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This paper compares two methods built on a hierarchical Bayesian
foundation and designed for modeling hourly ozone concentrations
over the eastern United States. One, a dynamic linear state space
model (DLM) that has been proposed earlier, lies in a very contempo-
rary setting where two historical paths to temporal process models,
the Kalman filter and the dynamic system with random perturba-
tions, converge. The other, which we call the Bayesian spatial pre-
dictor (BSP), is a Bayesian alternative to the purely spatial method
of kriging. The DLM as a dynamic system model, has parameters
that are states of the process which generate the ozone and change
with time. More specifically the model includes a time-varying site
invariant mean field as well as time—varying coefficients for 24 and
12 hour diurnal cyclic components. The resulting model’s great flex-
ibility comes at the cost of complexity, forcing the use of an MCMC
approach and very time—consuming computations. Thus the size of
the DLM’s spatial domain of applicability has to be restricted and
the number of monitoring sites that can be treated, limited. The pa-
per’s assessment of the DLM reveals other difficulties that point to
the need to consider a less flexible competitor, a Bayesian spatial
predictor (BSP). The two methods are compared in a variety of ways
and overall conclusions given. In particular, the conclusions point to
the BSP as the more practical alternative for spatial prediction.

1. Introduction. This paper applies and compares two models for mapping hourly ambient
ozone concentration fields over subregions of the United States (US), an application whose
importance is described below. It focuses primarily on the recently proposed dynamic linear
model (DLM) of Huerta, Sansé, and Stroud (2004), because that model seems to have worked
well for mapping the hourly ozone field of Mexico City. The second model, whose development
began with Le and Zidek (1992), is an alternative to kriging called the Bayesian spatial predictor
(BSP; see also Le and Zidek 2006). It was selected to provide a baseline for assessing the first
because it has a proven track record in air pollution modeling. Moreover it like the first, has
Bayesian foundations.

This paper has two important companions. The first is a technical report that provides a lot
more detail about the DLM (Dou, Le, and Zidek, 2007). The second is the statistical software
we developed for implementing the DLM that could be used in other applications. The current
version, GDLM.1.0, is freely available at http://enviro.stat.ubc.ca for various platforms,
namely Windows, Unix and Linux and comes with a demo. The document for GDLM.1.0 has
been submitted as a supplementary material to this paper (see “Ozone-GDLM.1.0.pdf”).

The paper’s application poses a challenging methodological problem since the fine scale auto—
dependence structure of short term (e.g. hourly) aggregates of space—time process responses can
prove difficult to model realistically. “Correlation leakage” exemplifies the difficulties involved
(Zidek et al. 2002). However, these short term aggregates are important. In particular, United
States regulatory standards for ozone are stated in terms of metrics computed from those hourly
averages because of a large body of scientific evidence suggesting a strong link between them and

#The research reported in this article was supported by the Natural Science and Engineering Research Council
of Canada.

AMS 2000 subject classifications: Primary 62P12, 60K35; secondary 62M30

Keywords and phrases: Dynamic linear model, hierarchical Bayes, ozone, space—time fields, spatial prediction

1


http://www.imstat.org/aoas/
http://enviro.stat.ubc.ca

2 Y. DOU ET AL.

acute health outcomes (Ozone 2005). That evidence concerns both human health and human
welfare, the latter referring to such things as crop yield. The importance of these random fields
meant that in formulating National Ambient Air Quality Standards (NAAQS) for ozone to
protect human welfare, spatial interpolation had to be used in rural areas to characterize them
due to the paucity of monitoring sites there (Ozone 2005). A large part of that ozone field over
the United States constitutes the application of central interest in this paper although as we
see below, practical limitations of the DLM method forces us to restrict attention to clusters of
about ten monitoring sites for the comparisons we make of the DLM and BSP methods.

Ideally interpolated fields should also be used in risk analysis of the effects of ozone on human
health, as input into the computer models used there to incorporate indoor sources in the
estimation of human exposure to an air pollutant. The latter can reduce the underestimation
of the health effects of errors resulting from the use of ambient monitoring measurements to
represent exposure (Shaddick et al. 2008). The US Environmental Protection Agency (EPA)
developed and used such a program (APEX) to explore the health risk of ozone under various
regulatory scenarios (Ozone, 2005), albeit without interpolating the hourly ozone concentration
fields. In contrast, the BSP was used by the second and third authors of this paper to interpolate
a spatial pollution field for another EPA population exposure model called SHEDS (Burke,
Zufall, and Ozkaynak, 2001). Calder et al. (2008) also interpolated such values in a simplified
version of SHEDS. In summary, hourly ozone ambient concentration fields need to be spatially
interpolated, predicted or mapped.

The DLM, described in Section 2, is essentially the same as the models of Huerta et al. (2004)
and Stroud, Muller, and Sansé (2001), which in turn are state space models (West and Harrison,
1997). As a dynamic system model, it has parameters that represent states of the process that
generate the ozone and change with time. More specifically the model includes a time—varying
site invariant mean field as well as time—varying coeflicients for 24 and 12 hour diurnal cyclic
components. The resulting model’s great flexibility comes at the cost of complexity, forcing the
use of an MCMC approach and very time-consuming computations. Thus the size of the DLM’s
spatial domain of applicability has to be restricted and the number of monitoring sites that can
be treated, limited. The paper’s assessment of the DLM reveals other difficulties that led us to
consider a less flexible competitor, the BSP and the paper compares these two methods.

A number of criteria were invoked for that comparison and we now summarize these and the
results:

Practical applicability. The lack of available software for the DLM hourly ozone model was ad-
dressed by the investigators and suitable code had been developed as noted above. Using
that software, we found that in contrast to the BSP, the DLM made unduly large compu-
tational demands for our application making it unsuitable for mapping large geographical
domains.

Spatial prediction accuracy. The objective of mapping hourly spatial ozone fields, led us to
compare the accuracy of their respective spatial predictions. We found the BSP having
smaller mean square predictive errors with respect to the outcomes in a test set of sites.

Calibration of predictive credibility intervals. Here both methods proved somewhat deficient
based on the performance of nominally 95% intervals. The BSP intervals tended to be
overly narrow, those of the DLM overly wide.

Accuracy of temporal forecasts. Both methods can produce short term temporal forecasts and
that comparison is made in a companion report (Dou, Le, and Zidek, 2009).

The paper is organized as follows. Section 2 introduces the hourly concentration field data
modeled in this paper. These data, made at fixed site monitors and reported in the AQS dataset,
lead to our DLM. However, choosing the hyperparameters appropriately proves challenging. In
fact, for guidance in making those choices we consider a simpler alternative, the FOPM (first—
order polynomial model) that is susceptible to theoretical analysis. That analysis also reveals
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both natural as well as surprising properties of a simple but representative case. For instance
with the type of model considered there and plausibly therefore, the one proposed by Huerta
et al. (2004), the predictive posterior variances for successive time points conditional on all the
data must be monotonically increasing, a seemingly undesirable property. Theoretical results
and algorithms for the DLM are presented in Section 2, which also gives theoretical results for
prediction and interpolation at unmonitored (ungauged) sites from their predictive posterior
distributions. Section 3 gives a brief overview of the BSP that Le and Zidek (2006) describe in
detail. Briefly it is a multivariate spatial predictor with empirical Bayesian elements. Section 4
implements both the DLM and BSP for the ozone data referred to above. Moveover, it compares
the results obtained using these two different approaches. Section 5 describes difficulties posed
by the DLM approach as revealed by our assessment. We summarize our findings and draw
conclusions in Section 6.

2. The dynamic linear model. Although we believe the methods described in this paper
apply quite generally to hourly pollution concentration space—time fields with a strong diurnal
cycle, the paper focuses on hourly ozone concentrations (ppb) over part of the United States
owing to their particular importance. Moreover our assessment is limited to the summer of 1995
for which data had been provided. In all, 375 irregularly located sites (or “stations”) monitor
that field. To enable a focused assessment of the DLM approach and to make computations
feasible, we consider just one cluster of ten stations (Cluster 2), in close proximity to one another.
However, in work not reported here for brevity, two other such clusters led to similar findings.
Note that by design Cluster 2 has the same number of stations as the one in Mexico City studied
by Huerta et al. (2004).

Initially a small amount of randomly missing data were filled in by the conventional approach
of spatial regression method. Then an exploratory data analysis, following that of Huerta et al.
(2004) showed like theirs, that a square-root transformation of the data is needed to validate
the normality assumption for the DLM residuals. The Bayesian periodogram (Dou et al. 2007)
for the transformed data reveals a peak between 1 pm and 3 pm each day with a significant
24-hour cycle. We also found evidence of a weak 12-hour cycle. However no obvious weekly
cycles or nightly peaks were seen. Moreover the phase seems more or less constant. Thus in the
end, the DLM suggested by our analysis turns out to be the one in Huerta et al. (2004) without
the covariates they had available in their work; it has states for both local trends as well as
periodicity across sites.

To state the model more precisely, let y;; denote the square-root of the observable ozone
concentration, at site s;, ¢ = 1,...,n and time ¢, t = 1,...,7T, n being the total number of
gauged (that is, monitoring) sites in the geographical subregion of interest and T, the total
number of time points. More succinctly we let yy = (y1¢,...,Ynt)’ : n x 1. Then the DLM for the
field is

(2.1) yt = 1B+ Su(ar)ans + Salag)ost + ve
Br = B+ w
aje = ogp1tw’,
where 1 denotes a column vector of 1s, v; ~ N[0,0*V ], w; ~ N[0, 0%77], w;? ~ N0, o’V ],

Vi = exp(=V/A), Vi, = exp(=V/N;), j = 1,2 and oy = (e, a5me) :nx 1,5 = 1,2.
Here f3; denotes a canonical spatial trend and oj;, a seasonal coefficient for site ¢ at time ¢
corresponding to a periodic component, Sji(a;) = cos(wtj/12) + a;sin(ntj/12), j = 1,2. Note
that V = (v;;) : n X n represents the distance matrix for the gauged sites si,...,sy, that is,
vij = ||si —sj|| for i,j =1,...,n, where ||s; — s;|| denotes the Euclidean distance (km) between
sites s; and s;. Note that this model thus assumes a second order spatial stationarity unlike
the BSP, the second method considered in this paper. This can be a serious limitation in some
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geographical domains although in the application considered in this paper, we found no evidence
of non—stationarity.
Models (2.1)—(2.3) can also be written as

(24) Yt = F;Xt —|— V¢ V¢ ~ ]\[(07 Ut)
(2.5) Xt = Xp—1 +wr wi N(O,Wt),

where with I,, denoting the nxn identity matrix, x} = (8¢, &y, aby), F} = [1, S1¢(a1)1,, Sor(a2)L,] :
nx(2n+1), Uy = 02V and W; = 0>W, W being a block diagonal matrix with diagonal entries
72, 11 exp(=V /A1) and 73 exp(=V /As).

Let y1.7 = (¥, ¥5.7) s where y7'r = (y1", ..., y%) represents all the missing values and y{.;,
all the observed values in Cluster 2 sites for ¢ = 1,...,7. The model unknowns are therefore
the coordinates of the vector (\, 02,X1;T,y§r}T, aj,az), in which the vector of state parameters
up to time 7" is X1.7 = (X1,...,Xr), the range parameter is ), the variance parameter is 02 and
finally the vector of amplitude-phase parameters is a = (a1, a2). Let v = (75,712, A1, 72, \2) be
the vector of parameters fixed in the DLM to achieve computational feasibility.

Specification of the DLM is completed by prescribing the hyperpriors for the distributions of
some of the model parameters:

A~ IG(ay, By)
o? ~ IG(ay2,fB,2)
a ~ N(pg, 7).

Notice that A and o2 have inverse Gamma distributions for computational convenience.! Section
4 discusses the choice of the hyperpriors in the context of our application.

2.1. Parameter specification. Before turning to the implementation of the DLM in the next
section, we explore theoretically, albeit in a more tractable special case, some analytical features
of the model. That exploration leads to insight about how the model’s parameters should be
specified, as well as undesirable consequences of inappropriate choices. Our assessment focuses
on the accuracy of the model’s predictions.

This simple model we consider is a special case of the so—called “first—order polynomial model
(FOPM)”, a commonly used model (West and Harrison 1997). It captures many important
features and properties of the DLM we have adopted.

Letting 0 label an ungauged site, we assume for ¢ = 0,...,n and ¢t = 1,...,T, the FOPM
model given by

(2.6) yit = Bit+ei
(2.7) B = Bi—1+ 6,

where €; = (eor, ..., ent) ~ N(0,02 exp(=V/A)) and d; ~ N(0,03). Assume [y ~ N(0,03) and
A, 052, O'g and O'% are known here.

The FOPM is particularly useful for short—term prediction since then the underlying evolution
B¢ is roughly constant. Observe that the zero—mean evolution error J; process is independent

over time, so that the underlying process is a random walk. At any fixed time ¢ :

t
(2.8) Be = Bo+ > 0k
k=1
t
(2.9) yie = Bo+ Y Ok + et
k=1

'X ~IG(a,B) if Y =1/X ~ G(a, B), where p(y) oc y* " exp(—By) for o, 8 > 0.
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Consequently, the FOPM has the following covariance structure:

(2.10) Var(yi;) = 0?3 +to} 4 o2

(2.11) Covlyinye) = 03 +t0? +oexp(—dg/N) (i #J)
(2.12) Cov(yit,yjs) = 0/23 + min{t,s}o? (s #1),

where d;; = ||s; —sjl|, for 4,5 =0,1,...,nand t,s =1,...,T.

This DLM defines a non—stationary spatio-temporal process since for the FOPM to be sta-
tionary, the eigenvalues of state transfer matrix, G = G; in the notation of West and Harrison
(1997), must lie inside of the unit circle. But Gy = 1, so that conditions fails. Non—stationarity
also obtains since G; = Iap,41, given all the model parameters in (2.4)—(2.5). The DLM in (2.6)—
(2.7) has the important property that its covariance functions in (2.11)—(2.12) depend on the
time point min{t, s}, not |t — s| and this also renders its non-stationarity.

We readily find the correlation between y;; and y;s to be

0[23 +to? + o2 exp(—d;; /)
0% +to§ + o2

(2.13) Cor(yit, yjr) = (i # J)
ag + min{t, s}o?

\/ag —I—tag + O'g\/O% + sag + o2

(2.14) Cor(yit, Yjs) (s #1),

where 4,5 =0,...,nand s,t =1,...,T.

Remarks.
1. The correlations in (2.13) and (2.14) have the following properties when i # j:

(2.15) Cor(yit,yjt) > Cor(yit; yss)

for s #t,s,t=1,...,T and

(2.16) Cor(yit, yjt) — Cor(Yit, yjs)

is a monotone increasing function of |t — s|. Thus for any fixed time point ¢, Cor(y;,y;js) as a
function of s attains its maximum at s = ¢ and decreases as |s — t| increases.

2. By (2.13), Cor(yit,yje) = 1 as t — oo for i # j, 4,5 € {0,...,n}. That property seems
unreasonable; the degree of association between two fixed monitors should not increase as time
goes by. To circumvent this problem we can make some of the model parameters, say ag, depend
on time. More specifically, (2.13) suggests making to? = O(1) to stabilize Cor(y;t, yj:). Another
problem is seen for any two sites in close proximity when d;; ~ 0,

2 2 2
0% +tos +o
B 4 5
Cor(yit, yit) ~ —o5——= =1,
(ylt y]t) U% + tag + 052

a reasonable feature. But for widely separated sites when d;; — oo,

2 2 2
oz +to o5 +O1)
5t tos 8
Cor ) ’ i _) _ .
(Yit» Yjt) o +tol +o? o2+ O(1) + o2

To make this correlation nearly 0, as it should be, we need have U% + O(1) < o2. A sufficient
condition for this property to hold is U% < 0? and to? = O(1) < 2.

In summary, the key result, (2.13), suggests a simple but straightforward way to make the
model parameter O'g depend on 7', namely, to replace it by O'g /T, an adjustment made necessary
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by an artifact of the DLM prior assumptions. Section 6 provides an empirical validation of the
benefits of that adjustment, and some of its implications. However from a substantive point of
view the adjustment is not sensible — these parameters should not have to be changed just
because T is changed.

We now study the behavior of the predictive variances in the FOPM that helps us understand
our interpolation results. To that end consider the correlations of responses at an ungauged
site s9 with those at the gauged site s;, j € {1,...,n}, respectively. Note that both (2.15) and
(2.16) hold for ¢ = 0. The properties of the correlation structure in (2.13)—(2.14), lead us to
conjecture that the model’s predictive bands will increase monotonically over time as more data
become available, in the absence of restrictions on tag = O(1) as suggested above. Furthermore,
even conditioning on all the data, the predictive bands increase over time. In support of these
conjectures, we prove that they hold in a simple case where n =1 and 7' = 2 in (2.6)—(2.7) (Dou
et al. 2007) but omit the proof here for brevity.

THEOREM 1. For the FOPM in (2.6)-(2.7) with n =1 and T = 2, assume the prior for [y
18 N(O,J%). The joint distribution of y = (yo1, Y11, Yo2,y12)" is N(0,X), where

Y= (0’% + 02)14/14 4 block-diagonal{o? exp(— V/\), 051515 + 02 exp(— V/A)},

1}, being the k x 1 vector of 1s (k =1,2,...). Then we have the following predictive conditional
variances:

(0 + 03 + 02)% — (03 + 0} + o2 exp(—dur /N))?

2.17 Var =
( ) (yo1ly11) 0%3 +U§ +U?
(018)  Varlyoly) = (BT 02 ~ (08 + 203 + o expl—dot/N))
. Yo2|Y12 U?g n 20(% n 02
M-
(2.19) Var(yoi|yi1, y12) = Kl
M-
(2.20) Var(yoz|yi1, yi2) K27
where
(2.21) A = (O‘% + 02 + 052)(0% + 202 +02) - (O‘% + 03)?
M, = (0’% + 20(% + 052){(0% + a§ + 052)2 — (U% + a§ + 052 exp(—d01/)\))2}
(2.22) —2(0% + 0?)2(03 — O'g exp(—dp1/A))
and
My = (0f+ 0} +02){(0F + 205 + 02)* = (0 + 205 + 02 exp(—do1 /1))*}
(2.23) —2(03 + 03)*(02 — 02 exp(—do1 /N)).-

The above results yield in particular, two inequalities about the predictive variance of g1 that
can also be obtained directly by elementary reasoning. They show in agreement with intuition,
that uncertainty about yg; based on more data collected over time is no greater than that based
on less:

Var(yo1|y11) > Var(yo1|yi1, y12)
and
Var (yoz|y12) > Var(yoz|yi1, y12)-

We would also expect that conditional on the same data, the predictive variances of yp; and
Yoz, for example Var(yo1|y11,y12) and Var(yoz|yi1,y12), would be more or less equal. Yet the
following theorem shows that is not the case.
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THEOREM 2.  For the FOPM in Theorem 1, we have the following properties of the predictive
conditional variances:

203(1 — exp(—doi /N))?
(2.24) Var(yoz|y11,y12) — Var(yoi|yi1,y12) = oz05( GXK( 01/7)) >0

0?0?(1 — exp(—dm/)\))2
0% + 05 + 02)(0f +20% +02) ~

(2.25) Var(yoz2|yi2) — Var(yoi|yi1) = (

(2.26) Var(yo1|y) — Var(yoi|yii, yiz) > Var(yoz|yi2) — Var(yoz|yi, yi2)-

Equation (2.24) tells us that the predictive posterior variances conditional on all the data
increase monotonically at successive time points. That counterintuitive result leads to monoton-
ically increasing coverage probabilities at ungauged sites. According to (2.25) a similar result
holds for the predictive variance at a given time conditional on just the monitoring gauged site
data available at that time. As noted above, adding data collected over time reduces predictive
uncertainty. However according to (2.26) that benefit decreases over time, another unintuitive
result. These surprising properties are discussed in Section 5 in relationship to the DLM model
of actual interest in this paper and our empirical findings.

Next, we present a curious result about the properties of the above predictive variances
that may explain some of their key features. This result concerns these predictive variances as
functions of \, do; or 2. Part of its proof is included in Appendix A.1.

COROLLARY 1. The predictive conditional variances in (2.17)-(2.23) increase as doi in-

creases, or ag increases, or A decreases.

Thus, keeping two parameters fixed, these predictive conditional variances are monotone func-
tions of the remaining one. Therefore the DLM can paradoxically lead to larger predictive vari-
ances when conditioning on more data. Consider for example, the case of just one gauged site,
n = 1, and two time points 7" = 2. A second statistician arrives on the scene late at time T = 2
believing the process was initiated at time 7' = 1. He has only the data available at that time to
use in predicting yp2. Being in the same relative position as the first statistician at time T =1,
he computes his conditional predictive variance and gets a result identical to the one in Equation
(2.17). We denote it by Var*(yoz|y12) to distinguish it from the one in Equation (2.18), which the
first statistician would compute at time T" = 2, if he had not observed yg;. Surprisingly under
the condition in the next corollary, the late—comer’s variance based on just yi2 is actually less
than that of the first statistician using all the data available at time T' = 2, i.e., Var(yoz|y11,y12)
in (2.20). This result is stated more precisely in the next corollary.

COROLLARY 2. For the FOPM in Theorem 1,
o
(2.27) Var* (yoz|y12) < Var(yoe|yii, viz) if and only if o2 > Jg (1 + ?> )
é

The behavior suggested by Corollary 2 is actually observed in our application (see Section 5).

2.2. Implementation.. We now briefly describe how to implement our model using the MCMC
method, more specifically, the forward—filtering—backward—sampling algorithm of Carter and
Kohn (1994). Our approach follows Huerta et al. (2004) and the details can be found in Dou et
al. (2007). However unlike them, we use all the samples after the burn—in period, not just the
chain containing the accepted samples, thereby avoiding the (small) sampling bias that would
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otherwise accrue from, in effect, changing the detailed balance equation of the Metropolis—
Hasting algorithm.

The algorithm we use for Cluster 2 based on the AQS dataset is now summarized using ‘~’
to mean ‘from distribution’:

1. Initially sample A1) ~ IG(ay, By), 0'2'(1) ~ IG(aaz,ﬂgz) and Xgl% ~ N(m0,02(1)00).
2. Given the (j — 1) values A=) 02(]71), X(f:;l), y{’}T(jfl), a(lj_l), a(zj_l) and the observa-
tions y{., sample:

(1) (AD,029 x90) ~ p(A, 02, xirlal ™V 6§ D,y ) where y Ut = (v 0D v,

(i) Generate a candidate value A* from a lognormal proposal distribution (AU~ ),

that is, LN ()\(j -1, 72) for some suitable tuning parameter 72.

Compute the acceptance ratio a()\(j -1, A*) where

p(A*af ™ af D y Uy A }

p(AGDaf ™ oy A6

a(AU™D X*) = min {1,

Accept the candidate value with probability a(AU=D, A*) and set AW = \*;
otherwise reject and set AW = \G—1)

(ii) Sample o2 ~ P(UQ,A(j)aagj_l)aagj_l)vyg:;l))-
iii)

(iit) Sample x{). ~ p(x17]AD), 027 a7 a7V yiI).
. - , . . 1) Gl .
(2) yl:T(j) NP(Yl:TP‘(])’02(])axg]:)T’ag] )’aéj )’yl:T)'
(3) (af” . a”) ~ plar, az 2D, 02V Xl 7). where yiy = (7). ¥ir):
3. Repeat until convergence.

The software, GDLM. 1.0, developed to implement the DLM approach, enhances the Metropolis—
within—Gibbs algorithm by augmenting the R code with C to speed up the computation.

2.3. Interpolation and prediction. This section describes how to interpolate hourly ozone
concentrations at ungauged sites using the DLM and simulated Markov chains for the model
parameters defined above in this section. Suppose si,...,s, are u ungauged sites of interest
within the geographical region of Cluster 2 sites and we need samples from

p(yirIN, 0% x1.7, a1, a9, y1.7),

where y§.- = (y§,...,v¥5) : 1 x T while y; denotes the unobserved square-root of ozone concen-
trations at the ungauged site s € {s1,...,s,} and time ¢ = 1,...,T. Let (af;, a3;) denote the
unobserved state parameters at time t and site s. The DLM is given by

(2.28) vie" = 1p4a8+ Si(ar)ady” + So(ag)as™ + vi™,

where yi = (yf,y1), e = (o, &)’ for j = 1,2, and vy ~ N(0,02 exp(— V™ /))).
In the following two subsections, we illustrate how to sample the unobserved state parameters

{(af;,a5,) :t=1,...,T} and demonstrate spatial interpolation at the ungauged site s.

2.4. Sampling the unobserved state parameters. We first sample o3, given o, ;, o and
aji—1,j = 1,2. From the state equation (2.5) for oGy, we know that the joint density of ajt and
o is Gaussian, with covariance matrix o272 exp (—V"*¥/);), where V¥ denotes the distance

j
matrix for the ungauged site and gauged sites. The conditional posterior distribution,

(229) p(a§t|a;,t715 )\) 0-2) Bta g, O, A1, A2, Y1:T),

is derived in Appendix A.2.
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2.5. Spatial interpolation at ungauged sites. We interpolate the square—root of ozone con-
centration at an ungauged site by conditioning on all the other parameters and observations at
the gauged sites. As above, y; and y, are jointly normally distributed as a consequence of the
observation equation. The predictive conditional distribution for y;, that is,

(230) p(yzﬂait) a;ta )‘a 02) Bt) Qg, O, A1, a2, yl:T)a

is given in Appendix A.2.

3. The Bayesian spatial predictor. For completeness, this section gives a brief descrip-
tion of the BSP, which predicts random space-time response fields (Le and Zidek 2006). The
responses are site-specific and may include covariates. Although the application in this paper
involves just ozone, the multivariate version of the BSP is needed. We include site—-specific co-
variates here even though we have none in our application, to facilitate possible future extensions
of the method to more complete database and these are included in the response vector, unlike
the covariates which are constant across the region.

The BSP involves a number of elements beginning with a transformation of the data us-
ing a common transformation across all sites. The goal of data transformation is to find an
approximately symmetrical form for data histograms at each site for its data over time.

Next comes an exploratory data analysis and the removal of systematic regional components.
These components can be such things as trends, periodicity, autocorrelation and models for
covariates that are constant over the region. Thus the same model is fitted over all sites in the
region using the data from all the sites and times. Usually enough data are available that the
estimated parameters are effectively constants. Hence their removal from the stochastic field
model has a completely predictable effect on it.

At time ¢, let r; : 1 X (g + u)p represent the row vector of residuals so obtained for the g
gauged, i.e. monitored sites as well as the v ungauged sites in the region where every site has
p > 1 site-specific responses. Assign the j™ coordinate of r; a column vector of random effects,
B7 :1x 1. With that vector Z’Nﬂ{ can reflect the effect on the site-response pair represented by j
at time t, of the covariates in the transposed column vector z/, : 1 x [ which are not site-specific.
Conditional on z/,3J, r; is assumed to have an arbitrary covariance matrix X, representing
both the covariances between the sites as well as the covariances between responses within the
sites. Note that at this level of modeling, no assumption is made about the separability of the
between—site variability and within—site variability. Moreover the site effect vector [3{; allows
each site’s trend, seasonality and so on to deviate from their regional counterparts.

Conditional on [, and ¥,, we assume the {r;} have a known between—time covariance A
that is separable from the within—time covariance ¥,. Furthermore we assume a Gaussian re-
sponse field across the T time points and all sites and responses so that r = (r},...,r}) ~
Ny (g4+u)p(28y, A @ 3p) for the “design matrix” z = (z1,...,2z7) : T x [.

Next 3, and X, are given their conjugate multi-normal and generalized Inverted Wishart prior
distributions, respectively. The latter’s hypercovariance structure is assumed to be Kronecker
product of covariances reflecting the assumed separability of the between—site and within—site
covariances. That assumption is implemented in the online R, C and F codes that implement
the BSP methodology (go to http://enviro.stat.ubc.ca). Furthermore, they incorporate an
empirical Bayesian step which estimates the hyperparameters in the conjugate priors using the
EM algorithm. That software is used in the application addressed in this paper. Note however
that the separability assumption can be relaxed in other applications of the method at the cost
of some recoding of the software.

The resulting posterior predictive distribution with estimated hyperparameters is a matric—t
distribution. That means in particular, that the conditional posterior predictive distribution of
the responses of direct interest given the site—specific covariates can be derived and the predictive
posterior mean will then be a linear combination of regional and site—specific covariates.
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As a final step in applying the BSP, the regional models that were removed to get the residuals
matrix r need to be combined with predicted residuals at ungauged sites. These in turn must
be squared to get back onto the scale of the raw data.

4. Application. This section applies our models to the hourly ozone concentration field
mentioned briefly above.

4.1. The data. That ozone field generates the data used in this paper. Those data come from
the AQS ozone database created by the EPA. As noted in Section 2, the heavy computational
requirements of the DLM force the restriction of our analysis to hourly ground-level ozone
concentrations (in ppb) from a cluster of just ten monitoring sites (we call “Cluster 2”) and
data for that cluster were extracted from that database. That cluster, centered at St Louis,
Missouri spans a distance of at most 895 kms. In contrast, that of Huerta et al. (2004) centered
in Mexico City, covers no more than 30 kms in any one direction although it has the same
number of sites as our cluster.

Data from an additional set of six monitoring sites located at randomly selected and irregularly
spaced geographical locations within this area, were extracted to provide a validation sample.
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Fig 1: Geographical locations for Cluster 2 sites from the AQS database (1995), where the latitude and
longitude are measured in degrees. Integers label gauged sites and letters, ungauged sites.

Figure 1 shows the geographical locations of these ten gauged and six ungauged sites. The
percentages of the missing measurements vary between 0% and 24.8% for gauged sites, and
between 0% and 11.5% for ungauged sites.

Figure 2 depicts the boxplots of the square—root transformed hourly ozone concentrations
at each one of the 16 monitoring stations across all time points. Gauged Site (GS) 9 differs
markedly from the others. The authors wondered if its deviation from the rest might be due to
some of its geographical features. An examination of the region reveals GS 9’s proximity to a
body of surface water, the Missouri River. However, GS 7 also lies near water; in fact, it falls
between the junction of the Illinois, Mississippi and Missouri Rivers. Similarly GS 1 lies close
to Kentucky Lake while GS 6 lies near Mark Twain Lake. Thus in the end we were forced to
abandon that potential explanation and have found no other.

We used linear regression to further explore the data, in particular, weekday and hourly effects.
We found these to be approximately constant over all gauged sites; the hourly effects from 0 A.M.
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105 (/ppb)

Fig 2: Boxplots for the square-root of hourly ozone concentrations (y/ppb) at monitoring stations in
Cluster 2 from the AQS database during the summer of 1995. Here ‘G’ stands for ‘gauged site’ while ‘U’
stands for ‘ungauged site’.

to 10 A.M. vary slightly more than those of the hours following 10 AM, pointing to the relatively
strong hourly effects from 10 A.M. to 11 P.M. The weekday effects also seemed constant across
GSs. These results suggest that we can model weekday and hourly effects as constant across all
gauged sites in the cluster. We used this finding to develop the BSP approach used below. It
also has implications for the DLM method, although for brevity we leave details to Dou et al.
(2007).

4.2. The methods. The issue central addressed in this paper, the need to map the ozone field
or in other words, interpolate its values at ungauged sites, leads us to compare the two models
we have proposed for that purpose. More precisely we compare the interpolated values they
yield of hourly ozone concentrations at the six validation sites. Results for other clusters were
generally similar and for one, results are presented in a companion report (Dou et al. 2009).

The DLM. To emulate Huerta et al. (2004) to the maximum feasible extent, we use their
initial settings for the starting values, hyperpriors and fixed model parameters but only after
confirming that our results would not be unduly sensitive to that choice. In summary we chose:

e The hyperprior for A is IG(1,5) and for o2, IG(2,0.01). The expected value of IG(1,5) is
oo and so are both of the variances of p(\) and p(c?). These vague priors for A and o2 are
selected to reflect our lack of prior knowledge about their distributions.

e The initial information for xg, the initial state parameter, is assumed to be normally
distributed with mean vector mg = (2.85, —0.751/,, —0.081,,)" and covariance matrix o2 Cy,
where 03 ~ IG(2,0.01) and Cy is a block diagonal matrix with diagonal entries 1, 0.011/,
and 0.011/,.

e The hyperprior for a is a bivariate normal distribution with mean vector pu° = (2.5,9.8)’
and a diagonal matrix 3° with diagonal entries 0.5 and 0.5.

e Some of the model parameters in the DLM are fixed as follows: Ty2 = 0.02, & = 0.0002,
73 = 0.0004, A\; = 25 and Ay = 25.

To test sensitivity of our results to our starting values we experimented with a variety of
such values of \, 02, a; and as. Figure 1 in the supplementary file, “Ozone-MCMC.pdf”, com-
pares the results for pairs of two very different values over 4,268 MCMC iterations. The results
demonstrate the adequacy of our burn—in period of 2,269. We concluded that varying the hy-
perparameters produced the same results after taking just a few iterations to adjust. In fact, the
chains converge in less than five hundreds iterations with an acceptance rate was approximately
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62%. The post burn—in samples were the ones used to estimate the posterior distribution that in
all cases except for A resembled closely those obtained by Huerta et al. (2004). In contrast that
for A was centered on a point about ten times larger than theirs, possibly reflecting the much

larger spatial domain in our application.
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Fig 3: This figure illustrates the correlation leakage problem for intersite spatial correlations for the sites
in our analysis. Panel (a) shows those correlations for all site pairs and the residuals obtained by removing
regional trends. The second, (b) is the same plot, but this time for the residuals after an additional regional
AR(2) model was fitted. Notice the sharp declines in the spatial correlations as a result of “leakage” into
spatial cross—correlations at lags 1, 2 and so on.

The BSP. To begin, Figure 3 depicts estimated spatial correlations of the residuals after
removing regional (that is common site-model) trends and AR(2) autocorrelation components
(dAR’ing). This reveals “correlation leakage”, a sharp drop in the lag 0 spatial cross correlation
with loss of correlation to lag 1 and longer cross correlations. To prefilter data series as we
must to use the BSP when leakage occurs, typically in series based on data collected with short
temporal lags, Li et al. (1999) and Zidek et al. (2002) suggest using daily vectors of random
hourly response coordinates for selected hours, instead of using the univariate hourly responses
themselves. One of their arguments, that the impact of the problem of “correlation leakage”
across space and time lags, is reduced using this approach is supported by theoretical results
(Zidek et al., 2002). A related argument of theirs is that daily vectors of deAR’d residuals
are approximately independent from day—to—day while the need to model fine scale temporal
correlation is eliminated.

The benefits promised by these arguments obtain for Cluster 2 and other clusters we have
studied. To realize them, we must select the number of hours d between 1 to 24 to include in those
daily vectors. The simplest choice d = 1 would ensure a 23 hour separation between the successive
responses that under our AR(2) structure, would render autocorrelation negligible in the daily
sequence. However that choice would also leave us without estimates of the correlation between
successive hourly responses, leading to d = 2 instead. For that would mean in particular that a
spatial interpolator for say hour 12 at an ungauged site, would borrow strength from both hours
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11 and 12 measurements at the gauged sites. But that choice like d = 1 has the disadvantage of
complexity: twelve models would be needed for the resulting 12 parallel multivariate time series.
That points to d > 2. But then large values of d such as d = 24 would also be undesirable, given
our objective of eliminating autocorrelation between successive daily vectors of dimension d. A
compromise in the range 2 < d < 6 suggests itself as a compromise, although the optimal choice
clearly depends on the degree of autocorrelation in the AR(2) process and that varies from one
location to another.

Although we do not have a theoretical way of selecting d, we do have an empirical alternative
in particular applications. In ours, suppose for example that interest focuses on interpolating
hour 12’s ozone level at a specified ungauged site using all the observed responses at the gauged

sites. The possible response vector sequences corresponding to d € {2,...,6} would be those
from (11:12)-hours to (7:12)~hours, where (i:j)-hours denotes the sub—data matrix of hourly
measurements from hours i to j inclusive, across the gauged sites, 7,5 € {1,...,p}. For each, the

spatial correlations between all gauged sites are estimated using the multivariate BSP approach.

As expected, the spatial correlation declines and leakage increases as d the dimension of the
response vector increases. The smallest value d = 2 in the admissible range {2,...,6} produces
the smallest loss of such spatial correlation. We see a further drop when d = 3. However, little
change is seen for ds beyond that. In other words, nothing is gained by going beyond d = 2
and we stop there, making it our compromise choice for hour 12. Similar results obtain for
the other hours, strongly supporting the use of the 2—consecutive—hour—block as the response
vector. These blocks of data were extracted from the AQS ozone database for the summer of
1995 for Cluster 2 to serve as the observed multivariate responses in a multivariate BSP model
framework. While the resulting spatial correlation is not large, the very strong autocorrelation
between 12 and its neighbor, hour 11, enables a lot of strength to be borrowed over both space
and time in the combined space-time total and this is key to the good performance of the BSP
predictor.

Prior to implementing the multivariate BSP approach, a small number of missing measure-
ments were filled in by the conventional method of periodic means. In the BSP model’s notation,
p=2n=120, u = 6 and g = 10. In all, 24 multivariate BSP predictors are derived by suc-
cessively cycling through the successive two—hour—blocks to predict the hourly ozone levels at
the 6 validation sites. We also found the corresponding 95% pointwise predictive intervals along
with their empirical coverage probabilities.

4.3. The results. Figures 4 and 5 depict plots of the interpolation results for square-root
transformed ozone concentrations at Ungauged Site (US) D during the first and fourth weeks
in the summer of the study. Overall the BSP proves more accurate than the DLM. Moreover, it
avoids the unnatural oscillatory behavior in the 95% predictive interval bounds, an artifact of
the harmonic terms in the mean model used in the DLM. To elaborate, on this important point,
note that conditional on the mean, the predictive distribution for a response at an ungauged
site has a fixed width predictive error band [see Equation (A.3)]. However in the unconditional
distribution for that response, the mean’s random coefficients contribute to the width of that
band. First of all they do so through the harmonic, i.e. cosine and sine, functions associated with
them. As these functions are squared in the variance for the unconditional distribution, valleys
in the mean become peaks in the variance, giving the impression of a six rather than twelve hour
cycle as postulated in the model. That same periodic behaviour can been seen in the paper of
Huerta et al. (2004 Figure 6). Secondly they do so through their variances which are re-scaled
by their squared harmonic factors. The growth in those variances over time, induced by their
random walk evolutionary model, is then inflated by the squared harmonics at peak times. Thus
as seen in the figures, by the fourth week we see much larger band widths at those peaks than
during the first week. The width of those bands varies further according to the site’s distance
from a monitoring site as that determines the degree uncertainty in those random coefficients.
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The large predictive intervals for the ground-level ozone concentrations reflect the inefficiency
of the DLM approach. For example, the 95% predictive bands could be between 0 and 15 for
the square-root of ozone levels. These findings lend further support to our conclusion that a
more practical alternative to the DLM and needed. In turn that led us to consider the BSP as
a possible competitor for predicting ground-level ozone concentrations.

Notice the periodic drop toward zero for the BSP in these figures. That results from BSP’s
recognition that US D’s close “cousin” Gauged Site (GS) 1 with which it is spatially correlated,
contains a missing value coded as a ‘0’ in the data at this particular hour. That hour is midnight
when we believe, but cannot confirm if quality checking was carried out nightly during the 120
days of study. That also happens at US D and other sites such as US B and GS 2 on 118 out
of the 120 days. We imputed the missing observations at midnight by computing its periodic
means, leading to the“midnight zeros”. For example, the observations at GS 1 and US D are all
missing while GS 2 and US C only have one or two observed values at that time. In fact the
DLM needs the imputed values for complete data and “updates” the missing values by treating
them like the model parameters. However even using our roughly imputed missing values as the
periodic means, our results indicate that the BSP works better over those sites.

---- DLM

— BSP
- DLM: 95% PI
- BSP: 95% PI

15
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10
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{0s ({ppb)
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Fig 4: Interpolation at Ungauged Site D for the 1st week. The square-root of hourly ozone
concentrations are plotted on the vertical axes and hours on the horizontal axes. Solid
and dashed lines represent respectively, BSP interpolation and 95% pointwise predictive
intervals; dotdashed and dot lines represent respectively, DLM interpolation and 95%
predictive intervals; finally es represents observations at Ungauged Site D.

Figure 6 plots the ratio of the empirical mean square predictive errors of the DLM over the
BSP arising from the prediction of the observations for the six validation site values. Thus values
larger than 1.0 mean DLM is less accurate than BSP. Overall the BSP performs uniformly better
than the DLM while requiring much less computation time.

Figures 7-8 present the coverage probabilities of the DLM and BSP at 95% nominal level at
each one of ungauged sites or 17 weeks involved in the ozone study. Overall the DLM intervals
tend to exceed the nominal level of 95% while the BSP intervals cover less than the nominal
level, indicating respectively too little and too much confidence in their predicted values.

The coverage probabilities of the model’s posterior predictive credibility intervals over suc-
cessive weeks, conditional on all 17 weeks of data, increase monotonically. That implies the
counterintuitive result that uncertainty increases as time evolves. A pragmatic way around this
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Fig 5: Interpolation at Ungauged Site D for the 4th week. The square-root of hourly ozone
concentrations are plotted on the vertical axes and hours on the horizontal axes. Solid
and dashed lines represent respectively, BSP interpolation and 95% pointwise predictive
intervals; dotdashed and dot lines represent respectively, DLM interpolation and 95%
predictive intervals; finally es represents observations at Ungauged Site D.
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Fig 6: The ratio of the empirical mean squared prediction errors for the DLM over the multivariate BSP
interpolators for: (a) the 6 “ungauged” validation sites for each of the 17 weeks; (b) the 17 weeks for each
of those 6 sites.

unnatural property comes from Section 2.1 where the correlation structure of an analytically
tractable DLM is studied. The section suggests making the model parameters, such as 7'5, 2
and 75 depend on the time span of the temporal domain T involved. In other words, the hyper-
parameters would differ for a study involving one week to those for a study involving the whole

summer, quite unreasonable if one views the prior as representing prior knowledge.
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Fig 7: The empirical coverage probabilities of the DLM and multivariate BSP interpolators for each of
six ungauged sites at a nominal level of 95%.
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Fig 8: The coverage probabilities of for the DLM and multivariate BSP interpolators for each of 17 weeks
at a nominal level of 95%.

5. Discussion. In general, the DLM provides a flexible modeling tool, made practical by
advances in statistical computing. However, its substantial computational requirements still
limit its applicability. Moreover, the very flexibility that makes it so powerful also imposes an
immense burden of choice on the model. This section summarizes critical issues and includes
some suggestions for improvement.

MCMC convergence. See the supplementary file, “Ozone-MCMC.pdf”.

Relationships among parameters. Our prior assumptions make the model parameters \, o2,
a1 and as uncorrelated leading us to investigate that relationship a posteriori. In fact our results,
which are omitted for brevity, show all pairs remain uncorrelated except for A and o2, which
have a strong linear association. The third author learned about that feature of the DLM from
Jonathon Stroud (personal communication). Since o2 determines spatial variability while A
determines correlation, this relationship is intriguing. Larger values of o2 tend to go with larger
s, i.e. diminished spatial correlation. In kriging type models, it is quite common to have range
and sill parameters correlated in the posterior, according to an anonymous reviewer.
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Fig 9: Scatterplots for (), o?) pairs for various weeks, based on the MCMC samples using a
selected week’s data, specifically weeks 4, 6 and 9 but starting from the same initial values as
those in Section 4.2.

Time varying parameters and coverage probabilities. Although we follow Huerta et al. (2004)
in assuming the temporal constancy of A and o2, it is natural to ask if those generated by the
MCMC method change over time. A variant of this issue concerns the time domain of the
application. Would the results for these parameters change if we switched from one time span to
a longer one containing it? A “yes” to this question would pose a challenge to anyone intending
to apply the model, knowing that the choice would have implications for the size of ¢? and .

To address these concerns we carried out the following studies:

(i) Study A : Implement the DLM at ungauged sites using only weekly data for successive
weeks (Wy : k = 1,...,17). Generate Markov chains for A\, 02, a; and ay. Estimate
model parameters and interpolate the results at the ungauged sites. Obtain the coverage
probabilities at each ungauged site and week for fixed credible interval probabilities using
each week’s data.

(ii) Study B : Implement the DLM at ungauged sites using all the data from weeks 1 to
17 (Wya7 = {W,...,Wi7}). Estimate model parameters and interpolate the results at
ungauged sites. Obtain the coverage probabilities at each ungauged site and week for fixed
credible interval probabilities for each week.

(iii) Study C : Fix A at week k (k= 1,...,17) using values suggested by the Markov chains
generated in Study A. Then use these A* = {\},..., \{-} as fixed values in the DLM to
reduce computation time. In other words, go through all the steps in the algorithm of
Section 2.2 but now using only fixed A*s instead of generating them by a Metropolis—
Hasting step. Note that we are then only using Gibbs sampling and an MCMC blocking
scheme. Compute the corresponding coverage probabilities using Wy.17 at each ungauged
site and week for fixed credible interval probabilities.

Studies A and B are intended to explore the effect on the interpolation results, of varying the
amount of data and its collection time. Study C' aims to pick out any significant difference in
the interpolation results when using a fixed A* rather than using the Markov samples of As. It
is also aimed at finding how much time would be saved by avoiding the inefficient Metropolis
step. Table 1 on page 18 shows these fixed A*s used in Study C. Table 2 on page 18 shows the
time saved using a fixed A*s against the one using the Metropolis—Hastings algorithm.
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TABLE 1 R
Fized values of X* in Study C.

Week | 1 2 3 4 5 6 7 8 9

A" 54.2 178.5 83.7 4054 86.6 59.7 199.3 144.1 322.7
Week | 10 11 12 13 14 15 16 17

A" 142.2 1727 187.9 315.8 419.0 99.8 260.3 284.8

TABLE 2

Summary of computational times (seconds) for complete summer long MCMC' runs without spatial prediction in
Studies A, B and C'.

Time (seconds)
Study Data Iteration total Accept(%) | Total /Iteration

A Wi 1,500 0.82 17018 13.8
B Wiay 1,000 0.35 326782 932.3
C Wiy 1,000 1.00 329349 329.3

Figure 9 illustrates the MCMC estimation results obtained in Study A. It plots the Markov
chains of A\ and o2 using weekly data. Obviously A and ¢? vary from week to week, implying
that the constant A-¢? model is not tenable over a whole summer for this dataset and should
not be assumed in general without empirical validation.

Figure 10 typifies figures in Dou et al. (2007) showing the coverage probabilities for various
predictive intervals associated with the interpolators in these three studies. The solid line with
bullets represents the results for Study A, the dotted line with up—triangles for B and the
dashed line with squares for C. These graphs show that the coverage probabilities of Study B
are similar to those of C. This suggests that we could use the entries in Table 1 on page 18
as fixed A*s in the DLM to obtain interpolation results similar to those obtained using the
Metropolis—within—Gibbs algorithm.

Section 2.1 presents results about the prediction accuracy of the simplest DLM, namely,
the FOPM showing in particular, that the predictive variances must increase monotonically at
successive time points even though all the variances are conditional on the same 17 weeks of
data. Here we see the same phenomenon expressed empirically through the graph of the cover-
age probabilities in Figure 10. The plots exhibit a monotonic increasing trend in the coverage
probabilities of both Studies B and C even though the uncertainty in each case is calculated for
distributions that are conditional on all the data. Note that those coverage probabilities for both
studies deviate slightly from a strictly monotone trend at some time points because of the time
varying relationship between A and o2 seen in Figure 9. This increase can mean that a posteriori,
X and o?s vary over the time span of the study, while the prior postulates that they do not. It
may also be due to mis—specification of the model parameter values v = (75, 72,01, 73, A2). (See
the initial settings for v in Section 4.2.) In any case the phenomenon represents a limitation in
the applicability of the model since it runs counter to intuition.

As an aside, Study C' enjoys significant computational advantages over B. Table 2 on page 18
shows computation time of the former to be almost 2.8 times shorter than the latter.

On another point, these studies show that sometimes, paradoxically, the model gives better
results using only one week’s data rather than all of it. In fact, Corollary 2 in Section 2.1 predicts
this finding because the prior for o7 is 1G(2,0.01), the expectation of 0% is 0.01, implying that

0[23 ~ 0.01 and O'g ~ (.01 x 0.02. Hence, O'% (1 +O‘%/O‘§) ~ (.51, which is less than o2. For

example, the median of o2 is around 1.21 in Study B and even larger in Study A. By the
necessary and sufficient condition in Corollary 2, the predictive variance of Study A is less than
that of Study B making the predict and more, not less certain. However, notice that o2 and A
vary from week—to—week in A, which may also lead to the paradox observed in the empirical
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Fig 10: Coverage probabilities over the 17 weeks of summer for: (a) 95% credible intervals at
Ungauged Site D; (b) 80% credible intervals at Ungauged Site C. These coverage probabilities
are computed for Study A: weekly data (solid bullet with solid line); Study B: Wiz (up—triangle
with dotted line); Study C: Wy.;7 but with fixed A* (square with dashed line); and Study D:
W .17 but with fixed A* and modified 77, 77 and 75 (empty circle with solid line).

findings of this section. For example, in panel (b) of Figure 10, the coverage probability for B at
the 4" week is larger than that for A. From the above discussion, we know that the predictive
variance of A should be less than that of B. However, o2 for A tends to larger than for B,
leading an inflated predictive variance for A. This feature makes it difficult to compare these
two predictive variances, but explains the paradox we see in those figures.

6. Concluding remarks. To assess the dynamic linear modeling (DLM) approach to map-
ping space—time fields, we have applied it to an hourly ozone concentration field over a geograph-
ical spatial domain covering most of the eastern United States and compared it to an older and
computational leaner approach to Bayesian spatial prediction (BSP; Le and Zidek 2006). Prac-
tical considerations forced us to focus on small clusters of sites including the one treated in this
paper, Cluster 2 during a single ozone summer season. The DLM was the primary focus of the
paper since it had already been proposed for modeling hourly ozone fields, albeit over Mexico
City (Huerta et al. 2004) implemented through MCMC sampling.

Our assessment reveals some difficulties with this very flexible approach and practical chal-
lenges that it presents. We also have made some recommendations for improvement.

A curious finding is the posterior dependence of A and ¢2, in contradiction to our prior assump-
tion. Although the very efficient method Huerta et al. (2004) propose for sampling the model
parameters is biased, that bias does not appear large enough to account for that phenomenon.
We also discovered that the assumption of their constancy over time is untenable.

One further Study D tests the proposed constraints on the data. The settings are identical
with those in Study C' except that 72, 7t and 75 are replaced by 77/17, 71 /17 and 75/17,
respectively, to take account of the longer 17 week time span of our study compared to the one
week time span of the application in Huerta et al. (2004). Figure 10 compares Study D with the
others. Observe that its coverage probabilities behave like those of Study A. This adjustment
does seem to eliminate the undesirable property of increasing credibility bands of Studies B
and C, albeit by an unreasonable modification of the model — and make the prior for these
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parameters depend on the time span of the study.

Another possible approach to dealing with the unsuitability of fixed model parameters uses the
composition of Metropolis—Hasting kernels. In other words, we could include these parameters in
the Metropolis—Hasting algorithm. We can use six Metropolis—Hasting kernels to sample from the
target distribution 7(~|y;.7), updating each component of = iteratively, where « was defined in
Section 2. But, not surprisingly that approach fails because of the extreme computational burden
it entails. However, that alternative is the subject of current work along with an approach that
admits time varying As and o°s.

The greatest difficulty involved in the use of the DLM in modeling air pollution space—time
fields lies in the computational burden it entails. For that reason, we have not been able to
address the geographical domain of real interest, one that embraces 274 sites in central and
eastern United States, with 120 days of hourly ozone concentrations. However, in a manuscript
under preparation, an alternative hierarchical Bayesian method that can cope with that larger
domain will be compared with the DLM where feasible.

Finally, given the sophistication of the DLM, the authors were surprised to find that the
BSP performed as least as well and in some cases better. This performance was achieved with
much lower computational demands, thereby making the BSP suitable for mapping over large
geographical domains. So while the BSP was introduced as a “sparring partner” in this paper,
it is the only method we can recommend at this time for spatial mapping in the context we have
considered. That finding led the authors to enhance the BSP and in particular, to put it into a
wholly Bayesian framework. The results are in a manuscript currently in preparation.

An anonymous reviewer supports the comparison of alternative approaches to a problem of
practical interest but raises the interesting issue that the results may strongly depend on the
details of how the approaches were implemented. We agree. That is why the authors did their
best to implement the method/model of Huerta et al. (2004), although neither the software used
by those authors, nor their data were available to us. Furthermore we were unable to obtain the
kind of weather data they used in their model. Nevertheless, our results are broadly in accord
with theirs. As for the BSP, it relies on published software and the approach described in Le
and Zidek (2006) so we did not have too much flexibility in our implementation of that method
either. Thus we did not have much latitude in our implementation of these methods. By making
our software for the DLM available such a comparison could well be replicated by others seeking
a spatio—temporal model for hourly ozone fields.

That reviewer also asserted that the comparison does not have a very meaningful purpose
since the main objective of the DLM is to model the temporal evolution; the spatial correlation
structures come as nuisance parameters so to speak. It is true the genesis of the DLM lay in
modeling time—series. However temporal models are now commonly combined over space to get
space—time models (Lemos, Sansd, and Los Huertos, 2007). Moreover Huerta et al. (2004) was
clearly meant to include spatial mapping (see their Figure 5) in their application. Indeed, it was
this feature that made this method so prospectively appealing to the authors. Finally, although
the BSP was originally intended for spatial modeling, it can be used for temporal forecasting.
In particular, in a companion report (Dou et al. 2009), the DLM and BSP are compared for
making the all-important, short term, 24-hour ahead ozone forecasts now common in urban
areas. Once again the latter is found to work at least as well or better than the former. So while
we are convinced of the value of the DLM approach, in some applications the simplicity of the
BSP may make it an advantageous alternative.

APPENDIX A: SUPPLEMENTARY RESULTS

A.1. Results for Theorem 2. Only the results about the predictive variances of yo1|y11
and yo1|y11,y12 are shown in this appendix. The other two cases can be obtained by the same
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method. Referring to Theorem 1, the predictive variance of yp1|y11 can also be written as follows:

d 1 — exp(—%o
Var(yoilynn) = (1-— eXP(—%))US #
1+ "02 u

The first partial derivatives of these predictive variances with respect to do;, A and o2 are
given by:

do 05—1—05—1—0 exp(— dOl)

2do1
Var = — &xp(— g
(yo1|y11) p( \ Jo? e UB+U5 + 02

A

o
Odo1

2do1 do1

o 0’ —1—05 + o2 exp(—%)
aVar (yo1ly11) = Ve exp(—T)JE p

O'ﬁ + 05 + 02
and
do1 9 052 + 20?3 + 20(%

9 do1
@Var(901|y11) = (1- eXP(_T)) {2 —- exp(_T))Us (02 + 05 +03)? }

do1 02(20% + 202 4 02)
> (1—exp(——2)) 42— 500 _F
A (UB—FJ(;-FJE)
1 —exp(—%)

A 2 22 | 4 2/ 2 2
2005 +05)" + 0+ 20-(05 +05) |,
(J%+U§+UE2)2{ ( B 6) € 5( B 6)}
respectively. It is straightforward to show that Var(yoi|yi1) is increasing when dy; increases, or
A decreases, or o2 increases. We next show these properties also hold for Var(yo1|y11,%12). By

Theorem 1, Var(yo1|y11, y12) can also be written as:

dot \\ 1 — exp(— %)
Var(yo1|y11,y12) = (1 — eXp(—T))Us 2 - ©Z o) (o2 oD)
02(03+203+02)

The corresponding first partial derivatives are given as follows:

2 do1, oA+ exp(—%)
v _ 2 _Go1\ o4 T EXP{—75")
Ddo; ar(yo1|y11, y12) b\ exp( \ )o? 1+ A
9 2do1 doi, oA+ exp(—%)
oo var (yoily11,y12) = ESVE eXp(_T)JEH—A
and
d doy o2
%Vﬁr(ym\yn,wz) = (1- eXp(_%)) {2 - (1= eXp(_%))jf (erd = 0203)}
1 —exp(— dm)
T%
(05 +03) (03 +02)

: _ _ 2 2, 2 . _ 2., 92  _ 2 202, 2
respectively, where A = m, c1 =05+205+0Z, co =05+05, c3 =050 +0; (o5+07)

and ¢y =0 Cl(QO'ﬁ + 302 + 02) + 02cy(02 + o )(305 + 602 + 402) + 3(02 + 02).
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A.2. Results for Equations (2.29)—(2.30). Given the values of phase parameters, range
as well as variance parameters and the observations until time ¢, the joint distribution of aj,, a1,

is
afy ~N af 1 2 25wy
() on( i)t

211(0)  Xix(0)
3*(0) = exp{-V*/0} = 1 12 )
(0) = exp{=V"/6} l 5(0) S5,(0)
with ¥7,(6) a scalar, 375(0) a 1 by n vector and 23,(0) a n by n matrix. We use V* to denote
the new distance matrix for the unknown site s and the monitoring stations si,...,s,.
We then have the conditional posterior distribution of af; as follows:

where

(CM‘{”OK{ t—lﬂaltaal,tfl’Yta)"Oz) ~ N[CM‘{ t—1 +2T2()‘1)E§2()‘1)_1(a1t - al,tfl)’
(A1) , :
o*1E (811 (A1) — Bia (A1) s (M) 715, (M)

Similarly, the conditional posterior distribution for a3, is

(agilas, 1,00 a0 1,y 0%) ~ Nlag, |+ (M) B5(Ae) H(aar — ay1),

(A.2) o273 (2 (A2) — B (A2) i (A2) 125, (M)

Using the observation equation as in (2.1), we have the conditional predictive distribution for
y; as follows:

(Wi lye, iy a8y, g, o, Br, A, 0?)  ~ N[By + Sis(ar)as, + Sar(az)as,
+31 (N5 (N Hyy — 1
—S1(ar)os — Sar(az) o),
a? (311 (A) = BN B (N) 125, (V)]
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