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VARIABLE SELECTION AND REGRESSION ANALYSIS
FOR GRAPH-STRUCTURED COVARIATES WITH AN

APPLICATION TO GENOMICS

By Caiyan Li∗ and Hongzhe Li∗,†

University of Pennsylvania School of Medicine

Graphs and networks are common ways of depicting informa-
tion. In biology, many different biological processes are represented by
graphs, such as regulatory networks, metabolic pathways and protein-
protein interaction networks. This kind of a priori use of graphs is a
useful supplement to the standard numerical data such as microarray
gene expression data. In this paper, we consider the problem of re-
gression analysis and variable selection when the covariates are linked
on a graph. We study a graph-constrained regularization procedure
and its theoretical properties for regression analysis to take into ac-
count the neighborhood information of the variables measured on a
graph, where a smoothness penalty on the coefficients is defined as
a quadratic form of the Laplacian matrix associated with the graph.
We establish estimation and model selection consistency results and
provide estimation bounds for both fixed and diverging numbers of
parameters in regression models. We demonstrate by simulations and
a real dataset that the proposed procedure can lead to better variable
selection and prediction than existing methods that ignore the graph
information associated with the covariates.

1. Introduction. There has been a growing interest in penalized least
squares problems via L1 or other types of regularization, especially in high-
dimensional settings. Important penalty functions that can lead to sparse
variable selection in regression include Lasso (Tibshirani, 1996) and SCAD
(Fan and Li, 2001). In particular, Lasso has the crucial advantage of being
a convex problem, which leads to efficient computational algorithms by co-
ordinate descent (Efron et al., 2004; Friedman et al., 2007; Wu and Lange,
2008) and sparse solutions. Zou (2006) proposed a novel adaptive Lasso
procedure and presented results on model selection consistency and oracle
properties of the parameter estimates. Zhao and Yu (2006) presented the
irrepresentable condition for model selection consistency of Lasso. Zhang
and Huang (2006) studied the sparsity and bias of the Lasso selection in
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high-dimensional linear regression. Fan and Li (2001) and Huang and Xie
(2007) established the asymptotic oracle properties of the SCAD-penalized
least squares estimators when the number of covariates is fixed or increases
with the sample sizes. These novel penalized estimation methods are quite
effective in selecting relevant variables and in predicting future outcomes,
especially in high-dimensional settings.

New estimation procedures have also been developed in recent years to
account for certain structures of the explanatory variables. These include the
group Lasso procedure (Yuan and Lin, 2006) when the explanatory variables
are grouped or organized in a hierarchical manner, the elastic net (Enet) pro-
cedure (Zou and Hastie, 2005) that deals with groups of highly correlated
variables, and the fused Lasso (Tibshirani et al., 2005) that imposes the L1

penalty on the absolute differences of the regression coefficients in order to
account for some smoothness of the coefficients. Nardi and Rinaldo (2008)
established the asymptotic properties of the group Lasso estimator for linear
models. Jia and Yu (2008) provided conditions for model selection consis-
tency of the elastic net when p >> n. Zou and Zhang (2009) proposed an
adaptive elastic net with a diverging number of parameters and established
its oracle property. Among these procedures, the Enet regularization and the
fused Lasso are particularly appropriate for the analysis of genomic data,
where the former encourages a grouping effect and the latter often leads to
smoothness of the coefficient profiles for ordered covariates.

Motivated by a genomic application in order to account for network infor-
mation in the analysis of genomic data, Li and Li (2008) proposed a network-
constrained regularization procedure for fitting linear regression models and
for variable selection, where the predictors in the regression model are ge-
nomic data that are measured on the genetic networks, which we call the
graph-structured covariates. In particular, we assume that the covariates in
the regression model are values of the nodes on a graph, where a link be-
tween two nodes may indicate a functional relationship between two genes
in genetic network or physical neighbor between two voxels on brain im-
ages. Since many biological networks are constructed using data from high-
throughput experiments, often there is a probability associated with an edge
to indicate the certainty of a link. Such an edge probability can be used as
a weight in undirected graph, in which case we have a weighted graph. This
graph-constrained regularization procedure is similar in spirit to the fused
Lasso (Tibshirani et al., 2005), both of which try to smooth the regression
coefficients in certain ways. However, the fused Lasso does not utilize prior
graph information. Second, instead of using the L2 norm on the differences
of the coefficients of the linked variables, the fused Lasso uses the L1 norm

imsart-aoas ver. 2009/08/13 file: Net-Regression-AOAS-rev.tex date: October 15, 2009



VARIABLE SELECTION FOR GRAPH COVARIATES 3

on the differences, which tends to lead to the same regression coefficients for
linked variables. In this paper, we consider the general problem of regression
analysis when the explanatory variables are nodes on a graph and present a
cyclical coordinate descent algorithm (Friedman et al., 2008) to implement
the network-constrained regularization procedure of Li and Li (2008). This
algorithm provides new insight on how neighboring variables affect the coef-
ficient estimate of a node. We also extend the procedure of Li and Li (2008)
to account for the possibility of different signs of the regression coefficients
for neighboring variables. In addition, we provide theoretical results of the
estimates, including sign consistency and error bounds of the estimator and
L2 consistency.

This paper is organized as follows. In Section 2, we describe the problem
of regression analysis with covariates measured on graphs. We then present
a graph-constrained estimation (Grace) procedure in order to account for
the graph structures in Section 2.1 and an efficient coordinate descent algo-
rithm to implement the proposed regularization methods in Section 2.3. We
present the estimation and model selection consistency results in Section 3.
We provide Monte Carlo simulation results in Section 4 and results from the
application to the analysis of a dataset on the gene expression of brain aging
in Section 5. Finally, we give a brief discussion of the methods and results.

2. Regression Analysis for Covariates Measured on a Graph.
Consider a weighted graph G = (V, E, W ), where V = {1, · · · , p} is the
set of vertices that correspond to the p predictors, E = {u ∼ v} is the
set of edges indicating that the predictors u and v are linked on the graph
and there is an edge between u and v, and W is the set of weights of the
edges, where w(u, v) denotes the weight of edge e = (u ∼ v). In genomic
studies, biological networks are often represented as graphs, an edge between
u and v on the graph can indicate some functional relationship between
them and the weight can be used to measure the uncertainty of the edge
between two vertices, for example, indicating the probability of having an
edge between two variables when the graph is constructed from data. For
each given sample, we assume that we have numerical measurements on each
of the vertices and these measurements are treated as explanatory variables
in a regression analysis framework. For the uth node, let xiu be the numerical
measurement of the uth vertex on the graph for the ith individual. Further,
let xu = (x1u, · · · , xnu)T be the measured values at the uth vertex for n
i.i.d. samples. Consider the problem of variable selection and estimation
where we have design matrix X = (x1, x2, ..., xp) ∈ Rn×p and response vector
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y = (y1, y2, · · · , yn)T ∈ Rn, and they follow a linear model

(2.1) y = Xβ + ε,

where ε = (ε1, ..., εn)T ∼ N(0, σ2In) and β = (β1, ..., βp)
T . Throughout this

paper we assume that the predictors and the response are centered so that

n∑

i=1

yi = 0,
n∑

i=1

xij = 0, and
1

n

n∑

i=1

x2
ij = 1 for j = 1, . . . , p.

In this paper, we consider that the design matrix X is a deterministic matrix
in the fixed design settings.

When p is large, we assume that model (2.1) is “sparse”, i.e., most of
the true regression coefficients β are exactly zero. Without loss of generality
we assume the first q elements of vector β are non-zeroes. Denote β(1) =

(β1, ..., βq)
T and β(2) = (βq+1, ..., βp)

T , then element-wise β(1) 6= 0 and β(2) =
0. Now write X(1) and X(2) as the first q and last p − q columns of X,

respectively, and let C = 1
n
XT X, which can then be expressed in the following

block-wise form:

C =

(

C11 C12

C21 C22

)

.

The goal of this paper is to develop a regularization procedure for selecting
the true relevant variables. Different from the existing approaches, we par-
ticularly account for the fact that the explanatory variables are related on
a graph. We make this more precise in the next Section.

2.1. Graph-constrained regularization and variable Selection. In order to
account for the fact that the p explanatory variables are measured on a
graph, we first introduce the Laplacian matrix (Chung, 1997) associated
with a graph. Let the degree of the vertex v be dv =

∑

u∼v w(u, v). We say
u is an isolated vertex if du = 0. Following Chung (1997), we define the
Laplacian matrix L for graph G with the uvth element defined by

(2.2) L(u, v) =







1− w(u, u)/du if u = v and du 6= 0
−w(u, v)/

√
dudv if u and v are adjacent

0 otherwise.

It is easy to verify that this matrix is positive semi-definite with 0 as the
smallest eigenvalue and 2 as the largest eigenvalue when all the weights are
1 (Chung, 1997). To allow the matrix to change with n, we further express
this matrix in block-wise form,

L =

(

L11 L12

L21 L22

)

,
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where L11 corresponds to the q nodes that are relevant to the response and
L22 corresponds to the p− q nodes that are not relevant.

The Laplacian matrix has the following interpretations. For a given vector
β, the edge derivative of β along the edge e(u, v) at u is defined as

∂β

∂e

∣
∣
∣
u

=
√

w(u, v)

(
βu√
du

− βv√
dv

)

,

and therefore the local variation of β at u can be measured by

√

∑
(

∂β

∂e

∣
∣
∣
u

)2

.

The smoothness of vector β with respect to the graph structure can be
expressed as

βT Lβ =
∑

u∼v

(
βu√
du

− βv√
dv

)2

w(u, v).

This variation functional for vectors β penalizes vectors that differ too much
over nodes that are linked. It contains a scaling by

√
du. One intuitive reason

for such a scaling is to allow a small number of nodes with large du to
have more extreme values of βu while the usually much greater number of
nodes with small du should not ordinarily allow to have very large βu. This
variation functional has been widely used in semi-supervised learning on
graphs (Zhu, 2005; Zhou et al., 2004).

For many problems with covariates measured on a graph, we would expect
that the neighboring variables are correlated and therefore the regression
coefficients would show some smoothness. One way to account for such a
dependence of the regression coefficients is to impose a Markov random field
(MRF) prior to the collection of β vectors. The MRF decomposes the joint
prior distribution of the βu’s into lower-dimensional distributions based on
the graph-neighborhood structures. A common MRF model is the Gaussian
MRF model that assumes that the joint distribution of β is given by

f(β) ∝ exp

{

− 1

2σ2
βT Lβ

}

,

which is an improper density. Based on this Gaussian MRF prior assump-
tion, Li and Li (2008) introduced the following graph-constrained estimation
of the regression coefficients, denoted by β̂,

(2.3) β̂ = argminβ Q(β, λ1, λ2)
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where

Q(β, λ1, λ2) = ||y −Xβ||22 + λ1||β||1 + λ2β
T Lβ,

= (y −Xβ)T (y −Xβ) + λ1

∑

u

|βu|

+λ2

∑

u∼v

(
βu√
du

− βv√
dv

)2

w(u, v),

where L is the Laplacian as defined in (2.2) and the tuning parameters λ1, λ2

control the amount of regularization for sparsity and smoothness. For the
special case when λ2 = 0, the estimate reduces to the Lasso, and when L is
the identity matrix, the estimate reduces to the elastic net estimates.

2.2. An adaptive graph-constrained regularization. The Grace procedure
may not perform well when two variables that are linked on the graph have
different signs in their regression coefficients, in which case the coefficients
are not expected to be locally smooth. For example, for genetic networks, two
genes might be negatively correlated with the phenotypes and are therefore
expected to have different signs in their regression coefficients. In order to
account for the sign differences, we can first perform a standard least square
regression when p < n or the elastic net regression when p ≥ n and denote
the estimate as β̃. We can then modify the above objective function as

Q∗(λ1, λ2, β) = ||y −Xβ||22 + λ1||β||1 + λ2β
T L∗β,

= ||y −Xβ||22 + λ1

p
∑

j=1

|βj |

+λ2

∑

u∼v

(

sign(β̃u)βu√
du

− sign(β̃v)βv√
dv

)2

w(u, v),

where

L∗(u, v) =







1− w(u, u)/du if u = v and du 6= 0

−sign(β̃u)sign(β̃v)w(u, v)/
√

dudv if u and v are adjacent
0 otherwise.

Note that the L∗ matrix is still positive semi-definite. We call the β defined
by

β̂ = argminβ Q∗(β, λ1, λ2)(2.4)

the adaptive Grace (aGrace).
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2.3. A Coordinate Descent Algorithm. Friedman et al. (2008) presented
a coordinate descent algorithm for solving the Lasso and the Enet regu-
larization. In this section, we develop a similar algorithm for the proposed
graph-constrained regularization. We only present the detailed algorithm for
the optimization problem defined by equation (2.3). Similar algorithms can
be developed by the aGrace defined by (2.4). If we let λ = (λ1 + 2λ2)/2n
and α = λ1/(λ1 + 2λ2), the Grace can be written as

(2.5) β̂(λ, α) = argminβ

{

R(β) :=
1

2n
||y −Xβ||22 + λPα(β)

}

,

where

Pα(β) := (1−α)
1

2
βT Lβ+α||β||1 = (1−α)

1

2

∑

u∼v

(
βu√
du

− βv√
dv

)2

+α
p
∑

u=1

|βu|

is the graph-constrained penalty function.
Given a covariate xu, suppose we have estimated β̃v for v 6= u, and we

want to partially minimize the objective function with respect to βu. We
can rewrite the objective function in (2.5) as

R(β) =
1

2n

∑

i=1

(yi −
∑

v 6=u

xivβ̃v − xiuβu)2 + λ(1− α)
1

2

∑

v∼u

(

βu√
du

− β̃v√
dv

)2

+ λα|βu|+ λ(1− α)
1

2

∑

w∼v
w,v 6=u

(

β̃w√
dw

− β̃v√
dv

)2

+ λα
∑

w 6=u

|β̃w|.

We would like to compute the gradient at βu, which only exists when βu 6= 0.
We first consider the case that the covariate u is connected to some other
nodes (variables) on the network. If βu > 0, due to the standardization of the
covariates, we can differentiate the objective function R(β) with respective
to βu as

∂R

∂βu
= −




1

n

∑

i=1

xiu(yi −
∑

v 6=u

xivβ̃v) + λ(1− α)
∑

v∼u

β̃v√
dudv



+λα+[1+λ(1−α)]βu.

Similarly, we can get the corresponding expression when βu < 0. Following
the calculus by Donoho and Johnstone (1994) and Friedman et al. (2007),
we obtain the coordinate-wise update form for βu as

β̃u ←
S
(

1
n

∑

i=1 xiu(yi − ỹ
(u)
i ) + λ(1− α)

∑

v∼u
β̃v√
dudv

, λα
)

1 + λ(1− α)
,(2.6)
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where
• ỹ

(u)
i =

∑

v 6=u xivβ̃v is the partial residual for fitting βu, i.e., the fitted
value excluding the contribution from xiu. Since the covariates are standard-
ized, 1

n

∑

i=1 xiu(yi−
∑

v 6=u xivβ̃v) is the simple least-squares coefficient while
fitting the partial residual to xiu, i = 1, · · · , n.
• S(z, γ) is the soft-thresholding operator with value

sign(z)(|z| − γ)+ =







z − γ if z > 0 and γ < |z|
z + γ if z < 0 and γ < |z|
0 otherwise.

When covariate u is not connected to other nodes on the network, i.e.,
when it has no neighbors, the corresponding coordinate-wise updating for-
mula becomes the Lasso updating formula, that is

β̃u ← S

(

1

n

∑

i=1

xiu(yi − ỹ
(u)
i ), λα

)

.(2.7)

Comparing the two updated forms of (2.6) and (2.7), an intuitive expla-
nation can be drawn to help understand the effect of the graph-constraint
penalty on the coefficients. For an isolated predictor, the graph penalty is
vanished and thus we only apply a soft-thresholding for the Lasso penalty.
While for a connected predictor, form (2.6) takes into account the graph-
constraint to the penalty by adding the scaled summation of the coefficients
of the neighboring covariates to the simple least-squares coefficient and ap-
plying a proportional shrinkage for the graph penalty.

Given α, we can compute the solution path for a decreasing sequence of
values for λ, starting from the smallest value λmax for which there is no
covariate selected, i.e., β̂ = 0. Similarly to Friedman et al. (2007), we can
set λmax = maxl| < xl, y > |/nα, λmin = ǫλmax and construct a sequence of
K values of λ decreasing from λmax to λmin on the log scale. Typical values
are ǫ = 0.001 and K = 100. Cross-validation (CV) can be used to select the
two tuning parameters α and λ.

3. Error Bound and Model Selection Consistency for Fixed and
Diverging p. In this section, we provide some theoretical results on the
proposed Grace procedure, including the error bounds, L2 consistency of
Grace and the model selection consistency for both fixed and diverging p
when p tends to infinity with the sample size n. Our theoretical development
follows that of Zhao and Yu (2006), Jia and Yu (2008) and Zou and Zhang
(2009) on sign consistency of Lasso and adaptive elastic net estimates. In our
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theoretical analysis, we assume the following regularity conditions through-
out:

A1. We use Λmin(M) and Λmax(M) to denote the minimum and maximum
eigenvalues of a positive definite matrix M, respectively. We further assume
that C = 1

n
XT X is positive definite and

b ≤ Λmin(C) ≤ Λmax(C) ≤ B

where b and B are two positive constants that do not depend on n.

A2. 1
n
max1≤i≤n

∑p
j=1 x2

ij → 0, as n→∞.

These two conditions assume that the predictor matrix has a reasonably
good behavior and were also assumed in Zhao and Yu (2006) and in Zou
and Zhang (2009). Condition (A1) is also the condition (F) in Fan and Peng
(2004) and condition (A2) ensures that the rows of the matrix X behave like
a sample from a probability distribution in Rp (Portnoy, 1984). These two
conditions hold naturally if one assumes that xi are i.i.d with finite second
moments.

3.1. Error bound and L2-consistency of Grace. We first provide the fol-
lowing non-asymptotic risk bound for the Grace of the regression coefficients
defined by (2.1) for any p and n:

Theorem 3.1. Given the data (y, X), define the Grace as

β̂(λ1, λ2) = argminβ {||y −Xβ||22 + λ1||β||1 + λ2β
T Lβ},

for non-negative tuning parameters λ1 and λ2. Then under the regularity
condition (A1), we have

(3.1) E(||β̂(λ1, λ2)− β||22) ≤
4λ2

2Λ
2
max(L)||β(1)||22 + 4pnBσ2 + 2λ2

1p

n2Λ2
min(C + λ2

n
L)

.

The proof of this theorem is given in the Supplemental Materials. Note
that this result is not asymptotic and holds for any p and q < p. From this
theorem, under the regularity assumption (A1) and the following further
assumptions on p and the tuning parameters λ1, λ2,

A3. limn→∞
p
n

= 0,

A4. limn→∞
λ1

√
p

n
= 0,
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A5. limn→∞
λ2
n

= 0 and limn→∞
λ2||β(1)||2

n
= 0,

we have
||β̂(λ1, λ2)− β||22

P−→ 0,

which implies that the Grace of β is L2 consistent. This result implies that
the Grace procedure chooses the important variables with high probability
and that falsely chosen variables by Grace have very small coefficients. The
L2 consistency result suggests that we may use some hard-thresholding pro-
cedure to further eliminate the variables with very small Grace coefficients.
Alternatively, an interesting randomized selection procedure proposed by
Bickel et al. (2008) can be used to further eliminate the variables with small
estimated Grace coefficients. Note that under the classical setting where
p, q and βi are all fixed as n → ∞, the assumptions A3-A5 hold when
λi/n→∞, i = 1, 2.

3.2. Model selection consistency when p is fixed. We next establish the
results on model selection consistency for the standard case where p and q
are fixed when n→∞. Following Zhao and Yu (2006), we define the Grace
of β to be sign consistent if there exists λ1 and λ2 as functions of n such
that

lim
n→∞Pr(sign(β̂(λ1, λ2)) = sign(β)) = 1.

To establish the sign consistency of the Grace, we first provide the following
graph-constrained irrepresentable condition (GC-IC): there exists η > 0 and
λ1 > 0, λ2 > 0, such that

∣
∣
∣

(

C21 +
λ2

n
L21

)(

C11 +
λ2

n
L11

)−1 [

sign(β(1)) +
2λ2

λ1
L11β(1)

]

− 2λ2

λ1
L21β(1)

∣
∣
∣

≤ 1− η,(3.2)

where 1 is a vector of 1’s with length p−q and the inequality holds element-
wise. Further, we assume that C → C0, where C0 is positive definite. The
GC-IC is a consequence of the Karush-Kuhn-Tucker (KKT) conditions for
the following constrained optimization problem that corresponds to the pe-
nalized optimization problem of equation (2.5),

β̂(λ, α) = argminβ

{
1

2n
||y −Xβ||22 : Pα(β) ≤ λ

}

.

Theorem 3.2. For fixed p, q and β, if C → C0, where C0 is positive
definite and condition (A.2) holds, the graph-constrained estimate is sign
consistent if and only if GC-IC (3.2) holds for λ1, λ2 that satisfy λ1/

√
n→

∞ and λi/n→ 0, for i = 1, 2.
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This theorem is a special case of Theorem 3.3 and its proof is similar
to that of Zhao and Yu (2006) for Lasso estimates. We therefore omit its
proof in this paper. Note that the required conditions on the sparsity tuning
parameter λ1 are the same as those for the Lasso (Zhao and Yu, 2006), for
example, λ1 =

√
n log n is a suitable choice. This theorem indicates that

under some restrictive conditions of the design matrix and the Laplacian
matrix of the network, the sign consistency property holds for the graph-
constrained regularization. To gain further insight into GC-IC, consider the
special cases when λ2 is preselected and fixed and when λ1 goes to infinity,
the GC-IC reverses back to the irrepresentable condition for the Lasso given
in Zhao and Yu (2006) and the graph-constrained penalty function λ1||β||1+
λ2β

T Lβ = λ1(||β||1 + λ2
λ1

βT Lβ) is reduced to the Lasso penalty.

3.3. Model selection consistency when p diverges. We now consider the
model selection consistency of the graph-constrained regularization proce-
dure under the settings when the number of covariates p also goes to infinity
as n→∞, in which case, the assumptions and the regularity conditions for
Theorems 3.1 and 3.2 become inappropriate as C does not converge and β
may change as n grows. The following theorem shows that for the general
scalings when p, q and n all go to infinity, under some additional conditions
between p, q and n, GC-IC also guarantees that the Grace is sign consistent
in selecting the true model.

Theorem 3.3. Suppose each column of X is normalized to L2-norm
of n and GC-IC (3.2) holds. Define ρ := min|(C11 + λ2

n
L11)

−1(C11β(1))|
and Cmin = Λmin(C11), where Λmin(.) denotes the minimal eigenvalue. Let
Wmax = maxu,v{w(u, v)}. If λ1 and λ2 are chosen such that
(a). If L12 = 0,

λ2
1

n log(p− q)
→∞,

or if L12 6= 0,
λ2

1

log(p− q)
(

n +
λ2
2W 2

max

nCmin

) →∞;

(b). 1
ρ

{√
log q

nCmin
+ λ1

n

∣
∣
∣

∣
∣
∣

(

C11 + λ2
n

L11

)−1
sign(β(1))

∣
∣
∣

∣
∣
∣
∞

}

→ 0,

then the Grace β̂(λ1, λ2) is sign consistent as n→∞.

A proof analogous to Jia and Yu (2008) can be found in Supplemental
Materials. Theorem 3.3 gives a general sign consistency result for the Grace
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for general scalings of p, q and n. If Cmin ≥ α for some α > 0 and ρ ≤ ρ0

for some ρ0 > 0, it is easy to check that the conditions log q/n → ∞ and
λ1
√

q/n → 0 guarantee that condition (b) in Theorem 3.3 holds. In the
settings when p and q are fixed, if C11 converges to a non-negative definite
matrix C110, ρ converges to a non-negative number. In addition, it is easy
to verify that the conditions in Theorem 3.2 guarantee that the conditions
(a) and (b) in Theorem 3.3 hold.

4. Monte Carlo Simulations. We conducted Monte Carlo simula-
tions to evaluate the proposed Grace and aGrace procedures and to com-
pare the performance of this procedure with Lasso and Enet in terms of
prediction errors and identification of relevant variables. We simulated the
graph to mimic gene regulation modules. We use genes and variables in-
terchangeably in this section. We assumed that the graph consisted of 200
unconnected regulatory modules with 200 transcription factors (TFs) and
each regulates 10 different genes for a total of 2,200 variables. Among these
modules and genes, we further assumed that four TFs and their 10 regulated
genes (for a total of 44 variables) were associated with the response based
on the following model

Y =
44∑

u=1

βuXu + ǫ.(4.1)

We considered two different models. For the first model, we assume that
the coefficients in model (4.1) were specified as

β = (2,
2√
10

, . . . ,
2√
10

︸ ︷︷ ︸

10

,−2,
−2√
10

, . . . ,
−2√
10

︸ ︷︷ ︸

10

, 4,
4√
10

, . . . ,
4√
10

︸ ︷︷ ︸

10

,

−4,
−4√
10

, . . . ,
−4√
10

︸ ︷︷ ︸

10

, 0, ..., 0),

and the ǫ was random mean-zero normal error with variance σ2 =
∑

u β2
u/4.

For each TF, the X value was simulated from a N(0, 1) distribution, and
conditional on the value of the TF, we simulated the expression levels of
the genes that they regulated from a conditional normal distribution with
correlations of 0.2, 0.5 and 0.9, respectively. We therefore had a total of
2200 variables and 44 of them were relevant. For the second model, we
considered the case when the regulated genes had different signs in regression
coefficients, where the regression coefficients in model (4.1) have the same
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Table 1

Comparison of prediction mean-square errors (SE) using Grace, aGrace, Enet and Lasso
for three different correlation structures of 0.2, 0.5 and 0.9 between the transcription

factors and their regulated genes for each of the two models considered. The results are
based on 100 replications.

Model 1 (Cor) Model 2 (Cor)
Method 0.2 0.5 0.9 0.2 0.5 0.9

Grace 24.93 23.22 22.56 53.08 42.07 28.20
(2.97) (2.41) (2.20) (6.45) (5.03) (2.87)

aGrace 24.93 23.22 22.56 27.70 26.23 25.55
(2.97) (2.41) (2.20) (3.66) (3.03) (2.76)

Enet 51.33 37.37 25.82 56.18 45.65 27.33
(6.65) (4.69) (2.67) (7.22) (5.81) (2.72)

Lasso 53.41 40.30 27.82 57.62 47.65 29.23
(6.68) (4.94) (2.98) (7.01) (5.53) (2.78)

absolute values as in Model 1, but for each simulated module, three out of
the 10 genes regulated by the TF had different signs from the other 7 genes.
The X values were generated in the same way as in previous simulations.
In this model, genes that are regulated by the same transcription factor are
assumed to have different regression coefficients.

For each model, our simulated data consisted of a training set, an inde-
pendent validation set and an independent test set with a sample size of
200 for all three datasets. Models were fitted on training data only, and the
validation data were used to select the tuning parameters. We computed the
prediction mean-squared errors on the test dataset. For each model, we re-
peated the simulations 100 times. Table 1 shows the prediction mean-square
errors for several different procedures. For Model 1 when the neighboring
genes have the same signs in regression coefficients, we observed that the
Grace gave the smallest prediction errors for all four models with different
correlations among the predictors. Both Grace and Enet performed better
than Lasso in prediction. When the correlation is very high, the prediction
errors of these procedures were comparable, however, Grace still gave the
smallest prediction error among the procedures compared. When the signs
of the regression coefficients were the same, aGrace was reduced to Grace
and gave the same prediction results. For Model 2 when the neighboring
variables have different sings of coefficients, aGrace adjusting for the signs
of the regression coefficients gave the smallest prediction errors, further in-
dicating the importance of adjusting for the signs in the regularization. In
general, Grace gave similar prediction results as the Enet, except when the
correlation between the transcription factors and their regulated genes was
very high, in which case Enet resulted in slightly smaller prediction error.
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To compare the performance on variable selection, Figure 1 shows the re-
ceiver operating characteristic (ROC) curves of several different procedures
in selecting the relevant variables for the models with correlation of 0.2 and
0.9 between the TF and their regulated genes. For Grace, aGrace and Enet,
the ROC curves were obtained as a function of the sparsity parameter λ1

with tuning parameter λ2 selected based on 5-fold cross-validation among
the values of 0.1, 1, 10, 100 and 1000. For Model 1 when the neighbor-
ing genes have the same signs in regression coefficients (Figure 1 plots (a)
and (b)), Grace gave much larger areas under the ROC cruves than Enet
and Lasso, indicating better performance in variable selection for Grace. In
addition, five-fold cross validation always chose the largest λ2 = 1000 for
Grace and λ2 = 0.1 for Enet in all 100 replications. For Model 2 when the
neighboring variables have different sings of coefficients, aGrace adjusting
for the signs of the regression coefficients performed better than the other
three procedures compared, resulting in larger areas under the curves, and
Grace still performed better than Lasso and Enet on variable selections in
both low and high correlation scenarios. When the correlation among the
relevant variables is low, the 5-fold CV selected λ2 = 1000 for aGrace and
λ2 = 0.1 for Enet in all 100 replications and selected λ2 = 100 for Grace in
most of the replications. When the correlation among the relevant variables
was high, the 5-fold CV selected λ2 = 1000 for aGrace and λ2 = 100 for
Grace in most of the 100 replications and selected λ2 = 0.1 for Enet in all
the replications.

5. Application to Network-based Analysis of Gene Expression
Data. To demonstrate the proposed method, we consider the problem of
identifying age-dependent molecular modules based on the gene expression
data measured in human brains of individuals of different ages published
in Lu et al.(2004). In this study, the gene expression levels in the post-
mortem human frontal cortex were measured using the Affymetrix arrays
for 30 individuals ranging from 26 to 106 years of age. To identify the aging-
regulated genes, Lu et al. (2006) performed simple linear regression analysis
for each gene with age as a covariate. We analyzed this dataset by combining
the KEGG regulatory network information with the gene expression data
(Kanehisa and Goto, 2002). In particular, we limited our analysis to the
genes that can be mapped to the KEGG regulatory work and focused on
the problem of identifying the subnetworks of the KEGG regulatory network
that are associated with human brain aging. By merging the gene expres-
sion data with the KEGG regulatory pathways, the final KEGG network
includes 1305 genes and 5288 edges.
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Fig 1: Comparison of ROCs for Grace, aGrace, Enet and Lasso for Model 1
(plots (a) and (b)) and Model 2 (plots (c) and (d)) and for correlations of 0.2
(plots (a) and (c)) and 0.9 (plots (b) and (d)). The ROCs were calculated
as a function of the sparsity parameter λ1. For Grace, aGrace and Enet, the
tuning parameter λ2 was selected based on 5-fold CV.
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Table 2

Results of analysis of brain aging gene expression data by four different procedures,
including the number of genes selected (No. Genes), the number of linked KEGG edges
(No. Edges), five-fold cross-validation error (CV error) and the values of the tuning

parameters selected (λ2 for Grace, aGrace and Enet and s1 =
∑

v
|βv|.)

No. Genes No. Edges CV error Tuning parameters

Grace 45 9 0.079 λ2=0.1, s1= 4.72
aGrace 73 28 0.077 λ2=0.01, s1=6.97
Enet 41 10 0.077 λ2=1.0,s1=5.64
Lasso 18 0 0.098 s1=5.65

We treated the logarithm of the individual age as the response variable
and the expression levels (after log10 transformation) of 1305 genes on the
KEGG network as the explanatory variables in our analysis. Table 1 shows
the results of several different procedures where the tuning parameters were
selected by five-fold cross validations. Overall, we observed that the Lasso
selected the fewest number of genes with relatively large cross-validation
errors and Grace and Enet selected roughly the same number of genes with
similar CV errors. However, the adaptive Grace resulted in more identi-
fied genes with similar CV errors than the other two procedures. Figure 2
shows the subnetworks identified by four different estimation procedures. As
a comparison, we also included the genes selected by Lasso although it did
not select any linked pairs of genes on the KEGG network. It is interesting to
note that as we impose more constraints on the regression coefficients, more
linked genes are identified. Both Enet and Grace identified some common
subnetworks that were associated with brain aging. These included fibrob-
last growth factors (FGF) and its receptors. It has been demonstrated that
FGFs are associated with many developmental processes including neural
induction (Bottcher and Niehrs, 2005) and are involved in multiple func-
tions including cell proliferation, differentiation, survival and aging (Yeoh
and de Haan, 2007). It is also interesting to observe that mitogen-activated
protein kinase (MAPK) (MAPK1 and MAPK9) and the specific MAPK ki-
nase (MAP2K) were also identified by Enet and Grace. The MAPKs play
important roles in induction of apoptosis (Hayesmoore et al., 2008). Other
interesting genes include RAS protein-specific guanine nucleotide-releasing
factor 1 (RASGRF1), the functionality of which is highly significant in vari-
ous contexts of the central nervous system. In the hippocampus, RASGRF2
has been shown to interact with the NR2A subunits of NMDARs, trigger-
ing Ras-ERK activation and induction of long-term potentiation, a form of
neuronal plasticity that contributes to memory storage in the brain (Tian
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Fig 2: Subnetworks identified by (a) Elastic net (Enet), (b) Grace and (c)
aGrace for brain aging gene expression data (only those genes that are linked
on the KEGG network are plotted).
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et al., 2004; Lu et al., 2004). Finally, the insulin receptor gene (INSR) is
also identified. INSR binds insulin (INS) and regulates energy metabolism.
Evidence from model organisms, including results from fruit flies (Tatar et
al., 2001) and roundworms (Kimura et al., 1997), relates INSR homologues
to aging, most likely as part of the GH1/IGF1 axis. These results indicated
that our method can indeed recover some biologically interesting molecular
modules or KEGG subnetworks that are related to brain aging in humans.

It is important to point out that the adaptive Grace identified several
small sets of connected genes that were missed by Enet or the standard
Grace. One of the subnetworks included EPHRIN and Eph receptor, both
of which were found to be related to neural development and entohino-
hippocampal axon targeting (Flanagan and Vaderhaeghen, 1998; Stein et
al., 1999). Another subnetwork was part of the Jak-State signaling, which is
important in both mature and aging brains (De-Frajaa et al., 2000). Aging
was also found to be associated with increased human T cell CC chemokine
receptor gene expression (Yung et al., 2003). Other interesting subnetworks
included PVRL3-PVRL1 that are associated with cell adhesion.

6. Discussion. We have introduced and studied the theoretical proper-
ties of a graph-constrained regularized estimation procedure for linear regres-
sions in order to incorporate information coded in graphs. Such a regulariza-
tion procedure can also be regarded as a penalized least squared estimation
where the penalty is defined as a combination of the L1 penalty and L2

penalty on degree-scaled differences of coefficients between variables linked
on the graphs. This penalty function induces both sparsity and smoothness
with respect to the graph structure of the regression coefficients. Simulation
studies indicated that when the coefficients are similar for variables that are
neighbors on the graph, the proposed procedure has better prediction and
identification performance than other commonly used regularization proce-
dures such as Lasso and elastic net regressions. Such improvement is resulted
from effectively utilizing the neighboring information in estimating the re-
gression coefficients. If the smoothness assumption on the coefficients does
not hold, we expect that the cross-validation selects a very small value of λ2

and therefore the proposed procedure would perform similarly as the Lasso.
In analysis of the brain ageing gene expression data, different from Lasso,
the new procedure tends to identify set of linked genes on the networks,
which often leads to better biological interpretation of the genes identified.
Although the methods presented are largely motivated by applications in
genomic data, they can be applied to other settings when the covariates are
nodes on general graphs, such as in image analysis.
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Although the methods presented in this paper were developed mainly for
linear models, similar methods can be developed for the generalized linear
models and the censored survival data regression models, where we can use
the negative of the logarithm of the likelihood or partial likelihood as the loss
function. Similar to the techniques presented in Friedman et al. (2007) and
Wu and Lange (2008), we can use the coordinate descent procedure together
with the iterative reweighted least square to obtain the solution path. Such
models have great applications in genomic data analysis in identifying the
genes or subnetworks that are associated with binary or censored survival
data outcomes. Other extensions include replacing the L1 part of the Grace
penalty with other sparse penalty functions such as SCAD or bridge penalty
(Huang et al., 2008). Important future research also includes how to handle
covariates that are linked on directed graphs. Finally, to incorporate the fact
that the linked nodes might be negatively correlated and the corresponding
regression coefficients may have different signs, we introduced an adaptive
sign-adjusted graph-constrained regularization procedure and showed that
such a procedure can perform better then the original graph-constrained
regularization. The theoretical property of such an adaptive procedure is
unknown and is an area for future research.
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