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Smoothed ANOVA with spatial effects as a competitor to

MCAR in multivariate spatial smoothing

SUMMARY

Rapid developments in geographical information systems (GIS) and advanced spatial statis-

tics continue to generate interest in analyzing complex spatial datasets. One area of activity

is in creating smoothed disease maps to describe the geographic variation of disease and

generate hypotheses for apparent differences in risk. With multiple diseases, a multivari-

ate conditionally autoregressive model (MCAR) is often used to smooth across space while

accounting for associations between the diseases (see, e.g., Jin et al 2007). The MCAR,

however, imposes complex covariance structures that are difficult to interpret and estimate.

This article develops a much simpler alternative approach building upon the techniques

of smoothed ANOVA (SANOVA) developed by Hodges et al (2007). Instead of simply

shrinking effects without any structure as in Hodges et al (2007), here we use SANOVA

to smooth spatial random effects by taking advantage of the spatial structure. This paper

extends SANOVA to cases in which one factor is a spatial lattice, which is smoothed using

a CAR model, and a second factor is, for example, type of cancer. Datasets routinely lack

enough information to identify the additional structure of MCAR. SANOVA offers a simpler

and more intelligible structure than the MCAR while performing as well. We demonstrate

our approach with simulation studies designed to compare SANOVA with different design

matrices versus MCAR with different priors. Subsequently a cancer-surveillance dataset,

describing incidence of 3 cancers in Minnesota’s 87 counties, is analyzed using both ap-

proaches, showing the competitiveness of the SANOVA approach.

Key words: Analysis of variance, Bayesian inference, conditionally autoregressive

model, hierarchical model, smoothing.
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1 Introduction

Statistical modelling and analysis of spatially referenced data receive considerable interest

due to the increasing availability of geographical information systems (GIS) and spatial

databases. For data aggregated over geographic regions such as counties, census tracts or

ZIP codes (often called areal data), with individual identifiers and precise locations re-

moved, inferential objectives focus on models for spatial clustering and variation. Such

models are often used in epidemiology and public health to understand geographical pat-

terns in disease incidence and morbidity. Recent reviews of methods for such data include

Lawson et al. (1999), Elliott et al. (2000), Waller & Gotway (2004) and Rue & Held (2004).

Traditionally such data have been modelled using conditionally specified probability models

that shrink or smooth spatial effects by borrowing strength from neighboring regions. Per-

haps the most pervasive model is the conditionally autoregressive (CAR) family pioneered

by Besag (1974), which has been widely investigated and applied to spatial epidemiological

data (Wakefield, 2007, gives an excellent review). Recently the CAR has been extended to

multivariate responses, building on multivariate conditional autoregressive (MCAR) mod-

els described by Mardia (1988). Gelfand & Vonatsou (2003) and Carlin & Banerjee (2003)

discussed their use in hierarchical models, while Kim, Sun & Tsutakawa (2001) presented

a different “twofold CAR” model for counts of two diseases in each areal unit. Other ex-

tensions allowing flexible modelling of cross-correlations include Sain & Cressie (2002), Jin,

Carlin & Banerjee (2005) and Jin, Banerjee & Carlin (2007). The MCAR can be viewed as a

conditionally specified probability model for interactions between space and an attribute of

interest. For instance, in disease mapping interest often lies in modelling geographical pat-

terns in disease rates or counts of several diseases. The MCAR acknowledges dependence

between the diseases as well as dependence across space. However, practical difficulties

arise from MCAR’s elaborate dependence structure: most interaction effects will be weakly

identified by the data, so the dependence structure is poorly identified. In hierarchical

models (e.g., Gelfand & Vonatsou, 2003; Jin et al., 2005, 2007), strong prior distributions

may improve identifiability, but this is not uncontroversial as inferences are sensitive to

the prior and perhaps unreliable without genuine prior information. This article proposes

a much simpler and more interpretable alternative to the MCAR, modelling multivariate
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spatial effects using smoothed analysis of variance (SANOVA) as developed by Hodges,

Cui, Sargent & Carlin (2007), henceforth HCSC. Unlike an ANOVA that is used to identify

some interaction effects to retain and others to remove, SANOVA mostly retains effects

that are large, mostly removes those that are small, and partially retains middling effects.

(Loosely speaking, “large”, “middling”, and “small” describe the size of the unsmoothed

effects compared to their standard errors.) To accommodate rich dependence structures,

MCAR introduces weakly identifiable parameters that complicate estimation. SANOVA, on

the other hand, focuses instead on smoothing interactions to yield more stable and reliable

results. Our intended contribution is to show how SANOVA can solve the multiple disease

mapping problem while avoiding the dauntingly complex covariance structures imposed by

MCAR and its generalizations. We demonstrate that SANOVA produces inference that is

largely indistinguishable from MCAR, yet SANOVA is simpler, more explicit, easier to put

priors on and easier to estimate. The rest of the article is as follows. Section 2 reviews

SANOVA and MCAR, identifying SANOVA as a special case of MCAR. Section 3 is a

“tournament” of simulation experiments comparing SANOVA with MCAR for normal and

Poisson data, while Section 4 analyzes data describing the number of deaths from lung, lar-

ynx and esophagus cancer in Minnesota between 1990 and 2000. A summary and discussion

of future research in Section 5 concludes the paper. The Appendix gives computational and

technical details.

2 The Competitors

2.1 Smoothing spatial effects using SANOVA

2.1.1 SANOVA for balanced, single-error-term models (HCSC 2007)

Consider a balanced, single-error-term analysis of variance, with M1 degrees of freedom for

main effects and M2 degrees of freedom for interactions. Specify this ANOVA as a linear

model: let A1 denote columns in the design matrix for main effects, and A2 denote columns

in the design matrix for interactions. Assume the design has c cells and n observations per

cell, giving cn observations in total. To simplify later calculations, normalize the columns of

A1 and A2 so A1
′A1 = IM1 and A2

′A2 = IM2. (Note: HCSC normalized columns differently,
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fixing A1
′A1 = cnIM1 and A2

′A2 = cnIM2.) Then write the ANOVA as:

y = [A1|A2]



 Θ1

Θ2



+ ǫ = A1Θ1 + A2Θ2 + ǫ (1)

where ǫ ∼ N(0, 1
η0

I) with η0 being a precision, y is cn × 1, A1 is cn × M1, A2 is cn × M2,

Θ1 is M1 × 1, Θ2 is M2 × 1, and ǫ is cn× 1. This ANOVA is smoothed by further modeling

Θ. HCSC emphasized smoothing interactions, although main effects can be smoothed

by exactly the same means. Following HCSC, we add constraints (or a prior) on Θ2 as

θM1+j ∼ N(0, 1/ηj) for j = 1, · · · ,M2, written as:

0M2 = [0M2×M1 |IM2]



 Θ1

Θ2



+ δ (2)

where δ ∼ N(0, diag( 1
ηj

)), in the manner of Lee & Nelder (1996) and Hodges (1998).

Combining (1) and (2), express this hierarchical model as a linear model:



 y

0M2



 =



 A1 A2

0M2×M1 IM2







 Θ1

Θ2



+



 ǫ

δ



 . (3)

More compactly, write:

Y = XΘ + e (4)

where Y has dimension (cn + M2) × 1 and e’s covariance Γ is block diagonal with blocks

Γ1 = 1
η0

Icn for the data cases (rows of X corresponding to the observation y) and Γ2 =

diag(1/η1, · · · , 1/ηM2
) for the constraint cases (rows of X with error term δ). For con-

venience, define the matrix XD = [A1|A2], the data-case part of X. This development

can be done using the mixed linear model (MLM) formulation traditionally written as

y = Xβ + Zu + ǫ, where our (1) supplies this equation and u = Θ2 ∼ N(0,Γ2). The

development to follow can also be done using the MLM formulation at the price of slightly

greater complexity, so we omit it. HCSC developed SANOVA for exchangeable priors on

groups formed from components of Θ2. The next section develops the extension to spatial

smoothing.
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2.1.2 What is CAR?

Suppose a map has N regions, each with an unknown quantity of interest φi, i = 1, . . . , N .

A conditionally autoregressive (CAR) model specifies the full conditional distribution of

each φi as

φi | φj , j 6= i, ∼ N



 α

mi

∑

i∼j

φj,
1

τmi



 , i, j = 1, . . . , N, (5)

where i ∼ j denotes that region j is a neighbor of region i (typically defined as spatially

adjacent), and mi is the number of region i’s neighbors. Equation (5) reduces to the well-

known intrinsic conditionally autoregressive (ICAR) model (Besag et al., 1991) if α = 1 or

an independence model if α = 0. The ICAR model induces “local” smoothing by borrowing

strength from neighbors, while the independence model assumes spatial independence and

induces “global” smoothing. The CAR prior’s smoothing parameter α also controls the

strength of spatial dependence among regions, though it has long been appreciated that

a fairly large α may be required to induce large spatial correlation; see Wall (2004) for

recent discussion and examples. It is well-known (e.g., Besag, 1974) that the conditional

specifications in (5) lead to a valid joint distribution for φ = (φ1, . . . , φN )
′

expressed in

terms of the map’s neighborhood structure. If Q is an N × N matrix such that Qii = mi,

Qij = −α whenever i ∼ j and Qij = 0 otherwise, then the intrinsic CAR model (Besag et

al 1991) has density:

p(φ|τ) ∼ τ
N∗

2 exp
(
−τ

2
φ′Qφ

)
, with N∗ =

{
N, if α ∈ (0, 1)

N − G, if α = 1
. (6)

In (6), τ is the spatial precision parameter, τQ is the precision matrix in this multivariate

normal distribution and G is the number of “islands” (disconnected parts) in the spatial

map (Hodges et al 2003). When α ∈ (0, 1), (6) is a proper multivariate normal distribution.

When α = 1, Q is singular with Q1 = 0; Q has rank N − G in a map with G islands,

therefore the exponent on τ becomes (N − G)/2. In hierarchical models, the CAR model

is usually used as a prior on spatial random effects. For instance, let Yi be the observed

number of cases of a disease in region i, i = 1, . . . , N , and Ei be the expected number of

cases in region i. Here the Yi are treated as random variables, while the Ei are treated as

fixed and known, often simply proportional to the number of persons at risk in region i.
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For rare diseases, a Poisson approximation to a binomial sampling distribution for disease

counts is often used, so a commonly used likelihood for mapping a single disease is

Yi
ind∼ Poisson(Eie

µi) , i = 1, . . . , N, (7)

where µi = x′
iβ + φi. The xi are explanatory, region-specific regressors with coefficients

β and the parameter µi is the log-relative risk describing departures of observed from

expected counts, that is, from Ei. The hierarchy’s next level is specified by assigning the

CAR distribution to φ and a hyper-prior to the spatial precision parameter τ . In the

hierarchical setup, the improper ICAR with α = 1 gives proper posterior distributions for

spatial effects. In practice, Markov Chain Monte Carlo (MCMC) algorithms are designed

for estimating posteriors from such models and the appropriate number of linear constraints

on the φ suffices to ensure sampling from proper posterior distributions (Banerjee, Carlin

& Gelfand, 2004, pp 163–164, gives details).

2.1.3 How does CAR fit into SANOVA?

To use CAR in SANOVA, the key is re-expressing the improper CAR , i.e., (6) with α = 1.

Let Q have spectral decomposition Q = V DV ′, where V is an orthogonal matrix with

columns containing Q’s eigenvectors and D is diagonal with non-negative diagonal entries.

D has G zero diagonal entries, one of which corresponds to the eigenvector 1√
N

1N , by

convention the N th (right-most) column in V . Define a new parameter Θ = V ′φ, so Θ

has dimension N and precision matrix τD. Giving an N -vector Θ a normal prior with

mean zero and precision τD is equivalent to giving φ = V Θ a CAR prior with precision

τQ. Θ consists of ΘN = 1√
N

1′
Nφ =

√
N φ, the scaled average of the φi, along with N − 1

contrasts in φ, which are orthogonal to 1√
N

1N by construction. Thus the CAR prior is

informative (has positive precision) only for contrasts in φ, while putting zero precision on

ΘGM = ΘN = 1√
N

1′
Nφ, the overall level, and on G− 1 orthogonal contrasts in the levels of

the G islands. In other words, the CAR model can be thought of as a prior distribution on

the contrasts rather than individual effects (hence the need for the sum-to-zero constraint).

A related result, discussed in Besag et al. (1995), shows the CAR to be a member of a

family of “pairwise difference” priors. This reparameterization allows the CAR model to
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fit into the ANOVA framework, with ΘGM corresponding to the ANOVA’s grand mean

and the rest of Θ, ΘReg, corresponding to V (−)′φ, where V (−) is V excluding the column

1√
N

1N , consisting of N − 1 orthogonal contrasts among the N regions and giving the N − 1

degrees of freedom in the usual ANOVA:

φ =
[

φ1, φ2, . . . , φN

]′

= V Θ

=
[

V (−) 1√
N

1N

]


 ΘReg

ΘGM



 .

Giving φ a CAR prior is equivalent to giving Θ a N(0, τD) prior; the latter are the “con-

straint cases” in HCSC’s SANOVA structure. The precision DNN = 0 for the overall level

is equivalent to a flat prior on ΘGM , though ΘGM could alternatively have a normal prior

with mean zero and finite variance. If G > 1, the CAR prior also puts zero precision on

G− 1 contrasts in φ, which are contrasts in the levels of the G islands (Hodges et al 2003).

2.2 SANOVA as a competitor to MCAR

2.2.1 Multivariate conditionally autoregressive (MCAR) models

With multiple diseases, we have unknown φij corresponding to region i and disease j, where

i = 1, . . . , N and j = 1, . . . , n. Letting Ω be a common precision matrix (i.e., inverse of the

covariance matrix) representing correlations between the diseases in a given region, MCAR

distributions arise through conditional specifications for φi = (φi1, . . . , φin)
′
:

φi | {φi′}i′ 6=i ∼ MV N

(
α

mi

∑

i′∼i

φi′ ,
1

mi
Ω−1

)

. (8)

These conditional distributions yield a joint distribution for φ = (φ1

′
, . . . ,φN

′
)′:

f(φ|Ω) ∝ ‖Ω‖N−G
2 exp

(
− 1

2
φ′(Q ⊗ Ω)φ

)
, (9)

where Q is defined as in Section 2.1.2 and again (9) is an improper density when α = 1.

However, as for the univariate CAR, this yields proper posteriors in conjunction with a

proper likelihood. The specification above is a “separable” dispersion structure, i.e., the

covariances between the diseases are invariant across regions. This may seem restrictive, but
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relaxing this restriction gives even more complex dispersion structures (see Jin, Banerjee

& Carlin, 2007 and references therein). As mentioned earlier, our focus is to retain the

model’s simplicity without compromising the primary inferential goals. We propose to do

this using SANOVA and will compare it with the separable MCAR only.

2.2.2 SANOVA with Minnesota counties as one factor

We now describe the SANOVA model using the Minnesota 3-cancer dataset. Consider the

Minnesota map with N = 87 counties, and suppose each county has counts for n = 3 cancers.

County i has an n-vector of parameters describing the n cancers, φi = (φi1, φi2, . . . , φin)′;

define the Nn vector φ as φ = (φ1
′,φ2

′, . . . ,φN
′)′. For now, we are vague about the

specific interpretation of φij ; the following description applies to any kind of data. Assume

the N × N matrix Q describes neighbor pairs among counties as before. The SANOVA

model for this problem is a 2-way ANOVA with factors cancer (“CA”, n levels) and county

(“CO”, N levels) and no replication. As in section 2.1.1, we model φ with a saturated

linear model and put the grand mean and the main effects in their traditional positions as

in ANOVA (matrix dimensions and definitions appear below the equation):

φ =
[
φ1

′,φ2
′, . . . ,φN

′]′ = [A1|A2]Θ =



 1√
Nn

1Nn

︸ ︷︷ ︸

1√
N

1N⊗HCA

︸ ︷︷ ︸

∣∣∣∣∣ V (−)⊗ 1√
n
1n

︸ ︷︷ ︸
V (−)⊗HCA

(1) ... V (−)⊗HCA
(n−1)

︸ ︷︷ ︸









ΘGM

ΘCA

ΘCO

ΘCO×CA





(10)

Cancer County Cancer×County

Grand mean main effect main effect interaction

Nn×1 Nn×(n−1) Nn×(N−1) Nn×(N−1)(n−1)

where HCA is an n×(n−1) matrix whose columns are contrasts among cancers, so 1′
nHCA =

0′
n−1, and H ′

CAHCA = In−1; HCA
(j) is the jth column of HCA; and V (−) is V without

its N th column 1√
N

1N , so it has N − 1 columns, each a contrast among counties, i.e.,

1′
NV (−) = 0′

N−1, and V (−)′V (−) = IN−1. The column labelled “Grand mean” corresponds

to the ANOVA’s grand mean and has parameter ΘGM ; the other blocks of columns labeled
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as main effects and interactions correspond to the analogous ANOVA effects and to their

respective parameters ΘCA,ΘCO,ΘCO×CA. Defining prior distributions on Θ completes

the SANOVA specification. We put independent flat priors (normal with large variance) on

ΘGM and ΘCA, which are, therefore, not smoothed. This is equivalent to putting a flat prior

on each of the n cancer-specific means. To specify the smoothing priors, define HCA
(0) =

1√
n
1n. Let the county main effect parameter ΘCO have prior ΘCO ∼ NN−1(0, τ0D

(−)),

where D(−) corresponds to V (−) i.e., D without its N th row and column, τ0 > 0 is unknown

and τ0D
(−) is a precision matrix. Similarly, let the jth group of columns in the cancer-by-

county interaction, V (−) ⊗ HCA
(j), have prior ΘCO×CA

(j) ∼ NN−1(0, τjD
(−)), for τj > 0

unknown. Each of the priors on ΘCO and the ΘCO×CA
(j) is a CAR prior; the overall level

of each CAR, with prior precision zero, has been included in the grand mean and cancer

main effects.

To compare this to the MCAR model, use SANOVA’s priors on Θ to produce a marginal

prior for φ comparable to the MCAR’s prior on φ (section 2.2.1); in other words, integrate

ΘCO and ΘCO×CA out of the foregoing setup. A priori,

2

6

6

6

6

6

6

4

K

0

B

B

B

B

B

B

@

ΘCO

ΘCO×CA
(1)

.

..

ΘCO×CA
(n−1)

1

C

C

C

C

C

C

A

3

7

7

7

7

7

7

5

(11)

has precision Q ⊗ (HA
(+)diag(τj)HA

(+)′), where K is the columns of the design matrix

for the county main effects and cancer-by-county interactions—the right-most n(N − 1)

columns in equation (10)’s design matrix—and HA
(+) = ( 1√

n
1n|HCA) is an orthogonal

matrix. Appendix A gives a proof.

2.2.3 Comparing SANOVA vs MCAR

Defining φ as in sections 2.2.1 and 2.2.2, consider the MCAR prior for φ, with within-

county precision matrix Ω. Let Ω have spectral decomposition VΩDΩV ′
Ω, where DΩ is n×n

diagonal and VΩ is n×n orthogonal. Then the prior precision of φ is Q⊗ (VΩDΩV ′
Ω), where

Q is the known neighbor relations matrix and VΩ and DΩ are unknown. Comparing MCAR

to SANOVA, the prior precision matrices for the vector φ are as in Figure 1. SANOVA is

clearly a special case of MCAR in which H
(+)
A is known. Also, as described so far, H

(+)
A has
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one column proportional to 1n with the other columns being contrasts, while MCAR avoids

this restriction. MCAR is thus more flexible, while SANOVA is simpler, presumably making

it better identified and easier to set priors for. MCAR should have its biggest advantage

over SANOVA when the “true” VΩ is not like H
(+)
A for any specification of the smoothing

precisions τj. However, because datasets often have modest information about higher-level

variances, it may be that using the wrong H
(+)
A usually has little effect on the analysis.

In other words, SANOVA’s performance may be relatively stable despite having to specify

H
(+)
A , while MCAR may be more sensitive to Ω’s prior.

2.3 Setting priors in MCAR and SANOVA

2.3.1 Priors in SANOVA

For the case of normal errors, based on equations (1) and (10), setting priors for Θ, τj , η0

completes a Bayesian specification. Since τ and η0 are precision parameters, one possible

prior is Gamma; this paper uses a Gamma with mean 1 and variance 10. As mentioned,

the grand mean and cancer main effects θ1, θ2, θ3 have flat priors with π(θ) ∝ 1, though

they could have proper informative priors. The priors for θ4, · · · are set according to the

SANOVA structure as in section 2.2.2. We ran chains drawing in the order θ, τ , and η0

(Appendix B gives details). Hodges et al. (2007) also considered priors on the degrees of

freedom in the fitted model, some conditioned so the degrees of freedom in the model’s fit

were fixed at a certain degree of smoothness. The present paper emphasizes comparing

MCAR and SANOVA, so we do not consider such priors. For the case of Poisson errors,

we use a normal prior with mean 0 and variance 106 for the grand mean and cancer main

effects θ1, θ2, θ3. The other θis are given normal CAR priors as discussed in section 2.2.2.

For the prior on the smoothing precisions τj, we use Gamma with mean 1 and variance

10. To reduce high posterior correlations among the θs, we used a transformation during

MCMC; Appendix C gives details.
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2.3.2 Priors in MCAR

MCAR models were fitted in WinBUGS. For the normal-error case, we used this model and

parameterization:

Yij ∼ N(µij ,
1

η0
)

µij = βj + Sij, (12)

i = 1, · · · , N ; j = 1, · · · , n, where η0 has a gamma prior with mean 1 and variance 10 as

for SANOVA. To satisfy WinBUGS’s constraint that
∑

i Sij = 0, we add cancer-specific

intercepts βj . We give βj a flat prior and for S, the spatial random effects, we use an

intrinsic multivariate CAR prior. Similarly, in the Poisson case

Yij ∼ Poisson(µij)

log(µij) = log(Eij) + βj + Sij (13)

where Eij is an offset. Prior settings for βj and Sij are as in the normal case. For MCAR

priors, the within-county precision matrix Ω needs a prior; a Wishart distribution is an

obvious choice. If Ω ∼ Wishart(R, ν), then E(Ω) = νR−1. We want a “vague” Wishart

prior; usually ν = n is used but little is known about how to specify R. Thus, we considered

three different Rs, each proportional to the identity matrix. One of these priors sets R’s

diagnonal entries to Rii = 0.002, close to the setting used in an example in the GeoBUGS

manual (oral cavity cancer and lung cancer in West Yorkshire). The other two Rs are

the identity matrix and 200 times the identity. For the special case n = 1, where the

Wishart reduces to a Gamma, these Wisharts are Γ(0.5, 0.001), Γ(0.5, 0.5) and Γ(0.5, 100),

respectively.

3 Simulation Experiment

For this simulation experiment, artificial data were simulated from the model used in

SANOVA with a spatial factor, as described in section 2.2.2. Three different types of

Bayesian analysis were applied to the simulated data: SANOVA with the same HA
(+) used

to generate the simulated data (called “SANOVA correct”); SANOVA with incorrect HA
(+);
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and MCAR. SANOVA correct is a theoretical best possible analysis in that it takes as known

things that MCAR estimates, i.e., it uses additional correct information. SANOVA correct

cannot be used in practice, of course, because the true HA
(+) is not known. MCAR vs

SANOVA with incorrect HA
(+) is the comparison relevant to practice, and comparing them

to SANOVA correct shows how much each method pays for its “deficiency” relative to

SANOVA correct. Obviously it is not enough to test the SANOVA model using only data

generated from a similar SANOVA model. To avoid needless computing and facilitate com-

parisons, instead of generating data from an MCAR model and fitting a SANOVA model

as specified above, we use a trick that is equivalent to this. Section 3.1.2 gives the details.

3.1 Design of the simulation experiment

We simulated both normally-distributed and Poisson-distributed data. For both types of

data, we considered two different true sets of smoothing parameters r = τ/η0 or τ (Table

1). For the normal data, we considered τ/η0, since this ratio determines smoothing in

normal models, and we also considered two error precisions η0 (Table 1).

3.1.1 Generating the simulated datasets

To generate data from the SANOVA model, we need to define the true HA
(+). Let

HA1 =

0

B

B

B

@

1 −2 0

1 1 −1

1 1 1

1

C

C

C

A

0

B

B

B

@

1√
3

0 0

0 1√
6

0

0 0 1√
2

1

C

C

C

A

.

We used HA1 as the correct HA
(+); its columns are scaled to have length 1. Given V (−) and

with HA
(+) known, one draw of Θ and ǫ produces a draw of XDΘ+ǫ, therefore a draw of y.

In the simulation, we let the grand mean and main effects, which are not smoothed, have true

value 5. Each observation is simulated from a 3×20 factorial design, where 3 is the number

of cancers and 20 is the number of counties. We used the 20 counties in the right lower

corner of Minnesota’s map, with their actual neighbor relations. Thus, the dimension of each

artificial dataset is 60. The simulation experiment is a repeated-measures design, in which

a “subject” s in the design is a draw of (δ(s),γ(s)), referring to equation (3), where δ
(s)
1−3 = 5

and δ
(s)
4−60 ∼ N57(0, I3⊗D(−)) specify Θ and γ(s) ∼ N60(0, I60) gives ǫ. For the normal-errors

case, 100 such “subjects” were generated. Given a design cell in the simulation experiment
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with τ = (a, b, c) and η0 = d, the artificial dataset for subject s is y(s) = XD diag(1′
3,

1√
a
1′

19,

1√
b
1′

19,
1√
c
1′

19)δ
(s) + 1√

d
γ(s). All factors of the simulation experiment were applied to each

of the 100 “subjects”. For the normally-distributed data, the simulation experiment had

these factors: (a) the true (τ0/η0, τ1/η0, τ2/η0) : (100, 100, 0.1) or (0.1, 100, 0.1); (b) the true

error precision η0: 1 or 10; and (c) six statistical methods, described below in section 3.1.2.

Each design cell described in Table 1 thus had 100 simulated data sets. Similarly, for the

Poisson-data experiment, another 100 “subjects” were generated, but now there is no γ(s).

Thus, each “subject” s is a vector δ(s), where δ(s) is as described above. For the design

cell with τ = (100, 100, 0.1), the artificial data for subject s is y(s) ∼ Poisson(µ(s)), where

log(µ(s)) = log(E) + XD diag(1′
3,

1
101

′
19,

1
101

′
19,

1√
0.1

1′
19)δ

(s). In the simulation experiment,

we use “internal standardization” of the Minnesota 3-cancer data to supply the expected

numbers of cancers Eij. Among the 20 extracted counties, Hennepin county has the largest

average population over 11 years, about 1.1 million; its cancer counts are 5294, 119, 439

for lung, larynx, and esophagus respectively. Faribault county has the smallest average

population, 16,501, with cancer counts 110, 7 and 13 respectively. The Eij have ranges

80 to 5275, 2 to 113 and 7 to 449 for lung, larynx, and esophagus cancer respectively.

For the Poisson data, the simulation experiment had these factors: (a) the true τ0, τ1, τ2 :

(100, 100, 0.1) or (0.1, 100, 0.1); and (b) six statistical methods described below in section

3.1.2. Again, each of the two design cells in Table 1 had 100 simulated datasets.

3.1.2 The six methods (procedures)

For each simulated dataset, we did a Bayesian analysis for each of six different models de-

scribed in Table 2. The six models are: SANOVA with the correct HA
(+), HA1; SANOVA

with a somewhat incorrect HA
(+), HA2 given below; a variant SANOVA with a very incor-

rect HA
(+), HAM given below; MCAR with Rii = 0.002; MCAR with Rii = 1; and MCAR

with Rii = 200 (see section 2.3.2). HA2 and HAM are

HA2 =

0

B

B

B

@

1 1 1

1 −2 0

1 1 −1

1

C

C

C

A

0

B

B

B

@

1√
3

0 0

0 1√
6

0

0 0 1√
2

1

C

C

C

A

, HAM =

0

B

B

B

@

0.56 −0.64 −0.52

−0.53 −0.77 0.36

−0.63 0.07 −0.77

1

C

C

C

A

.

The incorrect HA2 has the same first column (grand mean) as the correct HA1, so it
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differs from the correct HA1, though less than it might. As noted above, we need to see

how the SANOVA model performs for data generated from an MCAR model in which VΩ

from Figure 1 does not have a column proportional to 1n. To do this without needless

computing, we used a trick: we used the data generated from a SANOVA model with

HA1 and fit the variant SANOVA mentioned above, in which HA
(+) is replaced by the

orthogonal matrix HAM with no column proportional to 1n, chosen to be very different

from HA1. For normal errors (Data1 through Data4), this is precisely equivalent to fitting

a SANOVA with HA
(+) = HA1 to data generated from an MCAR model with VΩ = BHA1,

for B = HA1H
−1
AM , i.e.,

VΩ =





0.43 −0.74 −0.52

−0.13 −0.63 0.77

−0.89 −0.26 −0.37




(14)

(to 2 decimal places). For Poisson errors (Data5, Data6), the equivalence is no longer

precise but the divergence of fitted SANOVA (using HA
(+) = HAM ) and generated data

(using HA
(+) = HA1) is quite similar. Finally, we considered three priors for MCAR

because little is known about how to set this prior and we did not want to hobble MCAR

with an ill-chosen prior. For the SANOVA and variant SANOVA analyses, we gave τj a

Γ(0.1, 0.1) prior with mean 1 and variance 10 for both the normal data and the Poisson

data.

3.2 Outcome measures

To compare the six different methods for normal and Poisson data, we consider three criteria.

The first is average mean squared error (AMSE). For each of the 60 (XDΘ)ij, the mean

squared error is defined as the average squared error over the 100 simulated datasets. AMSE

for each design cell in the simulation experiment is defined as the average of mean squared

error over the 60 (XDΘ)ij. Thus for the design cell labelled DataK in Table 1, define

ÂMSEK =
1

L

L∑

d=1

N∑

i=1

n∑

j=1

[(XDΘ̂)dij − (XDΘ)d
ij]

2/Nn, (15)

where L = 100, N = 20, n = 3,K = 1, · · · , 4 for Normal, K = 5, 6 for Poisson, Θ is the

true value and Θ̂ is the posterior median of Θ. For each design cell (K), the Monte Carlo

14



standard error for AMSE is (100)−0.5 times the standard deviation, across DataK’s 100

simulated datasets, of
∑N

i=1

∑n
j=1[(XDΘ̂)dij − (XDΘ)d

ij]
2/Nn. The second criterion is the

bias of XDΘ. For each of DataK’s 100 simulated datasets, first compute posterior medians

of (XDΘ)1,1, · · · , (XDΘ)20,3, then average each of those posterior medians across the 100

simulated datasets. From this average, subtract the true (XDΘ)ijs to give the estimated

bias for each of the 60 (XDΘ)ijs. MBIAS is defined as the 2.5th, 50th and 97.5th percentiles

of the 60 estimated biases. More explicitly, for design cell DataK, MBIAS is:

M̂BIASK = 2.5th, 50th, 97.5th percentiles of

(
1

L

L∑

d=1

(XDΘ̂
d − XDΘd)

)
. (16)

Finally, the coverage rate of Bayesian 95% equal-tailed posterior intervals, “PI rate”, is the

average coverage rate for the 60 individual (XDΘ)ijs.

3.3 Markov chain Monte Carlo specifics

While the MCAR models were implemented in WinBUGS, our SANOVA implementations

were coded in R and run on Unix. The different architectures do not permit a fair com-

parison between the run times of SANOVA and MCAR. However, the SANOVA models

have lower computational complexity than the MCAR models: MCAR demands a spec-

tral decomposition in every iteration, while SANOVA does not. For each of our mod-

els, we ran three parallel MCMC chains for 10000 iterations. The CODA package in

R (www.r-project.org) was used to diagnose convergence by monitoring mixing using

Gelman-Rubin diagnostics and autocorrelations (e.g., Gelman et al., 2003, Section 11.6).

Sufficient mixing was seen within 500 iterations for the SANOVA models, while 200 itera-

tions typically revealed the same for the MCAR models; we retained 8000 × 3 samples for

the posterior analysis.

3.4 Results

Table 3 and Figures 2 and 3 show the simulation experiment’s results. Table 3 shows AMSE;

for all methods and design cells, the standard Monte Carlo errors of AMSE are small,

less than 0.07, 0.005, 0.025 for Data1/Data2, Data3/Data4 and Data5/Data6 respectively.

Figure 2 shows MBIAS, where the middle symbols represent the median bias and the line
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segments represent the 2.5th and 97.5th percentiles. Figure 3 shows coverage of the 95%

posterior intervals. Denote SANOVA with the correct HA
(+) (HA1) as “SANOVA correct”,

SANOVA with HA2 as “SANOVA incorrect”, the variant SANOVA with HAM as “SANOVA

variant”, MCAR with Rii = 0.002 as “MCAR0.002” and so on.

3.4.1 As expected, SANOVA with correct HA
(+) performs best.

For normal data, SANOVA correct has the smallest AMSE for all true η0 and τ (Table

3). The advantage is larger in Data1 and Data2 where the error precision η0 is 1, than

in Data3 and Data4 where η0 is 10 (i.e., error variation is smaller). For Poisson data,

SANOVA correct also has the smallest AMSE. Considering MBIAS (Figure 2), SANOVA

correct has the narrowest MBIAS intervals for all cases. In Figure 3, the posterior coverage

for SANOVA correct is nearly nominal. As expected, then, SANOVA correct performs best

among the six methods.

3.4.2 SANOVA with incorrect HA2 and HAM perform very well.

Table 3 shows that for normal data, both SANOVA incorrect and SANOVA variant have

smaller AMSEs than MCAR200 and MCAR0.002, and AMSEs at worst close to MCAR1’s.

For Poisson data, Table 3 shows that MCAR0.002 and MCAR1 do somewhat better than

SANOVA incorrect and variant SANOVA. Considering MBIAS in normal data (Figure 2a),

the width of the 95% MBIAS intervals for SANOVA incorrect are the same as or smaller than

for all three MCAR procedures. Similarly, SANOVA variant has MBIAS intervals better

than MCAR0.002 and MCAR200 and almost as good as MCAR1. Figure 2b for Poisson

data shows SANOVA correct, MCAR0.002 and MCAR1 have similar MBIAS intervals.

SANOVA variant in Data5 and SANOVA incorrect in Data6 show the worst performance

for MBIAS apart from MCAR200, whose MBIAS interval is much the widest. Figure 3a

shows that for normal data, interval coverage for SANOVA incorrect and SANOVA variant

is very close to nominal. It appears that the specific value of HA
(+) has little effect on

PI coverage rate for the cases considered here. Apart from MCAR200 for Data1/Data2

and MCAR0.002 for Data1 through Data4, which show low coverage, all the other methods

have coverage rates greater than 90% for normal data, most close to 95%. For Data3
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and Data4, PI rates for MCAR200 reach above 99%. For Poisson data, the PI rates for

SANOVA incorrect and SANOVA variant are close to nominal and better than MCAR0.002

and MCAR200. In particular, all SANOVAs have the closest to nominal coverage rates for

both normal and Poisson data, which again shows the stability of SANOVA under different

HA
(+) settings.

3.4.3 MCAR is sensitive to the prior on Ω.

To fairly compare SANOVA and MCAR, we considered MCAR under three different prior

settings. For normal data, MCAR1 has the smallest AMSEs and narrowest MBIAS inter-

vals among the MCARs considered, while MCAR0.002 has the largest and widest, respec-

tively. For Poisson data, however, MCAR0.002 has the best AMSE and MBIAS among the

MCARs. MCAR200 performs poorly for both Normal and Poisson. The coverage rates in

Figure 3 show similar comparisons. These results imply that the prior matters for MCAR:

no single prior was always best. By comparison, SANOVA seems more robust, at least for

the cases considered.

3.5 Summary

As expected, SANOVA correct had the best performance because it uses more correct

information. For normal data, SANOVA incorrect and SANOVA variant had similar AM-

SEs, better than two of the three MCARs for the datasets considered. For Poisson data,

SANOVA incorrect and SANOVA variant had AMSEs as good as those of MCAR0.002

and MCAR1 for Data5 and somewhat worse for Data 6, while showing nearly nominal cov-

erage rates in all cases and less tendency to bias than MCAR in most cases. Replacing

the Γ(0.1, 0.1) prior for τ with Γ(0.001, 0.001) left AMSE and MBIAS almost unchanged

and coverage rates a bit worse (data not shown). MCAR, on the other hand, seems more

sensitive to the prior on Ω. MCAR0.002 tends to smooth more than MCAR1, more so

in normal models where the prior is more influential than in Poisson models. (The latter

is true because data give more information about means than variances, and the Poisson

model’s error variance is the same as its mean, while the normal model’s is not.) For the

normal data, MCAR0.002’s tendency to extra shrinkage appears to make it oversmooth
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and perform poorly for Data2 and Data4, where the truth is least smooth. For the Poisson

data, MCAR0.002 and MCAR1 give results similar to each other and somewhat better than

the SANOVAs except for interval coverage. Therefore SANOVA, with stable results under

different HA
(+) and with parameters that are easier to understand and interpret, may be a

good competitor to MCAR in multivariate spatial smoothing.

4 Example: Minnesota 3-cancer data

Researchers in different fields have illustrated that accounting for spatial correlation could

provide insights that would have been overlooked otherwise, while failure to account for

spatial association could potentially lead to spurious and sometimes misleading results (see,

e.g. Turechek and Madden, 2002; Ramsay et al., 2003; Lichstein et al., 2002). Among the

widely investigated diseases are the different types of cancers. We applied SANOVA and

MCAR to a cancer-surveillance dataset describing total incidence counts of 3 cancers (lung,

larynx, esophagus) in Minnesota’s 87 counties for the years 1990 to 2000 inclusive.

Minnesota’s geography and history make it plausible that disease incidence would show

spatial association. Three major North American land forms meet in Minnesota: the Cana-

dian Shield to the north, the Great Plains to the west, and the eastern mixed forest to

the southeast. Each of these regions is distinctive in both its terrain and its predominant

economic activity: mining and outdoors tourism in the mountainous north, highly mecha-

nized crop cultivation in the west, and dairy farming in the southeast. The different regions

were also settled by somewhat different groups of in-migrants, e.g., disproportionately many

Scandinavians in the north. These factors imply spatial association in occupational hazards

as well as culture, weather, and access to health care especially in the thinly-populated

north, which might be expected to produce spatial association in diseases.

With multiple cancers one obvious option is to fit a separate univariate model for each

cancer. But diseases may share the same spatially distributed risk factors, or the presence

of one disease might encourage or inhibit the presence of another in a region, for example,

larynx and esophagus cancer have been shown to be closely related spatially (Baron et al

1993). Thus, we may need to account for dependence among the different cancers while
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maintaining spatial dependence between sites.

Although the dataset has counts broken out by age groups, for the present purpose we

ignore age standardization and just consider total counts for each cancer. Age standardiza-

tion would affect only the expected cancer counts Eij , while other covariates could be added

to either SANOVA or MCAR as unsmoothed fixed effects (i.e., in the A1 design matrix).

Given the population and disease count of each county, we estimated the expected

disease count for each cancer in each county using the Poisson model. Denote the 87 × 3

counts as y1,1, · · · , y87,3; then the model is

yij |µij ∼ Poisson(µij)

log(µij) = log(Eij) + (XDΘ)ij ,
(17)

where XDΘ is the SANOVA structure and Θ has priors as in section 2.2.2. For disease j

in county i, Eij = Pi

P

i Oij
P

i Pi
, where Oij is the disease count for county i and disease j and Pi

is county i’s population. For the SANOVA design matrix, we consider HA1 and HA2 from

the simulation experiment, though now neither is known to be correct. We also consider

a variant SANOVA analysis using HA
(+) estimated from the MCAR1 model, to test the

stability of the SANOVA results. Appendix D describes the latter analysis.

Figures 4 to 6 show the data and results for MCAR1 and SANOVA with HA1. In

each Figure, the upper left plot shows the observed yij/Eij ; the two lower plots show the

posterior median of µij/Eij for MCAR1 and SANOVA with HA1. Lung cancer counts

tended to be high and thus were not smoothed much by any method, while counts of the

other cancers were much lower and thus smoothed considerably more (see also Figure 7).

Since SANOVA with HA1, HA2 and estimated HA
(+) gave very similar results, only those

for HA1 are shown. Results for MCAR0.002 are similar to those for MCAR1, so they are

omitted. As expected, MCAR200 shows the least shrinkage among the three MCARs and

gives some odd µij/Eij .

To compare models, we calculated the Deviance Information Criterion (DIC; Spiegel-

halter et al., 2002). To define DIC, define the deviance D(θ) = −2 log f(y|θ) + 2 log h(y),

where θ is the parameter vector in the likelihood and h(y) is a function of the data. Since

h does not affect model comparison, we set log h(y) to 0. Let θ be the posterior mean of θ

and D the posterior expectation of D(θ). Then define pD = D(θ) − D(θ) to be a measure
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of model complexity and define DIC = D + pD.

Table 4 shows D, pD and DIC for nine analyses, SANOVA with 3 different HA
(+),

MCAR with 3 different priors for Ω, and 3 fits of univariate CAR models to the individual

diseases, discussed below. Considering D, the three SANOVAs and MCAR1 are similar;

Figures 4 to 6 show the fits are indeed similar. Figure 7 reinforces this point, showing that

MCAR1 and SANOVA with HA1 induce similar smoothing for the three cancers. SANOVA

with H
(+)
A estimated from MCAR has the smallest D (1458), though its model complexity

penalty (pD = 103) is higher than MCAR0.002’s (pD = 79). Despite having the second

worst fit (D), MCAR0.002 has the best DIC, and the three SANOVAs have DICs much

closer to MCAR0.002’s than to the other MCARs’. Generally, all SANOVA models have

similar D (≈ 1460) and DIC (≈ 1562), while MCAR results are sensitive to Ω’s prior,

consistent with the simulation experiment.

For comparison, we fit separate univariate CAR models to the three diseases considering

three different priors for the smoothing precision, τ ∼ Gamma(a, a) for a = 0.001, 1, and

1000. For each prior, we added up D, pD and DIC for three diseases (see Table 4). With

a = 0.001 and 1, we obtained D’s (1461 and 1453 respectively) competitive with SANOVA,

MCAR0.002 and MCAR1 but with considerably greater complexity penalties (141 and 149

respectively) and thus DICs slightly larger than 1600. For a = 1000, we obtained an even

lower D (1432) but an increased penalty (180) resulted in a poorer DIC score. Figure 7

shows fitted values for CAR1, which were smoothed like MCAR1 and SANOVA for lung and

esophagus cancers but smoothed rather more for larynx cancer. Overall, these results reflect

some gain in performance from accounting for the space-cancer interactions/associations.

To further examine the smoothing under SANOVA, Figure 8 shows separate maps for

the county main effect and interactions from the SANOVA fit with HA1. The upper left plot

is the cancer main effect, the mean of the three cancers; the lower left plot is the comparison

of lung versus average of larynx and esophagus; the lower right plot is the comparison of

larynx versus esophagus. All values are on the same scale as yij/Eij in Figures 4 to 6 and use

the same legend. The two interaction contrasts are smoothed much more than the county

main effect, agreeing with previous research that larynx and esophagus cancer are closely

related spatially (Baron et al 1993). To see whether the interactions are necessary, we fit
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a SANOVA model (using HA1) without the interactions. As expected, model complexity

decreased (pD = 77), while D increased slightly, so DIC became 1558, a bit better than

SANOVA with interactions.

Now consider the posterior of the MCAR’s precision matrix Ω. The posterior mean of Ω

is much larger for MCAR0.002 than MCAR200; the diagonal elements are larger by 4 to 5

orders of magnitude. This may explain the poor coverage for MCAR0.002 in the simulation.

Further, consider the correlation matrix arising from the inverse of Ω’s posterior mean. As

the diagonals of R change from 0.002 to 200, the correlation between any two cancers

decreases and the complexity penalty pD increases. By comparison, the three SANOVAs

have similar model fits and complexity penalties, leading to similar DICs. So again, in this

sense SANOVA shows greater stability.

5 Discussion and future work

We used SANOVA to do spatial smoothing and compared it with the much more complex

MCAR model. For the cases considered here, we found SANOVA with spatial smoothing

to be an excellent competitor to MCAR. It yielded essentially indistinguishable inference,

while being easier to fit and interpret. In the SANOVA model, HA
(+) is assumed known.

For most of the SANOVA models considered, HA
(+)’s first column was fixed to represent

the average over diseases, while other columns were orthogonal to the first column. Alter-

natively, HA
(+) could be treated as unknown and estimated as part of the analysis. With

this extension, SANOVA with spatial effects is a re-parameterization of the MCAR model

and gains the MCAR model’s flexibility at the price of increased complexity. This exten-

sion would be non-trivial, involving sampling from the space of orthogonal matrices while

avoiding identification problems arising from, e.g., permuting columns of HA
(+).

Other covariates can be added to a spatial SANOVA. Although (10) is a saturated

model, spatial smoothing “leaves room” for other covariates. Such models would suffer

from collinearity of the CAR random effects and the fixed effects, as discussed by Reich et

al. (2006), who gave a variant analysis that avoids the collinearity.

For datasets with spatial and temporal aspects, e.g., the 11 years in the Minnesota 3-
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cancer data, interest may lie in the counts’ spatial pattern and in their changes over time.

By adding a time effect, SANOVA can be extended to a spatiotemporal model. Besides

spatial and temporal main effects, their interactions can also be included and smoothed.

There are many modeling choices; the simplest model is an additive model without space-

time interactions, where the spatial effect has a CAR model and the time effect a random

walk, which is a simple CAR. But many other choices are possible.

We have examined intrinsic CAR models, where Qij = −1 if region i and region j

are connected. SANOVA with spatial smoothing could be extended to more general CAR

models. Banerjee et al. (2004) replaced Q with the matrix Dw − ρW , where Dw is diagonal

with the same diagonal as Q and Wij = 1 if region i is connected with region j, otherwise

Wij = 0. Setting ρ = 1 gives the intrinsic CAR model considered in this paper. For known

ρ, the SANOVA model described here is easily extended by replacing Q in Section 2 with

Dw − ρW . However, for unknown ρ, our method cannot be adjusted so easily, because

updating ρ in the MCMC would force V and the design matrix to be updated as well, but

this would change the definition of the parameter Θ. Therefore, a different approach is

needed for unknown ρ.

A different extension of SANOVA would be to survival models for areal spatial data

(e.g., Li & Ryan, 2002; Banerjee, Wall & Carlin, 2003; Diva, Dey and Banerjee, 2008).

If the regions are considered strata, then random effects corresponding to nearby regions

might be similar. In other words, we can embed the SANOVA structure in a spatial frailty

model. For example, the Cox model with SANOVA structure for subject j in stratum i is

h(tij ,Xij) = h0(tij)exp(Xijβ), (18)

where X is the design matrix, which may include a spatial effect, a temporal effect, their

interactions and other covariates. Banerjee et al. (2004) noted that in the CAR model,

considering both spatial and non-spatial frailties, the frailties are identified only because of

the prior, so the choice of priors for precisions is very important.

Besides the above extensions, HCSC introduced tools for normal SANOVA models that

can be extended to non-normal SANOVA models. For example, HCSC defined the degrees

of freedom in a fitted model as a function of the smoothing precisions. This can be used

as a measure of the fit’s complexity, or a prior can be placed on the degrees of freedom as
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a way of inducing a prior on the unknowns in the variance structure. The latter is under

development and will be presented soon.

Appendices

A Derivation of the precision matrix for (11)

Proof. Let T = (Θ′

CO,Θ′

CO×CA1
, · · · ,Θ′

CO×CAn−1
)′; f(T |W ) ∝ exp(−1

2T ′WT ) with

precision matrix W . Define F = KT , where K =(V (−)⊗ 1√
n
1n|V (−)⊗HCA

(1)|...|V (−)⊗HCA
(n−1))

as in section 2.2.2. Because K ′K = In(N−1), therefore K ′F = K ′KT = T . Changing

variables in f from T to F , f(F |W ) ∝ exp(−1
2F ′KWK ′F ), so F has precision matrix

KWK ′. With

W =




D(−) ⊗ τ0 . . . 0

...
. . .

...

0 . . . D(−) ⊗ τn−1



,

KT has precision KWK ′

=(V (−)⊗ 1√
n
1n|...|V (−)⊗H

(n−1)
CA

)

2

6

6

6

4

D(−) ⊗ τ0 . . . 0

...
. . .

...

0 . . . D(−) ⊗ τn−1

3

7

7

7

5

0

B

B

B

B

@

V (−)′ ⊗ 1√
n
1
′
n

...

V (−)′ ⊗ HCA
(n−1)′

1

C

C

C

C

A

= V (−)D(−)V (−)′ ⊗ τ0
n
1n1

′
n + V (−)D(−)V (−)′ ⊗ τ1HCA

(1)HCA
(1)′ + . . .

= Q ⊗ HA
(+)diag(τj)HA

(+)′

where HA
(+) = ( 1√

n
1n|HCA) is an orthogonal matrix; τj is unknown and HA

(+)diag(τj)HA
(+)′

is a precision matrix; Q = V DV ′ = V (−)D(−)V (−)′ is a function of the neighborhood struc-

ture as defined in section 2.1.2.

B MCMC algorithms

For the normal error case, we used the conditional distribution of η0 as in HCSC. If rj =
ηj

η0

and η0 has a Γ(α, β) prior, it follows that

f(η0|r,Y ) =
β + 1

2W (r)ξ

Γ(ξ)
ηξ−1
0 exp(−η0(β + W (r)/2)) (19)
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where ξ = cn−M1
2 + α; r = {rj}; and W (r) = Y ′S−1Y − Y ′S−1X(X ′S−1X)−1X ′S−1Y ,

with S−1 = Γ−1/η0, which is a function of r. The only change here compared to HCSC

is that we normalized the columns of XD (data cases) so each column of XD has length

1. To do MCMC for both the normal and Poisson models, we first draw Θ’s components

univariately using an M-H algorithm. For a gamma prior on τj , τj ’s full conditional posterior

is a gamma, so we draw τj using a Gibbs sampler. For normal data, an additional step

is to draw η0 by Gibbs sampler using (19). For Poisson data, a transformation of Θ was

used in the chain, so the new parameter Ξ was drawn first, then Θ was calculated from

Ξ; Appendix C gives details. Since simulation steps for the normal and Poisson data are

similar, we only list them for normal data. For current draws θi, τj and η0:

• for i = 1, · · · , 60 (Nn):

-Generate θi
∗ ∼ N(θi, 4)

-Calculate the MH ratio as f(θi
∗|Y ,τ)

f(θi|Y ,τ) ; accept θi
∗ with probability min(1,MH ratio).

• Generate τj
∗ ∼ Γ(α + 19

2 , β + 1
2

∑19
i=1D

(−)

ii θ2
(i+3+19×j)), where j = 0, 1, 2

• Sample η0
∗ from the gamma distribution in (19).

All computations were carried out on a dual-core 2.20GHz AMD Athlon processor with

1.93GB of RAM physical address extension. MCMC code for SANOVA models was written

in R; MCAR models were analyzed in WinBUGS. For each model we ran three parallel

chains for 10,000 iterations and discarded the first 2,000 iterations as “burn-in”. The

combined draws of the three chains are used for posterior summaries. Trace plots showed

good convergence for all the models.

C Mean-structure transformation for the Poisson case

The Poisson model in the Θ parameterization has high posterior correlations among the θs,

which leads to slow MCMC mixing. To see this, let ỹij = log yij − log Eij ; then from the

normal approximation to the Poisson,

Ỹ =



 ỹNn

0Nn



 ≈ XΘ + e =



 XD

INn



Θ + e (20)
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where e ∼ N(0,Γ) with

Γ =





diag(1/yi) 0 0

0 106In 0

0 0 diag 1
τD(−)




(see section 2.3.1).

As a result,

cov(Θ|Ỹ ,Γ) ≈ (X ′(cov(Ỹ ))−1X)−1

=



(X ′
D|INn)Γ−1



 XD

INn








−1

=
[
X ′

Ddiag(yi)XD + A−1
]−1

≡ Υ,

(21)

where

A =



 106In 0

0 diag 1
τD(−)



 .

Although A is diagonal, X ′
Ddiag(yi)XD is not. The approximate data-case precision matrix

diag(yi) amplifies the off-diagonal entries of Υ substantially for the Minnesota cancer data

because Ei and yi range over a few orders of magnitude, so the posterior correlations

among the θs are large. To minimize this effect, we re-parameterized as follows. Let

∆ = (e1|e2| · · · |ep)′, where ei is the ith eigenvector of Υ for a particular choice of τ ; we

discuss this below. Therefore, ∆ is a p× p matrix, where p = dim(Θ) = Nn in the Poisson

simulations. By the spectral decomposition, if λ1, · · · , λp are the eigenvalues corresponding

to e1, · · · , ep,

Cov(Θ|Ỹ ,Γ) ≈ Υ

= ∆′




λ1 . . . 0

...
. . .

...

0 . . . λp



∆.

Let Ξ = ∆Θ; then

Ỹ ≈ XΘ + e = X∆′∆Θ + e = X∗Ξ + e. (22)
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From (21),

Cov(Ξ|Y ,Θ,Γ) = ∆cov(Θ|Y ,Γ)∆′

≈ ∆Υ∆′

= ∆∆′




λ1 . . . 0

...
. . .

...

0 . . . λp



∆∆′

=




λ1 . . . 0

.

..
. . .

.

..

0 . . . λp



 .

We can then sample Ξ instead of Θ. Ξ and Θ are one-to-one, so a draw of Ξ gives a draw

of Θ. Since A is a function of τ , ∆ is also a function of τ . Any MCMC routine will update

τ frequently, so it is not obvious how to specify a general ∆ to use in this transformation.

Fortunately, τ had only a small effect on off-diagonal entries of Υ in our datasets, so we used

τ = (100, 100, 100) to calculate a value of ∆ which was then fixed and used in the MCMC.

With this τ , the conditional posterior correlations among the Ξs were mostly below 0.1,

which is good enough to solve the mixing problem.

D Estimating HA
(+) from MCAR1

We used the posterior median of Ω, Ω̂, which had spectral decomposition

Ω̂ =





11.85 −2.21 −5.05

−2.21 5.24 −2.09

−5.05 −2.09 6.88





=





0.86 0.26 −0.45

−0.08 −0.78 −0.62

−0.51 0.57 −0.65









15.06 0 0

0 7.47 0

0 0 1.43









0.86 −0.08 −0.51

0.26 −0.78 0.57

−0.45 −0.62 −0.65




.

(23)

Let Λ be the eigenvector matrix of Ω̂, the left-most matrix in the second row of (23). Then

in the design matrix in (10), for the data cases (XD) replace HA
(+) ⊗ V (−) with Λ ⊗ V (−).

Unlike HA1 and HA2, this specification of HA
(+) has no county main effect.
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Error distribution η0 (τ0/η0, τ1/η0, τ2/η0)|(τ0, τ1, τ2) Data Name

Normal 1 (100,100,0.1) Data1

1 (0.1,100,0.1) Data2

10 (100,100,0.1) Data3

10 (0.1,100,0.1) Data4

Poisson NA (100,100,0.1) Data5

NA (0.1,100,0.1) Data6

Table 1: Experimental conditions in the simulation experiments

procedure prior

SANOVA with correct HA
(+) η0, τj ∼ Γ(0.1, 0.1) for j = 0, 1, 2

SANOVA with incorrect HA
(+) η0, τj ∼ Γ(0.1, 0.1) for j = 0, 1, 2

variant SANOVA with HAM η0, τj ∼ Γ(0.1, 0.1) for j = 0, 1, 2

MCAR Ω ∼ Wishart(R, 3), R = 0.002I3

MCAR Ω ∼ Wishart(R, 3), R = I3

MCAR Ω ∼ Wishart(R, 3), R = 200I3

Table 2: The six statistical methods used in the simulation experiment

model normal-error model Poission-error model

Data1 Data2 Data3 Data4 Data5 Data6

SANOVA with HA1 0.34 0.60 0.04 0.06 0.02 0.04

SANOVA with HA2 0.47 0.84 0.05 0.07 0.02 0.14

SANOVA with HAAM 0.48 0.74 0.05 0.06 0.03 0.11

MCAR with Rii = 0.002 0.66 1.88 0.04 0.13 0.02 0.04

MCAR with Rii = 1 0.36 0.84 0.04 0.06 0.02 0.06

MCAR with Rii = 200 0.93 0.92 0.09 0.09 0.24 0.36

Table 3: AMSE for simulated normal and Poisson data
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Model D pD DIC

SANOVA with HA1 1461 103 1564

SANOVA with HA2 1463 102 1565

SANOVA with HA estimated from MCAR1 1458 103 1561

MCAR0.002 1476 79 1555

MCAR1 1459 132 1591

MCAR200 1559 356 1915

CAR0.001 1461 141 1602

CAR1 1453 149 1602

CAR1000 1432 180 1612

Table 4: Model comparison using DIC

Figure 1: Comparing prior precision matrices for φ in MCAR and SANOVA.
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Figure 2: MBIAS for simulated normal and Poisson data
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Figure 3: PI rate for simulated normal and Poisson data
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(a) data: yij/Eij

(b) fitted: SANOVA with HA1 (c) fitted: MCAR with Rii =1

Figure 4: Lung cancer data and fitted values
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(a) data: yij/Eij

(b) fitted: SANOVA with HA1 (c) fitted: MCAR with Rii =1

Figure 5: Larynx cancer data and fitted values
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(a) data: yij/Eij

(b) fitted: SANOVA with HA1 (c) fitted: MCAR with Rii =1

Figure 6: Esophagus cancer data and fitted values
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Figure 7: Comparing data and fitted values for each cancer. The “Data” panel shows the

density for yij/Eij , while the other three panels show the posterior median of µij/Eij for

univariate CAR, SANOVA and MCAR;
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(a)

(b) (c)

Figure 8: SANOVA with HA1: (a) county main effect; (b) cancer × county interaction 1 for larynx;

(c) cancer × county interaction 2 for esophagus.
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