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SUMMARY.  Standardization, a common approach for controlling confounding in
population-studies or data from disease registries, is defined to be a weighted average of
stratum specific rates. Typically, discussions on the construction of a particular
standardized rate regard the strata as fixed, and focus on the considerations that affect the
specification of weights. Each year the data from the SEER cancer registries are analyzed
using a weighting procedure referred to as "direct standardization for age". To evaluate
the performance of direct standardization, we define a general class of standardization
operators. We regard a particular standardized rate to be the output of an operator and a
given data set. Based on the functional form of the operators, we define a subclass of
standardization operators that controls for confounding by measured risk factors. Using
the fundamental disease probability paradigm for inference, we establish the conclusions
that can be drawn from year-to-year contrasts of standardized rates produced by these
operators in the presence of unmeasured cancer risk factors. These conclusions take the
form of falsifying specific assumptions about the conditional probabilities of disease
given all the risk factors (both measured and unmeasured), and the conditional
probabilities of the unmeasured risk factors given the measured risk factors. We show the
one-to-one correspondence between these falsifications and the inferences made from the
contrasts of directly standardized rates reported each year in the Annual Report to the
Nation on the Status of Cancer. We further show that the "direct standardization for age"
procedure is not a member of the class of unconfounded standardization operators.
Consequently it can, and usually will, introduce confounding when confounding is not
present in the data. We propose a particular standardization operator, the SCC operator,
that is in the class of unconfounded operators. We contrast the mathematical properties of
the SCC and the SEER operator (SCA), and present an analysis of SEER cancer registry
data that demonstrates the consequences of these differences. We further prove that the
SCC operator is a projection operator. We discuss how this property can enable the SCC
operator to be developed as a method for comparing nested conditional expectations in
the same manner as is currently done with regression methods that control for
confounding.
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1. Each year the Introduction.    NCI's Surveillance, Epidemiology, and End Results

(SEER) program compiles data (henceforth called SEER data) on cancer incidence and

mortality from (currently) 17 population-based cancer registries in the United States

[ .  Since 1998 the National Cancer Institute, the American CancerHowe et al. (2006)]

Society, the Centers for Disease Control, and the North American Association of Central

Cancer Registries have analyzed the SEER data to produce an Annual Report to the

Nation on the Status of Cancer in the United States (subsequently referred to as the

Annual Reports .  Ñ These reports contain estimates of the overall annual cancer incidence

and mortality, as well as incidence/mortality by cancer site, and incidence/mortality

within population subgroups defined by gender, race, ethnicity, and geographic location

of the cancer registry.  Some of the stated goals of these reports are to: 1) report on the

cancer burden as it relates to cancer incidence and mortality and patient survival; 2)

identify unusual changes and differences in the patterns of occurrence of specific forms

of cancer in population subgroups defined by geographic, demographic, and social

characteristics; 3) describe temporal changes in cancer incidence, mortality, extent of

disease at diagnosis (stage), therapy, and patient survival as they may relate to the impact

of cancer prevention and control interventions; 4) monitor the occurrence of possible

iatrogenic cancers; and 5) attribute changes in cancer rates to temporal changes in

diagnostic criteria, screening, preventive measures, cancer treatments, or environmental

exposures.  [SEER (2005); Ward et al. (2006)].  In addition to the goals common to all of

the Annual Reports, each report has a special sub-focus.  Since 2001 these reports have

stated conclusions regarding: 1) absolute population rates and changes in cancer rates

[Howe et al. (2001); Edwards et al. (2002); Weir et al. (2003); Jemal et al. (2004);

Edwards et al. (2005); Howe et al. (2006)]; 2) the impact of screening and treatment on

specific cancers [Howe et al. (2001)]; 3) differences in cancer rates by gender, race,

ethnicity, and geographic location [Howe et al. (2001); Weir et al.; Jemal et al.; Edwards

et al. (2005)]; 4) causes of the difference in rates within the subgroups listed in 3 [Jemal
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et al.; Edwards et al. (2005); Howe et al. (2006)]; and 5) the future public policies and

expenditures that should be undertaken to increase cancer prevention and improve access

to medical care [Weir et al.; Edwards et al. (2005); Howe et al. (2006)].

 In order to make meaningful statements about the year-to-year changes in cancer

incidence/mortality as a function of one set of characteristics, it is necessary to control

for differences in the frequency of cancer risk factors that are not in the set of interest.

We refer to any statistical procedure that attempts to separate the effect on cancer rates of

one set of measured covariates from another set, as procedures that control for

confounding.  The common methods of controlling for confounding are: 1) multivariate

regression; 2) stratification; and 3) standardization.  Standardization is virtually always

the method of choice when inference is made from population-studies, or data from

disease registries.  It is the procedure used in the Annual Reports [ Klein and Schoenborn

(2001); ].Ries and Kosary (2005)

 The particular standardization method used to analyze SEER data is designed to

control for year-to-year differences in age distributions.  We refer to this method as

Standardization Controlling for Age (SCA).   In this paper we present a new procedure

that allows researchers to control for any set of measured covariates.  We refer to this

procedure as Standardization Controlling for Covariates (SCC).

 The paper is organized as follows.  In Section 1 we define nomenclature for a

completely general data structure, and describe the SEER data in terms of this

nomenclature.  In Section 2 we give formulae for the usual representations of

standardized rates as weighted averages of a given set of stratum specific rates.  We

detail the rationale for the specific choice of weights used in SCA standardization.  We

then define SCA and SCC standardized rates as the output of SCA and SCC operators.

These operators are functionals of the empirical distribution of a given set of data, and a

user-defined weighting distribution.  Using the operator formulation we define a general

class of all standardization operators.  In Section 3 we formalize our previous discussion
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of the goals of standardization.  We define criteria that specify when contrasts of crude-

cancer rates are "not confounded." We extend these criteria to define the subclass of

standardization operators that produce contrasts of standardized rates that are not

confounded.  The SCC operator falls within this subclass; the SCA operator does not.

We show that if one begins with crude rate differences that are not confounded, the SCA

operator introduces confounding.  We discuss how the differences in properties of the

SCA and SCC operators relate to the differences in the functionals.  In Section 4 we

present analyses of the SEER 13 data that demonstrate the properties described in Section

3.

 Up until Section 5 we discuss confounding in terms of measured risk factors.  In

Section 5 we provide a formal framework for examining what inferences can be made

from the standardized rate differences produced by the SCA operator in the presence of

unmeasured risk factors.  Such inferences require assumptions that can be neither

completely falsified nor confirmed by examination of the observed distribution functions.

We show that non-zero between-year differences in standardized rates allow one to reject

certain assumptions about unmeasured risk factors, and that violations of these

assumptions correspond directly to the inferences made by SEER investigators in the

Annual Reports [Ward et al.].  

 In Section 6 we change focus from between-year inferences to within-year inferences.

We define "nested" standardized rates; derive the properties of nested rates produced by

the SCA and SCC operators, and discuss implications for within-year model building of

standardized rates.

 In the discussion section we summarize our results; suggest how the standardization

operators we propose can be used for nonparametric, semiparametric, or parametric

estimation of conditional means; and discuss the direction of our current work on

developing software that will implement the operators we describe.
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2.  Data structure, crude-cancer rates, and finest-crude-cancer rates.   Let ÐH ^C C,  )

be any vector of real valued random variables, and ,  any set of probabilityT ÐH ^ÑC

distributions defined on the support of ,  ); ; ÐH ^ CC C − ´ Ö"ß #ß ÞÞÞÞ8× 8l l ;  finite.

Since the support of T ÐH ^Ñ CC ,  does not vary with , we frequently drop the superscripts

for random variables and write ,  ).  In SEER data  is a vector of indicatorÐH ^ H

variables denoting the presence or absence of a specific form of cancer type  is the setà ^

of all other measured covariates; ,  is the empirical distribution of ,  forT ÐH ^Ñ ÐH ^ ÑC C C

year , ).  Thus, the SEER data forCà ÐH ^l  is the set of years for which we have data on 

year consists of an observation of , .  Since in the  anC T ÐH ^ÑC Annual Reports

individual is classified as either having or not having a specific cancer (or a cancer in a

defined set), and the joint distribution of cancers is not of interest, we will regard  to beH

a binary random variable: when an individual is in the set of cancers of interest,H œ "

H œ ! T ÐH IÑ I otherwise.  We assume that our interest is in the distribution ,  where isC

the (possibly improper) subset of  which investigators believe contain all the "measured^

cancer risk factors." Without loss of generality we adhere to the structure of the SEER

data, and regard the support of ) as discrete.  We assume that in SEER theÐHßI

measured cancer risk factors,  consist entirely of information about an individual'sIß

age, gender, race, ethnicity, and catchment area of cancer registry ( henceforth called

place).

(1) age, gender, race, ethnicity, place .I œ Ð Ñ

These are, in fact, the only covariates required to produce the standardized estimates

given in the .Annual Reports

  Let ) be any factorization of  such that =I œ ÐI ßI I I I I" # " # "∩ g © IÞ;  We use

notation such as T ÐH IÑ T ÐH Ñ T Ð ÑC C C| , | ,   I I I" # "| to denote the conditional

distributions of T ÐH IÑ I T ÐH ÑC C, .  For any  we refer to |  as the† © I I†  crude-cancer

rate   finest-crude-cancer rate.for , we refer to |  as theI I œ I†.  When  † T ÐH IÑC
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Any crude-cancer rate is related to the finest-crude-cancer rate by the integral given in

(2)Þ

(2) |   .T ÐH lI Ñ œ T ÐH I ßI Ñ .T ÐI lI ÑC C C
" # # "1 (

X#

The region of integration in (2) is , the support of  .  Throughout the paperX# #I

calligraphic letters indicate the support of random variables. When as in the SEER data,

ÐH ß IC C) have discrete support, we can express  the right hand side of (2) as a sum of the

product of discrete conditional probabilities,

T ÐH lI Ñ œ T ÐH I ßI Ñ ‚ T ÐI lI ÑÞC C C
" # # "1 �

X#

|

The crude-cancer rate on the left hand side is the frequency of disease in subjects with a

give value of .I"

2.1 General definition and formulae for standardized rates.  We define  to be a= Ò Hl ÓC
‡ I"

standardized cancer rate given  I œ /"
‡
" if it can be expressed in the form of the

integral given in (3),

(3)   |= Ò Hl Ó T ÐH Ñ .TC
‡ C/ / ß /‡ ‡

" "´ Ð/ Ñ(
X#

† 2 2
† †‡ .

Here  is any  user-defined measure that has the same  I / I I2 2
† † † †© I −, , and # # T Ð Ñ‡

support as  and is consistent with a probability measure.  I2
† Under the restriction that ,ÐH

I =) ha  discrete support, we can write (3) as,  

(4)  |= Ò Hl Ó T ÐH / Ñ .T /C
‡ C

/

/ / ß I œ‡ ‡
" " # #´ Ð Ñ�

#
† −

‡

X#
†

2
† † †  .

Equation (4) is the weighted sum of stratum specific weights define the strata:  ;I#
†

.T / ÐH / Ñ‡Ð/ Ñ2 2
† † † † is the weight for stratum # #

‡
"; T C |  is the crude-cancer rate/ ß I œ

within stratum I œ / ßI œ"
‡
" #2

† †/ .  Equation (4) is equivalent to the usual algebraic

definition of a standardized rate [ ].Rothman (1986)

 Typically discussions about standardization assume the strata are fixed and focus on

the choice of weights [Rothman].  The general advice is that the choice of weights should
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depend upon the interpretation one desires to ascribe to the standardized rates [Rothman].

The weights used in the SEER implementation of the SCA method are the age-frequency

of the US population in year 2000 ; Ward et[ Klein and Schoenborn;  Ries and Kosary

al. This is referred to as  [ Rothman].  In].  Klein and Schoenborn; direct standardization

particular, the SCA procedure of SEER is described as: "Age adjustment, using the direct

method, is the application of observed age-specific rates to a standard age distribution to

eliminate differences in crude rates in populations of interest that result from differences

in the populations’ age distribution [ ]."   Klein and Schoenborn The justification for direct

standardization of the cancer rates in year  is that the standardized estimate for year C Cß

will represent the cancer rates that would have been observed in year  had the ageC

distribution in year  been identical to the age distribution in year 2000 [C  Klein and

Schoenborn;  Rothman; 1998)].  The advantage of expressingAnderson and Rosenberg (

standardized estimates in terms of "what would have been seen in some year "  is thatC ß

such weighting produces produce standardized estimates which preserve the magnitude

of the crude-cancer rates.  Since the magnitude of the year-to-year differences in cancer

rates are of importance to the inferences made in the , it is desirable toAnnual Reports

choose a standardization procedure that preserves these values.

2.2 To contrast the properties of SCA and SCCDefining the SCA and SCC operators.  

standardized rates, it is best to regard them as the output of SCA and SCC operators.  We

define a standardization operator, to be any functional of  WC
‡ CÒ Hl Ó T ÐH IÑ , , ,I I I" " #, †

and a  user-defined probability distribution,  that can be expressed by theT ‡Ð ÑI#
† ,

integral in (5).

(5) W Ò Hl Ó T ÐH Ñ .TC
‡ C  |I I ßI I" "´ Ð Ñ(

X#
† 2 2

† †‡ .

For a particular I œ /"
‡, the standardized rate is denoted by the left hand side of (3).   

 Let T ÐIÑ IÞ‡  be a  user-defined probability distribution with the same support as 

Let  be any random variable in E TI, and ‡ÐEÑ E the marginal probability of from
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distribution  T ÐI‡ ) Using " \.  We denote the points of support of asE Ð + ß + ÞÞÞÞ +" # R Ñ.  

" as the set difference operator we define I œ IÏEß I œ I ÏEà I œ I ÏE+
" #" #
+ + .

 We define  ,   SCA operatorthe  , to beW Ò Hl ÓC
-+ I"

(6)  , .W Ò Hl Ó T ÐH l EÑ . T ÐEÑC
-+

E

CI I+ +
" "´ ( *

    denotes the SCA standardized rate given = Ò Hl ÓC
-+ / I œ /‡ ‡

" ""
+ .

 In the  standardized rates are produced using the Annual Reports, SCA operator:  isE

age, and the support points are the five year intervals into which age is categorized.  The

weighting distribution, T ÐIÑ T ÐIÑ‡ #!!!, is the covariate distribution in year 2000, .

Thus  is the T ÐEÑ‡ age frequency in year 2000.

 For example, let  be colon cancer, H I œ Ð I œ+ +
" #gender), and Ð race, ethnicity,

placeÑ.  The SEER SCA estimate of the standardized rate of colon cancer conditional on

gender being male isß

= T œ +C
-+Ò l Ó colon cancer male  œ Ð l œ + Ñ ‚ T Ð Ñ�

4œ"

R

4
#!!! colon cancer male, age .C

4age

Here T C  Ð l œ Ñ Ccolon cancer male, age a  is the frequency of colon cancer in year  for4

males in age category and + œ + +4 4 4, age  in yearT Ð Ñ#!!!  is the frequency of age group 

2000.

 W the  , to be , , ,e define ,  the functional of   SCC operator W Ò Hl Ó T ÐH Ñ T ÐIÑC
-- C ‡I I"

and I", given by the integral in (7).

(7) W Ò Hl Ó T ÐH lI ßI Ñ .T ÐI I ÑC
-- C

" # # " | .I" ´ (
X#

*

Using the same factorization of , and the same weighting distribution as above, theI

SCC estimate of the standardized colon cancer rate conditional on gender equals male is,

=C
--Ò l Ó colon cancer male  œ T Ð l Ñ�

X#

 colon cancer male, age, race, ethnicity, place  C

   ‚ .T Ð Ñ#!!! age, race, ethnicity, place | male

Here age, race, ethnicity, placeT C  Ð l Ñcolon cancer male,  is the frequency of colon cancer

in year  for males within strata defined by age, race, ethnicity, and place; C .T Ð#!!! age,
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race, ethnicity, place | maleÑ is the frequency among males for a given (age, race,

ethnicity, place) stratum.

 For completeness we note that we have explicitly presented the SCA and SCC

operators in terms of the random variables  and the empirical distributions ÐHßIÑ T ÐHC ,

IÑ H I.  If we restrict the data set to some the operators are‡ ‡§ H § I, and/or , 

defined in terms of the empirical distribution , .  In practice, given the strongT ÐH I ÑC ‡ ‡

correlation of cancer type with age, such analyses are common.  In Section 4, we present

standardized estimates for colon cancer and breast cancer.  These estimates were made

from data limited to subjects 40 years of age or older.  Similarly, when Ward et al. report

standardized rates for childhood cancers, they restrict subjects to those age 19 or less.

3.  Contrasting the properties of the SCC and SCA operators.  Inspection of the

formulas for the SCA (6) and SCC (7) operators reveals two important differences.  In

the SCA operator the crude-cancer rate varies as a function of I", but the weight does

not.  In the SCC operator the crude rate is always the finest-crude-cancer rate, and the

weight depends on .  In this section we examine the consequences of these differencesI"

on the properties of the standardized estimates.  We begin by formalizing the goals of

standardization discussed at the end of 2.1.

3.1 Standardization Operators and the Control of Confounding by Measured Risk

Factors.   The compare year-to-year differences in cancer ratesAnnual Reports 

conditional on some subset  of  (1).  The need for standardization arises because ofI I"

the concern that differences in the crude-cancer rates may reflect year-to-year differences

in the distribution of .  From (2), we see that the distribution of  that affects theI I# #

crude-cancer rate is .T ÐC I lI Ñ# "

 If for years and ,C C† ††

(8) ,       T Ð Ñ œ T Ð ÑC C† ††
I I I I2 1 2 1| | 

we say there is no  confounding of the  crude rate differences,I I# "
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(9) | |T ÐH Ñ  T ÐH ÑÞC C
" "

† ††
I I

When (8) is true, contrasts of the crude rates provide the best estimates of the year-to-

year differences.  From (8) we know that the differences in the crude-cancer rates cannot

be due to differences in the  distribution; trivially, the crude rate differences achieveI#

the desired goal of having the standardized contrasts preserve the observed magnitude of

the differences in crude rates.

 Assume now that (8) is true for all C − l , and that the weighting distribution used is

T ÐIÑ C#!!! .  By inspection of (7) we see that for all , and any factorization of

Iß standardized estimates produced by the SCC operator equal the crude-cancer rates.

Thus, if there is no I I# " confounding of the  crude rate difference, and one uses the SCC

operator, contrasts of the SCC standardized rates are contrasts of the unconfounded crude

rates.

 To see that this is not the case for the SCA operator, we re-express (6) in terms of the

finest-crude-cancer rates.

(10)     |  .W Ò Hl Ó œ T ÐH Ñ .T Ð . T ÐE œ +ÑC
-+

E

C CI I ßI ß + I lI +Ñ+ + + + +
" " # # "( (œ G

X#

, *

Suppose in (10) that  Even were 8  true, and C œ #!!!Þ Ð Ñ T ÐEÑ œ T ÐEÑ* #!!! , the SCA

operator does not return the crude-cancer rate.  Thus, contrary to the stated justification

for the choice of weights, the SCA standardized estimates in year 2000 conditional on I"

do not equal the observed cancer rates in year 2000, even though the weights used are the

age distribution of year 200 .  This will be graphically demonstrated in Figure 1.!   

 Consistent with our definition of no confounding of crude rate differences (8), we

define standardized rate differences,

(11)    ,= Ò Hl Ó  = Ò Hl ÓC " C "
‡ ‡

† ††
* */ /

to be unconfounded by I#, if the standardized estimates are produced by a

standardization operator,  , that can be expressed as an integral of the finest-W Ò Hl ÓC
* I"
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crude-cancer rates with respect to a measure that depends only on the factorization of I

(see A.1 for formal definition).  We refer to such operators as operators with no I#

confounding.  The SCC operator is one such operator.  In fact, if we chose

T ÐIÑ œ T ÐIÑ‡ #!!! , it is the unique standardization operator that produces the

standardized cancer rates that "would have been seen in year  had the covariateC

distribution in been identical to the covariate distribution in year 2000."  Note thatC

standardization operators with no I# confounding produce standardized rate differences

that are not confounded by  regardless of whether (8) is true.I#

 It is clear from (10) that the SCA operator does not, in general, produce standardized

rate differences that are unconfounded.  In fact, for a given factorization of  and forI

specific  , the SCA operator produces unconfounded standardized rateC C† ††, − l  

differences if and only if

(12)   T Ð œ T ÐC C
# " # "

† ††
I lI + Ñ I lI +Ñ+ + + +, , .  

Since (12) does not imply (8), the SCA operator can produce standardized rate

differences that are confounded by I# even when (8) is true and the crude rate

differences are not confounded.

 For SCA to produce unconfounded standardized rate differences for all factorizations

of  requires (13)I ß

(13)   T Ð œ T ÐC C† ††
I l +Ñ I l +Ñ+ + .

When (13) is true for all possible combination of years, then conditional on age,ÐC ß C Ñ† †† ,

the distribution of the other risk factors are identical for all years.  Thus, for the SCA

operator, which "standardizes only for age", to produce unconfounded standardized rate

differences, requires that the  distributions are identical except possibly for theT ÐIÑC

marginal distribution of age.  The equality in (13) does not exist for the analysis of the

SEER data we present in Section 4.

 If the  and  distributions are such thatT ÐIÑ T ÐIÑ‡ C
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(14)   T Ð Ñ œ T Ð Ñ T ÐI lEÑ œ T ÐI Ñ‡ C C CI lE I E+ +| and + +

then the estimates produced by the SCA and SCC operator are identical.

Thus if (8) is true, the SEER SCA operator always returns the crude-cancer rates iff

the  distributions are identical for all years and age is independent of I IÞ

 To place SCA confounding by measured risk factors into a familiar context, it is

instructive to consider the usual procedures when controlling confounding with

regression models (for instance, a Poison model for cancer counts). Suppose our  goal

were to make inferences about differences in  year-to-year cancer rates as a function of

race and sex. What we refer to here as the finest crude cancer rates corresponds to the

predicted rates from a model saturated in .  One wouldÐ Ñage, sex, race, ethnicity, place

make inferences from contrasts of a smaller model, in particular the model saturated in

(sex, race), only if the magnitude of the effect of age and sex in that model were identical

to the magnitude in the model saturated in  For this toÐ Ñage, sex, race, ethnicity, place .

occur either the rate of cancer does not depend on the interactions between (sex, race)

and , or (sex, race) are statistically independent of (age, ethnicity,Ð Ñage, ethnicity, place

place)  In contrast to this regression approach, the SCA operator "collapses overÞ

covariates" regardless of the presence or absence of risk factor interactions or

independence. The SCA operator depends only on the factorization of  (6).  AlthoughI

the operator is the same regardless of  the ,  the "collapsing step" in (10) (theT ÐH IÑC ,

inner integral) clearly is a function of  T ÐH IÑC , .  In contrast, the SCC operator (7), and

all other operators unconfounded by (A.1), produce standardized estimates using theI# 

saturated model and a user defined weight that is invariant to year.

 4.  Using the SCA and SCC operators to analyze SEER data.  In this section we

present results from our analyses of the SEER data from 13 registries, years 1992-2003

[SEER 13 Regs Limited_Use (2005)  henceforth called SEER 13].  We consider theà

subset of SEER 13 where age is greater than or equal to 40; race is limited to black or
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white; ethnicity is limited to either Hispanic or non-Hispanic.  Because of the restriction

we place on race, we exclude Alaska and consider only 12 of the 13 cancer registries.  In

our analyses we limit the covariates to the  defined in (1).  The intent of this section isI

to demonstrate the existence of differences in the standardized estimates produced by the

SCA and SCC operators, particularly those differences discussed in Section 3.  We make

no comments about the statistical significance of these findings and provide no formal

estimates of trends (see Discussion).  All rates given are per 100,000 persons.

 Figure 1 is a graph of the crude and standardized (SCA, and SCC) race-and-gender

specific colon cancer incidence for each year from 1992 to 2003.  For the SCA and SCC

operators all estimates are produced with T ÐIÑ œ T ÐIÑ‡ #!!! .

 T  he SCA (dashed line) and SCC (solid line) rates differ for all groups and all

years.  Thus (14) is false.  For the SCA operator to produce rate differences that are not

confounded, (12) must be true for this factorization of .  In SEER 13 (12) is false: thereI

exists variation in the year-to-year T Ð l œ ÑC Hispanic, place age, gender, race white .

During the time period 1992 to 2003 the frequency of Hispanic ethnicity increased in

every place, for both genders, and (with rare exception) for every age group (data not

shown).  Note, however, that in Figure 1 the slope of each segment of the SCA and SCC

plots for white males, and both white and black females, are virtually identical. This

indicates that though SCA rate differences may be confounded (definition A.1),

inferences about the existence of trends may be identical.  SCA rates are integrals of

finest crude cancer rates (10).  The slope of the SCA curve depends on differences of the

integral of the finest crude cancer rates with respect to the measure T ÐI l I +ÑC
# "
+ +  , ;

confounding of SCA differences requires only year-to-year variation in the measure.

  The principal motivation for using the weights specified by direct standardization is

the desire to produce standardized rates that reflect the true absolute values of the crude-

cancer rates in the  group.  In I" Figure 1 we see that standardized rates from the SCC

operator more closely track the crude-cancer rates than those produced by the SCA
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operator.  In fact, as indicated earlier, the SCA standardized rate in the year 2000 does

not equal the crude-cancer rate that would have been seen if the age distribution were

identical to that of the year 2000.

 Figure 2 is a graph of the magnitude (the absolute value) of the percent difference in

the SCA and crude-cancer rates.  For both males and females the magnitude of these

differences is greatest for blacks.  This phenomenon is due to that fact that the ageT Ð Ñ#!!!

distribution is much closer to the age distribution for whites than for blacks.  In addition,

the year-to-year variation in the percent deviation appears to be greater for blacks.  Thus

graphically, blacks always appear to have larger year-to-year changes in cancer incidence

than do whites.  These differences are more prominent when cancer rates are compared

within groups defined by ethnicity (data not shown).  Empirically we find that the lower

the population frequency of a group, the greater the deviation of SCA standardized rates

from the actual crude-cancer rates.

 One previously unmentioned limitation of the SEER SCA operator is that it cannot

produce age-specific cancer rates that control for differences in the distribution of other

risk factors.  Since age is by far the largest risk factor for cancer, comparing within-age-

strata rates may reveal trends that are otherwise not visible.  Figure 3 is a graph of the

SCC standardized breast cancer rates for white females for each year from 1992 through

2003.  This graph indicates an overall increase in breast cancer rates from 1992 to 1998,

and a decrease from 1998 to 2003.  Figure 4 contains a plot of the SCC breast cancer

rates for white females in the years 1992, 1997, and 2003, within each of the five-year

age categories 40 years old or greater.  The shape of the graphs of standardized rates are

similar for all three years.  Consistent with Figure 3, we see that the lowest rates are for

year 2003, and the highest for 1997.  What cannot be discerned from Figure 3 is that the

differences in cancer rates for the years 2003 and 1997 are greatest for females older than

60; and that the differences between 2003 and 1992 rates are almost entirely due to rate

differences in females over 60.  The information in Figure 4 suggest that when
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considering possible causes of the calendar trends shown in Figure 3, one should focus

on changes that were more prominent in females age 60 and older.

 Note that if one were to employ a "stratification strategy" and use the SCA operator

to calculate separate standardized rates for each age group, the age standardized rates

produced would in fact be the crude breast cancer rates, T CÐ lbreast cancer  white, female,

age a .œ Ñ4

5.  Making inferences from observed rate differences of SCC standardized rates.  In

Section 3 we established that the SCC operator is in the class of operators in which

differences in the T Ð ÑC I I2 1|  do not affect the standardized estimates produced by those

operators.  Thus, if the SCC standardized estimates for year , and differ, we canC C† ††

conclude that the finest-crude-cancer rates differ for those years.  However, despite the

nomenclature, we do not know whether for fixed  the finest-crude-cancer rates differI#

as a function of ; for fixed  they differ as a function of ; or whether theI I I" " #

differences in finest-crude-cancer rates depend on both  and .I I" #

 To make the inferences of interest to the SEER investigators [Ward et al.], requires

that we consider disease rates as a function of both measured and unmeasured risk

factors.  To incorporate the effect of unmeasured risk factors on inference, we use the

fundamental disease probability (FDP) paradigm for inference proposed by Mark [2004;

2005; 2006; 2007].  The results we present in this section depend only on the definitions

presented in this section, and require no knowledge of, or results from, any of the other

material contained in Mark [2004; 2005; 2006; 2007].

  We define the fundamental disease probability for year to be the probability ofC

disease conditional on all risk factors. We denote this by T ÐH lIß YÑ IC .  Here  are the

measured risk factors; is a set of unmeasured risk factors that, along with ,Y I

completely determine the probability of disease.  The relationship between the FDP and

the finest-crude-cancer rates, T ÐH IÑC | , is
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(15) |T ÐH IÑ œC

Y
( T ÐH lIß YÑ .T ÐY lIÑC C

  Using the FDP paradigm for inference, we are able to falsify a subset of

assumptions about the unmeasured risk factors based on contrasts of SCC standardized

rates.  We define two assumptions.  The assumption,identical disease probability (IDP) 

(16) T ÐH lIß YÑ œ T ÐH lIß YÑC C† ††
,

and the  assumption,comparable-confounding

(17) .T ÐY lIÑ œ T ÐY lIÑC C† ††

 Without loss of generality, we use as example the inferences that can be made from

contrasts of the overall (marginal) SCC standardized  in years and  cancer rates C C† †† .

These are the standardized population cancer rates not conditional on any risk factors

ÐI œ" gÑ.  In terms of the FDP formulation this standardized rate is,

(18)   = Ò HÓ œC
--

I Y
( (š ›T ÐHlIß YÑT ÐY lIÑC C   .  .T ÐIÑ‡

 If IDP (16) is true, and the assumption of=
C C
-- --

† ††Ò HÓ Ò HÓ   , then we can conclude that Á =

no unmeasured confounders (17) is false.

  For instance, dietary factors such as folate intake are suspected of being risk factors

for colon cancer [ ].  SEER contains no measurement of folate intake.Giovannucci (2002)

If within levels of , the intake of folate has changed over time, then (17) is false.  InI

fact, in the United States a population-wide folate supplementation program began in

1998; it is known that folate intake in the population has increased considerably since

then [Quinlivan and Gregory (2003)].

 Is the IDP assumption reasonable?  If we believe that the determinants of a disease,

and the impact of those determinants on the probability of disease, is inherent to the

biology of humans and does not vary with year, then IDP is true.  Such belief is

consistent with our current conceptualization of biological processes.  However, hidden

in the IDP assumption is the assertion that the classification of disease and exposures is
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identical in year and .  If diagnostic criteria for colon cancer have changed, or, ifC C† ††

diagnostic procedures for detecting colon cancer have changed (for instance, an increase

in procedures that lead to early detection of colon cancer), then  and  may not inH HC C† ††

fact represent the same biological outcome.  Similarly, if the measurement tools for

ascertaining ethnicity and race have changed, then and  may not measure theI I† ††

same attributes.  In either case, we would expect IDP (16) to be false.

 In summary, if the observed SCC standardized rate differences are non-zero, we can

conclude that either IDP (16) and/or comparable confounding (17) are false.

 There is a direct correspondence between falsification of the above assumptions and

the conclusions made in the .  Ward et al. begin their paper,Annual Reports to the Nation

Interpreting Cancer Trends, with the following sentence: "Temporal trends in the

incidence of particular types of cancer may reflect changes in exposure to underlying

etiologic factors, changes in classification, or the introduction of new screening or

diagnostic tests." The "changes in underlying etiologic factors" corresponds to

comparable confounding being false (17); the "changes in classification, or the

introduction of new screening or diagnostic tests," corresponds to IDP (16) being false.

 The FDP inferences given above apply to any standardization operator not

confounded by .  They do not apply to the SCA standardization operator used toI#

produce the estimates in Ward et al. and in all of the .Annual Reports to the Nation

6.  Nested standardized rates and within-year model buildingÞ  The Annual Reports

provide and interpret trends in cancer rates over time for various demographic subgroups.

The majority of the report examines contrasts in overall cancer rates; contrasts

conditional on gender and race; and contrasts conditional only on gender or only on race.

However, unlike in the usual regression analysis, no attempt is made to construct a

"parsimonious model." Were the analyses in the  used only to describeAnnual Reports

within-group trends over time, such model development might be of no interest.  When
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used to make the type of inferences described in the first paragraph of this paper, the

ability to test nested models assumes importance.  Whether standardized rates conditional

on race and gender are identical to standardized rates conditional on race alone, has

implications for allocation of health care resources, the construction of preventive

programs, and the focus of future etiologic research.

 Regarding standardized rates as the output of standardization operators allows us to

evaluate the relationship between standardized estimates produced by the same operator

on the same data.  We define the standardized estimate = Ò HlI Ó = Ò HlC C
‡ ‡  to be nested in  ††

I Ó† provided the following three conditions are true:

  1) both are produced by the same standardization operator,  .W Ò Hl ÓC
* I"

  2) the arguments of the operator, ( ,   and  are identical.H I Ñ T ÐIÑßC C ‡

  3) I†† † is a proper subset of .I

 The relationship of nested standardized rates produced by the SCC operator has

familiar properties.  The SCC operator is recursive in the sense that

(19)   =   .= Ò H lI Ó W = Ò H lI Ó IC C C
-- --

" "
--†† † ††” ’ “¹ “"

 The right hand side of (19) is defined to be

(20)   \ | .   W = Ò H lI Ó I ´ = Ò HlI Ó .T ÐI I I ÑC C C
-- -- --

" " " " "
I I

” ’ “¹ “ († †† † † †† ††
"

" "
† ††\ 

*

The SCC operator does not "discard information." The standardized estimate obtained

from equation (7) when , is the same estimate obtained by replacing the finestI œ I" "
††

crude cancer rate  in (7) with = Ò H l ÓÞC
--    Thus nested estimates produced by the SCCI"

†

operator have the same properties as nested estimates in regression models of conditional

expectations.  We are currently developing inferential procedures analogous to those that

exist for regression.

 Though the identity in (19) can easily be verified by substitution, a more instructive

proof is based on the functional form of the SCC operator.  We define the probability

measure The SCC operator can be regarded as theT ÐHß IÑ T ÐH lIÑT ÐIÑÞC‡ C ‡´
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conditional expectation of the finest-crude-cancer rates, , with respect toT ÐH lI ßI ÑC
" #

T ÐI I Ñ Ò H l Ó*
# " C

--| .  Thus  = I"
†† “ is the projection (conditional expectation) of the

finest-crude-cancer rates on the subspace (subsigma algebra) defined by I††.  Projections

(conditional expectations) are entirely determined (a.e.  unique) by the subspace

(subsigma algebra) on which they are defined (measurable) [Dudley (1989)].   

Recursion cannot be defined for SCA.  The ,  in the integral in (6) is alwaysT ÐH l EÑC I+
"

a function of ;    is never a function of E = Ò H l Ó EÞC
-+ I"  Mimicking the form of (20) one

might define recursion for SCA to be,

(21)   . (
I

" " "
"
†
= Ò H lI Ó T ÐI ÑC
-+ † † ††‡ l I

The integral in (21) does not equal the   obtained from (6).  The SCA operator= Ò H lI ÓC
-+ ††

"

is not a projection operator.

 7.   Discussion.  In order to make inference from observational data, researchers

attempt to separate the effect of the exposures of interest from the effect of other disease

determinants that covary with the exposures of interest.  We have divided these other

determinants into two mutually exclusive sets: determinants that are measured and

determinants that are unmeasured.  We refer to procedures that attempt to separate the

association of the covariates of interest, I", from the association of the other measured

disease determinants, , as procedures that control for confounding.I#

 Standardization is one such procedure.  It is the most common procedure used to

control for confounding in the analyses of population-studies or data from disease

registries.  In this paper we examined the ability of various standardization procedures to

control for measured risk factors, and the interpretability of differences in standardized

rates in the presence of unmeasured risk factors.  Our motivation for conducting this

research was to evaluate the properties of the "age adjustment using the direct method"

standardization procedure (SCA standardization) used in the analysis of SEER cancer

registry data and, if needed, to develop standardization procedures with better properties.
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 We define a general class of standardization operators, and regard standardized rates

to be the output from a standardization operator.  The general class of operators are any

functionals that are integrals of a crude-cancer rate with respect to a  user-defined

"weighting" distribution (5).  Since, all crude-cancer rates are themselves integrals of the

finest-crude cancer rates (2), standardization operators differ only withT ÐH IÑC | , 

respect to the measure used to integrate .  Based on this formulation, weT ÐH IÑC |

defined between-year differences in crude-disease rates conditional on as beingI" 

unconfounded by , provided the distribution of I I I# # " conditional on  is the same in

both years (8).  By extension, we defined a subclass of standardization operators with no

I# confounding.  in which the finest-This subclass consists of standardization operators 

crude-cancer rates for each are integrated with respect to a distribution that is the sameC

for all (A.1).  We refer to members of this class as operators with no  confounding.C I#

  The SCA operator is not in the class of operators with no  confounding (10).  IfI#

the differences in crude-cancer rates are not confounded, the SCA operator can introduce

confounding and produce between-year differences in standardized rates that are

confounded.  In 3.1 we showed that the SCA operator will introduce confounding unless 

the  distributions differ only in terms of the marginal distribution of age.  T ÐIÑC This

criteria was not met in the SEER 13 data that we analyzed.  Figure 1 from that analysis

provides a graphic representation of the fact that the standardized rates produced by the

SCA operator for year are not the "cancer rates one would have seen" had the ageC

distribution in year  been identical to the age distribution that generated the weights.C

 It is clear that one should always choose a standardization operator from the subclass

of operators with no  confounding.  We proposed and examined the properties andI#

performance of one such operator: the standardization controlling for covariates operator

(SCC).  A desirable characteristic of the SCC operator is that the year-to-year differences

in standardized cancer rates preserve the magnitude of the differences of the crude-cancer

rates.  When the crude-cancer rates are not confounded, and thus no standardization
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procedure is required, the SCC operator is the only operator for which the standardized

rates equal the crude-cancer rates.  Figure 1 provides a graphic illustration of the

property.  Figure 2 shows that the largest differences between standardized rates from the

SCA operator and crude-cancer rates occurs in minority populations.

 If standardized rates produced by standardize operators with no  confounding areI#

different in year  and , then differences must exist in the finest-crude cancer rates.C C† ††

However, to make the inferences of interest to the authors of the  [WardAnnual Reports

et al.], one must consider the impact of unmeasured cancer risk factors on the year-to-

year differences in standardized rates.  In section 5 we used the fundamental disease

probability paradigm for inference proposed by Mark [2004; 2005; 2006; 2007] to prove

that non-zero contrasts of standardized rates falsify assumptions about the conditional

probabilities of disease given all the risk factors (the identical disease probability

assumption, (16)), and/or the conditional probabilities of unmeasured risk factor  given=

the measured risk factors ( the comparable-confounding assumption, (17)).  We describe

the one-to-one correspondence that exists between the inferences made in the SEER

Annual Reports [Ward et al.], and the falsification of these assumptions.

 The analyses in the  only examine between-year differences in cancerAnnual Reports

rates.  In section 6 we argue that given the type of inferences made from these reports, it

would be desirable to examine differences of within-year contrasts.  We defined the

concept of nested standardized rates.  We proved that, like regression models for

conditional expectations, the SCC operator is a projection operator.  In our current

research we are developing methods for testing nested models analogous to those used in

regression.  

 Though we have discussed standardization operators in terms of estimating the

conditional expectation of a binary variable, these operators extend in an obvious manner

to the estimation of conditional expectations in general.  The particular operators we have

defined are nonparametric estimators.  One could construct parametric or semiparametric



21   

operators by, for instance, replacing |  with a parametric or semiparametricT ÐH IÑC

model, | ; .T ÐH I ÑC )

  The data analyses we present were produced using a program we have written in the

computer language .  The Mathematica Mathematica [Wolfram Research, Inc.(2005)]

program only implements the SCA and SCC operators.  We are currently working to

program these operators in the  language [R Development Core Team (2007)].  It isV

possible to use existing  procedures to implement the same eV stimators of trend, and

tests of trend, as used in the .  Annual Reports Our goal is to develop an  program forV

distribution that employs standard  syntax for calculating the SCA and SCCV

standardized rates, and that allows analysts to choose from the large number of V

procedures for estimating trends and assessing goodness-of-fit.

APPENDIX A. Defining Standardization Operators with no ConfoundingI# 

 For all factorizations let  I œ ÐI ßI Ñß I ßI" # " #J Ð Ñ‡  be a family of probability

measures indexed by / . / ßI œ /‡ ‡ ‡
" " "# , with the property that ) 1 for all '

X#
J Ð‡ − X".

  if it can be expressed in theW Ò Hl ÓC
*   is a standardization operator unconfounded by I I" #

form

A.1  .W Ò Hl Ó œ ÐH l ß Ñ .J Ð ÑC
* *I T I I I ß I" " # " #

C(
X#

  

Note that for the SCC operator (7), the  the T ÐIÑ J Ð Ñ‡ ‡ specifies  for allI ßI" # 

factorization of , and all realizations I /‡ − X.  In general this need not be the case.
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Titles and Legends for Figures

Figure 1.  Comparing Sex and Age Specific Crude-Cancer Rates with SCA and SCC

Standardized Rates for the Years 1992-2003. The dotted line is the crude colon cancer rate.

The dashed line is the SCA standardized colon cancer rate. The solid line is the SCC

standardized colon cancer rate.

Figure 2.  The Absolute Value of the Percent Difference between the SCA standardized

Colon Cancer Rate and the Crude Colon Cancer Rate by Sex and Race for the Years

1992-2003.  The plotted values for each year were produced by the following formula.

 
SCA standardized 

l lSCA standardized colon cancer rate Crude colon cancer rate 
colon cancer rate


‚ Þ100

The dashed lines are the absolute value of the percent differences for whites. The solid lines

are the absolute value of the percent difference for blacks.

Figure 3.  The SCC Standardized Breast Cancer Rates for White Females Age Forty

and Older for the Years 1992-2003.

Figure 4.  The SCC Standardized Breast Cancer Rates by Five-Year Interval for White

Females Age Forty and Older. The dotted line is the SCC standardized breast cancer rates

for 1992. The solid line is the SCC standardized breast cancer rates for 1997 The dashed line Þ

is the SCC standardized breast cancer rates for 2003.
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