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The vast amount of biological knowledge accumulated over the years has
allowed researchers to identify various biochemical interactions and define
different families of pathways. There is an increased interest in identifying
pathways and pathway elements involved in particular biological processes.
Drug discovery efforts, for example, are focused on identifying biomarkers
as well as pathways related to a disease. We propose a Bayesian model that
addresses this question by incorporating information on pathways and gene
networks in the analysis of DNA microarray data. Such information is used
to define pathway summaries, specify prior distributions, and structure the
MCMC moves to fit the model. We illustrate the method with an applica-
tion to gene expression data with censored survival outcomes. In addition to
identifying markers that would have been missed otherwise and improving
prediction accuracy, the integration of existing biological knowledge into the
analysis provides a better understanding of underlying molecular processes.

1. Introduction. DNA microarrays have been used successfully to identify
gene expression signatures characteristic of disease subtypes (Golub et al. 1999)
or distinct outcomes to therapy (Shipp et al. 2002). Many statistical methods have
been developed to select genes for disease diagnosis, prognosis, and therapeutic
targets. However, gene selection alone may not be sufficient. In cancer pharma-
cogenomics, for instance, cancer drugs are increasingly designed to target specific
pathways to account for the complexity of the oncogenic process and the complex
relationships between genes (Downward 2006). Metabolic pathways, for example,
are defined as a series of chemical reactions in a living cell that can be activated or
inhibited at multiple points. If a gene at the top of a signaling cascade is selected
as a target, it is not guaranteed that the reaction will be successfully inactivated,
because multiple genes downstream can still be activated orinhibited. Signals are
generally relayed via multiple signaling routes or networks. Even if a branch of
the pathway is completely blocked by inhibition or activation of multiple genes,
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2 F.C. STINGO ET AL.

the signal may still be relayed through an alternative branch or even through a
different pathway (Bild et al. 2006). Downward(2006) pointed out that targeting a
single pathway or a few signaling pathways might not be sufficient. Thus, the focus
is increasingly on identifying both relevant genes and pathways. Genes and/or gene
products generally interact with one another and they oftenfunction together con-
certedly. Here we propose a Bayesian model that addresses this question by incor-
porating information of pathway memberships and gene networks in the analysis
of DNA microarray data. Such information is used to define pathway summaries,
specify prior distributions, and structure the MCMC moves.

Several public and commercial databases have been developed to structure and
store the vast amount of biological knowledge accumulated over the years into
functionally or biochemically related groups. These databases focus on describing
signaling, metabolic or regulatory pathways. Some examples include Gene Ontol-
ogy (GO) (The Gene Ontology Consortium 2000), Kyoto Encyclopedia of Genes
and Genomes (KEGG) (Kanehisa & Goto 2000), MetaCyc (Krieger et al. 2004),
PathDB (www.ncgr.org/pathdb), Reactome KnowledgeBase (Joshi-Tope et al. 2005),
Invitrogen iPath (www.invitrogen.com) and Cell SignalingTechnology (CST) Path-
way (www.cellsignal.com). The need to integrate gene expression data with the
biological knowledge accumulated in these databases is well recognized. Several
software packages that query pathway information and overlay DNA microarray
data on pathways have been developed.Nakao et al.(1999) implemented a visual-
ization tool that color-codes KEGG pathway diagrams to reflect changes in their
gene expression levels. GenMAPP (Dahlquist et al. 2002) is another graphical tool
that allows visualization of microarray data in the contextof biological pathways
or any other functional grouping of genes.Doniger et al.(2003) use GenMAPP to
view genes involved in specific GO terms. Another widely usedmethod that re-
lates pathways to a set of differentially expressed genes isthe gene set enrichment
analysis (GSEA) (Subramanian et al. 2005). Given a list of genes GSEA computes
an enrichment score to reflect the degree to which a pre-defined pathway is over-
represented at the top or bottom of the ranked list. These procedures are useful
starting points to observe gene expression changes for known biological processes.

Recent studies have gone a step further and focused on incorporating pathway
information or gene-gene network information into the analysis of gene expression
data. For example,Park et al.(2007) have attempted to incorporate GO annota-
tion to predict survival time, first grouping genes based on their GO membership,
calculating the first principal component to form a super-gene within each clus-
ter and then applying a Cox model withL1 penalty to identify super-genes, i.e.,
GO terms related to the outcome.Wei & Li (2007) have considered a small set
of 33 pre-selected signaling pathways and used the implied relationships among
genes to infer differentially expressed genes, andWei & Li (2008) have extended
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this work by including a temporal dimension.Li & Li (2008) andPan et al.(2009)
have proposed different procedures that use the gene-gene network to build penal-
ties in a regression model for gene selection. Bayesian approaches have also been
developed.Li & Zhang (2010) have incorporated the dependence structure of tran-
scription factors in a regression model with gene expression outcomes. There,
a network is defined based on the Hamming distance between candidate motifs
and used to specify a Markov random field prior for the motif selection indica-
tor. Telesca et al.(2008) have proposed a model for the identification of differ-
entially expressed genes that takes into account the dependence structure among
genes from available pathways while allowing for correction in the gene network
topology.Stingo & Vannucci(2011) use a Markov random field prior that captures
the gene-gene interaction network in a discriminant analysis setting.

These methods use the gene-pathway relationships or gene network information
to identify either the important pathways or the genes. Our goal is to develop a
more comprehensive method that selects both pathways and genes using a model
that incorporates pathway-gene relationships and gene dependence structures. In
order to identify relevant genes and pathways, latent binary vectors are introduced
and updated using a two-stage Metropolis-Hastings sampling scheme. The gene
networks are used to define a Markov random field prior on the gene selection in-
dicators and to structure the Markov chain Monte Carlo (MCMC) moves. In addi-
tion, the pathway information is used to derive pathway expression measures that
summarize the group behavior of genes within pathways. In this paper we make
use of the first latent components obtained by applying partial least squares (PLS)
regressions on the selected genes from each pathway. PLS is an efficient statisti-
cal regression technique that was initially proposed in thechemometrics literature
(Wold 1966) and more recently used for the analysis of genomic and proteomic
data, seeBoulesteix & Strimmer(2007). We apply the model to simulated and real
data using the pathway structure from the KEGG database.

Our simulation studies show that the MRF prior leads to a better separation
between and non-relevant pathways, and to less false positives in a model with
fairly small regression coefficients. Other authors have reported similar results.
Li & Zhang (2010), in particular, comment on the effect of the MRF prior on the
selection power in their linear regression setting. They also notice that adding the
MRF prior implies a relatively small increase in computational cost.Wei & Li
(2007, 2008) report that their method is quite effective in identifyinggenes and
modified subnetworks and that it has higher sensitivity thancommonly used proce-
dures that do not use the pathway structure, with similar and, in some cases, lower
false discovery rates. Furthermore, in our model formulation we use the network
information not only for prior specification but also to structure the MCMC moves.
This is helpful for arriving at promising models faster by proposing relevant config-
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FIG 1. Schematic representation of our proposed approach. Information on known pathways and
gene-gene networks is obtained from available databases. PLS components restricted to known path-
ways serve as possible regressors to predict a disease outcome, according to model (1). The goal of
the inference is to identify the pathways to be included in the model and the genes to be included
within those pathways.

urations. In real data applications the integration of pathway information may allow
the identification of relevant predictors that could be missed otherwise, aiding the
interpretation of the results, in particular for the selected genes that are connected
in the MRF, and also improving the prediction accuracy of selected models.

The paper is organized as follows. Section 2 contains the model formulation
and prior specification. Section 3 describes the MCMC procedure and strategies
for posterior inference. In Section 4 performances are evaluated on simulated data
and an application of the method to gene expression data withsurvival outcomes
is presented. Section 5 concludes the paper with a brief discussion.

2. Model specification. We describe how we incorporate pathway and gene
network information into a Bayesian modeling framework forgene and pathway
selection. Figure1 represents a schematic representation of our approach and model.

2.1. Regression on latent measures of pathway activity.Our goal is to build a
model for identifying pathways related to a particular phenotype while simultane-
ously locating genes from these selected pathways that are involved in the biologi-
cal process of interest. The data we have available for analysis consist of:

1. Y , ann× 1 vector of outcomes.
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2. X, ann × p matrix of gene expression levels. Without loss of generality, X
is centered so that its columns sum to 0.

3. S, aK × p matrix indicating membership of genes in pathways, with ele-
mentsskj = 1 if genej belongs to pathwayk, andskj = 0 otherwise.

4. R, a p × p matrix describing relationships between genes, withrij = 1 if
genesi andj have a direct link in the gene network, andrij = 0 otherwise.

The matricesS andR are constructed using information retrieved from pathway
databases, see the application in Section4.2 for details.

Since the goal of the analysis is to study the association between the response
variable and the pathways, we need to derive a score as a measure of “pathway
expression” that summarizes the group behavior of includedgenes within path-
ways. We do this by using the latent components from a PLS regression ofY on
selected subsets of genes from each pathway. A number of recent studies have,
in fact, applied dimension reduction techniques to capturethe group behavior of
multiple genes.Pittman et al.(2004), for instance, first applyk-means clustering
to identify subsets of potentially related genes, then use as regressors the first prin-
cipal components obtained from applying principal component analysis (PCA) to
each cluster.Bair et al. (2006) start by removing genes that have low univariate
correlation with the outcome variable then apply PCA on the remaining genes to
form clusters or conceptual pathways, which are used as regressors. In our method,
instead of attempting to infer conceptual pathways, we use the existing pathway
information. We compute a pathway activity measure by applying PLS regression
of Y on a subset of selected genes from the pathway. PLS has the advantage of tak-
ing into account the covariance between regressors and the response variableY ,
whereas PCA focuses solely on the variability in the covariate data. The selection
of a subset of gene expressions to form the PLS components is similar in spirit to
the sparse PCA method proposed byZou et al.(2006), which selects variables to
form the principal components.

To identify both relevant groups and important genes we introduce two binary
vector indicators, aK × 1 vectorθθθ for the inclusion of the groups and ap × 1
vectorγγγ for the inclusion of genes, i.e.γj = 1 if genej is selected for at least one
pathway score, andγj = 0 otherwise. Assuming that the responseY is continuous,
the linear regression model that relatesY to the selected pathways and genes is

(1) Y = 1α+
Kθ∑

k=1

Tk(γ)βk(γ) + εεε, εεε ∼ N (0, σ2
I),

whereKθ =
∑K

k=1 θk is the number of selected pathways and whereTk(γ) corre-
sponds to the first latent PLS component generated based on the expression levels
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of selected genes belonging to pathwayk, that is using theXj ’s corresponding to
skj = 1 andγj = 1. To be more precise, let pathwayk containpk =

∑p
j=1 skj

genes and letpkγ =
∑p

j=1 skjγj denote the number of selected genes (i.e., genes
included in the model) that belong to pathwayk. ThenTk(γ) corresponds to the
first latent PLS component generated by applying PLS to the expression data of
thepkγ genes, denoted asXk(γ),

Tk(γ) = Xk(γ)U1,

whereU1 is thepkγ × 1 eigenvector corresponding to the largest eigenvalue of
CxyC

T
xy, with Cxy = cov(Xk(γ), Y ) (see for exampleLindgren et al. 1993). Thus,

Tk(γ) is ann× 1 vector andβk(γ) is a scalar. Model (1) can therefore be seen as a
PLS regression model with PLS components restricted to available pathways, and
where the goal of the inference is to identify the pathways tobe included in the
model, and the genes to be included within those pathways.

2.2. Models for categorical or censored outcomes.In the construction above,
we have assumed a continuous response. However, our model formulation can eas-
ily be extended to handle categorical or censored outcome variables.

WhenY is a categorical variable taking one ofG possible values,0, . . . , G− 1,
a probit model can be used, as done byAlbert & Chib (1993), Sha et al.(2004) and
Kwon et al.(2007). Briefly, each outcomeYi is associated with a vector(pi,0, . . . , pi,G−1),
wherepig = P (Yi = g) is the probability that subjecti falls in theg-th category.
The probabilitiespig can be related to the linear predictors using a data augmenta-
tion approach. LetZi be latent data corresponding to the unobserved propensities
of subjecti to belong to one of the classes. When the observed outcomesYi corre-
spond to nominal values, the relationship betweenYi andZi = (zi,1, . . . , zi,G−1)
can be defined as

(2) Yi =

{
0 if max1≤l≤G−1{zi,l} ≤ 0
g if max1≤l≤G−1{zi,l} > 0 andzi,g = max1≤l≤G−1{zi,l}

.

A multivariate normal model can then be used to associateZi to the predictors

(3) Zi = 1α+
Kθ∑

k=1

Ti,k(γ)βββk(γ) + εεεi, εεεi ∼ N (0,ΣΣΣ), i = 1, . . . , n.

If the observed outcomesYi correspond, instead, to ordinal categories, the latent
variableZi is defined such thatYi = g if δg < Zi ≤ δg+1, g = 0, . . . , G − 1,
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where the boundariesδg are unknown and−∞ = δ0 < δ1 < . . . < δG−1 < δG =
∞. The latent variableZi is associated with the predictors through the linear model

(4) Zi = α+
Kθ∑

k=1

Ti,k(γ)βk(γ) + εi, εi ∼ N (0, σ2), i = 1, . . . , n.

For censored survival outcomes, an accelerated failure time (AFT) model can
be used (Wei 1992, Sha et al. 2006). In this case, the observed data areYi =
min(Ti, Ci) and δi = I{Yi ≤ Ci}, whereTi is the survival time for subjecti,
Ci is the censoring time, andδi is a censoring indicator. A data augmentation ap-
proach can be used and latent variablesZi can be introduced such that

(5)

{
Zi = log(Yi) if δi = 1
Zi > log(Yi) if δi = 0

.

The AFT model can then be written in terms of the latentZi similarly to (4) where
theεi’s are independent and identically distributed random variables that may take
one of several parametric forms.Sha et al.(2006) consider cases whereεi follows
a normal or at-distribution.

2.3. Prior for regression parameters.The regression coefficientβk in (1) mea-
sures the effect of the PLS latent component summarizing theeffect of pathwayk
on the response variable. However, not all pathways are related to the phenotype
and the goal is to identify the predictive ones. Bayesian methods that use mixture
priors for variable selection have been thoroughly investigated in the literature, in
particular for linear models, seeGeorge & McCulloch(1997) for multiple regres-
sion, Brown et al.(1998) for extensions to multivariate responses andSha et al.
(2004) for probit models. A comprehensive review on features of the selection pri-
ors and on computational aspects of the method can be found inChipman et al.
(2001). Similarly, we use the latent vectorθθθ to specify a scale mixture of a normal
density and a point mass at zero for the prior on eachβk in (1):

(6) βk|θk, σ
2 ∼ θk · N (β0, hσ

2) + (1 − θk) · δ0(βk), k = 1, . . . ,K.

whereδ0(βk) is a Dirac delta function. The hyperparameterh in (6) regulates,
together with the hyperparameters ofp(θθθ, γγγ|η) defined in Section 2.4 below, the
amount of shrinkage in the model. We follow the guidelines provided bySha et al.
(2004) and specifyh in the range of variability of the data so as to control the ratio
of prior to posterior precision. For the intercept term,α, and the variance,σ2, we
take conjugate priorsα|σ2 ∼ N (α0, h0σ

2) andσ2 ∼ Inv-Gamma(ν0/2, ν0σ2
0/2),

whereα0, β0, h0, h, ν0 andσ2
0 are to be elicited.
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2.4. Priors for pathway and gene selection indicators.In this section we de-
fine the prior distributions for the pathway selection indicator,θθθ, and gene selection
indicator,γγγ. These priors are first defined marginally then jointly, taking into ac-
count some necessary constraints.

Each element of the latentK-vectorθθθ is defined as

(7) θk =

{
1 if pathwayk is represented in the model
0 otherwise

for k = 1, . . . ,K. We assume independent Bernoulli priors for theθk’s,

(8) p(θθθ|ϕk) =
K∏

k=1

ϕθk
k (1− ϕk)

1−θk ,

whereϕk determines the proportion of pathways expecteda priori in the model. A
mixture prior can be further specified forϕk to achieve a better discrimination in
terms of posterior probabilities between significant and non-significant pathways
by inflatingp(θk = 0) toward 1 for the non-relevant pathways, as first suggested
by Lucas et al.(2006),

(9) p(ϕk) = ρδ0(ϕk) + (1− ρ)B(ϕk|a0, b0),

whereB(ϕk|a0, b0) is a Beta density function with parametersa0 an b0. Since
inference onϕk is not of interest, it can be integrated out to simplify the MCMC
implementation. This leads to the following marginal priorfor θθθ

(10) p(θθθ) =
∏

k

[
ρ · (1− θk) + (1− ρ) ·

B(a0 + θk, b0 + 1− θk)

B(a0, b0)

]
,

whereB(·, ·) is the Beta function. Prior (10) corresponds to a product of Bernoulli
distributions with parameterϕ∗

k = a0(1−ρ)
a0+b0

.
For the latentp-vectorγγγ we specify a prior distribution that is able to take into

account not only the pathway membership of each gene but alsothe biological re-
lationships between genes within and across pathways, which are captured by the
matrixR. FollowingLi & Zhang (2010) we model these relations using a Markov
random field (MRF), where genes are represented by nodes and relations between
genes by edges. A MRF is a graphical model in which the distribution of a set of
random variables follow Markov properties that can be described by an undirected
graph. In particular, two unconnected genes are consideredconditionally indepen-
dent given all other genes (Besag 1974). Relations on the MRF are represented by
the following probabilities
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(11) p(γj |η, γi, i ∈ Nj) =
exp(γjF (γj))

1 + exp(F (γj))
,

whereF (γj) = (µ + η
∑

i∈Nj
γi)) andNj is the set of direct neighbors of gene

j in the MRF using only pathways represented in the model,i.e., pathways with
θk = 1. The corresponding global distribution on the MRF is given by

(12) p(γγγ|θθθ, µ, η) ∝ exp(µ111′pγγγ + ηγγγ′Rγγγ)

with 111p the unit vector of dimensionp andR the matrix introduced in section2.1.
The parameterµ controls the sparsity of the model, whileη regulates the smooth-
ness of the distribution ofγγγ over the graph by controlling the prior probability
of selecting a gene based on how many of its neighbors are selected. In particular,
higher values ofη encourage the selection of genes with neighbors already selected
into the model. If a gene does not have any neighbor, then its prior distribution re-
duces to an independent Bernoulli with parameterp = exp(µ)/[1+exp(µ)], which
is a logistic transformation ofµ.

Here, unlikeLi & Zhang (2010), who fix both parameters of the MRF prior,
we specify a hyperprior forη. We give positive probability to values ofη bigger
than0, which is biologically more intuitive than negative valuesof this parameter
(which would favor neighboring genes to have different inclusion status). Such
restriction on the domain ofη also minimizes the “phase transition” problem that
typically occurs with MRF parameterizations of type (11), where the dimension of
the selected model increases massively for small increments of η. When the phase
transition occurs the number of selected genes increases substantially. Here, after
having detected the phase transition valueηPT , by simulating from (12) over a grid
of η values, we specify a Beta distributionBeta(c0, d0) onη/ηPT .

Constraints need to be imposed to ensure both interpretability and identifiability
of the model. We essentially want to avoid:

1. empty pathways,i.e., selecting a pathway but none of its member genes;
2. orphan genes,i.e., selecting a gene but none of the pathways that contain it;
3. selection of identical subsets of genes by different pathways, a situation that

generates identical valuesTk(γ) andTk′(γ) to be included in the model.

These constraints imply that some combinations ofθθθ andγγγ values are not allowed.
The joint prior probability for(θθθ, γγγ) taking into account these constraints is given
by

p(θθθ, γγγ|η) ∝

{ ∏K
k=1 ϕ

∗θk
k (1− ϕ∗

k)
1−θk exp(µ111′pγγγ + ηγγγ ′

Rγγγ) for valid configurations,
0 for invalid configurations.
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3. Model fitting. We now describe our MCMC procedure to fit the model
and discuss strategies for posterior inference with huge posterior spaces, as in this
model. In the Bayesian literature on variable selection forstandard linear regres-
sion models stochastic search algorithms have been designed to explore the pos-
terior space, and have been successfully employed in genomic applications with
prohibitive settings, handling models with thousands of genes. A key to these appli-
cations is the assumption of sparsity of the model, i.e., thebelief that the response is
associated with a small number of regressors. A stochastic search then allows one
to explore the posterior space in an effective way, quickly finding the most prob-
able configurations, i.e., those corresponding to coefficients with high marginal
probabilities, while spending less time in regions with lowposterior probability.

We describe below the MCMC algorithm we have designed for ourproblem.
In particular, borrowing from the literature on stochasticsearches for variable se-
lection, we work with a marginalized model and design a Metropolis-Hastings al-
gorithm that updates the indicator parameters for the inclusion of pathways and
genes with a set of moves that add and/or delete a single gene and a single path-
way. Also, we update the parameterη of the MRF from its posterior distribution by
employing the general method proposed byMøller et al.(2006). In the Appendix
we discuss how our Bayesian stochastic search variable selection kernel generates
an ergodic Markov chain over the restricted space. In applications, we have found
that a good way to asses if the stochastic exploration can be considered satisfactory
is to check the concordance of the posterior probabilities obtained from different
chains started from different initial points.

3.1. Marginal Posterior probabilities. The model parameters consist of(α, βββ,
σ2, γγγ, θθθ, η). The MCMC procedure can be made more efficient by integratingout
some of the parameters. Here, we integrate out the regression parameters,α, βββ and
σ2. This leads to a multivariatet-distribution

(13) f(Y |TTT , θθθ, γγγ) ∼ Tν0(α01n+TTT (θ,γ)β0, σ
2
0(In+h01n1′n+TTT (θ,γ)ΣΣΣ0TTT

′
(θ,γ))),

with ν0 degrees of freedom and1n ann-vector of ones, and whereΣΣΣ0 = hIKθ
,

with In then × n identity matrix, andTTT (θ,γ) then ×Kθ matrix derived from the
first PLS latent components for the selected pathways using the selected genes.
In the notation (13) the two arguments of thet-distribution represent the mean
and the scale parameter of the distribution, respectively.The posterior probability
distribution of the pathway and gene selection indicators is then given by

(14) f(θθθ, γγγ, η|TTT , Y ) ∝ f(Y |TTT , θθθ, γγγ) · p(θθθ, γγγ|η) · p(η).
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3.2. MCMC sampling. The MCMC steps consist of: (I) sampling pathway and
gene selection indicators fromp(θθθ, γγγ|rest); (II) sampling the MRF parameter from
p(η|rest); (III) sampling additional parameters introduced when fitting probit mod-
els for categorical outcomes or AFT models for survival data.

(I) The parameters(θθθ, γγγ) are updated using a Metropolis-Hastings algorithm in
a two-stage sampling scheme. The pathway-gene relationships are used to
structure the moves and account for the constraints specified in Section2.4.
Details of the MCMC moves to update(θθθ, γγγ) are given in the Appendix.
They consist of randomly choosing one of the following move types:

1. change the inclusion status of gene and pathway by randomly choosing
between adding a pathway and a gene or removing them both;

2. change the inclusion status of gene but not pathway by randomly choos-
ing between adding a gene or removing a gene;

3. change the inclusion status of pathway but not gene by randomly choos-
ing between adding a pathway or removing a pathway.

(II) At this step we want to draw the MRF parameterη from the posterior density
p(η|γγγ) ∝ p(η)p(γγγ|η). The prior distribution onγγγ is of the form

(15) p(γγγ|η) = qη(γγγ)/Zη

with unnormalised densityqη(γγγ) and a normalizing constantZη which is
not available analytically. When calculating the Metropolis-Hastings ratio to
determine the acceptance probability of a new valueηp,

(16) H(ηp|ηo) =
p(ηp)qηp(γγγ)q(η

o|ηp)

p(ηo)qηo(γγγ)q(ηp|ηo)

/
Zηp

Zηo
,

with ηo the current value forη, one needs to take into account thatZηp/Zηo 6=
1. Following Møller et al.(2006), we introduce an auxiliary variablew, de-
fined on the same state space as that ofγγγ, which has conditional density
f(w|η, γγγ) and consider the posteriorp(η,w|γγγ) ∝ f(w|η, γγγ)p(η)qη(γγγ)/Zη,
which of course still involves the unknownZη. Obviously, marginalization
overw of p(η,w|γγγ) gives the desired distributionp(η|γγγ). Now, if (ηo, wo) is
the current state of the algorithm, we first proposeηp with densityq(ηp|ηo)
thenwp with densityq(wp|wo, ηp, ηo). As usual, the choice of these proposal
densities is arbitrary from the point of view of the equilibrium distribution of
the chain ofη values. The choice off(w|η, γγγ) is also arbitrary. The key idea
of the method proposed byMøller et al.(2006) is to take the proposal density
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12 F.C. STINGO ET AL.

for the auxiliary variablew to be of the same form as (15), but dependent on
ηp rather thanηo, that is,

(17) q(wp|wo, ηp, ηo) = p(wp|ηp) = qηp(w
p)/Zηp .

Then the Metropolis-Hastings ratio becomes

(18) H(ηp, wp|ηo, wo) =
f(wp|ηp, γγγ)p(ηp)qηp(γγγ)qηo(w

o)q(ηo|ηp)

f(wo|ηo, γγγ)p(ηo)qηo(γγγ)qηp(wp)q(ηp|ηo)
,

and no longer depends onZηp/Zηo . The new valuewp for the auxiliary vari-
ablew is drawn from (17) by perfect simulation using the algorithm pro-
posed byPropp & Wilson(1996).

(III) In the case of classification or survival outcomes, theaugmented dataZ
need to be updated from their full conditionals using Gibbs sampling, see
Sha et al.(2004), Sha et al.(2006) andKwon et al.(2007) for details.

3.3. Posterior Inference. The MCMC procedure results in a list of visited mod-
els with included pathways indexed byθθθ and selected genes indexed byγγγ, and their
corresponding relative posterior probabilities. Pathwayselection can be based on
the marginal posterior probabilitiesp(θk|TTT , Y ). A simple strategy is to compute
Monte-Carlo estimates by counting the number of appearances of each pathway
across the visited models. Relevant pathways are identifiedas those with largest
marginal posterior probabilities. Then relevant genes from these pathways are iden-
tified based on their marginal posterior probabilities conditional on the inclusion
of a pathway of interest,p(γj |TTT , Y, I{θkskj = 1}). An alternative inference for
gene selection is to focus on a subset of pathways,P, and consider the marginal
posterior probability conditional on at least one pathway the gene belongs to be-
ing represented in the model,p(γj |TTT , Y, I{

∑
k∈P θkskj > 0}). We note that Rao-

Blackwellized estimates have been employed in standard linear regression mod-
els, in place of frequency estimates, by averaging the full conditional posterior
probabilities of the inclusion indicators. These estimates are computationally quite
expensive, though they may have better precision, as noted by Guan & Stephens
(2011). Because of our strategy for inference, that selects first pathways and then
genes conditional on selected pathways, Rao-Blackwellized estimates of marginal
probabilities may not be straightforward to derive. In all simulations and examples
reported in this paper we have obtained satisfactory results by simply estimating
the marginal posterior probabilities with the corresponding relative frequencies of
inclusion in the visited models.

Inference for a new set of observations,(XXXf , Yf ) can be done via least squares
prediction,Ŷf = 111nα̃ + TTT f(θ,γ)β̃ββ(θ,γ), whereTTT f(θ,γ) is the first principal com-
ponent based on selected genes from relevant pathways and where α̃ = Ȳ and
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β̃ββ(θ,γ) = (TTT ′
(θ,γ)TTT (θ,γ) + h−1IIIKθ

)−1TTT ′
(θ,γ)Y , with Y the response variable in the

training andTTT (θ,γ) the scores obtained from the training data using selected path-
ways and genes included in the model. Note that for prediction purposes, since we
do not know the futureYf , a PLS regression cannot be fit. Therefore, we generate
Tf(θ,γ) by considering the first latent component obtained by applying PCA to each
selected pathway using the included genes.

In the case of categorical or censored survival outcomes, the sampled latent
variablesZ would be used to estimatêZf then the correspondence betweenZ
and the observed outcome outlined in Section2.2 can be invoked to predictYf

(Sha et al. 2004, 2006, Kwon et al. 2007).

4. Application. We assess performances on simulated data then illustrate an
application to microarrays using the KEGG pathway databaseto define the MRF.

4.1. Simulation studies. We investigated the performance of our model using
simulated data based on the gene-pathway relations,S, and gene network,R, of 70
pathways and 1098 genes from the KEGG database. The relevantpathways were
defined by selecting 4 pathways at random. For each of the 4 selected pathways,
one gene was picked at random and its direct neighbors that belong to the selected
pathways were chosen. This resulted in the selection of 4 pathways and 15 genes:
7 out of 30 from the first pathway, 3 out of 35 from the second, 3 out of 105 from
the third, and 2 out of 47 from the fourth pathway. Gene expressions forn = 100
samples were simulated for these 15 genes using an approach similar to Li & Li
(2008). This was accomplished by first creating an ordering among the 15 selected
genes by changing the undirected edges in the gene networks into directed edges.
The first node on the ordering, which we denote byXF1

, was selected from each
pathway and drawn from a standard normal distribution; notethat this node has
no parents. Then all child nodes directly connected only toXF1

and denoted by
XF2

were drawn fromXF2
∼ N (XF1

ρ, 1). Subsequent child nodes at generation
j, XFj

, were drawn using all parents fromXFj
∼ N (ρXpa(Fj)111|pa(Fj)|, 1), where

pa(Fj) indicates the set of parents of nodej andXpa(Fj) is a matrix containing
the expressions of all the|pa(Fj)| parents for nodej. The expression levels of the
remaining 1073 genes deemed irrelevant were simulated froma standard normal
density. The response variables for then = 100 samples were generated from

Yi =
15∑

j=1

Xijβ + εi, εi ∼ N (0, 1), i = 1, . . . , 100.

For the first dataset we setβ = ±0.5, with same sign for genes belonging to
same pathways. For second and third data sets we usedβ = ±1 andβ = ±1.5,
respectively. Note how the generating process is differentfrom model (1) being fit.
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FIG 2. Simulated data: Marginal posterior probabilities for pathway selection,p(θk|TTT , Y ), and con-
ditional posterior probabilities for gene selection,p(γj |TTT , Y, I{

∑
k∈P

θkskj > 0}), for the three
simulated data sets. Open circles indicate pathways and genes used to generate the outcome variable.

We report results obtained by choosing, when possible, hyperparameters that
lead to weakly informative prior distributions. A vague prior is assigned to the in-
terceptα by settingh0 to a large value tending to∞. Forσ2, the shape parameter
can be set toν0/2 = 3, the smallest integer such that the variance of the inverse-
gamma distribution exists, and the scale parameterν0σ

2
0/2 can be chosen to yield

a weakly informative prior. For the vector of regression coefficients, βk, we set
the prior mean toβ0 = 0 and chooseh in the range of variability of the covari-
ates, as suggested in Section2.3. Specifically, we seth0 = 106, α0 = β0 = 0,
ν0σ0/2 = 0.5, andh = 0.02. For the pathway selection indicators,θk, we set
ϕ∗
k = 0.01. As for the prior at the gene level, we setµ = −3.5, corresponding to

setting the proportion of genes expecteda priori in the model to, at least, 3% of the
total number of genes. Parametersϕ∗

k andµ influence the sparsity of the model and
consequently the magnitude of the marginal posterior probabilities. Some sensitiv-
ity is, of course, to be expected. However, in our simulations we have noticed that
the ordering of pathways and genes based on posterior probability remains roughly
the same and therefore the final selections are unchanged as long as one adjusts
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A BAYESIAN MODEL FOR PATHWAY AND GENE SELECTION 15

the threshold on the posterior probabilities. Also, for thehyperprior onη, we set
ηPT = 0.092, to avoid the phase transition problem, andc0 = 5 andd0 = 2, to ob-
tain a prior distribution that favors bigger values ofη in the interval0 ≤ η ≤ ηPT .
In our simulations we did not notice sensitivity to the specification ofc0 andd0.

The MCMC sampler was run for 300,000 iterations with the first50,000 used as
burn-in. We computed the marginal posterior probabilitiesfor pathway selection,
p(θk = 1|Y, TTT ), and the conditional posterior probabilities for gene selection given
a subset of selected pathways,p(γj|TTT , Y, I{

∑
k∈P θkskj > 0}). Figure2 displays

the marginal posterior probabilities of inclusion for all 70 pathways and the condi-
tional posterior probabilities of inclusion for all 1098 genes.

Important pathways and genes can be selected as those with highest posterior
probabilities. For example, in all 3 scenarios all four relevant pathways were se-
lected with a marginal posterior probability cut-off of 0.8. Reducing the selection
threshold to a marginal posterior probability of 0.5 pulls in two false positive path-
ways, for all the three simulated scenarios considered. Oneof the false positives
is the pathway with index 17 in Figure2, which contains more than 100 genes. A
closer investigation of the MCMC output reveals that different subsets of its mem-
ber genes are selected whenever it is included in the model, resulting in a high
marginal posterior of inclusion for the pathway but low marginal posterior proba-
bilities for all its member genes. The second false positivepathway appears to be
selected often because it contains two or three of the relevant genes that were used
to simulate the response variable and were also included in the model with high
marginal posterior probabilities; all its other member genes have very low proba-
bilities of selection. As expected, the identification of the relevant genes is easier
when the signal-to-noise ratio is higher. Conditional uponthe best 4 selected path-
ways, a marginal posterior probability cut-off of 0.5 on themarginal probability of
gene inclusion leads to the selection of 7, 8 and 8 relevant genes, for the three sce-
narios, respectively, and no false positives. With a marginal probability threshold
of 0.1, 14 of the relevant genes are selected with 4 false positives for the scenario
with β = ±0.5, while 13 relevant genes are selected with only two false positives
for the simulated data withβ = ±1. In the simulated setting withβ = ±1.5 all the
15 relevant genes are selected without any false positive ata threshold of 0.12.

Generally speaking, the effect of the MRF prior depends on the concordance of
the prior network with the data. For the simulated data, we found that the model
with the MRF prior, compared to the same model without the MRF, performs better
in terms of pathway selection as it provides a clearer separation between relevant
and non relevant pathways. In particular, the average difference, over the three sce-
narios, between the relevant pathway with the lowest posterior probability and the
non relevant pathway with the highest posterior probability is 0.28, while without
the MRF prior it is only 0.18. In addition, we have observed increased sensitivity of
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16 F.C. STINGO ET AL.

the MRF prior in selecting the true variables. For example, for the simulated case
with β±1.5, in order to select all 15 relevant genes the marginal probability cutoff
must be reduced to 0.088 at the expense of including 3 false positives. Other au-
thors have reported similar results (Li & Zhang 2010). In the real data application
we describe below, employing information on gene-gene networks aids the inter-
pretation of the results, in particular for those selected genes that are connected in
the MRF, and improves the prediction accuracy.

4.2. Application to microarray data. We consider thevan’t Veer et al.(2002)
breast cancer microarray data1. Gene expression measures were collected on each
patient using DNA microarray with 24,481 probes. Missing expressions were im-
puted using ak-nearest neighbor algorithm withk = 10. The procedure consists
of identifying thek closest genes to the one with missing expression in arrayj
using the othern − 1 arrays, then imputing the missing value by the average ex-
pression of thek neighbors (Troyanskaya et al. 2001). We focus on the 76 sporadic
lymph-node-negative patients, 33 of whom developed distant metastasis within 5
years; the remaining 43 are viewed as censored cases. We randomly split the pa-
tients into a training set of 38 samples and a test set of the same size using a fairly
balanced split of metastatic/non-metastatic cases. The goal is to identify a subset
of pathways and genes that can predict time to distant metastasis.

The gene network and pathway information were obtained fromthe KEGG
database. This was accomplished by mapping probes to pathways using the links
between pathway node identifiers and LocusLink ID2. Using the R packageKEGG-
graph (Zhang & Wiemann 2009) we first downloaded the gene network for each
pathway then merged all networks into a single one with all genes. A total of 196
pathways and 3,592 probes were included in the analysis, with each pathway con-
taining multiple genes and with most genes associated with several pathways.

We ran two MCMC chains with different starting numbers of included variables,
50 and 80, respectively. We used 600,000 iterations with a burn-in of 100,000 it-
erations. We incorporated the first latent vector of the PLS for each pathway into
the analysis as described in Section2.1and set the number of pathways expecteda
priori in the model to10% of the total number. For the gene selection, we set the
hyperparameter of the Markov random field toµ = −3.5, indicating thata priori
at least 3% of genes are expected to be selected. We setηPT = 0.09, to avoid the
phase transition problem, andc0 = 1 andd0 = 1, to obtain a non informative
prior distribution. A sensitivity analysis showed that theposterior inference is not
affected by different values ofc0 andd0. We setα0 = β0 = 0, h0 = 106 and

1available atwww.rii.com/publications/2002/vantveer.htm
2provided at ftp://ftp.genome.ad.jp/pub/kegg/pathways/hsa/hsa gene map.tab and

ftp://ftp.genome.ad.jp/pub/kegg/pathways/map title.tab
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h = 0.1 for the prior on the regression parameters and obtained a vague prior for
σ2 by choosingν0/2 = 3 andν0σ2

0/2 = 0.5.
The trace plots for the number of included pathways and the number of selected

genes showed good mixing (Figures not shown). The MCMC samplers mostly vis-
ited models with 20-45 pathways and 50-90 genes. To assess the agreement of the
results between the two chains, we looked at the correlationbetween the marginal
posterior probabilities for pathway selection,p(θk|TTT , Y ), and found good concor-
dance between the two MCMC chains with a correlation coefficient of 0.9933.
Concordance among the marginal posterior probabilities was confirmed by looking
at a scatter plot ofp(θk|TTT , Y ) across the two MCMC chains (Figure not shown).

The model also showed good predictive performance.Sha et al.(2006) already
analyzed these data using an AFT model with 3,839 probes as predictors and ob-
tained a predictive MSE of 1.9317 using the 11 probe sets withhighest marginal
probabilities. Our model incorporating pathway information achieved a predictive
MSE of 1.4497 on the validation set, using 12 selected pathways and 41 probe sets
with highest posterior probabilities. The selected pathways and genes are clearly
indicated in the marginal posterior probability plots displayed in Figure3. If we in-
crease the marginal probability thresholds for selection and consider a model with
7 selected pathways and 14 genes, to make the comparison morefair with the re-
sults ofSha et al.(2006), we obtain a MSE of 1.7614. As a reminder, our model
selects relevant pathways and relevant genes simultaneously, while the model of
Sha et al.(2006) selects genes only. Of course, one can always select pathways
post-hoc, as those that contain the selected genes. However, as single genes belong
to multiple pathways, we expect our approach to give a more precise selection.

From a practical point of view, researchers can use the posterior probabilities
produced by our selection algorithm as a way to prioritize the relevant pathways
and genes for further experimental work. For example, the genes corresponding to
the best 41 selected probe sets, conditional upon the best 12selected pathways,
are listed in Table1 divided by islands, which correspond to sets of connected
genes in the Markov random field. The islands help with the biological interpreta-
tion by locating relevant branches of pathways. A subset of the selected pathways
along with islands and singletons are displayed in Figure4. Several of the identi-
fied pathways are involved in tumor formation and progression. For instance, the
mitogen-activated protein kinase (MAPK) signaling pathway, involved in various
cellular functions, including cell proliferation, differentiation and migration, has
been implicated in breast cancer metastasis (Lee et al. 2007). The KEGG pathway
in cancers was also selected with high posterior probability. Other interesting path-
ways are the insulin signaling pathway, which has been linked to the development,
progression and outcome of breast cancer, and purine metabolism, involved in nu-
cleotide biosynthesis and affects cell cycle activity of tumor cells.
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FIG 3. Microarray data: Plot (a): Marginal posterior probabilities for pathway selection,
p(θk|TTT , Y ). The 12 pathways with largest probabilities are marked withsymbols. Plot(b): Con-
ditional posterior probabilities for gene selection,p(γj|TTT , Y, I{

∑
k∈P

θkskj > 0}). The 41 probes
with largest probability that belong to the 12 selected pathways in plot(a) are marked with∆.
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Singleton genes (no direct neighbor selected)
ACACB (10), C4A (8,12), CALM1 (10), CCNB2 (5), CD4 (7), CDC2 (5), CLDN11 (7), FZD9
(11), GYS2 (10), HIST1H2BN (12), IFNA7 (3), NFASC (7), NRCAM(7), PCK1 (10), PFKP
(10), PPARGC1A (10), PXN (9)

Island 1
ACTB (9), ACTG1 (9), ITGA1 (9), ITGA7 (9), ITGB3 (9), ITGB4 (9), ITGB6 (9), ITGB8 (7,10),
MYL5 (9), MYL9 (9), PDPK1 (10), PIK3CD (9,10,11), PLA2G4A (2), PLCG1 (11), PRKCA
(2,11), PRKY (2,10), PRKY (2,10), PTGS2 (11), SOCS3 (10)

Island 2
ACVR1B (2,3,11), ACVR1B (2,3,11), TGFB3 (2,3,5,11)

Island 3
ENTPD3 (1), GMPS (1)

TABLE 1
The 41 selected genes divided by islands and with associatedpathway indices (in parenthesis). The

pathway indices correspond to: 1-Purine metabolism, 2-MAPK signaling pathway,
3-Cytokine-cytokine receptor interaction, 4-Neuroactive ligand-receptor interaction, 5-Cell cycle,
6-Axon guidance, 7-Cell adhesion molecules (CAMs), 8-Complement and coagulation cascades,

9-Regulation of actin cytoskeleton, 10-Insulin signalingpathway, 11-Pathways in cancer,
12-Systemic lupus erythematosus.

FIG 4. Microarray data: Graphical representation of a subset of selected pathways with islands and
singletons. The genes in the islands are listed in Table1.
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In addition, several genes with known association to breastcancer were also se-
lected. Protein kinase C alpha (PKCA), which belongs to the MAPK pathway and
the KEGG pathways in cancer, has been reported to play roles in many different
cellular processes, including cell functions associated with breast cancer progres-
sion. It has been shown to be overexpressed in some antiestrogen resistant breast
cancer cell lines and to be involved in the growth of tamoxifen resistant human
breast cancer cells (Frankel et al. 2007). Patients with PKCA-positive tumors have
been shown to have worst survival than patients with PKCA-negative tumors, inde-
pendently of other factors (Lonne et al. 2010). Prostaglandin-endoperoxide synthase-
2 (PTGS2, also known as cyclooxygenase-2 or COX2) has also been related to
breast cancer.Denkert et al.(2004) observed COX2 overexpression in breast can-
cer and strong association with indicators of poor prognosis, such as lymph node
metastasis, poor differentiation and large tumor size. This was further confirmed by
Gupta et al.(2007), who showed that the expression of COX2 in human breast can-
cer cells facilitates the assembly of new tumor blood vessels, the release of tumor
cells into the circulation, and the breaching of lung capillaries by circulating tumor
cells to seed pulmonary metastasis. This is an important finding, as the majority
of breast cancer deaths result from metastases rather than direct effects of the pri-
mary tumor. Another gene previously shown to be predictive of breast cancer lung
metastasis is integrin, beta-8 (ITGB8) (Landemaine et al. 2008). We also identified
integrin, beta-4 (ITGB4) which regulates key signaling pathways related to carci-
noma progression, and is linked to aggressive tumor behavior and poor prognosis
in certain breast cancer subtypes (Lu et al. 2008).

5. Discussion. We have proposed a model that incorporates biological knowl-
edge from pathway databases into the analysis of DNA microarrays to identify
pathways and genes related to a phenotype. Information on pathway membership
and gene networks are used to define pathway summaries, specify prior distri-
butions that account for the dependence structure between genes, and define the
MCMC moves to fit the model. The gene network prior and the synthesis of the
pathway information through PLS bring in additional information that is especially
useful in microarray data, due to the low sample size and large measurement error.
Performances of the method were evaluated on simulated dataand a breast cancer
gene expression study with survival outcomes was used to illustrate its application.

Our simulation studies show the effect of the MRF prior on theposterior in-
ference. In general, as expected, the effect of the prior depends on the data and,
in particular, on the concordance of the prior network with the data. In our simu-
lations, employing the MRF prior allows us to achieve a better separation of the
relevant pathways from those not relevant (in particular, we have found a larger
average difference, over three scenarios, between the relevant pathway with the
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lowest posterior probability and the non relevant pathway with the highest poste-
rior probability). In addition, in the simulated setting with fairly small regression
coefficients the model with the MRF prior was able to select all the correct genes
without any false positive while the model without MRF includes 3 false positives.
Other authors have reported improvements on selection power and sensitivity with
respect to commonly used procedures that do not use the pathway structure, with
similar, and in some cases, lower false discovery rates. In addition, in our formula-
tion of the model we have used biological information not only for prior specifica-
tion but also to structure the MCMC moves. This is helpful in arriving at promising
models avoiding visiting invalid configurations. Finally,in real data applications,
we have found that employing information on gene-gene networks can lead to the
selection of significant genes that would have been missed otherwise, aiding the
interpretation of the results, and achieving better predictions compared to models
that do not treat genes as connected elements that work in groups or pathways.

Several MRF priors for gene selection indicators have been proposed in the lit-
erature. It is interesting to compare the parametrization of the MRF used in this
paper and inLi & Zhang (2010) to the parametrization used inWei & Li (2007,
2008), where the prior onγγγ is defined as

(19) P (γγγ|·) ∝ exp(d n1 − g n01),

wheren1 is the number of selected genes andn01 is the number of edges linking
genes with different values ofγj, i.e., edges linking included and non-included
genes among all pathways,

n1 =
p∑

j=1

γj , n01 =
1

2

p∑

i=1




p∑

j=1

rij −

∣∣∣∣∣∣

p∑

j=1

rij(1− γi)−
p∑

j=1

rijγj

∣∣∣∣∣∣


 .

While d plays the same role asµ in (12), the parametrization usingg has a dif-
ferent effect fromη on the probability of selection of a gene. This is evident from
the conditional probabilityP (γj |·, γi, i ∈ Nj) =

exp(γjF (γj))
1+exp(F (γj ))

, whereF (γj) =

d + g
∑

i∈Nj
(2γi − 1). Higher values ofg encourage neighboring genes to take

on the sameγj value, and consequently genes with non selected neighbors have
lower prior probability of being selected than genes with noneighbors. We felt
that parametrization (12) was a better choice for our purposes. First, in a con-
text of sparsity, where only few nodes are supposed to take value 1, a prior that
assigns larger probability of inclusion to genes with selected neighbors than to
isolated genes seems more appropriate. Second, the exact simulation algorithm of
Propp & Wilson(1996) cannot be used to simulate from (19). While any other
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method to draw from (19) would be acceptable, as said byMøller et al. (2006),
Markov chain methods, to sample from a MRF, require to check at each step that
the chain has converged to the equilibrium distribution, toavoid introducing addi-
tional undesirable stochasticity. On the other hand, one advantage of parametriza-
tion (19) is that no phase transition problem is associated to the distribution.

Pathway databases are incomplete and the gene network information is often
unavailable for many genes. Thus, there may be situations where the dependence
structure and the MRF prior specification on the gene selection indicator,γγγ, can-
not be used for all genes. When the only information available is the pathway
membership of genes, the prior onγγγ could be elicited to capture other interest-
ing characteristics. For example, a gene can havea priori higher probability of
being selected when several pathways that contain it are included in the model.
We may also want to avoid favoring the selection of a large pathway just be-
cause of its size. In such cases, conditional onθθθ, independent Bernoulli priors
can be specified forγj relating the probability of selection to the proportion of in-
cluded pathways that contain genej, adjusting for the pathway sizes,pk, that is,

γj |θθθ ∼ Bernoulli
(
c ·

∑K

k=1
θkskj/pk∑K

k=1
skj/pk

)
, with c an hyperparameter to be elicited.

In our approach we have made use of PLS components as summary measures
of the expression of genes belonging to known pathways and then applied a fully
Bayesian approach for the selection of the pathways to be included in the model,
and the genes to be included within those pathways. Penalized techniques, in-
cluding lasso (Tisbhirani 1996), elastic net (Zou & Hastie 2005) and group lasso
(Yuan & Lin 2006) have been studied extensively in the literature and have been
successfully applied to gene expression data. The group lasso, in particular, defines
sets of variables then selects either all the variables in the group or none of them.
Recently, a modification of the method was proposed byFriedman et al.(2010)
using a more general penalty that yields sparsity at both thegroup and individual
feature levels to select groups and predictors within each group. Our understanding
of group lasso is that the method works best in situations where variables belong-
ing to the same group are highly correlated while covariatesin different groups do
not exhibit high correlation. However, genes belonging to the same pathway often
do not exhibit high correlation in their expression levels.Also, in our case there are
genes belonging to different pathways that have high correlation, as well as genes
that belong to more than one pathway. Initial investigations suggest that, in terms of
prediction MSE, Bayesian formulations of lasso methods perform similarly to and,
in some cases, better than the frequentist lasso (see for exampleKyung et al. 2010).
Particularly relevant to our approach is the work ofGuan & Stephens(2011), who
apply Bayesian variable selection (BVS) and stochastic search methods in a re-
gression model for genome-wide data. In simulations they find that, in spite of
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the apparent computational challenges, BVS produces better power and predictive
performance compared with standard lasso techniques.
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