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First and foremost, we commend the authors for their creative and orig-
inal investigation. Although this comment will focus on methodological con-
cerns, we note that in general, the advantage of statistical modeling is not
necessarily that the solutions are precise, but rather that all assumptions
are made explicit. The conclusions in Clauset and Woodard (2013) [1] rely
on the strong modeling assumption that the number of deaths in a terrorist
incident are (a) independent draws from some unknown probability distri-
bution that is fixed in (b) space and (c) time. Given the politically charged
nature of this problem, we are wary of these three assumptions (and thus the
conclusions) in the paper.

Many of the inferences in [1] (hereafter referred to as CW) rely on the
bootstrap to measure the uncertainty in their statistical estimators. Sim-
ilarly, other applied papers in the extreme value literature have relied on
the bootstrap (e.g. [2]). However, there are many scenarios in which the
bootstrap can fail. Both [3] and [4] discuss some of these problems in the
context of heavy tailed distributions. In this discussion, we provide a brief
simulation that illustrates when the bootstrap succeeds and when it fails in
the settings of CW.

This comment investigates the following question under three relevant
models:

If the bootstrap is used to create a (nominally) 90% confidence interval, will
this interval actually cover the true parameter in 90% of experiments?

The first simulation model is the power law distribution with α = 2.4 sup-
ported on [10,∞). The second simulation model comes from [5], a paper that
CW cite to justify their method of estimating xmin. To sample a point Xi

from this model (which we will refer to as the mixed power law model), sam-
ple an observation Yi uniformly at random from the RAND-MIPT data ([6])
and sample an observation Zi from power law with α = 2.4 (corresponding
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to the estimate in CW) and supported on [10,∞). Then,

Xi =

{
Yi if Yi < xmin = 10
Zi o.w.

To investigate whether the the bootstrap techniques in CW are sensitive
to model misspecification error, the final simulation model is the Generalized
Pareto Distribution (GPD) [7]. The GPD distribution is specified by three
parameters: location u, scale σ, and shape ξ. The cumulative distribution
function of the GDP distribution is

(0.1) Fu,σ,ξ(x) =

 1−
(
1 + ξ(x−u)

σ

)−1/ξ
, ξ 6= 0,

1− exp
(
−x−u

σ

)
, ξ = 0.

When ξ > 0, the GPD distribution is regularly varying at ∞ with index
−1/ξ and thus tail equivalent to the power-law distribution with α = ξ−1+1.
Therefore, the GPD distribution can be considered as perturbed power-law
distribution. For simplicity, we set u = 0, σ = 1 in the following simulation
study. For comparison purposes, ξ is set to be 1/(α−1) = 1/1.4 for α = 2.4.

In each of 1000 runs of the experiment, we sample n = 1000 data points
from each of the simulation models, we use the code from CW to (1) fit
the power law distribution and (2) compute the (nominally) 90% bootstrap
confidence intervals for α and p, the probability of observing at least one
catastrophic event. For each of the three models, we run the estimation
two ways: First with xmin = 10 given to the algorithm and, second, where
the algorithm estimates xmin. Finally, each bootstrap confidence interval is
inspected to see if it contains the true values of α and p (see next paragraph
for a discussion on computing the true value of p). In total, this creates six
different simulation setups. The simulation results are given in the Table 1
and Figure 1.

To compute the true value of p, we follow the definition in CW

(0.2) p = 1− E [P (X < cat|X > xmin)ntail ] ,

where ntail ∼ Binomial(n = 1000, ptail), and cat is the size of 9/11 (2749).
In all six simulation setups, this value of p is approximately the probability
that the maximum of n = 1000 draws is greater than cat.1

In the power law and mixed power law distributions xmin = 10 is the lower
end of the power-law distribution for the tail model. Using Equation 0.2,
p = .3194 under the power law and p = .0244 under the mixed power law.

1In fact, for n = 1000, they are equal in the first four decimal places.
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Under the GPD distribution an exact xmin is not available for computing p.
We therefore applied an analogy of Kolmogorov-Smirnov criteria to minimize
the maximum distance of the GPD distribution above xmin and power-law
distribution, i.e., we find (xmin, α) that minimize

f(xmin, α) = max
x:x>xmin

∣∣∣∣ ( σ + ξ(x− u)

σ + ξ(xmin − u)

)−1/ξ

−
(

x

xmin

)1−α∣∣∣∣.
Although the limiting behavior of xmin is left an undeveloped problem in
CW, the solution of the above optimization problem could be a possible
option heuristically. Numerical optimization (grid search in matlab) yields
α = 2.31 and xmin = 13.44. With these values, the value of p in Equation
0.2 is .0242.

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Confidence Interval for p

sample

p

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Confidence Interval for p

sample

p

Fig 1: One thousand confidence intervals for p under the mixed power law
distribution with xmin = 10 (on left) and GPD with xmin estimated (on
right). These confidence intervals have poor coverage properties for the true
value of p (represented as a red line). Each confidence interval is computed
from a sample of n = 1000 data points and 1000 bootstrap samples. The
order of the intervals is shuffled so that p̂ (blue line) is increasing.

Table 1 reports the results for the bootstrap confidence intervals for both
the probability p of a catastrophic event and α, the power law parameter. In
brief, out of the six different setups, the confidence intervals failed for two of
them. Under both (1) the mixed power law distribution (from [5]) with xmin

given and (2) the GPD with xmin estimated, the nominally 90% bootstrap
confidence intervals cover the true values of p with probabilities .64 and
.71 respectively. One reason the bootstrap fails under the mixed power law
distribution is possibly due to an observation in CW, that a fixed choice of
xmin underestimates the uncertainty in p̂ due to the tails unknown structure.
The reason the bootstrap fails under the GPD is that the algorithm tends
to underestimate xmin and α, i.e. it is inclined for heavier tails. This is
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consistent with the other discussants who suggest that xmin is potentially
too small.

Although the bootstrap gives a straightforward path to computing confi-
dence intervals, these simulations suggest that their coverage performance is
sensitive to the data generating model and whether or not xmin is estimated
or known.

Table 1
For each of the three simulation models, xmin is either given as 10 or estimated (est.) by
the algorithm. The table presents (a) the estimated bias in coverage probabilities for the

(nominally) 90 % bootstrap confidence intervals and (b) the median width of the
confidence intervals

Model xmin
Coverage bias (%) width of CI

α p α p

PL, α = 2.4 10 −1.0 −.9 .1 .2
PL-Mix, α = 2.4 10 −28.9 −25.3 .7 .03
GPD, ξ = 1/1.4 10 −.6 2.4 .6 .1

Power Law, α = 2.4 est. +1.5 +.9 .2 .3
PL-Mix, α = 2.4 est. +.5 +.4 .8 .1
GPD, ξ = 1/1.4 est. −11.6 −18.4 .5 .2
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