genes.
In the notation 13) the two arguments of thedistribution represent the mean
and the scale parameter of the distribution, respectivédig posterior probability
distribution of the pathway and gene selection indicatetiién given by

(14) f0,7,nT,Y) o< f(Y|T,0,7) - p(0,vn) - p(n)-
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3.2. MCMC sampling. The MCMC steps consist of: (I) sampling pathway and
gene selection indicators froptf, y|rest; (1) sampling the MRF parameter from
p(n|rest; (Ill) sampling additional parameters introduced wheimfittprobit mod-
els for categorical outcomes or AFT models for survival data

(I) The parameter§d, ) are updated using a Metropolis-Hastings algorithm in
a two-stage sampling scheme. The pathway-gene relatmnsine used to
structure the moves and account for the constraints speaifi§ection2.4.
Details of the MCMC moves to updat®,~y) are given in the Appendix.
They consist of randomly choosing one of the following moypeet:

1. change the inclusion status of gene and pathway by raiyddmbsing
between adding a pathway and a gene or removing them both;

2. change the inclusion status of gene but not pathway byralydchoos-
ing between adding a gene or removing a gene;

3. change the inclusion status of pathway but not gene byralydchoos-
ing between adding a pathway or removing a pathway.

(1) Atthis step we want to draw the MRF parametgrom the posterior density
p(n)y) o p(n)p(y|n). The prior distribution ory is of the form

(15) p(v[n) = an()/Zy

with unnormalised density, () and a normalizing constari,, which is
not available analytically. When calculating the Metragpédfiastings ratio to
determine the acceptance probability of a new vafe

(16) H°) = P(P) e (V) (n°[n") / Ty

p(°)ane (V)aP|n°) | Zypo

with ° the current value for, one needs to take into account thgt /Z,. #

1. Following Mgller et al.(2006), we introduce an auxiliary variable, de-
fined on the same state space as thay,ofvhich has conditional density
f(wln,~) and consider the posterip(n, w|y) o f(w(n,¥)p(n)a,(v)/Zy,
which of course still involves the unknow#,. Obviously, marginalization
overw of p(n, w|v) gives the desired distributign(n|-y). Now, if (n°, w°) is
the current state of the algorithm, we first propg8ewith densityq(n”|n°)
thenw? with densityq(w? |w®, n?,n°). As usual, the choice of these proposal
densities is arbitrary from the point of view of the equiitbn distribution of
the chain ofy values. The choice of (w|n, «y) is also arbitrary. The key idea
of the method proposed Mgaller et al.(2006 is to take the proposal density
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12 F.C. STINGO ET AL.

for the auxiliary variablev to be of the same form a&¥%), but dependent on
nP rather tham?, that is,

(17) q(wP|w® 0", n°) = p(w”[n’) = qup (W) /Zyp.
Then the Metropolis-Hastings ratio becomes

F@P [P, v)p(nP ) ge (7) e (W) g (n°|1”)

fwe e, v)p(0°)ane () aye (wP)q (1P n°)’
and no longer depends &,» /Z,,-. The new valuev? for the auxiliary vari-
ablew is drawn from (7) by perfect simulation using the algorithm pro-
posed byPropp & Wilson(1996.

(N In the case of classification or survival outcomes, thegmented dat®
need to be updated from their full conditionals using Gibasigling, see
Sha et al(2004), Sha et al(2006 andKwaon et al.(2007) for details.

(18)  H(®",w|n° w’) =

3.3. Posterior Inference. The MCMC procedure results in a list of visited mod-
els with included pathways indexed 8ynd selected genes indexedfand their
corresponding relative posterior probabilities. Pathwealection can be based on
the marginal posterior probabilitieg0;|T",Y). A simple strategy is to compute
Monte-Carlo estimates by counting the number of appeasaateach pathway
across the visited models. Relevant pathways are identieithose with largest
marginal posterior probabilities. Then relevant genesftioese pathways are iden-
tified based on their marginal posterior probabilities dtiadal on the inclusion
of a pathway of interesty(v;|T,Y, I{6isr; = 1}). An alternative inference for
gene selection is to focus on a subset of pathw&ysand consider the marginal
posterior probability conditional on at least one pathwag gene belongs to be-
ing represented in the modelyy;|T", Y, I{>_;cp Orsk; > 0}). We note that Rao-
Blackwellized estimates have been employed in standaeddinegression mod-
els, in place of frequency estimates, by averaging the futid@ional posterior
probabilities of the inclusion indicators. These estimatee computationally quite
expensive, though they may have better precision, as notéslulan & Stephens
(2011). Because of our strategy for inference, that selects fattvays and then
genes conditional on selected pathways, Rao-Blackwdléztimates of marginal
probabilities may not be straightforward to derive. In atslations and examples
reported in this paper we have obtained satisfactory efyitsimply estimating
the marginal posterior probabilities with the correspogdielative frequencies of
inclusion in the visited models.

Inference for a new set of observatiofiX ;,Yy) can be done via least squares
prediction,f/f = 1,0 + Tf(gﬁ)B(e’,y), whereT s - is the first principal com-
ponent based on selected genes from relevant pathways s avh= Y and
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A BAYESIAN MODEL FOR PATHWAY AND GENE SELECTION 13

By = (TigyTio +h " k,) T, )Y, with Y the response variable in the
training andT'(y ) the scores obtained from the training data using selectérd pa
ways and genes included in the model. Note that for predigiiorposes, since we
do not know the futuré’;, a PLS regression cannot be fit. Therefore, we generate
T (s,~) by considering the first latent component obtained by apglACA to each
selected pathway using the included genes.

In the case of categorical or censored survival outcomessémpled latent
variablesZ would be used to estimatg; then the correspondence betwegn
and the observed outcome outlined in Sect®dcan be invoked to predict
(Sha et al. 20042006 Kwon et al. 2007.

4. Application. We assess performances on simulated data then illustrate an
application to microarrays using the KEGG pathway databasefine the MRF.

4.1. Simulation studies. We investigated the performance of our model using
simulated data based on the gene-pathway relat®yresd gene networl, of 70
pathways and 1098 genes from the KEGG database. The relgatinays were
defined by selecting 4 pathways at random. For each of theedtsdl pathways,
one gene was picked at random and its direct neighbors thaidto the selected
pathways were chosen. This resulted in the selection ofn@ats and 15 genes:
7 out of 30 from the first pathway, 3 out of 35 from the seconduBad 105 from
the third, and 2 out of 47 from the fourth pathway. Gene exgoas forn = 100
samples were simulated for these 15 genes using an apprioaitdr $o Li & Li
(2008. This was accomplished by first creating an ordering ambad.b selected
genes by changing the undirected edges in the gene netwidkdirected edges.
The first node on the ordering, which we denoteby, , was selected from each
pathway and drawn from a standard normal distribution; iioé this node has
no parents. Then all child nodes directly connected onl{§ and denoted by
Xr, were drawn fromXp, ~ N (XF, p, 1). Subsequent child nodes at generation
J» XF;, were drawn using all parents froip, ~ N(poa(Fj)l‘pa(Fj)‘, 1), where
pa(F}) indicates the set of parents of noglend Xypa(F;) Is @ matrix containing
the expressions of all thea(F})| parents for nodg. The expression levels of the
remaining 1073 genes deemed irrelevant were simulated &retandard normal
density. The response variables for the- 100 samples were generated from

15
Y=Y XijB+e, e ~N(01), i=1,...,100.
j=1
For the first dataset we s¢t = +0.5, with same sign for genes belonging to

same pathways. For second and third data sets wefisedt1 andg = +1.5,
respectively. Note how the generating process is différent model () being fit.
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FIG 2. Simulated data: Marginal posterior probabilities for fatay selectiony(0x|T",Y"), and con-
ditional posterior probabilities for gene selectiop(y; |T', Y, I{} ], _ 5 Oxsk; > 0}), for the three
simulated data sets. Open circles indicate pathways andgyesed to generate the outcome variable.

We report results obtained by choosing, when possible, rpgpameters that
lead to weakly informative prior distributions. A vaguearis assigned to the in-
tercepta by settinghg to a large value tending tso. For o2, the shape parameter
can be set to /2 = 3, the smallest integer such that the variance of the inverse-
gamma distribution exists, and the scale paramafeg /2 can be chosen to yield
a weakly informative prior. For the vector of regressionffioents, g, we set
the prior mean tg, = 0 and choose: in the range of variability of the covari-
ates, as suggested in SectidB. Specifically, we seby = 10°, ag = Sy = 0,
vyop/2 = 0.5, andh = 0.02. For the pathway selection indicator,, we set
@5, = 0.01. As for the prior at the gene level, we get= —3.5, corresponding to
setting the proportion of genes expectegriori in the model to, at least, 3% of the
total number of genes. Parameteisandy influence the sparsity of the model and
consequently the magnitude of the marginal posterior gitibas. Some sensitiv-
ity is, of course, to be expected. However, in our simulaiom have noticed that
the ordering of pathways and genes based on posterior plibbegmains roughly
the same and therefore the final selections are unchangem@s$ one adjusts
2009/ 02/ 27 file: PathAOASRevi sed2.tex date:
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A BAYESIAN MODEL FOR PATHWAY AND GENE SELECTION 15

the threshold on the posterior probabilities. Also, for biyperprior onn, we set
npr = 0.092, to avoid the phase transition problem, agd= 5 andd, = 2, to ob-
tain a prior distribution that favors bigger valuesioh the intervaldo < n < npr.
In our simulations we did not notice sensitivity to the sfieation ofcy anddp.

The MCMC sampler was run for 300,000 iterations with the B&000 used as
burn-in. We computed the marginal posterior probabilif@spathway selection,
p(6x = 1]Y,T), and the conditional posterior probabilities for gene e given
a subset of selected pathway$y;|T,Y, I{>",.cp 0rsk; > 0}). Figure2 displays
the marginal posterior probabilities of inclusion for all gathways and the condi-
tional posterior probabilities of inclusion for all 1098rgss.

Important pathways and genes can be selected as those giitbshiposterior
probabilities. For example, in all 3 scenarios all four valg pathways were se-
lected with a marginal posterior probability cut-off of OBeducing the selection
threshold to a marginal posterior probability of 0.5 puliswo false positive path-
ways, for all the three simulated scenarios considered. diige false positives
is the pathway with index 17 in Figui& which contains more than 100 genes. A
closer investigation of the MCMC output reveals that défersubsets of its mem-
ber genes are selected whenever it is included in the moeljting in a high
marginal posterior of inclusion for the pathway but low niaad posterior proba-
bilities for all its member genes. The second false pospi@thway appears to be
selected often because it contains two or three of the nelgenes that were used
to simulate the response variable and were also includeldeimiodel with high
marginal posterior probabilities; all its other member eghave very low proba-
bilities of selection. As expected, the identification of tlelevant genes is easier
when the signal-to-noise ratio is higher. Conditional ugfmmbest 4 selected path-
ways, a marginal posterior probability cut-off of 0.5 on tharginal probability of
gene inclusion leads to the selection of 7, 8 and 8 relevamgydor the three sce-
narios, respectively, and no false positives. With a maigimobability threshold
of 0.1, 14 of the relevant genes are selected with 4 falsdiyesifor the scenario
with 8 = 40.5, while 13 relevant genes are selected with only two falséiges
for the simulated data with = +1. In the simulated setting with = +1.5 all the
15 relevant genes are selected without any false positiaglratshold of 0.12.

Generally speaking, the effect of the MRF prior depends erctincordance of
the prior network with the data. For the simulated data, wmébthat the model
with the MRF prior, compared to the same model without the MiiForms better
in terms of pathway selection as it provides a clearer séiparbetween relevant
and non relevant pathways. In particular, the averagerdiffee, over the three sce-
narios, between the relevant pathway with the lowest piestprobability and the
non relevant pathway with the highest posterior probahiéit0.28, while without
the MRF prior it is only 0.18. In addition, we have observett@ased sensitivity of
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16 F.C. STINGO ET AL.

the MRF prior in selecting the true variables. For exampe tlie simulated case
with 84+ 1.5, in order to select all 15 relevant genes the marginal pritbatutoff
must be reduced to 0.088 at the expense of including 3 falsiéiyas. Other au-
thors have reported similar results & Zhang 2010. In the real data application
we describe below, employing information on gene-gene odsvaids the inter-
pretation of the results, in particular for those selectedes that are connected in
the MRF, and improves the prediction accuracy.

4.2. Application to microarray data. We consider thevan't Veer et al(2002
breast cancer microarray dat&ene expression measures were collected on each
patient using DNA microarray with 24,481 probes. Missingressions were im-
puted using &-nearest neighbor algorithm with = 10. The procedure consists
of identifying thek closest genes to the one with missing expression in afray
using the othen — 1 arrays, then imputing the missing value by the average ex-
pression of thé: neighbors Troyanskaya et al. 2001\We focus on the 76 sporadic
lymph-node-negative patients, 33 of whom developed distetastasis within 5
years; the remaining 43 are viewed as censored cases. Wamnsplit the pa-
tients into a training set of 38 samples and a test set of tne séze using a fairly
balanced split of metastatic/non-metastatic cases. Thkigto identify a subset
of pathways and genes that can predict time to distant nasiast

The gene network and pathway information were obtained filoenKEGG
database. This was accomplished by mapping probes to pathyging the links
between pathway node identifiers and LocusLink.IDsing the R packagéEGG-
graph (Zhang & Wiemann 200Bwe first downloaded the gene network for each
pathway then merged all networks into a single one with atlege A total of 196
pathways and 3,592 probes were included in the analysis,esith pathway con-
taining multiple genes and with most genes associated witbral pathways.

We ran two MCMC chains with different starting numbers ofirted variables,

50 and 80, respectively. We used 600,000 iterations withra-isuof 100,000 it-
erations. We incorporated the first latent vector of the PuSehch pathway into
the analysis as described in Sectibfiand set the number of pathways expeaed
priori in the model tol0% of the total number. For the gene selection, we set the
hyperparameter of the Markov random fieldiic= —3.5, indicating thata priori

at least 3% of genes are expected to be selected. Wg-get 0.09, to avoid the
phase transition problem, ang = 1 anddy; = 1, to obtain a non informative
prior distribution. A sensitivity analysis showed that fhesterior inference is not
affected by different values af, anddy. We setag = By = 0,hy = 10° and

Lavailable atvww.rii.com/publications/2002/vantveer.htm
2provided at ftp://ftp.genome.ad.jp/pub/kegg/pathways/hsa/hsa.gene_map.tab  and
ftp://ftp.genome.ad.jp/pub/kegg/pathways/map_title.tab

i msart-aoas ver. 2009/02/27 file: PathAOASRevi sed2.tex date: February 1, 2011



A BAYESIAN MODEL FOR PATHWAY AND GENE SELECTION 17

h = 0.1 for the prior on the regression parameters and obtained wevagor for
o? by choosingy/2 = 3 andvyoi /2 = 0.5.

The trace plots for the number of included pathways and tinetren of selected
genes showed good mixing (Figures not shown). The MCMC sarmphostly vis-
ited models with 20-45 pathways and 50-90 genes. To assesgthement of the
results between the two chains, we looked at the correl&@igween the marginal
posterior probabilities for pathway selectigrif,|T',Y), and found good concor-
dance between the two MCMC chains with a correlation coefficof 0.9933.
Concordance among the marginal posterior probabilitiesagafirmed by looking
at a scatter plot ob(0x|T",Y") across the two MCMC chains (Figure not shown).

The model also showed good predictive performaisie et al(2006 already
analyzed these data using an AFT model with 3,839 probesealictors and ob-
tained a predictive MSE of 1.9317 using the 11 probe sets fighest marginal
probabilities. Our model incorporating pathway informatiachieved a predictive
MSE of 1.4497 on the validation set, using 12 selected patbwad 41 probe sets
with highest posterior probabilities. The selected patfswaend genes are clearly
indicated in the marginal posterior probability plots désged in Figure3. If we in-
crease the marginal probability thresholds for selectimh @nsider a model with
7 selected pathways and 14 genes, to make the comparisorfairoréth the re-
sults of Sha et al(2006), we obtain a MSE of 1.7614. As a reminder, our model
selects relevant pathways and relevant genes simultagewadsle the model of
Sha et al.(2006 selects genes only. Of course, one can always select pahwa
post-hoc, as those that contain the selected genes. Hows\angle genes belong
to multiple pathways, we expect our approach to give a mageige selection.

From a practical point of view, researchers can use the posterobabilities
produced by our selection algorithm as a way to prioritize blevant pathways
and genes for further experimental work. For example, tmegeorresponding to
the best 41 selected probe sets, conditional upon the bestlé2ted pathways,
are listed in Tablel divided by islands, which correspond to sets of connected
genes in the Markov random field. The islands help with théolgioal interpreta-
tion by locating relevant branches of pathways. A subsebi@kktlected pathways
along with islands and singletons are displayed in Figur8everal of the identi-
fied pathways are involved in tumor formation and progresskor instance, the
mitogen-activated protein kinase (MAPK) signaling pathiwavolved in various
cellular functions, including cell proliferation, diffentiation and migration, has
been implicated in breast cancer metastdsi® (et al. 200Y. The KEGG pathway
in cancers was also selected with high posterior probgbilither interesting path-
ways are the insulin signaling pathway, which has been dirikehe development,
progression and outcome of breast cancer, and purine nlistabovolved in nu-
cleotide biosynthesis and affects cell cycle activity ahar cells.
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Fic 3. Microarray data: Plot (a): Marginal posterior probabilities for pathway selection,
p(0x|T,Y). The 12 pathways with largest probabilities are marked vsigmbols. Plot(b): Con-
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Singleton genes (no direct neighbor selected)

ACACB (10), C4A (8,12), CALM1 (10), CCNB2 (5), CD4 (7), CDCB){ CLDN11 (7), FZD9
(11), GYS2 (10), HIST1H2BN (12), IFNA7 (3), NFASC (7), NRCAKT), PCK1 (10), PFKP
(10), PPARGC1A (10), PXN (9)

Island 1

ACTB (9), ACTG1 (9), ITGAL (9), ITGA7 (9), ITGB3 (9), ITGB4 (91TGB6 (9), ITGB8 (7,10),
MYLS5 (9), MYL9 (9), PDPK1 (10), PIK3CD (9,10,11), PLA2G4A Y2PLCG1 (11), PRKCA
(2,11), PRKY (2,10), PRKY (2,10), PTGS2 (11), SOCS3 (10)

Island 2

ACVR1B (2,3,11), ACVR1B (2,3,11), TGFB3 (2,3,5,11)

Island 3

ENTPD3 (1), GMPS (1)

TABLE 1
The 41 selected genes divided by islands and with assogatéday indices (in parenthesis). The
pathway indices correspond to: 1-Purine metabolism, 2-MARynaling pathway,
3-Cytokine-cytokine receptor interaction, 4-Neuroaetiigand-receptor interaction, 5-Cell cycle,
6-Axon guidance, 7-Cell adhesion molecules (CAMs), 8-Cammgnt and coagulation cascades,
9-Regulation of actin cytoskeleton, 10-Insulin signalgaghway, 11-Pathways in cancer,
12-Systemic lupus erythematosus.

Pathways in cancer L
Insulin signaling pathway

Island2

MAPK signaling pathway

FiG 4. Microarray data: Graphical representation of a subset efexted pathways with islands and
singletons. The genes in the islands are listed in Table
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In addition, several genes with known association to bre@ster were also se-
lected. Protein kinase C alpha (PKCA), which belongs to tPM pathway and
the KEGG pathways in cancer, has been reported to play nolesany different
cellular processes, including cell functions associatét fareast cancer progres-
sion. It has been shown to be overexpressed in some angestresistant breast
cancer cell lines and to be involved in the growth of tamaxifesistant human
breast cancer cell&-(ankel et al. 200)/ Patients with PKCA-positive tumors have
been shown to have worst survival than patients with PKCgatiee tumors, inde-
pendently of other factord.pnne et al. 201 Prostaglandin-endoperoxide synthase-
2 (PTGS2, also known as cyclooxygenase-2 or COX2) has also f&ated to
breast canceDenkert et al(2004) observed COX2 overexpression in breast can-
cer and strong association with indicators of poor progiagich as lymph node
metastasis, poor differentiation and large tumor sizes Wais further confirmed by
Gupta et al(2007), who showed that the expression of COX2 in human breast can-
cer cells facilitates the assembly of new tumor blood vesskeé release of tumor
cells into the circulation, and the breaching of lung capiés by circulating tumor
cells to seed pulmonary metastasis. This is an importaninfinés the majority
of breast cancer deaths result from metastases rather itteah effects of the pri-
mary tumor. Another gene previously shown to be predictiMereast cancer lung
metastasis is integrin, beta-8 (ITGB&pghdemaine et al. 2008We also identified
integrin, beta-4 (ITGB4) which regulates key signalinghpatys related to carci-
noma progression, and is linked to aggressive tumor behawid poor prognosis
in certain breast cancer subtypési et al. 2008.

5. Discussion. We have proposed a model that incorporates biological knowl
edge from pathway databases into the analysis of DNA micagarto identify
pathways and genes related to a phenotype. Information thavag membership
and gene networks are used to define pathway summariesfyspdor distri-
butions that account for the dependence structure betweeesgand define the
MCMC moves to fit the model. The gene network prior and thelssgis of the
pathway information through PLS bring in additional inf@tion that is especially
useful in microarray data, due to the low sample size an@ largasurement error.
Performances of the method were evaluated on simulatedaddta breast cancer
gene expression study with survival outcomes was usedistriflte its application.

Our simulation studies show the effect of the MRF prior on plsterior in-
ference. In general, as expected, the effect of the prioemidp on the data and,
in particular, on the concordance of the prior network with tlata. In our simu-
lations, employing the MRF prior allows us to achieve a eteparation of the
relevant pathways from those not relevant (in particulag, have found a larger
average difference, over three scenarios, between theantlpathway with the
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lowest posterior probability and the non relevant pathwéti whe highest poste-
rior probability). In addition, in the simulated settingttvifairly small regression
coefficients the model with the MRF prior was able to selelcthal correct genes
without any false positive while the model without MRF indés 3 false positives.
Other authors have reported improvements on selectionpameesensitivity with
respect to commonly used procedures that do not use the gattwicture, with
similar, and in some cases, lower false discovery ratedditian, in our formula-
tion of the model we have used biological information notydok prior specifica-
tion but also to structure the MCMC moves. This is helpfulrirnvéng at promising
models avoiding visiting invalid configurations. Finally, real data applications,
we have found that employing information on gene-gene nédsvoan lead to the
selection of significant genes that would have been misdeehwise, aiding the
interpretation of the results, and achieving better ptemis compared to models
that do not treat genes as connected elements that workupgar pathways.

Several MRF priors for gene selection indicators have beepgsed in the lit-
erature. It is interesting to compare the parametrizatiothe MRF used in this
paper and irLi & Zhang (2010 to the parametrization used iWei & Li (2007,
2008, where the prior ony is defined as

(29) P(q|-) < exp(d n1 — g ng1),

wheren; is the number of selected genes ang is the number of edges linking
genes with different values of;, i.e., edges linking included and non-included
genes among all pathways,

While d plays the same role asin (12), the parametrization using has a dif-
ferent effect fromy on the probability of selection of a gene. This is evidenirfro

the conditional probabilityP(v;|-,~i,i € N;) = % where F(y;) =
d+ gZZ—eNJ_(%@ — 1). Higher values ofy encourage neighboring genes to take
on the samey; value, and consequently genes with non selected neighlaoes h
lower prior probability of being selected than genes withreighbors. We felt
that parametrization1l@) was a better choice for our purposes. First, in a con-
text of sparsity, where only few nodes are supposed to take\lg a prior that
assigns larger probability of inclusion to genes with selémeighbors than to
isolated genes seems more appropriate. Second, the axatatdn algorithm of

Propp & Wilson (1996 cannot be used to simulate frorh9j. While any other

p

p 1 p
711:2% 7101:52 Tij —
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method to draw from19) would be acceptable, as said Mgller et al. (2006),
Markov chain methods, to sample from a MRF, require to cheédaeh step that
the chain has converged to the equilibrium distributioravtoid introducing addi-
tional undesirable stochasticity. On the other hand, onargdge of parametriza-
tion (19) is that no phase transition problem is associated to thghdison.
Pathway databases are incomplete and the gene networknatfon is often
unavailable for many genes. Thus, there may be situatiorsaenhe dependence
structure and the MRF prior specification on the gene seledtidicator,y, can-
not be used for all genes. When the only information avaslablthe pathway
membership of genes, the prior gncould be elicited to capture other interest-
ing characteristics. For example, a gene can hayeiori higher probability of
being selected when several pathways that contain it ateded in the model.
We may also want to avoid favoring the selection of a largdwpay just be-
cause of its size. In such cases, conditionalforindependent Bernoulli priors
can be specified foy; relating the probability of selection to the proportion f i
cluded pathways that contain gepeadjusting for the pathway sizes;, that is,
) Zle OrSkj/Pr

Zle Skj/Ph
In our approach we have made use of PLS components as summasuras

of the expression of genes belonging to known pathways asmddbplied a fully
Bayesian approach for the selection of the pathways to beded in the model,
and the genes to be included within those pathways. Pedalehniques, in-
cluding lasso Tisbhirani 199, elastic net Zou & Hastie 200% and group lasso
(Yuan & Lin 2006 have been studied extensively in the literature and haea be
successfully applied to gene expression data. The groap,lasparticular, defines
sets of variables then selects either all the variablesargtbup or none of them.
Recently, a modification of the method was proposed-hgdman et al(2010
using a more general penalty that yields sparsity at botlgtbep and individual
feature levels to select groups and predictors within eaghy Our understanding
of group lasso is that the method works best in situationgevixgriables belong-
ing to the same group are highly correlated while covarimtekfferent groups do
not exhibit high correlation. However, genes belonginghesame pathway often
do not exhibit high correlation in their expression levélso, in our case there are
genes belonging to different pathways that have high ciogl, as well as genes
that belong to more than one pathway. Initial investigatisnggest that, in terms of
prediction MSE, Bayesian formulations of lasso method#oper similarly to and,
in some cases, better than the frequentist lasso (see fopéxEyung et al. 201).
Particularly relevant to our approach is the workGafan & Stepheng011), who
apply Bayesian variable selection (BVS) and stochasticchemethods in a re-
gression model for genome-wide data. In simulations they fivat, in spite of

;16 ~ Bernoulli <c ) with ¢ an hyperparameter to be elicited.
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the apparent computational challenges, BVS producesr Ipetteer and predictive
performance compared with standard lasso techniques.
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