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Abstract

Based on a data set obtained in a dental longitudinal stetyjuwcted in Flanders (Bel-
gium), the joint time to caries distribution of permanengtfmolars was modeled as a func-
tion of covariates. This involves an analysis of multivegigontinuous doubly-interval-
censored data since: i) the emergence time of a tooth andntleeittexperiences caries
were recorded yearly, and ii) events on teeth of the samd ahdl dependent. To model the

joint distribution of the emergence times and the times tiesawe propose a dependent
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Bayesian semiparametric model. A major feature of the egapproach is that sur-
vival curves can be estimated without imposing assumpsoiet as proportional hazards,
additive hazards, proportional odds, or acceleratedréatime.

Keywords:Multivariate doubly-interval-censored data, Bayesianpayametric, Linear de-

pendent Poisson-Dirichlet prior, Linear dependent Dlgthrocess prior.

1 Introduction

The past three decades have withessed a dramatic decline prevalence of dental caries in
children in countries of the Western World (De Vos & Vanolgwesr, 2006). However, the dis-
ease has now become concentrated in a small group of chidigmthe majority unaffected,;
about 10 to 15% of the children now experience 50% of all edasions and 25 to 30% suffer
75% of lesions (Marthaler et al., 1996; Petersson & Bralitli#96). The most likely expla-
nation for the difference in oral health seems to be soctmemic environmental factors and
it occurs early in childhood (Willems et al., 2005). Therefato improve dental health, early
identification of groups at a particular risk of developiragies becomes essential. In this paper
we present a Bayesian analysis of a longitudinal datastitegsd in the Signal-Tandmobfel
study, to investigate the relationship between some patexposure variables and the emer-

gence and development of caries in permanent teeth.

The Signal-Tandmobi®@! study is a 6-year longitudinal oral health study involvirgldren
from Flanders (Belgium) and conducted between 1996 and.2D@htal data were collected
on gingival condition, dental trauma, tooth decay, presaigestorations, missing teeth, stage
of tooth eruption, orthodontic treatment need, etc. Adddilly, information on oral hygiene
and dietary behavior was collected from a questionnairepteted by the parents. The children

were examined annually during their primary school time hg of sixteen trained and half



yearly calibrated dental examiners. More details on the@iandmobieP study can be found
in Section 4.1 and in Vanobbergen et al. (2000). A primaryectye of the investigation is
to assess the association of some covariates with the envergend development of caries
in permanent teeth. In particular, we are interested inystgdthe effect of the age at start
brushing (in years) and of deciduous second molars heathss{sound/affected; teeth 55,
65, 75, 85, respectively, see Figure 1(a)) on caries subdéaptof the adjacent permanent
first molars (teeth number 16, 26, 36, 46, see Figure 1(b))ditAwhally, we considered the
impact of gender (girl/boy), presence of sealants in pid ssures of the permanent first
molar (none/present), occlusal plague accumulation opéneanent first molar (nonef/in pits
and fissures/on total surface), and reported oral brustabgd(not daily/daily). Note that pits
and fissures sealing is a preventive action which is expdotpdotect the tooth against caries
development. The information on occlusal plaque accunaugpresence of sealants in pits and
fissures, and reported oral brushing habits was obtaindak a&damination where the presence

of the permanent first molar was first recorded.
[Figure 1 about here.]

The response of interest is the time to caries developmetite@permanent dentition which
corresponds to the time from tooth emergence to onset adsabiue to the setup of the study
(annual visits of dentists), the onset time and the failureetcould only be recorded at reg-
ular intervals and observations on both events were, thereinterval-censored. A graphical
illustration of a possible evolution of a tooth is shown igdiie 2. This type of data structure,
often referred to as doubly-interval-censored failurectioiata, is common in medical research,
especially in the context of the analysis of acquired imnugficiency syndrome (AIDS) incu-
bation time; the time between the human immunodeficienaysvimfection and the diagnosis

of AIDS.

[Figure 2 about here.]
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Several approaches have been proposed over the past fesvfgednhe analysis of doubly-
interval-censored data. De Gruttola & Lagakos (1989) ssigglka non-parametric maximum
likelihood (NPML) estimator of univariate survival funotis. Alternative methods were subse-
guently given by Bacchetti & Jewell (1991), Gbmez & Lagakt394), Sun (1995), and Gomez
& Calle (1999). Kim et al. (1993) generalized the one-sanmegltanation procedure of De Grut-
tola & Lagakos (1989) to a Cox proportional hazards (PH) rhodé&eir method, however,
needs to discretize the data. Cox regression with the anseinterval-censored and the event
time right-censored has been considered by Goggins et@9§1Sun et al. (1995), and Pan
(2001). To simplify the analysis, all of these methods makatlaer unrealistic independence

assumption between the onset and time-to-event variadees €.g. Sun et al., 2004).

For the analysis of multivariate doubly-interval-censbsairvival data, frailty models were
discussed in Komarek et al. (2005) and Komarek & Lesaf¥®@08) considering versions of
the Cox PH and accelerated failure time (AFT) models, respdy. In the latter case, each
distributional part is specified in a flexible way as a perizzaussian mixture with an over-
specified number of mixture components and under the assamudftindependence between
the onset and time-to-event variables. These models prawgdful summary information in
the absence of estimates of a baseline survival distribwtial may be formulated in a para-
metric or semi-parametric fashion. However, under thesdaisothe regression coefficients
describe changes in individual responses due to changesvariates, they induce a partic-
ular association structure for the clustered variabled, raty heavily on the (conditional or
subject-specific) assumptions of PH or AFT in the relatignsletween the covariates and the
survival times. While the PH model assumes the covariatesattiplicatively on a baseline
hazard function, the AFT model assumes that covariates altipticatively on arguments of
the baseline survival function. Although other type of misgdsuch as additive hazards (AH)

or proportional odds (PO), could be considered in a frailodel context, all these assumptions



may be considered too strong in many practical applicatibosinstance, under these models
survival curves from different covariate groups cannossravhich can be unrealistic in some
applications (see, De lorio et al., 2009). This issue isi@arly relevant for doubly-interval-
censored data where the degree of available informatioretimgn diagnostic techniques is

rather reduced due to the censoring mechanism.

In this paper we discuss a Bayesian semiparametric appfoatfe analysis of multivariate
doubly-interval-censored data where the dependencesastispopulations, defined by dif-
ferent combinations of the available covariates, is inticet without assuming independence
between the onset and time-to-event variables, withoutineq data discretization, and any
of the commonly used assumptions for the inclusion of catasiin survival models. We ex-
tend recent developments on dependent nonparametris gnaially proposed by MacEachern
(1999, 2000), to provide a framework for modeling multiedei doubly-interval-censored data
where the resulting survival curves have a marginal (or faamn level) interpretation and not
subject-specific. It must be pointed out that the dental dassbeen analyzed before. However,
the previous approaches were deficient in that either thélgenterval-censored nature was
not taken into account (Leroy et al., 2005) or restrictiveh@sense that the focus was on condi-
tional interpretation of the effects of the covariates valfy models and rely on the AFT or PH
assumption (Komarek et al., 2005; Komarek & Lesaffre,00vercoming these problems

largely motivates the developments presented in this paper

The rest of the paper is organized as follows. In Section 2ntveduce the proposed model,
which is based on the two parameter Poisson-Dirichlet m®i@nd discuss its main properties.
Section 3 presents the analysis of simulated data whichktifite the main advantage of the
proposed model. Section 3 describes the analysis of thealSigmdmobie® study. A final

discussion section concludes the article.



2 Themodd

2.1 Survival regression framework

LetT,) andT}},i=1,...,m,j = 1,...,n, be continuous random variables defined@mo)
denoting the true chronological onset and event times fj‘thmeasurement of thé" exper-
imental unit, respectively, and 1€t = T.; — T} be the true time-to-event. For example, in
our casel}; is the true time to caries for thé" tooth of thei"" child, with 7)7 denoting the true
emergence time ar[ﬁi]f the age of caries development. Assume that for each afitle&peri-
mental units we record thedimensional ang-dimensional covariate vectoss) € X C R?
andz, € X" C R’ associated to the onset tirfi§’ and to the time-to-evertt’, respectively.
Let 70 = (19.....19), TF = (15.....18) TF = (1§.....18) T, = (1077,

X¢ = diag(z,...,z9), X! = diag(z],....zl)), and X, = diag(X?, X)), i =

1,....,m.

In order to model the joint distribution of the true chrongilcal onset times and true time-
to-eventsT’; as a function of covariatesX;, we consider a mixture model. Specifically, we

ind . .
assumel’; | X; ~ fx,,i=1,...,m,with

fx. (| 2.Gx,) = / o (- | 11, %) dCx, (). 1)

whereks, (- | 1, ¥) denotes @n-variate density ofiR2" with location and unstructured scale
matrix X taking into account the association among variables ofdheesexperimental unit, re-
spectively, and where the mixing distributiofs ,, . . ., Gx,, € {Gx : X € X'} are dependent
probability measures. The set of dependent probabilitysmes{Gx : X € X'} is defined in

the complete space of the predicto¥sand the degree of dependence among the elements is
governed by the value of the covariat¥s If GG x were indexed by a finite dimensional vector

of hyper-parameters, for example, normal moments, themibeel would reduce to a tradi-
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tional parametric hierarchical model. In contrast, in a-panametric Bayesian approach, every
element in the sefGx : X € X'} is a random probability measure and an appropriate prior
probability modelF' for the complete set of unknown distributions indexed bysiieof covari-
ates{Gx : X € X'} is specified. In other wordd; is a distribution over related probability

distributions
{Gx: XeX}|F~F (2)

Here we focus on the class of discrete random probabilitysomes that can be represented as

Gx(B) =) widocx)(B), (3)
=1

where B is a measurable setj;,w-, ... are random weights satisfyingg < «;, < 1 and
P32, w = 1) = 1, and whereg x),(-) denotes a Dirac measure at the random locations
0(X)1,0(X)s,..., which are assumed to be independent of{thg,~, collection. We discuss
specific choices for the random probability measkira (2) in the next sections. To better ex-

plain our proposal, we start with a review of the construttbpriors over related distributions.

2.2 Priorsover related distributions

The problem of defining priors over related random probgbdistributions has received in-
creasing attention over the past few years. MacEacher(ZH0) proposes the dependent
Dirichlet Process (DDP) as an approach to define a prior modeln uncountable set of ran-
dom measures indexed by a single continuous covariater sé¢, : * € X C R}. The
key idea behind the DDP is to create an uncountable set aftidéti Processes (DP) (Ferguson,
1973) and to introduce dependence by modifying the Sethamgi994)’s stick-breaking rep-
resentation of each element in the set-Ifollows a DP prior with precision paramet&f and

base measur@, denoted by ~ DP(MG,), then the stick-breaking representatiorcois,

G(B) = widy(B), 4)
=1
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whered | Go ~ Gy andw; = Vi [,,(1—V;), with V; | M * Beta1, M). MacEachern (1999,
2000) generalizes (4) by assuming the point madges, [ = 1,.. ., to be dependent across
different levels ofz, but independent acrogs This approach has been successfully applied
to ANOVA (De lorio et al., 2004), survival (De lorio et al., @9), spatial modeling (Gelfand
et al., 2005), functional data (Dunson & Herring, 2006),diseries (Caron et al., 2007), and
discriminant analysis (De la Cruz et al., 2007). Motivatgadrégression problems with con-
tinuous predictors, Griffin & Steel (2006) and Duan et al.Q2Pdeveloped models where the
dependence is introduced by making the weights dependertvamiates.

Alternatives to these approaches include incorporatingedéency by means of weighted
mixtures of independent random measures (Muller et ab420unson & Park, 2008). This
approach was originally proposed by Muller et al. (2004)tiwated for the problem of borrow-
ing strength across related sub-models. For regressidsigmns with continuous predictors,
Dunson & Park (2008) proposed a countable mixture where tights depend on the covari-
ates through the introduction of a bounded kernel functiathé stick-breaking construction of
the weights. The latter approach requires the choice of aigrfet the covariate values and,
therefore, is not naturally extended to include factors ematinuous predictors jointly in the

model.

We build our proposal on the construction introduced in D@let al. (2004) and De lorio
et al. (2009) because it is a natural approach to introduperddence on both factors and con-
tinuous covariates which are commonly of interest in saMmrodels. We consider the class of
discrete Linear Dependent (LD) models defined as follows.aRy given value of the covari-
atesX € X, in the notation of our motivating problem, tBe-dimensional atoms in the mixing
distributionGx () = Y2, wide(x), () follow linear (in the parameters) modél$ X ), = X 3,,

where the3,’s represent:(p + ¢)-dimensional vectors of regression coefficients. Thesgfor



in the dependent mixture model given by expression P = 0(X), = X3,) = w; and
the dependence is introduced in the point mass local0Xs), through a linear models, where
the regression coefficient$, are i.i.d. random vectors from a distributich, 3, % Gy. For

simplicity of explanation, consider the caseno 1 and an ANCOVA type of design matrix

1 V0o 0 0
001V Z

whereV is an indicator variable and is continuous. For examplé; could be the gender
indicator and” the age at start brushing. In the LD model the dependencesatne random

distributions is achieved by imposing a linear model on thiafpmasses

Bu + BuV
Bai + BuV + B Z

H(X)l = Xﬁl =

As in a standard linear mode#;; and 33, can be interpreted as intercepts for the point masses
associated to the onset time and to the time-to-event, caégply, while 35, and 34 are the
main effects of gender for the onset and time-to-evente@sgely, andss;, can be interpreted

as a slope coefficient associated to the age at start brusdrinige time-to-event. Note that
the linear specification is highly flexible and can includenstard nonlinear transformations of
the continuous predictors, e.g. additive models based epliBes (see, e.g. Lang & Brezger,

2004), as well as linear forms in the continuous predictoesiselves.

2.3 Theproposal

In this paper we extend the DDP framework to a constructiahithbased on the general class
of Poisson-Dirichlet (PD) processes (see e.g., Pitmang;1Bman & Yor, 1997). The PD

processes belong to the class of species sampling modelg @¢ Pitman, 1996) and admits
the DP prior as an important special case. The PD processlsama defined as in expres-

sion (4), where the random weights are independent for thg’s and thef, are i.i.d. from a
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distributionG,. The weights still admit a stick-breaking representatipr= V; [[,_,(1 — V}),

but in this casé/; e Betal — a,b + ja), where eithem = —x < 0 andb = <k, for some

k> 0and¢ =2,3,...,0r0 < a < 1andb > —a. We restrict our attention to the parameter
spaced = {(a,b) € R? : 0 < a < 1,b > —a} because this is large enough to include two
important special cases. When= 0 andb = M, Ferguson'd) P(MG,) follows. Whena = +,

0 <~ < 1,andb = 0, the PD(~,0) yields a measure whose random weights are based on a
stable law with indexy. The DP and stable law are key processes because they raptese

canonical measures of the PD process (Pitman & Yor, 1997).

It is now straightforward to extend the Linear Dependentigaork to the PD process assum-
ing a linear model for the atoms of the process. In this way aredefine a model for related

probability distributions of the form
{Gx: X € X} |a,b,Gy~ LDPD(a,b,Gy), (5)

where LDPD(a,b,G,) refers to a Linear Dependent PD prior, with parameterls andG,.

An appealing property of the LDPD survival model given by eegsions (1) and (5) is that it
can be understood on the basis of an equivalent model refatiouas a mixture of multivariate
AFT regression models. Given a particular matrix of cowas&X € X, the vector of kernel
locationsu in the mixture model (1) takes the vali€3 and where the mixture is defined
with respect to the regression coefficiefts In other words, the model can be alternatively

formulated by defining the mixture of multivariate regressmodels,
fx(12.6) = [ k(| XB.2)dG (B). ©
forall X € X, and
G| a,b,Gy ~ PD(a,b,Gy). (7)

The discrete nature of the PD realizations leads to theikkvedwn clustering properties. The

choice of parameters andb in the PD process controls the clustering structure (Lijcale
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2007b). Givenn observations, whea = 0 (i.e., a DP) the number of cluster$(m) is a sum

of independent indicator variables, which impli€gm)/logm — b almost surely ana*(m)

is asymptotically normal (Korwar & Hollander, 1973). Undbee model with0 < a < 1 and

b > —a the sequencén*(m)} is an inhomogeneous Markov chain such thigtn)/m® — S
almost surely, for a random variab$ewith a continuous density oft), co) depending ofta, b)
(Pitman & Yor, 1997). The asymptotic behavior of the disitibn of the number of clusters
indicates that a general PD model increases:asvhich is much faster than the logarithmic
rate of the DP model. In general, valuesiaflose to 1 favour the generation of a larger number

of clusters.

Besides the clustering structure implied by the exti@arameter in the PD process, its role
can be also understood when the distribution of PD reatimatis applied to a partition of the
space of interest. In particular, for measurable $&t8;, and B,, with B; N B, = (), it follows

that (Carlton, 1999)

Var (G(5) = Go(B) (1~ Gu(B) (3. ®
and
Con (6(B1),G(B2)) = ~Gu(B)Ga(B) (31 ) )

Therefore, the extra parameter controls the variability and covariance of digjeets of the

PD realizations. Whea — 1, GG is highly concentrated arourt, and the covariance between
disjoint sets is small. Whem = 0 we recover the corresponding expressions for the DP. Note
that the correlation betweeti(B;) andG(B;) does not depend on the parameterb) and,

therefore, is the same than the one arising from the DP model.

To date, most practical implementations of PD processes bamsidered the parameters

andb as fixed at user-specified values (see e.g., Ishwaran & J&0@s), fixed at empirical
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Bayes estimates (see e.g., Lijoi et al., 2007a), or expltreckffect of different combinations
of fixed values for these parameters on the inferences (gee\avarrete et al., 2008). Lijoi
et al. (2008) on the other hand proposed independent désangbrm priors with support points
{0.01,0.02,...,0.99} and{0, 1, ...,2000} for a andb, respectively. Here we allow andb to

be random having continuous random probability distridmsisupported on the restricted pa-
rameter space under consideration. Moreover, we alldéabe zero with positive probability
in order to test whether the data arose from LDDP versus a gemeral LDPD process us-
ing a Bayes factor. This additional flexibility can be incorated at essentially no additional

computational cost.

2.4 Thehierarchical representation

So far, we have focused on modeling the joint distributiorthaf survival times of interest,
namely, the true chronological onset tinﬂé{% and true times-to-eveﬂt?. However, in our set-

ting the observed data are given by the evéfits € (u;,ul] i =1,...,m,j =1,...,n},

Z]’ 1]

and{T;} € (vi,vf] - i =1,....m,j = 1,...,n}, whereu/; and v/

i Vi and v and v,

Z]’

represent the lower and upper limits of the intervals wheeadhronological onsetﬁij, and

event time Tlf , for observation; from experimental unit were observed, respectively. Un-

der the assumption of non-informative censoring, we defimeodel for the eventsA? =

{19 € (ub,ul]:j=1,....n} and AF = {TF € (v5,v7]:j=1,...,n}, by introducing
latent vectorél“? andT”. We assume
(T, TF) | hx, ™ hx,, (10)

with hx, (T, TP | £,G) = fx, (TY. TF —TY | £, G) and wherefx, (- | £, G) is defined
as in (6). Notice that a choice of the continuous kekngéfines the model. A multivariate log-
normal distribution is convenient for practical reasonst4; = (log 7, . .., log T, log T2, . . .,

wmn?

log ') denote the logarithmic transformation of the true chrogial onset times and true
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times-to-event such that
2n
j=1

whereNs,, (- | p, X) refers to &n-dimensional normal distribution with meanand covari-
ance matriX®. The mixture modefx, can be equivalently written as a hierarchical model by

introducing latent variable8’ such that

z | B2 Ny, (X8, 3), (12)
8.8 X a, (13)

and
G | (l, b, GO ~ PD(G,, b, GQ), (14)

where the baseline distributidr, is assumed to be(p + ¢)-dimensional normal distribution
Go (ﬁ) = Nn(p+q) (m7 S)

2.5 Someproperties

An important property of the proposed model given by expoess(11) - (14), is that the com-
plete distribution of survival times is allowed to changehwialues of the predictors (including
properties such as skewness, multimodality, quantiles) ebhstead of just one or two char-
acteristics, as implied for many commonly used survival etedHowever, we make explicit
the dependence of some functionals of interest of the kigtan of the event times on the co-
variates in order to compare them to the corresponding sgje arising from the commonly
used models. The implied marginal mean, hazard functioncantllative distribution (CDF)

function for coordinatg in the vectorT';, T;;, as functions of the associated vector of the design
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matrix X;, x;;, are given by

E(T; | zij) = Zwl exp {; 8, + 0.507 } , (15)

>t wifoor (exp {—;B,} t)
FT |:1:Z]( ) ’

hTij\mij (t) = (16)

and
Fr, ‘w” ZwlFogz exp{ mwﬁz}t) @an

respectively, where ,» and F; ,» refers to the density and CDF of a lognormal distribution
with mean 0 and variance®, ando; = X;;. These expressions show the additional flexi-
bility associated to the proposed model. For instance, imrest to a simple AFT survival
model based on the lognormal distribution, the mean funaticour proposal given by expres-
sion (15) is a convex combination of exponential functiofsirthermore, the implied CDF
given by expression (17) is a convex combination of CDF'siag under the AFT model,
Frjjay (t) = Fo 02 (exp {—{;8} t), where covariates act multiplicatively on arguments of the
baseline survival function. This simple fact induces anoantgnt property of our proposal,
namely, that survival curves are allowed to cross for déff¢values of a predictor, which is not
possible under the AFT assumption. Other commonly used lmedeh as PH, AH and PO
will also fail to capture this behavior. Under the PH, AH, @@ models, the dependence of

the CDF on predictors is given by

9

expq ;.3
L= Fryja () = {1 - Fy ()} ™)

l—FTij‘w”( )= {1 _F(]o }exp{—wwﬁt}

and
1= Frye,(t) 1= Fop(t)

P Fan PO
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respectively. Notice that this constraint associated éodbmmonly used models remains if
Fy,», s modeled in a nonparametric manner and/or if the lineanfey; 3 is replaced for a more
general functionn(z;;). Although some fixes have been proposed in the context of Pitefso
for this unappealing property, e.g. the inclusion of int&ians with time or stratification, our
modeling approach has proved to be a more flexible altematiVe refer to De lorio et al.
(2009), for a thorough comparison in the context of univari@mot doubly censored) survival

data.

2.6 Prior distributionsand M CM C implementation

Fora andb we consider joint prior distributions of the kinda, b) = p(a)p(b | a), wherep(a)
is a mixture of point mass at zero and a continuous distdbubin the unit interval0, 1) and

p(b | a) is a continuous distribution supported pAa, o). More, specifically we assume
a| A ag,ar ~ Ao(+) + (1 — \)Betd- | ap, ay), (18)
and
b a,pp, o, ~ N, 0p)I(—a, 00), (29)

where0) < A < 1, and Bet& | oy, ay) refers to a beta distribution with parametefsand
a1. This modelling strategy allows us to explicitly compare R Dodel versus an encompass-
ing PD alternative. Notice that this is an important compurieecause the evaluation of any
other model comparison criteria would require the companiatf a highly complex area under
the multivariate normal distribution which is difficult teelperformed in practice. Finally, to
complete the model specification, we assume independegtdyprsm ~ N,.q) (7, Y),

S ~ IWypte (7,T), andX ~ IW;, (v,€2), wherelWs, (v,€2) denotes &n-dimensional

inverted-Wishart distribution with degrees of freedorand scale matrix2.
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The hierarchical representation of the model allows dit&gward posterior inference with
Markov Chain Monte Carlo (MCMC) simulation. As in the cont@t standard DP models,
two different kinds of MCMC strategies could be considered domputation in the LDPD
model: (1) to marginalize out the unknown infinite-dimensab distributions (see, e.g., Ish-
waran & James 2003; Navarrete et al. 2008) or (II) to employmdation to the stick-breaking
representation of the process (see, e.g., Ishwaran & Jab@®d3.2n the case (l), several alter-
native algorithms could be considered to sample the clestefigurations: (l.a) via a Gibbs
scheme through the coordinates (see, Navarrete et al. B0@3discussion in the PD context)
or (I.b) to adapt reversible-jump-like algorithms (seg, gDahl 2005) to the PD context. Func-
tions implementing these approaches were written in a dechpanguage and incorporated
into the R library “DPpackage” (Jara, 2007). A supplemgntiscument, including a com-
plete description of the full conditionals and algorithresavailable from the following link:

http://www.mat.puc.cltajara.

3 Anillustration using ssmulated data

To validate our approach we conducted the analysis of siedildatasets which mimic to a
certain extent the Signal-Tandmollediata. We consider one onset tifi€ and one time-to-
event timeT” for m = 500 subjects. We assume a binary predictor and 250 subjectsin ea
level (group A and B). Different distributions were assunf@deach level of the predictor such

that
i1d
log(Tlo7 T1T>7 e 710g(T2O507 TQ,I;O) | fA ~ fA7
and

iid
log(T2051, T2T51)7 e 710g<T50007 T5T00) | f ~ fB.
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Two scenarios for the distributional parts of the model wenesidered. In scenario |, a mixture
of two bivariate lognormal distributions was assumed faugr A while a bivariate lognormal
distribution was assumed for group B. An important chartie of scenario | is the bimodal
behavior of the distribution of the onset time and time-¢e+# in group A. In group B, a uni-
modal behavior for the distribution of both variables wasussed. In scenario Il, mixtures of
bivariate lognormal distributions were assumed for bottugs. However, the components of
the mixtures were specified in such a way that for group A, tisebtimes follow a bimodal dis-
tribution and the time-to-events follow a unimodal distiibn. In group B, the reverse behavior
was assumed, namely, the onset times follow a unimodallalisivn while the time-to-events a

bimodal distribution.

In both scenarios and variables of interest, the survivalesifor both groups cross. The true

distributions in each scenario are given next.

e Scenario |: Mixture model for group A - Single model for group B.

1.80 5| 500 2.50
fa = 0.5x Ny .10 +
0.75 2.50 300
2.40 2.50 1.25
0.5 x Ny 1073 ,
3.00 1.25 100
and
2.1 5 3.24 8.10
fB = N2 y 10~
2.2 8.10 64
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e Scenario Il: Mixture model for both group A and B.

1.8 5.50 2.50
fa = 0.5x N, 1073 +
2.2 2.50 640
2.4 2.50 1.25
0.5 x N, 1073 ,
2.2 1.25 640
and
2.10 3.24  8.10
fg = 05x N, , 1072 +
0.75 8.10 30.00
05« N 2.10 08 32.4 1.25
O X 2 R
0.75 1.25 100

The true onset and event times were interval-censored bylaiimg the visit times for each
subject in the data set. The first visit was drawn fromM\a(T, 0.2%) distribution. Each of the

distances between the consecutive visits was drawn froni(@an0.05%) distribution.

The LDPD model was fitted to both simulated datasets usinddit@ving values for the
hyper-parametersA = 0.5, ag = a3y = 1, yup = 10, 0, = 200, v = 4, Q = Iy, v = 5,
r=1,,7m =04 andY = 100I4. In each analysis 4.02 million of samples of a Markov
chain cycle were completed. Because of storage limitatoisdependence, the full chain was
sub-sampled every 200 steps after a burn in period of 20,80ples, to give a reduced chain
of length 20,000.

Figures 3 and 4 display the true and estimated survival sudorehe onset and time-to-event
under scenario | and I, respectively. The predictive stiaMiunction closely approximated the
true survival functions, which were almost entirely eneldsn pointwise 95% highest poste-

rior density (HPD) intervals. We note that these resultsfar@ne random sample from two
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particular densities, and these conclusions should notéeterpreted. Nonetheless, these ex-
amples do show that our proposal is highly flexible and is &btapture different behaviors of
the onset and time-to-event survival functions. The exasplso show that when a parametric

model is appropriated, the proposed model does not ovezfdaia.

[Figure 3 about here.]

[Figure 4 about here.]

4 The Signal-Tandmobiel® data

4.1 The Signal-Tandmobiel® study and the research questions

For this project, 4,468 children were examined on a yeargisbduring their primary school
time (between 7 and 12 years of age) by one of sixteen derdatieers. Sampling of the chil-
dren was done according to a cluster-stratified approadh lfitstrata. A stratum consists of
a particular combination of one of the five provinces in Flensdwith one of the three school
systems. Schools were selected such that all children haal pcpbability of being selected
and for each school all children of the first class were exanhirClinical data were collected
by the examiners based on visual and tactile observatian¥{rays were taken), and data on
oral hygiene and dietary habits were obtained through &tred questionnaires completed by

the parents.

The primary interest of our analysis is to study the relaiop between age at start brushing
(in years) and deciduous second molars health status (&dfewed) with caries susceptibility
of the adjacent permanent molars. Here, “affected mold€irsdo a tooth that is decayed, filled

or missing due to caries. The deciduous second molars refeeth 55, 65, 75 and 85 and first
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molars refer to teeth 16 and 26 on the maxilla (upper quaslyaand teeth 36 and 46 on the
mandible (lower quadrants). The numbering of the teetlofadlthe FDI (Federation Dentaire
Internationale) notation which indicates the positionia# tooth in the mouth (see Figure 1).
Position 26, for instance, means that the tooth is in quadduapper left quadrant) and posi-
tion 6 where numbering starts from the mid-sagittal planbe Tevel of decay was scored in
four levels of lesion severityd4 (dentine caries with pulpal involvement}3 (limited dentine

caries)d2 (enamel cavity) and1 (white or brown-spot initial lesions without cavitatiotjere

we consider level; of severity, which defines a progressive disease.

Note that for about five years the deciduous second molaiis #ne mouth together with the
permanent first molars. It is thus possible that a cariesgz®on the primary and permanent
molar occurs simultaneously. In this case it is difficult tmlv whether caries on the deciduous
molar caused caries on the permanent molar or vice versahiBaeason, the permanent first
molar was excluded from the analysis if caries were presérinvwemergence was recorded.
Moreover, the permanent first molar had to be excluded franattalysis if the adjacent decid-
uous second molar has not been present in the mouth alre#iuly fatst examination. For 948
children none of the permanent first molars was includedenratimalysis due to the previously
mentioned reasons. In total, 3,520 children (12,485 peemiafirst molars) were included in
the analysis of which 187 contributed one tooth, 317 twohte400 three teeth and 2,616 all

four teeth.

4.2 Theanalysisand theresults

We consider gender (0 = boy, 1 = girl) and the status of thecadfadeciduous second molar
(sound = 0, affected = 1) as covariates for the emergencesﬂi;ﬁenamely, to define the de-
sign vectorsmioj. For the time-to-caries variables, we use a similar set vgates as Leroy

et al. (2005), namely, the covariate vectm@ for the caries part of the model include gender,
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presence of sealants on the permanent first molar (0 = alisergresent), occlusal plaque ac-
cumulation for the permanent first molar (O = none, 1 = in pitg Aissures or on total surface),

reported oral brushing habits (O = not daily, 1 = daily), atatiss of the adjacent deciduous
second molar. In contrast to Leroy et al. (2005) we did notthsestatus of the adjacent decid-
uous first molar as covariate due to its large dependenceemstdkus of the adjacent deciduous

second molar and included the age at start brushing in arlfashion.

For the model, 4.02 million of samples of a Markov chain cywkre completed. Because
of storage limitations and dependence, the full chain wésssuimpled every 200 steps after
a burn in period of 20,000 samples, to give a reduced chaiergjth 20,000. We consider
A = 0.5 reflecting equal prior probabilities for the LDDP and LDPD aets. The values of the
other hyper-parameters were takenngs= a; = 1, up = 10, o, = 200, v = 10, Q = Ig,

v =31,T = I, n = 09, andY = 100 x I5. We also performed the analysis with different
hyper-parameters values, obtaining very similar resultss suggests robustness to the prior

specification.

The posterior probability for. = 0 was 21.63%. Correspondingly, the Bayes factor for the
hypothesis of a LDPD against the DP version of the model wé2.3This result suggests a
“substantial” support of the data to the PD version of the ed@dcording to the Jeffreys’ scale
(Jeffreys, 1961, page 432). As Bayes factors may be semsitithe prior specification, we per-
formed a sensitivity analysis using different prior wegbh the LDDP versus a more general
LDPD model. Specifically, we chose= 0.3 and\ = 0.7. The corresponding Bayes factors
for the LDPD against the DP version of the model were 2.72 aBdl, 2espectively. The results,
therefore, indicate robustness of the model choice to tioe gpecification. More importantly,
in all cases the PD version of the model is to be preferred wbarpared to the single precision
DP model.
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The emergence and caries processes showed a non-signégsaaiation, evaluated by the
Pearson correlation coefficient on the log-scale induce@byor most of the teeth, except
for tooth 46 where a small negative association was obsefMed posterior mean (95% HPD
intervals) for the emergence and caries processes for id)tB6, 36, and 46, were -0.06 (-
0.18 ; 0.05), -0.06 (-0.18 ; 0.07), -0.05 (-0.13 ; 0.02), add 6 (-0.18 ; -0.02), respectively.
The association among emergence times and among time#s-vas positive and significant.
Table 1 displays the posterior means and 95% HPD intervathéPearson correlation among
the teeth. The results indicate an exchangeable cornelatairix would suffice to explain the
emergence process. However, this type of associationtgteudoes not hold for the caries
process. The Pearson correlation was bigger for the logtiroaries for teeth in the same
jaw. Similar and lower associations were observed whenidernisg diagonally or vertically
opponent teeth. Thus, the results suggest that the caoretucture induced for frailty models

is not appropriate for these data.

In contrast to NPML approaches, an important characterddtihe proposed model is the
ability to make inferences on any quantile of interest. Wekbpect to the median, neither the
emergence nor the caries process exhibit a significanteiftee among the four permanent first
molars. For all combinations of covariates, molars of gielsd to emerge earlier than those
of boys. However, non-significant differences were founekg&ding caries experience, the
difference between boys and girls was not significant, hewthe frequency of brushing, pres-
ence of sealant, presence of plaque, age at start brushingpaies experience of neighboring
deciduous second molars have a significant effect on thescprocess. Table 2 shows the pos-
terior mean and the 95% HPD interval for the median emergénmeand time-to-caries for
teeth 36 and 46 of boys with the “best”, “worst” and two intedfiate combinations of discrete

covariates. The results are shown for 4 different valuegefa start brushing.
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Figures 5 and 6 illustrate the estimated hazard and surtimations for the time-to-caries
for tooth 16 in boys with the “best”, “worst” and two intermiate combinations of the discrete
covariates by age at start brushing. For children who stdmtashing their teeth after the age
of 5, a high peak in the hazard function of caries is obserhezhdy less than 1 year after
emergence. A smaller peak, shifted to the right and of mualetonagnitude, was observed
for children who brush their teeth before the age of 5. Funtiwee, for a given combination
of the discrete predictors, the hazard function for carressed for different values of age at
start brushing, suggesting that a proportional hazardsetmecot an appropriate alternative
for modeling the time to caries. For a given age at start bingstihe presence of an affected
deciduous second molars significantly increases the pittkeifmazard function of caries in the
permanent first molar. When the teeth are daily brushed sincearly age, plaque-free and
sealed the hazard for caries starts to increase approxynZayears after emergence, whereas,
when the teeth are not brushed daily and are exposed to adkdactors the hazard starts to
increase immediately after emergence. The peak in the dhdaacaries after emergence can
be explained by the fact that teeth are most vulnerable fi@xaoon after emergence when the

enamel is not yet fully developed. The curves for girls wénglar, and are therefore omitted.

[Figure 5 about here.]
[Figure 6 about here.]

Figure 6 also shows the way in which the age at start bruskinglated to the caries process.
The smaller the age at start brushing the bigger the presaleicaries. However, this increase
in the prevalence is only observed in the first years aftergemee. After 5 years since emer-
gence, the prevalence of caries experience tends to bertiee (8&d can in fact be the same,

depending on the exposure to other risk factors) regardiiedse age at start brushing. This
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result suggests that PH, AFT, AH or PO models are not ap@tpfor the analysis of caries
experience since their are constrained in such a way that/alicurves are not allowed to cross
for different values of a predictor. Although the peak in Hazard for caries at approximately
1-2 years after emergence was also observed in Leroy etGl5]2and Komarek & Lesaffre

(2008), this interesting finding was not detected due to tbdets considered by these authors.

5 Concludingremarks

We have introduced a probability model for dependent randtmibutions in the context of
multivariate doubly-interval-censored data. The mairess of the proposed model are ease
of interpretation, the ability of testing the hypothesisioé independence between onset and
time-to-event variables, efficient computation, and aredfdct that assumptions on survival
curves such as proportional hazards, additive hazardgpgronal odds, or accelerated failure

time, are not needed.

The proposal is based on a LDPD model, which contains the LBIDBel as an important
special case, and is specified in such a way that a simple hgpisttest for a LDDP versus a
more general LDPD alternative can be performed with no reditmnal computational effort

and without the need of independent fit of the models.

Several extensions of this work are possible. We are cuyramrking on a version of the
model that takes into account potential misclassificatioime caries process and its effect on
the corresponding inferences. Finally, the extensioneftlodel allowing for weight dependent

covariates is also the subject of ongoing research.

24



Acknowledgements

The first author is supported by the Fondecyt grant 3095088. d? this work was performed
when the first and the last two authors were visiting fellotvtha Isaac Newton Institute for
Mathematical Sciences, Cambridge University. The secaoritba has been supported by the
KUL-PUC bilateral (Belgium-Chile) grant BILO5/03. The tasuthor has been partially sup-
ported by grants FONDECYT 1060729 and Laboratorio de Aiskstocastico PBCT-ACT13.
The authors also acknowledge the partial support from theruniversity Attraction Poles
Program P5/24- Belgian State— Federal Office for Scientific, Technical and Cultural Af-
fairs. Data collection was supported by Unilever, Belgiufthe Signal Tandmobi&l study
comprises following partners: D. Declerck (Dental Schda@tholic University Leuven), L.
Martens (Dental School, University Ghent), J. Vanobbel@antal School, University Ghent),
P. Bottenberg (Dental School, University Brussels), E dffes (Biostatistical Centre, Catholic
University Leuven) and K. Hoppenbrouwers (Youth Health &#mpent, Catholic University

Leuven; Flemish Association for Youth Health Care).

References

BACCHETTI, P. & EWELL, N. P. (1991). Nonparametric estimation of the incubatienqul

of AIDS based on a prevalent cohort with unknown infectionds.Biometrics47 947-960.

CARLTON, M. A. (1999). Applications of the two-parameter Poisson-Dirichlet dizition.

Unpublished doctoral thesis, University of California,d.Angeles.

CARON, F., Davy, M., DOUCET, A., DUFLOS, E. & VANHEEGHE, P. (2007). Bayesian
inference for linear dynamic models with Dirichlet processtures. leee Transactions on
Signal Processing§6 71-84.

25



DAHL, D. (2005). Sequentially-allocated merge-split sampbercbnjugate and nonconjugate
Dirichlet process mixture models. Tech. rep., Texas A and Mversity, Department of

Statistics.

DE GRUTTOLA, V. & L AGAKOS, S. W. (1989). Analysis of doubly-censored survival data,
with application to AIDS.Biometrics45 1-11.

DE IORIO, M., JOHNSON, W. O., MUELLER, P. & L, R. G. (2009). Bayesian nonparametric

nonproportional hazards survival modellirBjometrics65 762—771.

DE IORIO, M., MULLER, P., ROSNER G. L. & MACEACHERN, S. N. (2004). An ANOVA
model for dependent random measurdsurnal of the American Statistical Associati®f
205-215.

DE LA CRUZ, R., QUINTANA, F. A. & MULLER, P. (2007). Semiparametric Bayesian classi-

fication with longitudinal markersApplied Statistic®6(2) 119-137.

DE Vos, E. & VANOBBERGEN, J. (2006). Caries prevalence in Belgian children: a review
Arch Public Health64 217-229.

DuAN, J. A., GUINDANI, M. & GELFAND, A. E. (2007). Generalized spatial Dirichlet process
models.Biometrika94 809-825.

DuUNsSON, B. D. & PARK, J. H. (2008). Kernel stick-breaking processBsmetrika95 307—
323.

DuNsoN, D. B. & HERRING, A. H. (2006). Semiparametric Bayesian latent trajectoogeis.
Tech. rep., ISDS Discussion Paper 16, Duke University, BoriNC, USA.

DunsoNn, D. B., BLLAI, N. & PARK, J. H. (2007). Bayesian density regressidaurnal of
the Royal Statistical Society, Serie$8163—183.

26



FERGUSON T. S. (1973). A Bayesian analysis of some nonparametriblenas. The Annals

of Statisticsl 209-230.

GELFAND, A. E., KOTTAS, A. & M ACEACHERN, S. N. (2005). Bayesian nonparametric spa-
tial modeling with Dirichlet process mixinglournal of the American Statistical Association

100 1021-1035.

GOGGINS, W. B., HNKELSTEIN, D. M. & ZASLAVSKY, A. M. (1999). Applying the Cox
proportional hazards model for analysis of latency data witerval censoringStatistics in

Medicinel8 2737-2747.

GOMEzZ, G. & CALLE, M. L. (1999). Non-parametric estimation with doubly ceresbdata.
Journal of Applied Statistic26 45-58.

GOMEZ, G. & LAGAKOS, S. W. (1994). Estimation of the infection time and latenistribu-

tion of AIDS with doubly censored dat&iometrics50 204—-212.

GRIFFIN, J. E. & STEEL, M. F. J. (2006). Order-based dependent Dirichlet processernal
of the American Statistical Associati@01 179-194.

ISHWARAN, H. & JAMES, L. F. (2001). Gibbs sampling methods for stick-breakingns:

Journal of the American Statistical Associatio® 161-173.

ISHWARAN, H. & JAMES, L. F. (2003). Generalized weighted Chinese restaurardesses

for species sampling mixture modeBtatistica Sinicd 3 1211-1235.

JARA, A. (2007). Applied Bayesian non- and semi-parametricragriee using DPpackage.
Rnews/ 17-26.

JEFFREYS H. (1961). The theory of probability (3rd. Ed.)Oxford, UK: Oxford University

Press.

27



KiMm, M. Y., DE GRUTTOLA, V. G. & LAGAKOS, S. W. (1993). Analyzing doubly censored

data with covariates, with application to AID8iometrics49 13-22.

KOMAREK, A. & L ESAFFRE(2008). Bayesian accelerated failure time model with naattate
doubly-interval-censored data and flexible distributi@ssumptionsJournal of the Ameri-

can Statistical Associatioh03 523-533.

KOMAREK, A., LESAFFRE E., HARKANEN, T., DECLERCK, D. & VIRTANEN, J. I. (2005).
A Bayesian analysis of multivariate doubly-interval-ceresl dental dataBiostatisticss (1)

145-155.

KORWAR, R. M. & HOLLANDER, M. (1973). Contributions to the theory of Dirichlet pro-
cessesThe Annals of Probabilitg 705-711.

LANG, S. & BREZGER A. (2004). Bayesian P-splinedournal of Computational and Graph-
ical Statisticsl3 183-212.

LEROY, R., BOGAERTS K., LESAFFRE E. & DECLERCK, D. (2005). Effect of caries expe-
rience in primary molars on cavity formation in the adjaceatmanent first molarCaries

ResearctB9 342-349.

Ligol, A., MENA, R. H. & PRUNSTER, I. (2007a). A Bayesian nonparametric method for
prediction in EST analysiBMC Bioinformatics8 339-360.

L1gol, A., MENA, R. H. & PRUNSTER, |. (2007b). Bayesian nonparametric estimation of the

probability of discovering new specieBiometrika94 769—786.

Liyol, A., MENA, R. H. & PRUNSTER, |. (2008). A Bayesian nonparametric approach for
comparing clustering structures in EST libraridsurnal of Computational Biologys 1315—
1327.

28



MACEACHERN, S. N. (1999). Dependent nonparametric processe&Sk Proceedings of the
Section on Bayesian Statistical Science, Alexandria, AfAerican Statistical Association,

50-55.

MACEACHERN, S. N. (2000). Dependent Dirichlet processes. Tech. reppalment of
Statistics, The Ohio State University.

MARTHALER, T. M., O’'MULLANE, D. M. & VRBIC, V. (1996). The prevalence of dental
caries in Europe 1990-199&aries ResearcB0 237-255.

MULLER, P., QUINTANA, F. A. & ROSNER G. (2004). A method for combining inference
across related nonparametric Bayesian modelstnal of the Royal Statistical Society, Series
B 66 735-749.

NAVARRETE, C., QUINTANA, F. A. & MULLER, P. (2008). Some issues on nonparametric

Bayesian modeling using species sampling modgfatistical Modelling8 3-21.

PAN, W. (2001). A multiple imputation approach to regressioalgsis for doubly censored
data with application to AIDS studie8iometrics57 1245-1250.

PETERSSON G. H. & BRATTHALL, D. (1996). The caries decline: a review of reviews.

European Journal of Oral Sciencé94 436-443.

PITMAN, J. (1996). Some developments of the Blackwell-MacQueensaheme. In T. S.
Ferguson, L. S. Shapeley & J. B. MacQueen, egmtistics, Probability and Game Theory.
Papers in Honor of David BlackwellMS Lecture Notes - Monograph Series, Hayward,
California, 245-268.

PITMAN, J. & YOR, M. (1997). The two-parameter Poisson-Dirichlet disttit derived from
a stable subordinatomhe Annals of Probabilit25 855-900.

29



SETHURAMAN, J. (1994). A constructive definition of Dirichlet procesgp. Statistica Sinica

2 639-650.

SUN, J. (1995). Empirical estimation of a distribution functiaith truncated and doubly

interval-censored data and its application to AIDS studBasmetrics51 1096-1104.

SuUN, J., LlAO, Q. & PAGANO, M. (1995). Regression analysis of doubly censored fatione
data with application to AIDS studie8iometrics55 909-914.

SuN, J., LM, H.-J. & ZHAO, X. (2004). An independence test for doubly censored failur
time data.Biometrical Journa6 503-511.

VANOBBERGEN, J., MARTENS, L., LESAFFRE E. & DECLERCK, D. (2000). The Signal
Tandmobiel project, a longitudinal intervention healtloppotion study in Flanders (Bel-

gium): baseline and first year resul&suropean Journal of Paediatric DentistB/87-96.

WILLEMS, S., VANOBBERGEN, J., MARTENS, L. & DE MAESENEER J. (2005). The inde-
pendent impact of household and neighborhood-based seteximinants on early childhood

caries.Family & Community Healtl28 168-175.

30



T€

Table 1: Signal Tandmobi@Istudy: Posterior mean (95% HPD interval) for the Pearsoretation coefficient between

log emergence times (upper diagonal) and log time-to-sdlisver diagonal) for different teeth.

Tooth
Tooth 16 26 36 46
16 0.60 (0.56 ; 0.64) 0.60(0.56;0.64) 0.60 (0.56 ; 0.64)
26  0.88(0.81;0.94) 0.59 (0.55; 0.63) 0.59 (0.57 ; 0.63)
36 0.47 (0.35;0.57) 0.43(0.30; 0.55) 0.61(0.57 ; 0.65)

46 0.44(0.28:0.61) 0.39(0.22:0.58) 0.61(0.54:0.67)




A

Table 2: Signal Tandmobi&lstudy: Posterior mean (95% HPD interval) for the median genre time and time-to-

caries since emergence (years) for some covariate cordrisand teeth. The results are shown for boys and teeth

36 and 46 with the following combination of the covariatesl fér no plaque, present sealing, daily brushing and

sound primary second molar, G2 for no plaque, present sgalaily brushing and affected primary second molar, G4

for present plaque, no sealing, not daily brushing and squimdary second molar, and G4 for for present plague, no

sealing, not daily brushing and affected primary seconcamol

Age at Start
Brushing (years)

Covariate

Emergence

Caries

Group

Tooth 36

Tooth 46

Tooth 36

Tooth 46

1 G1
G2
G3
G4

6.57 (6.54 ; 6.60)
6.58 (6.54 ; 6.61)
6.57 (6.54 ; 6.60)
6.58 (6.54 ; 6.61)

6.56 (6.53 ; 6.60)
6.57 (6.54 ; 6.61)
6.56 (6.53 ; 6.60)
6.57 (6.54 ; 6.61)

9.99 ( 8.80;11.18)
7.72( 6.68; 8.54)
5.98 ( 4.98 ; 6.85)

12.62 (11.44 ;13.82)1.89 (10.65 ;13.17)

29.8.45;11.04)
.65 ; 9.79)
6.5349 ; 7.94)

3 Gl
G2
G3
G4

6.57 (6.54 ; 6.60)
6.58 (6.54 ; 6.61)
6.57 (6.54 ; 6.60)
6.58 (6.54 ; 6.61)

6.56 ( 6.53 ; 6.60)
6.57 (6.54 ; 6.61)
6.56 ( 6.53 ; 6.60)
6.57 (6.54 ; 6.61)

8.63( 7.65; 9.73)
6.66 ( 5.85; 7.46)
5.16 ( 4.38 ; 5.94)

11.08 ( 9.82;12.29).44 ( 9.24 ;11.765)

8.4723 ; 9.63)
1.8732; 8.39)
%.8404 ; 6.75)

5 G1
G2
G3
G4

6.57 (6.54 ; 6.60)
6.58 (6.54 ; 6.61)
6.57 (6.54 ; 6.60)
6.58 (6.54 ; 6.61)

6.56 ( 6.53 ; 6.60)
6.57 (6.54 ; 6.61)
6.56 ( 6.53 ; 6.60)
6.57 (6.54 ; 6.61)

9.67 ( 8.09;11.28)
7.49 ( 6.32; 8.72)
578 ( 4.85; 6.74)
4.47 ( 3.71; 5.31)

259.7.39 ;11.29)
1.5786 ; 9.18)
6.5733 ; 7.65)
5.2222 ; 6.20)

7 G1
G2
G3
G4

6.57 (6.54 ; 6.60)
6.58 (6.54 ; 6.61)
6.57 (6.54 ; 6.60)
6.58 (6.54 ; 6.61)

6.56 ( 6.53 ; 6.60)
6.57 (6.54 ; 6.61)
6.56 ( 6.53 ; 6.60)
6.57 (6.54 ; 6.61)

8.46 ( 6.50 ;10.45)
6.54 ( 5.07 ; 8.01)
5.04 ( 3.91; 6.25)
3.91( 3.00; 4.87)

288.5.69 ;11.21)
6.8956 ; 9.11)
5.7626 ; 7.53)
4.8538 ; 6.14)
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Figure 1. European notation for the position of (a) decidugurimary); and (b) permanent
teeth. Maxilla= upper jaw, mandible- lower jaw. In (a) the fifth and the eight quadrants are at
the right-hand side of the subject, and the sixth and thengle\giadrants are to the left. In (b)
the first and the fourth quadrants are at the right-hand dideeosubject, and the second and
the third quadrants are to the right.
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Observed onset time (u5, uf/] Observed failuretime (v, v7]

True onset tirﬁe]}? TruéfailurfetimeTi?
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f f f

Examinations:.  s;; siq2 Suz Saa Sias  Sie

Figure 2: An example of doubly interval censoring. A scherfreeadoubly-interval-censored ob-
servation obtained by performing examinations to checlettamt status at times;y, . . ., sis.
The onset time is left-censored at tin&él = s;1, L.e. interval-censored in the interval
(ufy, uf}] = (0, s), the failure time is interval-censored in the inter¢af;, v")| = (sus, sig)-

a0 Pl
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Figure 3: Simulated data - Scenario 1: Estimated survivattions for the onset and time-to-
event times for the group A are displayed in panels a and peotiwely. Estimated survival

functions for the onset and time-to-event times for the grBuare displayed in panels b and
d, respectively. The posterior means (solid lines) aregntesl along the point-wise 95%HPD
intervals. The true functions are presented in dashed.lines
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Figure 4: Simulated data - Scenario 2: Estimated survivattions for the onset and time-to-
event times for the group A are displayed in panels a and peotiwely. Estimated survival

functions for the onset and time-to-event times for the grBuare displayed in panels b and
d, respectively. The posterior means (solid lines) aregntesl along the point-wise 95%HPD
intervals. The true functions are presented in dashed.lines
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Figure 5: Signal Tandmobi@l study: Estimated hazard function for tooth 16 of boys who
started brushing their teeth at the age of 1 (solid line), &ked line), 5 (dotted line), or 7
(dotted-dashed line). Panels (a) and (b) present the sdsulho plaque, present sealing, daily
brushing and sound primary second molar (a) or affectedgrsireecond molar (b). Panels (c)
and (d) present the results for present plaque, no sealmglaily brushing and sound primary
second molar (c) or affected primary second molar (d).
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Figure 6: Signal Tandmobi&lstudy: Estimated survival function for tooth 16 of boys who
started brushing their teeth at the age of 1 (solid line), &lked line), 5 (dotted line), or 7

(dotted-dashed line). Panels (a) and (b) present the sdsulho plaque, present sealing, daily
brushing and sound primary second molar (a) or affectedgrgireecond molar (b). Panels (c)
and (d) present the results for present plaque, no sealmglaily brushing and sound primary

second molar (c) or affected primary second molar (d).
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