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Abstract

Permutation p-values have been widely used to assess the significance
of linkage or association in genetic studies. However, the application in
large-scale studies is hindered by a heavy computational burden. We pro-
pose a geometric interpretation of permutation p-values, and based on
this geometric interpretation, we develop an efficient permutation p-value
estimation method in the context of regression with binary predictors. An
application to a study of gene expression quantitative trait loci (eQTL)
shows that our method provides reliable estimates of permutation p-values
while requiring less than 5% of the computational time compared with di-
rect permutations. In fact, our method takes a constant time to estimate
permutation p-values, no matter how small the p-value. Our approach
enables a study of the relationship between nominal p-values and per-
mutation p-values, and provides a geometric perspective on the effective
number of independent tests.

1 Introduction

With the advance of genotyping techniques, high density SNP (single nucleotide
polymorphism) arrays are often used in current genetic studies. In such situ-
ations, test statistics (e.g., LOD scores or p-values) can be evaluated directly
at each of the SNPs in order to map the quantitative/qualitative trait loci.
We focus on such marker-based study in this paper. Given one trait and p
markers (e.g., SNPs), in order to assess the statistical significance of the most
extreme test statistic, multiple tests across the p markers need to be taken into
account. In other words, we seek to evaluate the first step family-wise error rate
(FWER), or in the language of [Churchill and Doerge, 1994], the “experiment-
wise threshold”. Because nearby markers often share similar genotype profiles,
the simple Bonferroni correction is highly conservative. In contrast, the corre-
lation structure among genotype profiles is preserved across permutations and
thus is incorporated into permutation p-value estimation. Therefore the permu-
tation p-value is less conservative and has been widely used in genetic studies.
Ideally, the true permutation p-value can be calculated by enumerating all the
possible permutations, calculating the proportion of the permutations where
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more extreme test statistics are observed. In each permutation, the trait is per-
muted, or equivalently, the genotype profiles of all the markers are permuted si-
multaneously. However, enumeration of the possible permutations is often com-
putationally infeasible. Permutation p-values are often estimated by randomly
permuting the trait a large number of times, which can still be computationally
intensive. For example, to accurately estimate a permutation p-value of 0.01,
as many as 1000 permutations may be needed [Barnard, 1963, Marriott, 1979].

In studies of gene expression quantitative trait loci (eQTL), efficient per-
mutation p-value estimation methods become even more important, because in
addition to the multiple tests across genetic markers, multiple tests across tens of
thousands of gene expression traits need to be considered [Kendzioriski et al., 2006,
Kendziorski and Wang, 2006]. One solution is a two-step procedure, which con-
cerns the most significant eQTL for each expression trait. First, the permutation
p-value for the most significant linkage/association of each expression trait is
obtained, which takes account of the multiple tests across the genotype profiles.
Secondly, a permutation p-value threshold is chosen based on a false discovery
rate (FDR) [Benjamini and Hochberg, 1995, Efron et al., 2001, Storey, 2003].
This latter step takes account of the multiple tests across the expression traits.
Following this approach, the computational demand increases dramatically, not
only because there are a large number of expression traits and genetic markers,
but also because stringent permutation p-value threshold, and therefore more
permutations must be applied to achieve the desired FDR. In order to allevi-
ate the computational burden of permutation tests, many eQTL studies have
merged the test statistics from all the permuted gene expression traits to form a
common null distribution, which, as suggested by empirical studies, may not be
appropriate [Carlborg et al., 2005]. In this paper, we estimate the permutation
p-value for each gene expression trait separately.

In order to avoid the large number of permutations, some computationally
efficient alternatives have been proposed. Nyholt [Nyholt, 2004] proposed to es-
timate the effective number of independent genotype profiles (hence the effective
number of independent tests) by eigen-value decomposition of the correlation
matrix of all the observed genotype profiles. Empirical results have shown that,
while Nyholt’s procedure can provide an approximation of the permutation p-
value, it is not a replacement for permutation testing [Salyakina et al., 2005]. In
this study, we also demonstrate that the effective number of independent tests
is related to the significance level. Indeed, the concept of “effective number of
independent tests” may be of limited utility in this context.

Some test statistics (e.g., score test statistics) from multiple tests asymptot-
ically follow a multivariate normal distribution, and adjusted p-values can be
directly calculated [Conneely and Boehnke, 2007]. However, currently at most
1000 tests can be handled simultaneously, due to the limitation of multivariate
normal integration [GenZ, 2000]. Lin [Lin, 2005] has proposed to estimate the
significance of test statistics by simulating them from the asymptotic distribu-



tion under the null hypothesis, while preserving the covariance structure. This
approach can handle a larger number of simultaneous tests efficiently, but it
has not been scaled up to hundreds of thousands of tests, and its stability and
appropriateness of asymptotics have not been validated in this context.

In this paper, we present a geometric interpretation of permutation p-values
and a permutation p-value estimation method based on this geometric inter-
pretation. Our estimation method does not rely on any asymptotic property,
and thus it can be applied when the sample size is small, or when the distri-
bution of the test statistic is unknown. The computational cost of our method
is constant, regardless of the significance level. Therefore we can estimate very
small permutation p-values, e.g., 1078 or less, while estimation by direct per-
mutations or even by simulation of test statistics may not be computationally
feasible. In principle, our approach can be applied to the data of association
studies as well as linkage studies. However, the high correlation of test statistics
in nearby genomic regions plays a key role in our approach. Thus the application
to linkage data is more straightforward. We restrict our discussion to binary
genotype data, which only take two values. Such data include many important
classes of experiments: study of haploid organisms, backcross populations, and
recombinant inbred strains. This restriction simplifies the computation so that
efficient permutation p-value estimation algorithm can be developed. However
the general concept of our method is applicable to any categorical or numerical
genotype data.

The remainder of this paper is organized as follows. In the Methods section,
we first present the problem setup, followed by an intuitive interpretation our
method, and finally we describe the more complicated algebraic details that are
necessary for the efficient computational algorithm. In the Results section, we
validate our method by comparing the estimated permutation p-values with the
direct values obtained by a large number of permutations. We also compare the
permutation p-values with the nominal p-values to assess the effective number
of independent tests. Finally, we discuss the limitations of our method, and
suggest possible improvements.

2 Methods

2.1 Notations and Problem Setup

Suppose there are p markers genotyped in n individuals. The trait of interest
is a vector across the n individuals, denoted by y = (y1,...,yn), where y; is
the trait value of the i-th individual. The genotype profile of each marker is
also a vector across the n individuals. Throughout this paper, we use the term
“genotype profile” to denote the genotype profile of one marker, instead of the
genotype profile of one individual. Thus a genotype profile is a point in the n
dimensional space. We denote the entire genotype space as €2, which includes



2™ distinct genotype profiles.

As mentioned in the Introduction Section, we restrict our discussion to
binary genotype data, which only take two values. Without loss of general-
ity, we assume the two values are 0 and 1. Let m; = (mi1,...,m1,) and
mo = (Mo, ..., May,) be two genotype profiles. We measure the distance be-
tween my and me by Manhattan distance, i.e.,

n

dy(ma,me) =Y Imai — mail .
=1

We employ Manhattan distance because it is easy to compute and it has an in-
tuitive explanation: the number of individuals with different genotypes. In our
algorithm, the distance measure is only used to group genotype profiles accord-
ing to their distances to a point in the genotype space. Therefore any distance
measure that is a monotone transformation of Manhattan distance leads to the
same grouping of the genotype profiles, hence the same estimate of the permuta-
tion p-value. For binary genotype data, any distance measure Z:’:l |y — moy; \k"
(V k> 0) is a monotone transformation of Manhattan distance. We note, how-
ever, this is not true for categorical genotype data with more than two levels.
For example, suppose the genotype of a biallelic marker is coded by the num-
ber of minor allele. Consider three biallelic markers with genotypes measured in
three individuals: m;=(0, 0, 0), my=(0, 2, 0), and m3=(1, 1, 1). By Manhattan
distance, dyi(my,ms) = 2 < dy(mq,m3) = 3. However, by Euclidean distance,
d(my,ma) = 2 > d(m1,m3) = /3. Therefore different distance measures may
not be equivalent and the optimal distance measure should be the one that is
best correlated with the test-statistic.

In the following discussions, we assume one test statistic of linkage/association
has been computed for each marker (locus). Our method can estimate permuta-
tion p-value for any test statistic. For the simplicity of presentation, throughout
this paper, we assume the test statistic is the nominal p-value.

2.2 A Geometric Interpretation of Permutation P-values

One fundamental concept of our method is a so-called “significance set”. Let «
be a genome-wide threshold used for the collection of nominal p-values from all
the markers. A significance set ®(«) denotes, for a fixed trait of interest, the set
of possible genotype profiles (whether or not actually observed) with nominal
p-values no larger than «. Similarly, we denote such genotype profiles in the
i-th permutation as ®;(«a/). Since permuting the trait is equivalent to permuting
all the genotype profiles simultaneously, ®;(«) is simply a permutation of ®(«).

Whether any nominal p-value no larger than « is observed in the i-th permu-
tation is equivalent to whether ®;(«) captures at least one observed genotype
profile. With this concept of a significance set, we can introduce the geometric



interpretation of the permutation p-value:

The permutation p-value for nominal p-value a is, by definition, the pro-
portion of permutations where at least one nominal p-value is no larger than a.
This is equivalent to the proportion of {®;(a)} that capture at least one observed
genotype profile. Therefore the permutation p-value depends on the distribution
of the genotype profiles within ®;(«) and the distribution of the observed geno-
type profiles in the entire genotype space.

Intuitively, the permutation p-value depends on the trait, the observed geno-
type profiles, and the nominal p-value cutoff a. In our geometric interpretation,
we summarize these inputs by two distributions: the distribution of all the ob-
served genotype profiles in the entire genotype space, and the distribution of
the genotype profiles in ®;(«), which include the information from the trait and
the nominal p-value cutoff a.

We first consider the genotype profiles in ®;(«). For any reasonably small
a (e.g., « = 0.01), all the genotype profiles in ®;(«) should be correlated, since
they are all correlated with the trait of interest. Therefore we can imagine
these genotype profiles in ®;(«) are “close” to each other in the genotype space
and form a cluster (or two clusters if we separately consider the genotype pro-
files positively or negatively correlated with the trait). In later discussions, we
show that under some conditions, the shape of one cluster is approximately a
hypersphere in the genotype space. Then, in order to characterize ®;(c), we
need only know the center and radius of the corresponding hyperspheres. In
more general situations where ®;(a)) cannot be approximated by hyperspheres,
we can still define its center and further characterize the genotype profiles in
®, () by a probability distribution: P(r, «), which is the probability a genotype
profile belongs to ®;(«), given its distance to the center of ®;(«) is r (Figure
1A). We summarize the information across all the ®;(«)’s to estimate permu-
tation p-values. Since {®;(«)} is a one-to-one mapping of all the permutations,
we actually estimate permutation p-values by acquiring all the permutations.
Therefore the computational cost is constant regardless of . We show that
this seemingly impossible task is actually doable. First, because permutation
preserves distances among genotype profiles, the probability distributions from
all the significance sets {®(«a), ®;(«)} are the same. Therefore we only need to
calculate it once. Then the remaining task is to count the qualifying significance
sets, which is discussed next.

The distribution of the observed genotype profiles in the genotype space
depends on the number of the observed genotype profiles and their correlation
structure. Since ®;(a) may be thought of as randomly located in the geno-
type space in each permutation, on average the chance that ®;(«) captures
at least one observed genotype profile depends on the how much “space” the
observed genotype profiles occupy. We argue that such space include the ob-
served genotype profiles as well as their neighborhood regions. How to define



the neighborhood regions? We first consider the conceptually simple situation
that ®;(«) forms a hypersphere of radius r,, where the subscript « indicates
that 7, is a function of @. Then ®;(«) captures an observed genotype profile m;
if its center is within the hypersphere centered at m, with radius r,. Therefore
the neighborhood region of m; is a hypersphere of radius r,. We take the union
of the neighborhood regions of all the observed genotype profiles and denote
it by ¥(r,) (Figure 1B). Then we can evaluate permutation p-values by cal-
culating the proportion of significance sets with their centers within ¥(r,). In
the general situation where the hypersphere assumption does not hold, a signif-
icance set ®;(«) is characterized by a probability distribution P(r,«). Instead
of counting a significance set by 0 or 1, we count the probability it captures
at least one observed genotype profile. We will discuss this estimation method
more rigorously in the following sections.

(A)
(B)

Observed marker profiles

Center of a
significance set

Figure 1: A two-dimensional schematic representation of the geometric interpre-
tation of permutation p-value, reflecting genotype profiles that actually reside in
2™-space. (A) In general situation, the function P(r, «), shown in grayscale, de-
creases with distance from the center of a significance set. Under hypersphere
assumption, P(r,«) is either 0 or 1, thus it can be illustrated by a hypersh-
pere surrounding the center of the significance set. (B) The space occupied by
the series of markers is calculated serially. Denote the neighborhood region of
the h-th marker as Bj. Then the contribution of the h-th marker to ¥(r,) is
approximated by Bp\(Bj N Bp_1), where “\” indicate set difference. As indi-
cated by the darker shade, this serial counting approximation is not exact when
(BrN Bg) ¢ (BN Bp_1), for any k < h — 1. Note the dot in (A) is the center
of a significance set, while the dots in (B) are the observed marker genotype
profiles.

Before presenting the algebraic details, we emphasize that our method uses
the entire set of the observed genotypes profiles simultaneously. Specifically, the



correlation structure of all the genotype profiles is incorporated into the con-
struction of ¥(r,). The higher the correlations between the observed genotype
profiles, the more the corresponding neighborhood regions overlap (Figure 1).
This in turn produces a smaller space ¥(r,), and thus a smaller permutation
p-value. In the extreme case when all the observe genotype profiles are the
same, there is effectively only one test and the permutation p-value should be
close to the nominal p-value.

2.3 From Significance Set to Best Partition

Explicitly recording all the elements in all the significance sets is not com-
putationally feasible. We instead characterize each significance set by a best
partition, which can be understood as the center of the significance set, and a
probability distribution: the probability that one genotype profile belongs to
the significance set, given its distance to the best partition.

We first define best partition. The best partition for ®(a) (or ®;(a)) is a
partition of the samples that is most significantly associated with the trait (or
the i-th permutation of the trait). For a binary trait, the trait itself provides
the best partition. For a quantitative trait, we generate the best partition
by assigning the smallest ¢ values to one phenotype class and the other n — ¢
values to another phenotype class. We typically use t = n/2 as a robust choice.
The robustness of this choice is illustrated by the empirical evidence in the
Supplementary Materials, section I. Given ¢, we refer to all the possible best
partitions (partitions that divide the n individuals into two groups of size t
and n-t) as desired partitions. The total number of distinct desired partitions,
denoted by N, is

" ift £An/2

2\t

When ¢t = n/2, there are (?) ways to choose ¢ individuals, but two such choices
correspond to one partition, that is why we need the factor 1/2. For a binary
trait, the desired partitions and the significance sets have one-to-one correspon-
dence, and thus N, is the total number of significance sets (or the total number
of permutations). For a quantitative trait, NN, is much smaller than the to-
tal number of significance sets. In fact, each desired partition corresponds to
t!(n—t)! distinct significance sets (or permutations). Since we restrict our study
for binary genotype, this definition of best partition can be understood as the
projection of the trait into the genotype space. This projection is necessary
to utilize the geometric interpretation of permutation p-value. Note the best
partition does not replace the trait since the trait data is still used in calculat-
ing P(r,a). The projection of trait into genotype space is less straightforward
when the genotype has three or more levels, though it is still feasible. Further
theoretical and empirical studies are needed for such genotype data.



Next, we study the probability that one genotype profile belongs to a signif-
icance set given its distance to the best partition of the significance set. Each
desired partition, denoted as DP;, has perfect correspondence with two geno-
type profiles, depending on whether the first ¢ values are 0 or 1. We denote
these two genotype profiles as m? and mjl, respectively. The distance between
one genotype profile m; and one desired partition DP; is defined as

dm(ma, DP;) = ;1:1%111 {dyg(ma, mF)}.

Suppose DP; is the best partition of the significance set ®;(«). In general, the
smaller the distance from a genotype profile to DP;, the greater the chance it
falls into ®;(«). Thus the genotype profiles in ®;(«) form two clusters, centered
on mg and m} respectively. The probability distribution we are interested in is

Pr(m; € ®;(a) |V my € Q, du(my, DPj) =7).

This probability certainly depends on the trait y. However, because all of our
inference is conducted on y, we have suppressed y in the notation. A similar
probability distribution can be defined for significance set ®(«). Because the
permutation-based mapping (o) — ®;(a) preserves distances, the distribu-
tions for ®(a) and ®;(a) are the same, and thus we need only quantify the
distribution for ®(«). We denote the best partition of the un-permuted trait y
as DP,, and denote the two genotype profiles corresponding to D P, as mg and
my, then we define the distribution as follows:

P(r,a) =Pr(my € ®(a) |Vmq € Q, du(mi,DPy) =r). (2)
Let
P(mg,r,a) = Pr (m € ®(a) IV my € Q,dy(my,mg) =), (3)

where ¢ = 0, 1. We have the following conclusion.

Proposition 1: P(r,a) = P(m%,r,a) = P(m}

Vs o1y a) for any r < n/2.

The proof is in the Supplementary Materials, section IV.

By proposition 1, in order to estimate P(r,«), we can simply estimate
P(mg, r,a). Specifically, we first randomly generate H genotype profiles {my, :
h=1,... H} so that dy(mp, mg) = r. To generate my, we flip the genotype of
mg for r randomly chosen individuals. Then P(r,«) is estimated by the pro-

portion of {mp} that yield nominal p-values no larger than .

In summary, we characterize a significance set ®;(«) by the corresponding
best partition and the probability distribution P(r, «). All the distinct best par-
titions are collectively referred to as desired partitions. This characterization of
significance sets has two advantages. First, the probability distribution P(r, «)
is the same across all the significance sets, so we need only calculate it once.



This is because the probability distribution relies on distance measure, which
is preserved across significance sets (permutations). Second, for a quantita-
tive trait, one desired partition corresponds a large number of significance sets;
therefore, we significantly reduce the dimension of the problem by considering
desired partitions instead of significance sets.

2.4 Estimating Permutation P-Values under a Hypersphere
Assumption

By the definition of significance set, we can calculate the permutation p-value
by counting the number of significance sets that capture at least one observed
genotype profile. However it is still computationally infeasible to examine all
significance sets. Therefore in the previous section we discuss how to summarize
the significance sets by desired partitions and a common probability distribu-
tion. In this and next sections, we study how to estimate permutation p-values
by “counting” desired partitions.

To better explain the technical details, we begin with a simplified situation,
by assuming there is an r,, such that P(r,«a) = 1 if r <r, and P(r,«) = 0 oth-
erwise. This is equivalent to assuming ®(«) or ®;(«) occupies two hyperspheres
with radius r,. This hypersphere assumption turns out to be a reasonable ap-
proximation for a balanced binary trait (see Supplementary Materials, section
III).

Let {mo, 1 < k < p} be the observed p genotype profiles. We formally
define the space occupied by the observed genotype profiles and their neighbor-
hood regions as

U(ry) = {m1 :my €9, 1r§nkirglp{dM(m17mo,k)} < Ta},

i.e., all the possible genotype profiles within a fixed distance r, from at least
one of the observed genotype profiles. We have the following conclusion under
the hypersphere assumption:

Proposition 2: Consider a significance set ®;(«) occupying two hyperspheres
centered at m? and m} respectively, with radius r,. ®;(«) corresponds to one
permutation of the trait. The minimum nominal p-value of this permutation is
no larger than « iff at least one of m{ and mj is within ¥(r,).

The proof is in the Supplementary Materials, section IV.

Based on proposition 2, we can calculate the permutation p-value by count-
ing the number of significance sets with at least one of its centers belonging
to ¥(r,). Note under this hypersphere assumption, for any fixed « (hence
fixed r,), the significance sets are completely determined by the centers of the



corresponding hyperspheres. Thus there is a one-to-one mapping between sig-
nificance sets and their centers, the desired partitions. Counting significance
sets is equivalent to counting desired partitions. Therefore we can estimate the
permutation p-value by counting the number of desired partitions. Specifically,
let the distances from all the observed genotype profiles to DP;, sorted in as-

cending order, be (71, ..., 7jp). Then under the hypersphere assumption, the
permutation p-value for significance level « is
{DP; :rj1 <ra}|/Np = C(ra)/Np, (4)

where NN, is the total number of desired partitions, and C(ro) = [{DFP; : rj1 <
T4 }| is the number of desired partitions within a fixed distance r, from at least
one of the observed genotype profiles. The calculation of C(r,) will be discussed
in the next section.

We note that the hypersphere assumption is not perfect even for balanced
binary trait. We employ the hypersphere assumption to give a more intuitive
explanation of our method. In the actual implementation of our method, even
for a balanced binary trait, we still use the general approach to estimate per-
mutation p-values, as described in the next section.

2.5 Estimating Permutation P-values in General Situa-
tions

In general situations where the hypersphere assumption does not hold, we esti-
mate the permutation p-value by

ZPr (DPj, )/ N, (5)

where Pr(DP;,«) is the probability that the minimum nominal p-value < «
given DP; is the best partition. Equation (5) is a natural extension of equation
(4) by replacing the counts with the summation of probabilities. It is worth
noting that in the previous section, one desired partition corresponds to one
significance set given the hypersphere assumption. However, in general situa-
tions, one desired partition may correspond to many significance sets. Therefore
Pr(DP;, o) is the average probability that the minimum nominal p-value < «
for all the significance sets centered at DP;. Taking averages does not intro-
duce any bias to permutation p-value estimation, because permutation p-value
is itself an average. Here we just take the average in two steps. First, we aver-
age across all the significance sets (or permutations) corresponding to the same
desired partition to estimate Pr(DP;,«). Secondly, we average across desired
partitions.

Let all the desired partitions whose distances to an observed genotype profile
Mo, are no larger than r be By(r), i.e.,

Bk(’/’) = {Dpj . dM(mo,k,DPj) S 7‘}

10



where 1 < k < p. Assume the observed genotype profiles {m, } are ordered
by the chromosomal locations of the corresponding markers. We employ the
following two approximations to estimate }; Pr(DP;, ):

1. shortest distance approximation:

Pr(DP;, o) = P(rj1,a)

2. serial counting approrimation:

C(r) = Cu(r) =Y |Bu(r)| = Y [Bu(r) N Ba-a(r)]
h=1 h=2

where C(r) has been defined in equation (4).

Proposition 3: As long as « is reasonably small, e.g., a < 0.05, there exist
rr < ry, such that P(r,a) = 1, if r < rp; P(r,a) =0, if r > ry. Given the
shortest distance and the serial counting approximations,

Z Pr(DP;,a) = Z P(rj,a)

TUfl

~ Cu(ri)+ Y [P(ra)(Cu(r) = Culr—1)]. (6)

r=rr+1

When « is extremely small, e.g., « = 10729, it is possible r;, = 0. We define
Cy(0) = 0 to incorporate this situation into equation (6).

In the Supplementary Materials (section IV), we present the derivation of
proposition 3, as well as propositions 4 and 5 that provide the algorithms to
calculate | By, (r)| and | B (r) N Bp—1(r)]|, respectively. Therefore, by propositions
3-5, we can estimate the permutation p-value by equation (5).

The rationale of shortest distance approximation is as follows. If the space
occupied by a significance set is approximately two hyperspheres, this approx-
imation is exact. Otherwise, if « is small, which is the situation where direct
permutation is computationally unfavorable, this approximation still tends to
be accurate. This is because when « is smaller, the genotype profiles within
the significance set are more similar, and hence the significance set is better
approximated by two hyperspheres. In the Results section, we report extensive
simulations to evaluate this approximation.

The serial counting approximation can be justified by the property of geno-

type profiles from linkage data, and (with less accuracy) in some kinds of as-
sociation data. In linkage studies, the similarity between genotype profiles is

11



closely related to the physical distances, with conditional independence of geno-
types between loci given the genotype at an intermediate locus. Therefore the
majority of the points in By (r) N Bp_k(r) (2 < k < h —1) are already included
in By(r) N Bp_1(r) (Figure 1B), and thus

Bh(T) N (U1§k§h71Bk(T)) ~ Bh(r) n Bhfl(r).

Then, we have

O(r) = Y IBu(r) = Y IBu(r) 0 (Urcien1 Bu(r)]
k=1 h=2
~ S IB) - Y IBu(r) 0 B (r)].
k=1 h=2

Our method has been implemented in an R package named permute.t, which
can be downloaded from http://www.bios.unc.edu/~wsun/software.htm

3 Results

3.1 Data

We analyzed an eQTL dataset of 112 yeast segregants generated from two par-
ent strains [Brem and Kruglyak, 2005, Brem et al., 2005]. Expression levels of
6229 genes and genotypes of 2956 SNPs were measured in each of the seg-
regants. Yeast is a haploid organism, and thus the genotype profile of each
marker is a binary vector of Os and 1s, indicating the parental strain from which
the allele is inherited. We dropped 15 SNPs that had more than 10% miss-
ing values, and then imputed the missing values in the remaining SNPs using
the function fill.geno in R/qtl [Broman et al., 2003]. Finally we combined the
SNPs that have the same genotype profiles, resulting in 1017 distinct genotype
profiles!. As expected, genotype profiles between chromosomes have little cor-
relation (Supplementary Figure 2), while the correlations of genotype profiles
within one chromosome are closely related to their physical proximity (Supple-
mentary Figure 3).

3.2 [Evaluation of the shortest distance approximation

We evaluate the shortest distance approximation Pr(DP;, ) ~ P(rj1, «) in this
section. Because the permutation p-value is actually estimated by the average
of Pr(DP;j, a) (equation (5)), it is sufficient to study the average of Pr(DP;, o)
across all the DP;’s having the same r;;. Specifically, we simulated 50 desired

1Most SNPs sharing the same genotype profiles are adjacent to each other, although there
are 10 exceptions in which the SNPs with identical profiles are separated by a few other SNPs.
In all the 10 exceptions, the gaps between the identical SNPs are less than 10kb. We recorded
the position of each combined genotype profile as the average of the corresponding SNPs’
positions.

12



partitions {DP;, j = 1,...,50} such that for each DP;, r;; = r. Suppose
DP; divides the n individuals into two groups of size ¢ and n-t; then DP; is
consistent with t!(n — ¢)! permutations of the trait. We randomly sampled 1000
such permutations to estimate Pr(DP;, o). We then took the average of these
50 Pr(DP;, o)’s, denoted it as p(r), and compared it with P(r, «).

We randomly selected 88 gene expression traits. For each gene expression
trait, we chose a to be the smallest nominal p-value (from t-tests) across all
the 1,107 genotype profiles. We first estimated P(r,«) and p(r), and then
examined the ratio P(r,«)/p(r) at three distances r;, i=1, 2, 3, where r; =
arg min, {|P(r, @) — 0.25i|}, i.e., the approximate 1st quartile, median, and 3rd
quartile of P(r, @) when P(r, «) is between 0 and 1 (Figure 2). For the genes with
larger nominal p-values, P(r,)/p(r) can be as small as 0.4. Thus the shortest
distance approximation is inaccurate. We suggest estimating the permutation
p-values for the genes with larger nominal p-values by a small number of direct
permutations, although in practice such non-significant genes may be of little
interest. After excluding genes with nominal p-values larger than 2 x 10™4, on
average P(r,«)/p(r) is 0.80, 0.88, 0.95 for the 1st, 2nd, and 3rd quartile respec-
tively. We chose the threshold 2 x 10~* because it approximately corresponds
to permutation p-value 0.05~0.10 (see Section 3.4. Comparing permutation p-
value and nominal p-value). It is worth emphasizing that when we estimate
permutation p-values, we average across DP;’s. In many cases, P(rj;,a) =0
or 1, and thus Pr(DPj,«) = P(r;1,c). Therefore after taking average across
DP;y’s, the effects of those cases with small P(r,a)/p(r) will be minimized.

3.3 Permutation p-value estimation for a balanced binary
trait — evaluation of the serial counting approximation

Using the genotype data from the yeast eQTL dataset, we performed a genome-
wide scan of a simulated balanced binary trait, with 56 Os and 56 1s. The
standard chi-square statistic was used to quantify the linkages. As we discussed
before, for a balanced binary trait, the space occupied by a significance set
are approximately two hyperspheres, and the shortest distance approximation
is justified. This conclusion can also be validated empirically by examining
P(r,a). As shown in Supplementary Table 3, for each «, there is an 7, such
that P(r,a) = 1if r <r,, and P(r,a) = 0 if r > r,. From the sharpness of the
boundary we can see that a significance set indeed can be well approximated by
two hyperspheres. Given that the shortest distance approximation is justified,
we can evaluate the accuracy of the serial counting approximation by examining
the accuracy of permutation p-value estimates.

The accuracy of the serial counting approximation relies on the assumption
that the adjacent genotype profiles are more similar than the distant ones. We
dramatically violate this assumption by randomly order the SNPs in the yeast
eQTL data. As shown in Table 1, the permutation p-value estimates from the
original genotype data are close to the permutation p-values estimated by direct
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Figure 2: Evaluation of the shortest distance approximation using 88 ran-
domly selected gene expression traits. For each gene expression trait, the ratio
P(r,a)/p(r) is plotted at three r’s, which are approximately the 1st quartile,
median, and 3rd quartile of P(r,«) when P(r,a) is between 0 and 1. The ver-
tical broken line indicates the nominal p-value 2 x 10~*, which corresponds to
genome-wide permutation p-value 0.05~0.10.

permutations, whereas the estimates from the location-perturbed genotype data
are systematically biased.

Table 1: Comparison of permutation p-value estimates for a balanced binary
trait. Values at the column of “Permutation p-value” are estimated via 500,000
permutations. Values at the columns “Permutation p-value estimate I/II” are
estimated by our method before and after perturbing the locations of the SNPs.

Nominal Permutation Permutation Permutation

p-value p-value p-value p-value
cutoff estimate 1 estimate I1
1073 0.19 0.21 0.41

10~4 0.02 0.021 0.039

10—° 2.0x1073 1.9x1073 2.9x1073
10-6 2.4x107* 2.2x10~* 3.1x104
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3.4 Permutation p-value estimation for quantitative traits

We randomly selected 500 gene expression traits to evaluate our permutation
p-value estimation method in a systematic manner. We used t-tests to evaluate
the linkages between gene expression traits and binary markers. For each gene
expression trait, we first identified the genome-wide smallest p-value, and then
estimated the corresponding permutation p-value by either our method or by
direct permutations (Figure 3 (a)). For those relatively larger permutation p-
values (> 0.1), the estimates from our method tend to be inflated. Some of them
are even greater than 1. This is because the serial counting approximation is
too loose for larger permutation p-values, due to the fact that each significance
set occupies a relatively large space. Nevertheless, the two estimation meth-
ods give consistent results for those permutation p-values smaller than 0.1. We
also estimated the permutation p-values after perturbing the order of the SNPs
(Figure 3 (b)). As expected, the permutation p-value estimates are inflated.

o+ @ o~ (b
LN | TN |
3 | g |
o o
— —
(@] o
S | S« |
I L ! opﬁ’:a‘
© _| 2o © _| &
| N X | 8 .
I I I I I [ I I I I I [
-5 -4 -3 -2 -1 0 -5 -4 -3 -2 -1 0
log10(pp) log10(pp)

Figure 3: Comparison of permutation p-values estimated by our method (de-
noted as pe) or by direct permutations (denoted as pp) for 500 randomly selected
gene expression traits (each gene corresponds to one point in the plot). (a) Us-
ing the original genotype data. (b) Using the location-perturbed genotype data.
Each gene expression trait is permuted up to 500,000 times to estimate pp. Thus
the smallest permutation p-value is 2 x 1079, and we have more confidence for
those permutation p-values bigger than 2 x 10~ (indicated by the vertical line).
The degree of closeness of the points to the solid line (y = x) indicates the degree
of consistency of the two methods. The two broken lines along the solid line
are y = = + log,(2) respectively, which, in the original p-value scale, are pe =
0.5pp and pe = 2pp respectively.

The advantage of our method is the improved computational efficiency. The
computational burden of our method is constant no matter how small the per-
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mutation p-value is. To make a fair comparison, both our estimation method
and direct permutation were implemented in C. In addition, for direct per-
mutations, we carried out different number of permutations for different gene
expression traits so that a large number of permutations were performed only if
they were needed. Specifically, we permuted a gene expression trait 100, 1000,
5,000, 10,000, 50,000, and 100,000 times if we had 99.99% confidence that the
permutation p-value of this gene was bigger than 0.1, 0.05, 0.02, 0.01, 0.002, and
0.001 respectively. Otherwise we permuted 500,000 times. It took 79 hours to
run all the permutations. If we ran at most 100,000 permutations, it took about
20 hours. In contrast, our method only took 46 minutes. All the computation
was done in a computing server of Dual Xenon 2.4 Ghz.

3.5 Comparing permutation p-values and nominal p-values

The results we will report in this section are the property of permutation p-
values, instead of an artifact of our estimation method. However, using direct
permutation, it is infeasible to estimate a very small permutation p-value, e.g.,
1078 or less. In contrast, our estimation method can accurately estimate such
permutation p-values efficiently?. This enables a study of the relationship be-
tween permutation p-values and nominal p-values. Such relationship can provide
important guidance for the sample size or power of a new study.

Let z and y be log;g(nominal p-value) and log;q(permutation p-value es-
timate) respectively. We compared z and y across the randomly selected 500
gene expression traits used in the previous section (Figure 4 (a)) and found an
approximate linear relation.

We employed median regression (R function rq) (Koenker 2007) to capture
the linear pattern (Figure 4 (b))3. If the nominal p-value was too large or too
small, the permutation p-value estimate might be inaccurate. Thus we used the
359 gene expression traits with nominal p-value between 107'° and 1073 to fit
the linear pattern (in fact, using all the 483 gene expression traits with nominal
p-values larger than 10720 yielded similar results, data not shown). The fitted
linear relation is y = 2.52 + 0.978z. Note z and y are in log scale. In terms
of the p-values, the relation is ¢ = np® = 327.5p°°7®, where p and ¢ indicate
nominal p-value and permutation p-value, respectively. If k = 1, ¢ = np, and 7
can be interpreted as the effective number of independent tests (or the effective
number of independent genotype profiles). However, the observation that x is
close to but smaller than 1 (lower bound 0.960, upper bound 0.985) implies

20ur method cannot estimate those extremely small permutation p-values such as 10~2°
reliably. This is simply because only a few genotype profiles can yield such significant re-
sults even in the whole genotype space. Nevertheless, those results correspond to unambigu-
ously significant findings even after Bonferroni correction. Therefore permutation may not be
needed. See the supplementary Materials, section I for more details.

3Most genes whose fitted values differ from the observed values more than 2-folds are below
the linear patterns. These genes often have more outliers than other genes, which may violate
the t-test assumptions and bring bias to nominal p-values.
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Figure 4: Comparison of permutation p-value estimates and nominal p-values.
(a) Scatter plot of permutation p-value estimates vs. nominal p-value in logl0
scale for the 500 gene expression traits. Those un-reliable permutation p-value
estimates are indicated by “x”. See footnote 2 for explanation. (b) Scatter plot
for 483 gene expression traits with nominal p-value larger than 1072°. In both
(a) and (b) the solid line is y = z. In (b), the broken line fitting the data
is obtained by median regression for those 359 genes with nominal p-values
between 10710 and 1073.

that the effective number of independent tests, which can be approximated by
q/p = np"~t = np=°922 varies according to the nominal p-value p. For exam-
ple, for p = 1072 and 1079, the expected effective number of independent tests
are approximately 381 and 444, respectively.

The relation between the effective number of independent tests and the sig-
nificance level can be explained by the geometric interpretation of permutation
p-values. Given a nominal p-value cutoff, whether two genotype profiles corre-
spond to two independent tests amounts to whether they can be covered by the
same significance set. As the p-value cutoff becomes smaller, the significance
set becomes smaller, and thus the chance that two genotype profiles belong to
one significance set is smaller. Therefore smaller p-value cutoff corresponds to
more independent tests.

4 Discussion

In this paper, we have proposed a geometric interpretation of permutation p-
values and a method to estimate permutation p-values based on this inter-
pretation. Both theoretical and empirical results show that our method can
estimate permutation p-values reliably, except for those extremely small or
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relatively large ones. The extremely small permutation p-values correspond
to even smaller nominal p-values, e.g., 10720, They indicate significant link-
ages/associations even after Bonferroni correction; therefore permutation p-
value evaluation is not needed. The relatively large permutation p-values, e.g.,
those larger than 0.1, can be estimated by a small number of permutations,
although in practice such non-significant cases may be of little interest. The
major computational advantage of our method is that the computational time
is constant regardless of the significance level. This computational advantage
enables a study of the relation between nominal p-values and permutation p-
values in a wide range. We find that the effective number of independent tests is
not a constant; it increases as the nominal p-value cutoff becomes smaller. This
interesting observation can be explained by the geometric interpretation of per-
mutation p-values and can provide important guidance in designing new studies.

Parallel computation is often used to improve the computational efficiency
by distributing computation to multiple processors/computers. Both direct per-
mutation and our estimation method can be implemented for parallel compu-
tation. In the studies involving a large number of traits (e.g., eQTL studies),
one can simply distribute equal number of traits to each processor. If there are
only one or a few traits of interest, for direct permutation, one can distribute
equal number of permutations to each processor. For our estimation method,
the most computational demanding part (which takes more than 80% of the
computational time) is to estimate P(r, «), which can be paralleled by estimat-
ing P(r,a) for different r’s separately. Furthermore, for a particular r, P(r, «)
is estimated by evaluating the nominal p-values for a large number of genotype
profiles whose distances to the best partition are r. The computation can be
further paralleled by evaluating nominal p-values for a subset of such genotype
profiles in each processor.

As we mentioned at the beginning of this paper, we focus on the genetic stud-
ies with high density markers, where the test statistics are evaluated on each of
the genetic markers directly. Our permutation p-value estimation method can-
not be directly applied to interval mapping [Lander and Botstein, 1989, Zeng, 1993].
However, we believe that as the expense of SNP genotype array decreases, most
genetic studies will utilize high density SNP arrays. In such situations, the in-
terval mapping may be no longer necessary.

We have discussed how to estimate the permutation p-value of the most
significant linkage/association. Permutation p-values can also be used to assess
the significance of each locus in multiple loci mapping. Doerge and Churchill
[Doerge and Churchill, 1996] have proposed two permutation-based thresholds
for multiple loci mapping, namely the conditional empirical threshold (CET)
and residual empirical threshold (RET). Suppose k£ markers have been included
in the genetic model, and we want to test the significance of (k+1)-th marker
by permutation. The samples can be stratified into 2¥ genotype classes based
on the genotype of the k markers that are already in the model (here we still
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assume genotype is a binary variable). CET is evaluated based on permutations
within each genotype class. Alternatively, the residuals of the k-marker model
can be used to test the significance of the (k+1)-th marker. RET is calculated
by permuting the residuals across the individuals. RET is more powerful than
CET when the genetic model is correct since the permutations in RET are not
restricted by the 2% stratifications. Our permutation p-value estimation method
can be applied to RET estimation without any modification, and it can also be
used to estimate CET with some minor modifications. Specifically, let condi-
tional desired partitions be the desired partitions that can be generated by the
conditional permutations. Then in equation (5), N, should be calculated as the
number of conditional desired partitions instead of the total number of desired
partitions. In equation (6), P(r,a) remains the same and Cpy(r) need to be
calculated by counting the number of conditional desired partitions within dis-
tance r from at least one of the observed genotype profiles.

There are some limitations in the current implementation of our method,
which are also the directions of our future developments. First, we only dis-
cuss binary markers in this paper. The counting procedures in proposition 4
and 5 (see section IV in the Supplementary Materials) can be extended in a
straightforward way to apply to the genotypes with three levels. However some
practical considerations need to be addressed carefully, for example, the def-
inition of the distance between genotype profiles and the choice of the best
partition. Secondly, the serial counting approximation relies on the assumption
that the correlated genotype profiles are close to each other. This is true for
genotype data in linkage studies, but in general is not true for association stud-
ies, where the proximity of correlated markers in haplotype blocks may be too
coarse for immediate use. We are investigating a clustering algorithm to reorder
the genotype profiles according to correlation rather than physical proximity.
Finally, our work here points toward extensions to the use of continuous covari-
ates, which can be applied, for example, to map gene expression traits to the
raw measurements of copy number variations [Stranger et al., 2007].
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